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Statistical Theory in QTL Mapping

Benjamin Yakir, Anne Pisanté, and Ariel Darvasi

1. INTRODUCTION

Variability may be introduced in an observed phenotype by a range of ele-
ments. Inherited genetic factors, as well as environmental and behavioral con-
ditions, may affect the phenotype. The blend of all these interactions gives
rise to the unique being every living creature is. Experimental genetics has
traditionally been, and still is, a very powerful tool for dissecting the genetic
factors out of the blend that results in the observed phenotype complexity.

Unlike human genetics, a major advantage of experimental genetics is the
ability to control the genetic background through inbred strain crosses,
whereas nongenetic factors are kept relatively constant under controlled lab-
oratory conditions. In reality, the ideal experiment is almost never feasible,
and uncontrolled sources of variation and complex interactions may still
obscure the underlying genetic effect.

Even under the best conditions, mapping quantitative trait loci (QTL) is a
demanding endeavor. Any given QTL or genomic polymorphism contributes
only a limited fraction of the phenotypical variation. This complex inheri-
tance may involve partial penetrance, heterogeneity, the joint action of sev-
eral genes, environmental effects, and more. The genetic dissection of
complex traits is unavoidably based on a statistical approach. The aim in this
chapter is to describe our view of the fundamental principles on which the
statistical approach is based.

In a nutshell, the theory we will discuss involves the attempt to detect and
locate weak signals in a noisy environment. This calls for the usage of large
samples. Thereby, our probabilistical framework involves the distribution of
statistics computed from large samples in the context of what is known as
local alternatives. In statistical language, this theory is called large sample
theory. Modern technology puts at our disposal the ability to genotype these
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samples over a practically unlimited collection of molecular genetic mark-
ers. The statistical investigation should make full use of this data.
Stochastical processes are more appropriate as a model in this context than
the separate investigation of individual markers. The statistical tools that
were developed in the context of stochastical processes, in particular
scanning statistics, are applicable also in the context of QTL mapping.

One should realize that QTL mapping is a multistage process that pro-
ceeds through several steps. The first step typically involves detection of
chromosomes, or very large segments of chromosomes, which are likely to
contain a QTL. In the next steps an attempt is made to narrow down the
region containing the QTL. Finally, after a reduction to a small enough chro-
mosomal segment, the gene associated with the variability in the investigated
phenotype may be cloned, and its specific alleles may be identified. Several
factors determine which tool is most appropriate at which stage. By the word
tool we mainly mean here the selection of the cross and/or genetic resource.
Phenotyping and genotyping methods may also be included in this context.
A major factor, which determines to a large extent the advantages and disad-
vantages of a given tool for a given stage of the process, is the expected num-
ber of recombination events. This factor is directly determined by the
breeding protocol. Statistically, recombination is reflected in the correlation
among markers that reside on the same chromosome and between the mark-
ers and the QTL. In principle, an increase in the number of recombination
events reduces the correlation. Reduction in the correlation is usually a bless-
ing in the stages of fine-mapping but an obstacle in the first stage of detec-
tion. Another important factor is the strength of the statistic signal. The
strength is usually summarized in the form of a noncentrality parameter; it is
affected both by biological mechanisms by which the genetic variability is
reflected as a phenotypic variability and by the breeding protocol. Other fac-
tors to be considered include, of course, the availability of the different
resources and their respective costs.

Many attributes make the mouse an ideal mammalian model organism,
especially for genetic investigations for which a wealth of resources have
been established over the years. The relatively short generation time of the
mouse, their easy breeding, and well-documented biological properties have
led to the development of well-characterized, genetically designed specific
strains (13,14). These privileged circumstances have been exploited in both
gene-to-phenotype and phenotype-to-gene studies. With the advent of molec-
ular genetics, the use of DNA polymorphisms (11) has allowed for a refined
identification of interstrains genetic divergence (4). Correlation of the human
and mouse genetic maps (6,15), finally, makes the genetic analyses carried
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out in mice applicable to human diseases by means of comparative mapping
(15). Mouse inbred strains are invaluable models for many complex diseases
(for review see ref. 12). The use of more specialized genetic resources, such
as congenics, chromosome substitution strains, recombinant inbred (RI),
along with various statistical packages (12) has already led to a primary dis-
section of a few complex, multigenic traits. A detailed description of the
mouse strains and their use in genetics can be found in Lee Silver (see ref. 17
and http://www.princeton.edu/lsilver/book/MGcontents.html).

