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INTRODUCTION

The mammalian heart operates as an electromechanical pump, the proper functioning
of which depends critically on the sequential activation of cells throughout the myocar-
dium and the coordinated activation of the ventricles (Fig. 1). Electrical signaling in the
heart is mediated through regenerative action potentials that reflect the synchronized
activity of multiple ion channels that open, close, and inactivate in response to changes
in membrane potential (Fig. 1). The rapid upstroke of the action potential (phase 0) in
ventricular and atrial cells, for example, is attributed to inward currents through voltage-
gated Na+ (Nav) channels. Phase 0 is followed by a rapid phase of repolarization (phase 2),
reflecting Nav channel inactivation and the activation of voltage-gated outward K+ (Kv)
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currents (Fig. 1). In ventricular cells, this transient repolarization or notch influences the
height and duration of the action potential plateau (phase 2), which depends on the
balance of inward (Ca2+ and Na+) currents and outward (K+) currents. The main contribu-
tor of inward current during the plateau phase is Ca2+ influx through high threshold,
L-type voltage-gated Ca2+ (Cav) channels. The (L-type Ca2+) channels undergo Ca2+ and
voltage-dependent inactivation and, as these channels inactivate, the outward K+ currents
predominate resulting in a second, rapid phase (phase 3) of repolarization back to the
resting potential (Fig. 1). The height and duration of the plateau, as well as the time-and
voltage-dependent properties of the underlying Na+, Ca2+, and K+ channels determine
action potential durations in individual cardiac cells. Changes in the properties or the
densities of any of these channels, owing to underlying cardiac disease or as a result of
the actions of cardiac and noncardiac drugs, therefore, is expected to have dramatic
effects on action potential waveforms, refractory periods, and cardiac rhythms.

Electrophysiological studies have detailed the properties of the major voltage-gated
inward (Na+ and Ca2+) and outward (K+) currents (Table 1) that determine the heights and
the durations of cardiac action potentials. In contrast to the Na+ and Ca2+ currents, there
are multiple types of myocardial K+ currents, particularly Kv currents. At least two types
of transient outward currents, Ito,f and Ito,s, and several components of delayed rectifica-
tion, including IKr (IK(rapid)) and IKs (IK(slow)), for example, have been distinguished (Table 1).
There are marked regional differences in the expression patterns of these currents, dif-
ferences that contribute to regional variations in action potential waveforms (1–3). The
time- and voltage-dependent properties of the Kv currents in myocytes isolated from
different species and/or from different regions of the heart are similar, however, suggest-
ing that the molecular correlates of the underlying channels are also the same. The pore
forming (α) and accessory (β, δ, and γ) subunits encoding myocardial Na+, Ca2+, and K+

channels have been identified, and considerable progress has been made in defining the
relationships between these subunits and functional cardiac Na+, Ca2+, and K+ channels.

The densities and the properties of voltage-gated cardiac Na+, Ca2+, and K+ currents
change during development, reshaping action potential waveforms (4) and modifying the
sensitivity to cardiac, as well as noncardiac, drugs. Alterations in the densities and prop-
erties of voltage-gated Na+, Ca2+, and K+ currents also occur in a number of myocardial
disease states (5–12). These changes can lead directly or indirectly to arrhythmia genera-
tion, as well as influence the sensitivity of individuals to the effects of cardiac and
noncardiac drugs that influence the properties and/or the functional expression of these
channels. There is, therefore, considerable interest in defining the properties of myocar-
dial ion channels, as well as in delineating molecular mechanisms controlling the regu-
lation, the modulation, and the functional expression of these channels.

INWARD VOLTAGE-GATED NA+ CURRENTS IN THE MYOCARDIUM

Voltage-gated Nav channels open rapidly on membrane depolarization and underlie
the rising phases of the action potentials in ventricular and atrial myocytes (Fig. 1). The
threshold for Nav channel activation is quite negative ( –55 mV), and activation is steeply
voltage-dependent (13). In addition, Nav channels inactivate rapidly and, during the
plateau phase of ventricular action potentials, most of the Nav channels are in an inac-
tivated and nonconducting state (14–16). There is, however, a finite probability (approx
1%) of channel reopening at voltages corresponding to the action potential plateau (14–
17). Although the resulting plateau (or “window”) Nav current is small in magnitude (18),
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particularly when compared with the Nav current during phase 0, it does contribute to
maintaining the depolarized state, and plays a role in action potential repolarization,
particularly in the ventricles.

Although the Nav channel “window” current has been recognized as a determinant of
cardiac action potential waveforms for a great many years now (19,20), the identification
of inherited mutations in the genes encoding myocardial Nav channels and the delinea-
tion of the molecular consequences of these mutations (14–16) have clearly demonstrated
that plateau Nav currents play a very important role in action potential repolarization.
Interestingly, there are regional differences in the expression of the persistent Nav current
component (21), differences that may contribute to regional heterogeneities in action
potential amplitudes and durations (1–3), as well as impact arrhythmia susceptibility.

INWARD VOLTAGE-GATED MYOCARDIAL CA2+ CURRENTS

Two broad classes of voltage-gated Ca2+ (Cav) currents/channels, low-voltage-
activated (LVA) and high-voltage-activated (HVA), Cav channels, have been distin-
guished based primarily on differences in the (voltage) threshold of channel activation
(22). Similar to Nav channels, the LVA Cav channels activate at relatively hyperpolar-
ized membrane potentials, and these channels activate and inactivate rapidly. HVA Cav
channels, in contrast, open on depolarization to membrane potentials more positive than
– 20 mV, and these channels inactivate in tens to hundreds of milliseconds. There is
considerable variability in the detailed kinetic and pharmacological properties of HVA
Ca2+ channels expressed in different cell types, and multiple HVA channel types, referred
to as L, N, P, Q, or R, have been described (22,23). LVA channels are also often referred
to as T (transient) type Ca2+ channels (23).

In mammalian cardiac myocytes, L-type HVA Cav currents predominate (24). In
response to membrane depolarization, L-type cardiac Cav channels open with a delay
relative to the Nav channels, and these channels contribute little to phase 0 (Fig. 1). The
Ca2+ influx through the L-type Cav channels, however, triggers the release of Ca2+ from
intracellular Ca2+ stores and excitation-contraction coupling (24). At positive potentials,
L-type Cav channels undergo rapid voltage- and Ca2+-dependent inactivation, contrib-
uting to the termination of action potential plateau and repolarization. It is clear, there-
fore, that cardiac and noncardiac drugs that modulate the influx of Ca2+ through these
channels could have profound effects on action potential waveforms and the generation
of normal cardiac rhythms.

DIVERSITY OF VOLTAGE-GATED MYOCARDIAL K+ CURRENTS

Voltage-gated K+ (Kv) channel currents influence the amplitudes and durations of
cardiac action potentials and, in most cells, two classes of Kv currents have been distin-
guished: 1. transient outward K+ currents, Ito, and 2. delayed, outwardly rectifying K+

currents, IK (Table 1). Ito channels activate and inactivate rapidly and underlie the early
phase (phase 1) of repolarization, whereas IK channels determine the latter phase (phase
3) of repolarization (Fig. 1). These are broad classifications, however, and there are
multiple Kv currents (Table 1) expressed in cardiac cells. Differences in the expression
patterns and the properties of these currents contribute to the observed variations in action
potential waveforms recorded in different cardiac cell types (Fig. 1) and in different
species (1–3).

02_Nerb_011_036 9/8/04, 1:18 PM17



18 Nerbonne and Kass

The early phase (phase 1) of repolarization is attributed to the activation of Ca++-
independent, 4-aminopyridine-sensitive transient outward K+ currents, variably referred
to as Ito, Ito1, or It (25,26). Electrophysiological and pharmacological studies, however,
have now clearly demonstrated that there are actually two distinct cardiac transient
outward K+ currents, Ito, fast (Ito,f) and Ito,slow (Ito,s) (27–30). Rapidly activating and inac-
tivating transient outward K+ currents that are also characterized by rapid recovery from
steady-state inactivation are referred to as Ito, fast (Ito,f) (28). The rapidly activating tran-
sient outward K+ currents that recover slowly from inactivation are referred to as Ito,slow
(Ito,s) (28). Ito,f is a prominent repolarizing current in ventricular and atrial cells in most
species (27–37), and is readily distinguished from other Kv currents, including Ito,s , using
the spider K+ channel toxins, Heteropoda toxin-2 or -3 (38). The fact that the properties
of Ito,f in different species and cell types are similar led to the suggestion that the molecular
correlates of the underlying (Ito,f) channels are the same (25), and considerable experi-
mental evidence in support of this hypothesis has now been provided. Nevertheless, there
are differences in the detailed biophysical properties of Ito,f channels (39), suggesting that
there likely are subtle, albeit important, differences in the molecular compositions of
these channels in different cells/species.

In rabbit myocardium, the prominent transient outward K+ current (It) inactivates
slowly and recovers from steady-state inactivation very slowly (40–42), and would be
classified as Ito,s. In some species, Ito,f and Ito,s are co-expressed and differentially distrib-
uted (28–30). In all cells isolated from adult mouse right (RV) and left (LV) ventricles,
for example, Ito,f is expressed, whereas Ito,s is undetectable (28–30). In the mouse inter-
ventricular septum, in contrast, Ito,f and Ito,s are co-expressed in approx 80% of the cells,
and in ≈ 20% of the cells, only Ito,s is evident.

Delayed rectifier Kv currents, IK, have also been characterized extensively in cardiac
myocytes and, in most cells, multiple components of IK (Table 1) are co-expressed. Two
prominent components of IK, IKr (IK,rapid) and IKs (IK,slow), for example, were first distin-
guished in guinea pig myocytes based on differences in time- and voltage-dependent
properties (43–47). IKr activates rapidly, inactivates very rapidly, displays marked inward
rectification and is selectively blocked by several class III antiarrhythmics (44,47). In
contrast, no inward rectification is evident for IKs, and this current is not blocked by the
compounds that affect IKr (44,47). In human (48,49), canine (50), and rabbit (51) ven-
tricular cells, both IKr and IKs are expressed and contribute to repolarization. In adult
rodent hearts, however, neither IKr nor IKs is a prominent repolarizing Kv current, and
there are additional components of IK (Table 1). In rat ventricular myocytes, for example,
there are novel delayed rectifier Kv currents, referred to as IK and Iss (Table 1) (33,52).
In mouse ventricular myocytes, three distinct Kv currents, IK,slow1, IK,slow2, and Iss, are co-
expressed (28,53–59). It is clear, therefore, that in efforts focused on evaluating the
possibility that there will be unwanted cardiac effects of drugs with clinical potential, it
will be important to select the experimental species used in the assays carefully.