In the present chapter we examine the statistical aspects of QTL mapping,
with special emphasis on the relevant parameters, their impact on the genetic
design to be chosen, and reciprocally, their adjustment under the various
genetic models.

2. DESIGN OF GENETIC EXPERIMENTS IN MICE

A genetic mapping program in mice is typically initiated by the selection
of two pure inbred strains that exhibit a substantial difference in terms of the
observed phenotype. An inbred strain lacks genetic variation. All mice
within the strain carry two identical copies of each autosome and are thus
genetically identical for all practical purposes. Conversely, genetic variation
is present between strains, leading presumably to the between-strains aver-
age phenotypical difference. Crossing the two strains gives rise to offspring
that are a genetic combination of the two parental strains. The process of
recombination then blends the genomes further in subsequent crosses, gener-
ating mice with chromosomes that are a mosaic of segments from the two
parental genomes. Correlating the parental origin of the genetic material at
various loci with the measured level of the trait is the major statistical tool
for identifying the genetic factors associated with the phenotype.

Several experimental designs have been developed in the context of QTL
analysis. The most widely used designs are the backcross (BC), the intercross
(F2) designs, and to some extent RI strains (see Fig. 1). The statistical theory
we present here is given primarily in the context of those three designs.

3. THE STATISTICAL MODEL

Denote by Y the phenotype measurement for a random mouse. This mea-
surement may vary both within and between lines of pure inbred mice. Some
of this variability may be attributed to genetic and some to nongenetic factors.
For a given locus showing polymorphism between two given lines of inbred
strains, denote by A1 the allele originating from one strain and by A2 the allele
originating from the other. Intercrossing the two inbred strains may give rise
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Fig. 1. The three cross designs: (a) backcross (BC), (b) intercross (F2), and 
(c) recombinant inbred (RI). An outcross between two inbred lines (P1 and P2) pro-
duces the F1 generation, with all the mice heterozygous over the whole genome;
(a) the F1 can be crossed back to one of the parental strain (P1) to produce the BC;
(b) an intercross within the F1 will result in F2 offspring; (c) strict inbreeding
between F2 pairs, for many generations, and following a single pair of chromosomes,
will generate RI strains. All the individuals within a given RI strain carry the same
homozygous, recombinant genotype.

to three genotypes. If X represents the copy number of allele A2 in a genotype,
then the variable X can take the values 0, 1, or 2. The model potentially
assigns a different average level of Y for each genotype. At the same time, the
variance of Y, or other characteristics of its distribution, is assumed to be inde-
pendent of the genotype. The relation between the genotype and the pheno-
type is given in the regression formula:

Y = µ + α ⋅ X + δ ⋅ I{X = 1} + e, (1)
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where e is a zero mean random deviate and IA is the indicator function of an
event A. (Specifically, I{X=1} is equal to 1 if the mouse is heterozygous and 0
if it is homozygous.) The coefficient α represents the additive effect, the
coefficient δ represents the dominant effect, and the term µ is the intercept. 
µ is the expected level of Y for an (A1A1) homozygote. The expected level
for an (A2A2) homozygote is 2α, and the expected level for a heterozygote
is α + δ.

The deviate e incorporates all remaining factors that contribute to the vari-
ability. Such factors can include the genetic contribution from loci other than
the one investigated, as well as environmental factors. We assume that this
deviate is normally distributed and is uncorrelated with the genotype
variable X.

The chosen cross design between the two inbred strains (BC, F2, RI, etc.)
affects the distribution of the random variable X, as well as the distribution
of the deviate e. For example, if the BC is formed by crossing back the 
F1 mice to the (A1A1) inbred strain, then X may take either the value 1 or the
value 0, both with 0.5 probability. On the other hand, if the F1 mice are
crossed one with another in order to form the intercross (F2), then X may
take the values 0 or 2 with 0.25 probability and the value 1 with 0.5 proba-
bility. Finally, the RI mice are inbred strains, hence homozygous; X may take
the value 0 or 2 with 0.5 probability each.