In rat (60), canine (61), and human (62,63) atrial myocytes, a novel, rapidly activating
and slowly inactivating outward K+ current, referred to as IKur (IKultra rapid), is expressed
(Table 1). It has been suggested that the expression of IKur, together with Ito,f in atrial
myocytes, contributes to the more rapid repolarization evident in atrial, compared with
ventricular, myocytes (Fig. 1). However, in guinea pig (64) and mouse (53,57–59) ven-
tricular myoctyes there are voltage-gated outward K+ currents with biophysical proper-
ties similar to atrial IKur. The rapidly activating  µM 4-AP-sensitive component of mouse
ventricular IK,slow, IK,slow1 (57,59) should probably be renamed IKur (Table 1). Impor-
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Chapter 2 / Ion Channels Underlying Repolarization 19

tantly, IKur is not expressed in human ventricular myocytes or in Purkinje fibers, suggest-
ing that IKur channels might represent a therapeutic target for the treatment of atrial
arrhythmias without complicating effects on ventricular function or performance. The
potential of this pharmacological strategy, however, will have to be determined by the
atrial specificity/selectivity of the reagents to be developed.

REGIONAL AND DEVELOPMENTAL DIFFERENCES IN ACTION
POTENTIAL WAVEFORMS AND IONIC CURRENTS

There are marked regional differences in action potential waveforms in the myocar-
dium (Fig. 1), and these contribute to the normal propagation of activity through the heart
and the generation of normal cardiac rhythms. An important determinant of the observed
regional differences in action potential waveforms is heterogeneity in Kv current
expression (1–3). There are, for example, large variations in ventricular Ito,f densities
(27–29,31,32,35,36,65–67). In (canine) LV, Ito,f density is five- to sixfold higher in
epicardial and midmyocardial, than in endocardial, cells (65). The density of Ito,s is quite
variable (27–30), being detected only in endocardial (27) and septum (28,29) cells. There
are also regional differences in IKs and IKr densities. In (canine) LV, for example IKs
density is higher in epicardial and endocardial cells than in M cells (49). In cells isolated
from the (guinea pig) LV free wall, IKr density is higher in subepicardial, than in
midmyocardial or subendocardial, myocytes (68). At the base of the LV, in contrast, IKr
and IKs densities are significantly lower in endocardial than in midmyocardial or epicar-
dial cells (69). These differences contribute to the variations in action potential wave-
forms recorded in different regions (right vs left; apex vs base) and layers (epicardial,
midmyocardial, and endocardial) of the ventricles. In addition, these electrophysiologi-
cal differences clearly suggest that there will be regional differences in the physiological
effects of drugs that affect the properties and/or the functional expression of cardiac Kv
channels, differences that could increase the propensity to develop life-threatening
arrhythmias.

During postnatal development, myocardial action potentials shorten markedly (4). In
ventricular myocardium, for example, phase 1 repolarization becomes more pronounced
with age, and functional Ito,f density is increased (52,70–77). In addition, action potentials
in neonatal cells are insensitive to 4-AP, and voltage-clamp recordings reveal that Ito,f is
undetectable, whereas, in cells from 60 d postnatal animals, Ito,f is present and phase 1
repolarization is clearly evident (71). Ito,f density is also low in neonatal mouse (75) and
rat (52,70,72,74,76) ventricular myocytes, and increases several fold during early post-
natal development. In rat, the properties of the currents in 1–2 d ventricular myocytes (76)
are also distinct from those of Ito,f in postnatal d 5 to adult cells (52) in that inactivation
and recovery from inactivation are slower. Indeed, the properties of the transient outward
currents in postnatal d 1–2 rat ventricular cells (76) more closely resemble Ito,s than Ito,f.
In rabbit ventricular myocytes, transient outward K+ current density increases and the
kinetic properties of the currents also change during postnatal development (73). In this
case, however, the rate of recovery of the currents is ten times faster in neonatal (mean
recovery time ~ 100 ms) than in adult (mean recovery time ~ 1300 ms) cells (73). The slow
recovery of the transient outward currents underlies the marked broadening of action
potentials at high stimulation frequencies in adult (but not in neonatal) rabbit ventricular
myocytes (73). These observations suggest that Ito,f is prominent in neonatal rabbit cells
and that Ito,s dominates repolarization in adult cells. In addition, these observations again
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20 Nerbonne and Kass

reveal species differences in the ionic currents shaping action potential waveforms, again
demonstrating the importance of the selection of species in efforts focused on determin-
ing drug effects in the myocardium.

Delayed rectifier K+ current expression also changes during postnatal development.
For example, both IKr and IKs are readily detected in neonatal mouse ventricular myocytes
(77), whereas these currents are not detected in adult cells (28,29). Because IKr and IKs
are prominent repolarizing K+ currents in adult human cardiac cells, developmental
changes in the expression and/or the properties of these currents will lead to marked
changes in action potential waveforms and altered sensitivity to drugs that affect the
properties and the functioning of these channels.

INWARDLY RECTIFYING K+ CHANNELS CONTRIBUTE
TO ACTION POTENTIAL REPOLARIZATION

In addition to Kv currents, the inwardly rectifying K+ (Kir) current (IK1) plays a role
in myocardial action potential repolarization (Table 1), and there are marked regional
differences in IK1 expression in atria, ventricles and conducting tissues (78,79). In atrial
and ventricular myocytes and in cardiac Purkinje cells, IK1 plays a role in establishing the
resting membrane potential, the plateau potential and contributes to phase 3 repolariza-
tion (Fig. 1). The strong inward rectification evident in these channels is attributed to
block by intracellular Mg2+ (80) and by polyamines (81,82). The fact that channel con-
ductance is high at negative membrane potentials underlies the contribution of IK1 to
resting membrane potentials (79). The voltage dependent properties of IK1 channels,
however, are such that the conductance is very low at potentials positive to approx –40
mV (78). Nevertheless, because the driving force on K+ is high at depolarized potentials,
IK1 channels do contribute outward K+ current during the plateau phase of the action
potential, as well as during phase 3 repolarization (Fig. 1), particularly in ventricular
cells. Cardiac and noncardiac drugs that affect the properties or the functioning of IK1
channels, therefore, could have rather profound effects on myocardial action potential
waveforms, propagation, and rhythmicity and these effects are expected to be region
specific, owing to the differential expression of these channels.

MOLECULAR CORRELATES OF VOLTAGE-GATED
CARDIAC NA+ (NAV) CHANNELS

Functional cardiac Nav channels reflect the coassembly of Nav pore-forming (α)
subunits and accessory (β) subunits. The Nav channel α subunits (Fig. 2A) belong to the
“S4” superfamily of voltage-gated ion channel genes. Although a number of Nav α
subunits have been identified, Nav1.5 (SCN5A) is the one predominantly expressed in the
myocardium, and Nav1.5 is the locus of mutations linked to one form of inherited long
QT syndrome, LQT3 (Fig. 2A), as well as Brugada syndrome and conduction defects
(14–17). Each Nav α subunit has four homologous domains (I to IV), and each domain
contains six α-helical transmembrane repeats (S1–S6) (Fig. 2A). The cytoplasmic linker
between domains III and IV is a pivotal component of Nav channel inactivation, and a
critical isoleucine, phenylalanine, and methionine (IFM) motif in this linker has been
identified as the inactivation gate (84–86).

During the plateau phase of ventricular action potentials, approx 99% of the Nav
channels are in an inactivated, nonconducting state in which the inactivation gate is
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Chapter 2 / Ion Channels Underlying Repolarization 21

thought to occlude the inner mouth of the pore through specific interactions with sites on
S6 (87) or the S4-S5 loop (88) in domain IV. Inherited LQT3 mutations (i.e., ∆KPQ) in
the domain III–IV linker in Nav1.5 disrupt inactivation (89). This (∆KPQ) and other
LQT3 mutations result in sustained (bursting) Nav current activity (89), resulting in
action potential prolongation in theoretical models (90) and in mice genetically engi-
neered with LQT3 mutant Nav channels (91). Analysis of other SCN5A mutations, linked
both to LQT3 and the Brugada syndrome, however, has revealed that this is not the only
mechanism by which altered Nav channel function can prolong cardiac action potentials.
A critical role for the carboxy (C)-terminal tail of Nav1.5 channel in the control of channel
inactivation, for example, has now been defined (92–94). Point mutations in the C-
terminus shift the voltage-dependence of inactivation, promote sustained Na+ channel
activity, change the kinetics of both the onset of and recovery from inactivation, and alter
drug-channel interactions (95–98). Single channel studies reveal that the C-terminus has
pronounced effects on repetitive channel openings (99). Modeling studies suggest that this
(C-terminal) domain can adopt a predominantly α-helical structure and that only the
proximal region of the C-terminus, which contains this helical domain, appears to mea-
surably affect channel inactivation. Interactions likely occur, therefore, between the
structured region of the C-terminus and other components of the channel protein, and
these interactions appear to function to stabilize the channel in an inactivated state at
depolarized membrane potentials. Drugs that affect these interactions, therefore, will
alter Nav channel inactivation, influence action potential waveforms, and affect rhyth-
micity.

Fig. 2. Pore-forming (α) subunits of cardiac ion channels. Membrane topologies of the α subunits
encoding Nav (A), Kv (B), and Kir channels (C) are illustrated. A four transmembrane, two-pore
domain K+ (K2P) channel α subunit is also illustrated in C.
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22 Nerbonne and Kass

Modeling studies (100,101) have also provided insights into the mechanistic basis of
the pathophysiology of other LQT3 mutations. The I1768V mutation, for example, does
not cause channel bursting, but rather speeds recovery (from inactivation) at hyperpolar-
ized potentials. Computational analysis predicts that this mutation will have a significant
effect during action potential repolarization, a prediction that was verified experimen-
tally (102). Similarly, subtle changes in Nav channel gating are caused by a commonly
occurring SCN5A variant (S1102Y) which is associated with an elevated arrhythmia risk
in African Americans (103). This variant causes subtle changes in channel activation and
inactivation that are not likely to alter myocyte functioning in mutation carriers, unless
these carriers are treated with drugs that block cardiac K+ channels (103). In this case,
computational analysis, in combination with the experimental data, suggests a novel
mechanism underlying susceptibility to drug-induced QT prolongation (103).