The phenotypical variance, the variance of Y, is a combination of vari-
ances that arises from several sources. The genetic variance is the part of
the variance that is associated with the specific QTL. The source of the
genetic variance is the variability of X. For the BC design, X may take only
two values, the contribution of X to equation (1) simplifies to (α + δ ) ⋅ X.
The variance of this component is (α + δ )2/4, because the variance of X, a
binomial (1, 1/2) random variable, is 1/4. For the F2 design, the genetic
variance is the variance of α ⋅ X + δ ⋅ I{X = 1}. Because X and I{X= 1} are sta-
tistically uncorrelated, this variance is the sum of the variances of its com-
ponents. The variance of α ⋅ X is α2/2, because X has a binomial (2, 1/2)
distribution for the F2. The variance of δ ⋅ I{X = 1} is δ 2/4, because the vari-
ance of the indicator is 1/4. Overall, the genetic variance in the F2 is α2/2 +
δ 2/4. For the RI design, the relevant term is α ⋅ X because RI lines are by
definition homozygous. The variance here is α2, because X equals 0 or 2
with 0.5 probability each.

Which of these three terms for the genetic variances is larger depends
on the genetic model of the trait. For an additive model (δ = 0) the genetic
variance of an RI is twice as large as the genetic variance of the F2 and four
times larger than that of the BC. However, for a dominant model (α = δ) the



genetic variance of the RI is equal to the genetic variance of the BC. The
genetic variance of the intercross is 25% smaller.

The heritability coefficient (H 2) is a preliminary approach for assessing
the efficiency of a design. This coefficient is the ratio between the variance
of the genetic term—the term involving X—and the overall variability of Y.
It may take values between 0 and 1. The closer the coefficient is to 1, the
more informative the design is. In the opposite case, values of H2 closer to 0
make the statistical inference more difficult.

The H2 may give a rough idea regarding the statistical merits of a design.
A much better insight is provided when considering two additional
parameters—the parameter of noncentrality at the QTL and the between-
markers correlation coefficient. We devote the rest of this section to the
definition of these quantities and the computation of their values for the three
designs. In the subsequent sections we illustrate the role of these terms in the
assessment of the properties of various statistical inferential tools.

3.1. The Parameter of Noncentrality

Statistical inference is based on correlating the genetic information at given
polymorphical loci (genetic markers) with the phenotypical expression Y. A
given collection of mice can be subdivided according to their genotype at a
given locus (the levels of the variable X). This leads to the formation of up to
three subclasses. The statistical analysis proceeds by comparing the differ-
ences in the levels of phenotypical expression (Y) between the subclasses.

Consider the BC design, and let us assume initially that we know the
genetic configuration at the functional polymorphism that affects the quanti-
tative trait. The variable Xmay have here only two values. A natural sum-
mary statistic (Z) computes the difference between the average expression
levels in each group.* For convenience, this statistic is standardized to have a
standard deviation of 1. We define the parameter of noncentrality to be the
expected value of this Z:

(2)

where n is the number of BC mice that were genotyped and σ is the standard
deviation of the deviate e from the regression model (1). The (α + δ) arises
as the expectation of the difference between the average phenotypes of the
heterozygote and of the homozygote. The expectation in (2) is obtained by
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*A slightly better statistic is the standardized sample regression coefficient. However, the statistic
based on the difference of the averages is asymptotically equivalent and, in our view, is easier to interpret.
Consequently, we will analyze this statistic.



Statistical Theory in QTL Mapping 39

dividing the expectation of the difference by its standard deviation, namely
* (As a matter of fact, one can justify using the statistic Z as an

approximate score statistic for testing the null hypothesis that the locus is not
associated with the trait, i.e., α + δ = 0. We will not follow this more formal
route. The interested reader is referred to ref. 5).

For the RI design also, X can take only two values. The standardized dif-
ference between the two types of homozygotes, which we call again Z, has
the noncentrality parameter**:

(3)

In the F2 design, all three subBclasses can be realized. This leaves more
flexibility in constructing statistics. For example, we shall use the statistic Zα
in order to make inference on the additive effect. Zα is based on estimating
the slope α in model (1). It essentially reflects the differences in phenotype
average levels between the two homozygote types (standardized to have a
standard deviation of 1). Likewise, we shall use the statistic Zδ (the differ-
ence in phenotypical average levels between the heterozygotes and homozy-
gotes) in order to investigate deviations from the additive model. The
expectations of these two types of statistics are***:

(4)

One can use a 2° of freedom χ2 statistic in order to simultaneously test
both the additive and dominance effects (5). This statistic has the form:

Although this is not reflected in the above formulae, the σ value depends on
the adopted breeding protocol and may vary between the BC, F2, and RI designs.

*About half the mice are heterozygotes. The variance of the phenotype across heterozygotes, as well
as across homozygotes, is σ2 (because X is given in each case). Therefore, the variance of the averages is
σ2/(n/2). The variance of the difference is the sum of the variances, which leads to the expression of the
standard deviation.

**About half the mice are homozygous for the alternative alleles. The expected difference between the
two types of homozygotes is 2α. The variance of the averages for each homozygote type is σ2/(n/2).
Hence, the expectation of Z is 

*** The expectation of the difference between the two homozygote types is 2α. The frequency of each
homozygote type is about n/4. This leads to a variance of the average difference of 8σ2/n, which gives the
expression of the expectation of Z is (2α).

The contribution of an (A1A1) homozygote to the expectation is µ. The contribution of an (A2A2)
homozygote to the expectation is µ + 2α. The relative frequency of (A1A1) among homozygotes is about
1/2. Consequently, the expectation of the average of the homozygotes is µ + α. The expectation among
heterozygotes is µ + α + δ. Therefore, the expectation of the difference is δ.



3.2. The Correlation Coefficient

The second parameter of interest is the intermarkers correlation coefficient.
Given a pair of markers, consider the pair of computed Z statistics, one for
each marker. The intermarkers correlation coefficient is the statistical correla-
tion between these two statistics. This correlation is computed under the null
assumption of both markers not being linked to a QTL (α = δ = 0). The value
of this parameter is determined only by the recombination fraction between
the two loci. It is independent of the additive and dominant coefficients of the
trait (the parameters that determine the noncentrality parameter).

Consider a pair of markers on a random BC mouse, located at locus s and
locus t on the same autosome denoted by X(s) and by X(t), the genotypes at
both loci, respectively. Each may take either the value 0 or the value 1. Let θ
be the recombination fraction between these two loci. The probability of the
event {X(t) = 1}, given {X(s) = 1}, is 1–θ, because this event occurs if, and
only if, the gamete inherited from the F1 parent is not recombinant. One can
use the above conditional probability in order to show that the correlation
between X(t) and X(s) is equal to 1–2θ. The associated test statistics Z(t) and
Z(s) are (approximately) linear combinations, over a sample of mice, of the
X(t) and X(s) variables. Consequently, for a large sample size,

corr(Z(t), Z(s)) ≈ corr(X(t), X(s)) = 1–2θ. (5)

Consider next a random F2 mouse. Now, X(s) and X(t) may take three val-
ues each and two types of statistics are computed: Z and Z δ. The probability
transition matrix of going from X(s) to X(t) is given by:

(As an example, observe that  because in this case both gametes from the
F1 parents should not be recombinant. Similar considerations provide the
other entries in the above matrix.) Direct calculations give that here again
the correlation between X(t) and X(s) is equal to 1–2θ. Consequently,
because Zαis approximately a linear combination of X:

corr(Zα(t), Zα(s)) ≈ 1–2θ. (6)

In a similar way, the correlation coefficient between I{X(t) = 1} and I{X(s) = 1}
is equal to (1–2θ)2. Zδ is approximately a linear combination of I{X = 1}.
Hence,

corr(Zδ(t), Zδ(s)) ≈ (1–2θ)2. (7)

The Zα variables are not correlated with any of the Zδ variables.
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An RI mouse has two identical copies of each autosome. The parental ori-
gin at two loci is the same (X(t) = X(s)) if that chromosome is not recombi-
nant and vice versa. Denote by θRI the recombination fraction for a random
gamete in the RI sample. The classical result of Haldane and Waddington (8)
can be used in order to attain the approximation:

θRI ≈ 4θ/(1 + 6θ) (8)

(See ref. 9 for a general derivation of this and other results by a presentation
of the problem in terms of finite  population dynamics.) Considerations simi-
lar to those used for the BC give the following for the RI result:

corr(Z(t), Z(s)) ≈ 1–2θRI ≈ 1–8θ/(1 + 6θ). (9)

This completes the computation of the intermarkers correlations for the
three designs.