Functional Nav channels (Fig. 3) are thought to reflect the coassembly of Nav α subunits
with accessory Nav β subunits (104), and three different Nav β subunit genes, SCN1b
(105,106), SCN2b (107,108), and SCN3b (109) have been identified. Co-expression of
either SCN1b or SCN3b with SCN5A affects Nav channel kinetics and current densities
(110), and SCN2b (111) co-expression affects the Ca2+ permeability of functional Nav
channels (112). The fact that Navβ subunits interact with ankyrin B (113), a cytoskeletal
adaptor protein (114), suggests that an important function of these subunits may be to
regulate Nav channel function through the cytoskeleton. Consistent with this hypothesis,
electrophysiological recordings from myocytes isolated from ankyrin B+/– hearts reveal
increased Nav channel bursting (115). Interestingly, molecular genetic studies have revealed
that a loss-of-function mutation in ankyrin B (E1425G) underlies LQT4 (116).

MOLECULAR CORRELATES OF VOLTAGE-GATED
CARDIAC CA2+ (CAV) CHANNELS

Similar to Nav channels, Cav channel pore-forming (α) subunits belong to the “S4”
superfamily of voltage-gated ion channel genes, and these subunits combine with aux-
iliary β and α2δ subunits to form functional Cav channels (Fig. 3). Four distinct subfami-
lies of Cav α1 subunits, Cav1, Cav2, Cav3, and Cav4 (117), have been identified, each
with many subfamily members. Expression studies reveal that these genes encode Cav
channels with distinct time- and voltage-dependent properties and pharmacological sen-
sitivities. Functional expression of any of the Cav1 α subunits, Cav1.1, Cav1.2,
Cav1.3, or Cav1.4, for example, reveals L-type HVA Ca2+ channel currents, which
activate at approx –20 mV and are selectively blocked by dihydropyridine Ca2+ channel
antagonists. One member of this Cav1 subfamily, Cav1.2, is composed of 44 invariant
and six alternative exons (118). Cav1.2 encodes the α1C (α11.2) protein, and three differ-
ent isoforms of the α1C protein, α11.2a, α11.2b, and α11.2c (119,120), have been iden-
tified. Although nearly identical (>95 %) in amino acid sequences, these isoforms are
differentially expressed, and the cardiac specific isoform is α11.2a (119).

There are two distinct types of Cav accessory subunits, Cavβ and Cavα2δ subunits.
The β subunits are cytosolic proteins that are believed to form part of each functional
L-type Cav channel protein complex (Fig. 3). Four different Cavβ subunits, Cavβ1
(121,122), Cavβ2 (123,124), Cavβ3 (123–125), and Cavβ4 (125,126) have been identi-
fied. Each Cavβ subunit has three variable regions (the carboxyl terminus, the amino
terminus, and small region in the center of the linear protein sequence) flanking two
highly conserved domains. The conserved domains mediate the interaction(s) with Cavα1
subunits, and the variable domains determine the functional effects of Cavβ subunit
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co-expression (127). In co-expression studies, all four Cavβ subunits associate with
Cavα1 subunits and modify the amplitudes, as well as the time- and voltage-dependent
properties, of the currents (128–133).

In addition to Cavβ subunits, a disulfide-linked, transmembrane accessory subunit,
Cavα2δ, is also found in the complex of functional Cav channels (Fig. 3). The first
Cavα2δ subunit was cloned from skeletal muscle (134), and there are several members
of the Cavα2δ–1 subfamily, as well as two homologous, Cavα2δ–2 and Cavα2δ–3, sub-
families (135). The Cavα2δ subunits are heavily glycosylated proteins that are cleaved
posttranslationally to yield disulfide-linked α2 and δ proteins. The Cavα2 domain is
extracellular and the Cavδ domain has a large hydrophobic region, which inserts into the
membrane (Fig. 3) and anchors the Cavα2δ complex (136–138). The functional roles of
Cavα2δ are somewhat variable and seem to depend on the identities of the co-expressed
Cavα1 and Cavβ subunits and the expression environment. In general, co-expression
of Cavα2δ–1 alters channel gating and increases current amplitudes, compared with the
currents produced on expression of Cavα1 and Cavβ subunits alone (135,136,138–140).
The increase in current density reflects improved targeting of Cavα1 subunits to the
membrane, an effect attributed to the α2 subunit domain (141).

Fig. 3. Molecular compositions of functional cardiac Nav, Cav, and Kv channels. Upper panel: the
four domains of Nav (and Cav) α subunit form monomeric Nav (and Cav) channels, whereas four
Kv or Kir α subunits combine to form tetrameric Kv and Kir channels. Lower panel: schematic
illustrating functional cardiac Nav, Cav, and Kv channels, composed of the pore-forming α sub-
units and a variety of accessory subunits.
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MOLECULAR CORRELATES OF VOLTAGE-GATED
CARDIAC K+ (Kv) CHANNELS

Kv channel pore-forming (α) subunits are six transmembrane spanning domain pro-
teins with an “S4” domain and a K+-selective pore (Fig. 2), and functional Kv channels
reflect the tetrameric assembly of four α subunits (Fig. 3). Ten homologous Kv α subunit
subfamilies, KCNA, KCNB, KCNC, KCND, KCNF, KCNG, KCNH, KCNQ, KCNS, and
KCNV, have been identified (Fig. 2) and in most subfamilies, there are several members
(2). In addition to the multiplicity of Kv α subunits, further functional Kv channel diver-
sity can arise through alternative splicing of transcripts and through the formation of
heteromultimeric channels (2).

The KCNH2 subunit, which encodes the ether-a-go-go-related (143) or ERG1 protein
(144), is the locus of mutations (Fig. 2B) underlie familial long QT syndrome, LQT2 (145).
Expression of ERG1 in Xenopus oocytes reveals inwardly rectifying voltage-gated, K+-
selective currents (146,147) with properties similar to cardiac IKr. There are additional
members of the KCNH subfamily (2), although none of these appear to be expressed in the
heart. Another Kvα subunit, KvLQT1 (KCNQ1), has also been linked to inherited
arrhythmias, and mutations in KCNQ1 (Fig. 2C) underlie LQT1 (147). Although heterolo-
gous expression of KCNQ1 alone reveals rapidly activating and noninactivating K+ cur-
rents, co-expression with minK produces slowly activating K+ currents that resemble the
slow component of cardiac delayed rectification, IKs (149,150). There are additional KCNQ
subfamily members, KCNQ2 and KCNQ3, although these are not expressed in the heart
(151–153). Interestingly, however, KCNQ2 and KCNQ3 have been identified as loci of
mutations leading to benign familial neonatal convulsions (151,153).

Similar to cardiac Nav and Cav channels, accessory subunits also contribute to the
generation of functional cardiac Kv channels. The first identified Kv accessory subunit,
minK (KCNE1), is a small (130 amino acids) protein with a single membrane spanning
domain (154–156) that appears to co-assemble with KvLQT1 to form functional IKs
channels (149,150). Additional minK homologues, MiRP1 (KCNE2), MiRP2 (KCNE3),
and MiRP3 (KCNE4) have also been identified, and it has been suggested that MiRP1
functions as an accessory subunit of ERG1 in the generation of IKr (157,158). Although
it is unclear whether minK, MiRP1 or other KCNE subfamily members contribute to the
formation of cardiac Kv channels in addition to IKs and IKr, it has been reported that
MiRP2 assembles with Kv3.4 in mammalian skeletal muscle (159) and with Kv4.x α
subunits in heterologous expression systems (160). These observations suggest the inter-
esting possibility that KCNE subunits can assemble with different Kv α subunits and
contribute to the formation of multiple types of myocardial Kv channels.

The accessory Kvβ subunits are low molecular weight (~ 45 kD) cytosolic proteins,
first identified in the brain (161,162). There are four homologous Kv β subunits, Kv β1,
Kv β2, Kv β3, and Kv β4, and both Kv β1 and Kv β2 are expressed in the heart (163–168).
The presence of Kvβ subunits affects the properties and the cell surface expression of Kv
α subunit-encoded K+ channels (163–167). Heterologous expression studies suggest that
the effects of the Kv β subunits are subfamily specific, i.e., Kv β1, Kv β2, and Kv β3
interact with the Kv 1 subfamily of α subunits (169,170), whereas Kv β4 is specific for
the Kv2 subfamily (171). It is not known, however, which Kv α subunit(s) the Kv β1 and
Kv β2 subunits associate with in the myocardium.

A distinct Kv channel accessory protein, referred to as KChAP (K+ channel accessory
protein), was identified in a yeast two hybrid screen (172). Co-expression of KChAP with
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Kv2.1 (or Kv2.2) increases functional Kv2.x-induced current densities without measur-
ably affecting the time-dependent and/or the voltage-dependent properties of the cur-
rents, suggesting that KChAP functions as a chaperon protein (172). Interestingly, KChAP
can also interact with the N-termini of Kv1.x α subunits and with the C-termini of Kv β1.x
subunits (172), suggesting that KChAP may be a multifunctional protein contributing to
the generation of several cardiac Kv channels.

A yeast two hybrid screen also lead to the identification of the KChIPs (Kv channel
interacting proteins) (173). Of these, only KChIP2 appears to be expressed in the heart
(173,174), although there are several splice variants of KChIP2 (174–176). The KChIPs
contain multiple EF-hand domains and belong to the recovering family of neuronal Ca2+-
sensing (NCS) proteins (177). When co-expressed with Kv4 α subunits, the KChIPs
increase current densities, slow current inactivation, speed recovery from inactivation
and shift the voltage-dependence of activation (173). However, KChIP co-expression
reportedly does not affect the properties or the densities of Kv1.4- or Kv2.1-encoded K+

currents, suggesting that the modulatory effects of the KChIP proteins are specific for α
subunits of the Kv4 subfamily (173). In addition, although the binding of the KChIP
proteins to Kv4 α subunits is not Ca2+-dependent, mutations in EF hand domains 2, 3, and
4 eliminate the modulatory effects of KChIP1 on heterologously expressed Kv4.2-en-
coded K+ channels (173). It has also been shown that KChIP2 co-immunoprecipitates
with Kv4.2 and Kv4.3 α subunits from adult mouse ventricles, consistent with a role for
this subunit in the generation of Kv4-encoded cardiac Ito,f channels (178). Interestingly,
a gradient in KChIP2 message expression is observed through the thickness of the ven-
tricular wall in canine and human heart, suggesting that KChIP2 underlies the observed
differences in Ito,f densities in the epicardium and endocardium in human and canine
ventricles (174,179). However, in rat and mouse there is no gradient in KChIP2 expres-
sion, and it appears that differences in Kv4.2 underlie the regional variations in Ito,f
densities in rodents (178,180).

Although the link is less clear than for Nav channels (113–115), there is evidence to
suggest that myocardial Kv channels are also regulated through interactions with the
actin cytoskeleton. Using a yeast two-hybrid screen, for example, it has been shown that
Kv1α subunits, Kv1.5 and Kv1.4, bind to α-actinin-2 (181,182). In addition, when het-
erologously expressed, Kv1.5 and α-actinin-2 co-immunoprecipitate, and treatment of
cells with cytochalasin B or D reduces the functional cell surface expression of Kv1.5-
encoded K+ channels (181,182). It has also been reported that α subunits of the Kv4
subfamily interact directly with another actin-binding protein, filamin (183), and that
disruption of the cytoskeleton increases the density of heterologously expressed Kv4-
encoded K+ currents (184). Although the role of cytoskeletal-channel interactions in the
myocardium and the molecular mechanisms involved in mediating these interactions
remain to be defined, it seems reasonable to suggest that cardiac Kv (and other) channels
function as components of macromolecular complexes. Clearly, drugs that interact with
any of the complex components or that affect interactions between complex components
could, in principle, affect channel properties and myocardial function.

RELATIONS BETWEEN KV SUBUNITS AND
FUNCTIONAL CARDIAC KV CURRENTS

Considerable experimental evidence has accumulated documenting a role for Kv α
subunits of the Kv4 subfamily in the generation of cardiac Ito,f channels (185–188). In
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ventricular myocytes isolated from transgenic mice expressing a dominant negative pore
mutant of Kv4.2 (Kv4.2W362F), Kv4.2DN in the myocardium, for example, Ito,f is
eliminated (187). In addition, biochemical and electrophysiological studies suggest that
Kv4.2 and Kv4.3 are associated in adult mouse ventricles and that functional mouse
ventricular Ito,f are heteromeric (178). However, in large mammals, including humans, it
appears that Ito,f channels are Kv4.3 homomultimers because Kv4.2 is not expressed
(189). The fact that the properties of Ito,s are different from Ito,f (Table 1), suggested that
the molecular correlates of Ito,s and Ito,f channels are also distinct. Direct experimental
support for this hypothesis was provided with the demonstration that Ito,s is eliminated
(29) in ventricular myocytes isolated from mice with a targeted deletion in the Kv1.4 gene
(190). Given the similarities in current properties, it seems reasonable to suggest that
Kv1.4 also encodes Ito,s in other species, including humans.

As noted earlier, KCNH2 is the locus of mutations in LQT2 and has been shown to
encode IKr (145–147), and KCNQ1, the locus of mutations leading in LQT1 (148), encodes
cardiac IKs (149,140). The fact that mutations in the transmembrane domain of minK alter
the properties of heterologously expressed KCNQ1 and minK Kv channels suggests that
the transmembrane segment of minK also contributes to the IKs channel pore (191–194).
Alternative experimental strategies, primarily in mice, have been exploited to define the
molecular correlates of several other myocardial Kv currents. A role for Kv2 α subunits
in the generation of mouse ventricular IK,slow2, for example, was revealed with the dem-
onstration that IK,slow2 is selectively attenuated in ventricular myocytes isolated from
transgenic mice expressing a truncated Kv2.1 α subunit that functions as a dominant
negative (55). Subsequently, it was also shown that IK,slow1 is eliminated in ventricular
myocytes isolated from mice with targeted deletion of Kv1.5 (57), revealing that Kv1.5
encodes mouse ventricular IK,slow1 (57,59). These findings, together with the previous
results obtained on cells isolated from Kv1.4 null animals, in which Ito,s is eliminated (29),
suggest that, in contrast to the Kv 4 α subunits (178), myocardial Kv 1 α subunits, Kv1.4
and Kv1.5, do not associate in situ. Rather, functional cardiac Kv1 α subunit-encoded
K+ channels are homomeric, composed of Kv1.4 α subunits (Ito,s) or Kv1.5 α sub-
units (IK,slow1, IKur).

MOLECULAR CORRELATES OF OTHER CARDIAC K+ CURRENTS

In cardiac and other cells, the inwardly rectifying K+ (Kir) channels are encoded by a
large and diverse subfamily of Kir channel α subunit genes, each of which encodes a
protein with two transmembrane domains (Fig. 2C). Similar to Kv channels, Kir subunits
assemble as tetramers to form K+ selective pores (Fig. 3). Based on the properties of the
currents produced in heterologous expression systems, it has been suggested that Kir2 α
subunits encode cardiac IK1 channels (195), and several members of the Kir 2 subfamily
are expressed in the myocardium (196). Direct support for a role for Kir 2 α subunits in
the generation of IK1 channels was provided in studies completed on myocytes isolated
from mice with a targeted deletion of Kir2.1 (Kir2.1–/–) or Kir 2.2 (Kir2.2–/–) (197,198).
Although the Kir2.1–/– mice have cleft palate and die shortly after birth (197), voltage-
clamp recordings from newborn Kir2.1–/– ventricular myocytes revealed that IK1 is
absent (198). A small, slowly activating inward rectifier current, distinct from IK1, how-
ever, is evident in Kir2.1–/– myocytes. Voltage-clamp recordings from adult Kir2.2–/–
ventricular myocytes reveal that IK1 is reduced (198). Taken together, these results sug-
gest that both Kir2.1 and Kir2.2 contribute to functional cardiac IK1 channels. The obser-
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vation that Kir2.2 does not generate IK1 channels in the absence of Kir2.1, however,
further suggests that functional cardiac IK1 channels are heteromeric.

A novel type of K+ channel α subunit with four transmembrane spanning regions and
two pore domains (Fig. 2C) was identified with the cloning of TWIK-1 (199). Both pore
domains are functional and TWIK subunits assemble as dimers, rather than tetramers
(200). There are a great many four transmembrane and two pore domain K+ (K2P)
channel α subunit (KCNK) genes, and expression studies suggest that the members of
various K2P subunit subfamilies give rise to currents that display distinct current-volt-
age-relations and differential sensitivities to a variety of modulators, including pH and
fatty acids (200). Nevertheless, the physiological roles of these subunits/channels in the
myocardium, as well as in other cell types, remain to be determined. The K2P subunits
TREK-1 and TASK-1, for example, are both expressed in the heart and heterologous
expression of either of these subunits gives rise to instantaneous, noninactivating K+

currents that display little or no voltage-dependence (200). These properties have led to
suggestions that these subunits contribute to “background” or “leak” currents (201),
and interestingly, expressed TREK-1 or TASK-1 currents are similar to the current
referred to as IKp in guinea pig ventricular myocytes (64,202).

SUMMARY AND CONCLUSIONS

Electrophysiological studies have clearly identified multiple types of voltage-gated
inward and outward currents that contribute to action potential repolarization in the
mammalian myocardium (Table 1). Interestingly, the outward currents are more numer-
ous and more diverse than the inward currents, and cardiac myocytes express a repertoire
of Kv channels/currents that contribute importantly to shaping the waveforms of action
potentials, as well as influencing automaticity and refractoriness. Changes in the prop-
erties or the functioning of cardiac Kv channels during development, owing to underlying
cardiac disease or resulting from the actions of cardiac or non-cardiac drugs, can, there-
fore, have rather dramatic effects on myocardial action potential waveforms and the
generation of normal cardiac rhythms.

In addition to the demonstrated importance of repolarizing Kv currents in the myocar-
dium, however, it is also quite clear that Cav channel currents and the Nav channel
“window” current also contribute importantly to action potential repolarization. This has
been very elegantly demonstrated for Nav channels with the characterization of inherited
mutations in the cardiac Nav SCN5A gene, mutations that underlie Long QT3, Brugada
syndrome, and conduction defects. Functional characterization of these mutants and
computer simulations of cellular electrical activity together have provided new insights
into the effects of altered channel functioning on action potential waveforms and rhyth-
micity (100,101,117,138,139,203). These studies demonstrate that small changes in Nav
channel currents can have profound effects on repolarization because the plateau phase
of the action potential is maintained by the delicate balance of small (inward and outward)
currents. It is very clear, therefore, that cardiac or noncardiac drugs that affect Nav
channel currents will influence action potential durations. Because cardiac Cav channels
also control the plateau phase of cardiac action potentials and action potential repolariza-
tion, changes in Cav channel currents will also have functional consequences. Indeed, it
seems reasonable to suggest that drugs that affect the functional expression and/or the
properties of any of the (inward or outward current) channels that contribute to shaping
action potentials would have been expected to impact the propagation of activity and the
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generation of cardiac rhythms. When considering screening of noncardiac (as well as
cardiac) drugs, therefore, effects on all of the various cardiac ion channels that contribute
to repolarization must be considered.

In addition to the diversity of voltage-gated ion channel pore-forming α subunits,
molecular and biochemical studies have now demonstrated that there are multiple acces-
sory subunits that contribute to the formation of the various cardiac inward and outward
current channels. Recent studies also suggest that channel subunit interactions with the
actin cytoskeleton are important in determining functional cardiac (Nav and Kv) channel
expression. Although it seems quite clear that the relationships between channel subunits
and regulatory molecules are important in determining channel expression and/or proper-
ties, very little is presently known about the molecular interactions involved and/or
the role(s) of these interactions in determining the properties and/or the functioning
of the various cardiac ion channels involved in mediating repolarization. Nevertheless,
these channel subunit-subunit and channel subunit-regulatory protein interactions are
also potential sites of action of cardiac and noncardiac drugs. It seems reasonable to
suggest, therefore, that defining the molecular correlates/compositions of the channels
controlling cardiac action potential waveforms in detail will facilitate future efforts
focused on delineating the mechanisms controlling the properties and the functional
expression of these channels in the developing, aging, damaged, or diseased myocar-
dium. In addition, however, this information will provide fresh new insights into the
repertoire of proteins that play roles in regulating the properties and the expression of
myocardial ion channels and into the detailed molecular mechanisms involved in medi-
ating these effects. Probing these molecular mechanisms in detail is requisite to under-
standing the factors controlling channel expression and properties during normal cardiac
development, as well as in the aged, damaged, and/or diseased myocardium. Also, because
any step in the regulatory pathway could potentially be affected by cardiac and/or non-
cardiac drugs, it will become increasingly important to understand these pathways in
detail, as well as how the various drugs might affect one or more steps in channel regu-
latory pathways, to minimize potentially dangerous, life-threatening drug effects. Clearly,
a major focus of future research will be on defining the molecular mechanisms control-
ling the properties and the functioning of myocardial ion channels in great detail.
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