4. LARGE SAMPLE THEORY AND GAUSSIAN PROCESSES

The selection of inferential statistics should not be taken lightly. The
choice may substantially affect the efficiency of the statistical analysis. This
selection is typically guided by the prior assumption of the way genetic and
nongenetic factors interact with the measured phenotype. This prior assump-
tion is reflected in the statistical model that formulates the interaction. The
model presented in equation (1) is an example of such a statistical model.
This model is consistent with a prior assumption that a single major locus is
responsible for a substantial part of the phenotypical variation, with other
genetic factors, if any, adding only a small contribution each to that varia-
tion. Moreover, this model disables some forms of nonadditive epistasis and
some forms of gene/environmental interaction.

In the sequel we will consider separately the statistical properties of inferen-
tial statistics for each of the three experimental designs. These statistics are
computed based on the phenotypical and genotypical data collected over a col-
lection of markers. Model (1) of a single major gene and dense genotyping is
consistent with the approach of computing an inferential statistic for each
marker at a time. (If the markers are not so densely spaced, interval mapping
may be preferred (11,5).) The inferential statistic will be of the form Z in the BC
and RI designs and of the form  in the F2 design. Other models may propose
the use of other types of test statistics. (i.e., in order to detect interacting genes,
one may consider inferential statistics, computed from the phenotypical and
genetic data for a pair of markers, for all such possible pairs; see ref. 10.)

The first step in the investigation of the properties of statistical procedures
involves the determination of the distribution of the inferential statistics.



Let us focus on a given autosome. Markers are genotyped at loci t1, t2, . . ., tm
(a total of m markers). For the BC and RI we denote the summary statistics
by Z(t1), Z(t2), …, Z(tm). For the F2 we denote them by Zα(t1), Zα(t2), . . .,
Zα(tm) and Zα(t1), Zδ (t2), …, Zδ(tm). According to the large sample theory, the
joint distribution of these statistics is approximately multinormal.
Multinormal distributions are fully determined by the means and variances
of the components and by the correlations between components. The compo-
nents were standardized to have a variance of 1. The correlations were com-
puted in (5) for the BC, in (6) and (7) for the F2, and in (9) for the RI. Thus,
we are left only with the task of determining the means of the components.

The key concept in the determination of the means of the components (and
a useful concept in general in statistics) is the concept of sufficiency. A statistic
is called sufficient if it contains all the relevant information for making statisti-
cal inference (i.e., more formally, if conditioning on the statistic eliminates the
dependency between parameters of the model and the distribution of the data).
Assume a QTL is present at locus s. Let us figure that this locus is also geno-
typed and that an appropriate test statistic is computed (where the test statistic
is Z(s) in the BC and RI cases or (Zα(s), Zδ (s)) in the F2 case). Because, by
assumption of model (1), the given QTL is the only genetic factor on the chro-
mosome that contributes to the phenotypic variability, the particulars of these
imaginary statistics, had we had them, would have been sufficient for deter-
mining the association with the trait. Therefore, the information at the other
loci is no longer relevant, whether it is available or not.

This sufficiency assumption forces a given relation between the mean of a
statistic computed at a marker (Z(t)) and the mean of the statistic (Z(s)) at the
QTL, namely:

(10)

The right-hand side of (10) is the outcome of the noncentrality parameter,
given in (2) for the BC, in (4) for the F2, and in (3) for the RI. The correla-
tion coefficient between loci is computed in (5), (6), (7), and (9) for the three
designs. In summary, the means of the components can be determined by
identifying the parameter of noncentrality at the QTL and the correlation
between the QTL and the various markers.

The Haldane model of crossovers is a popular model that leads to a simple
relation between the genetic distance and the recombination fraction.
Applying this function yields a correlation coefficient of the general form:
exp{–β|t – s|} with β varying between the BC and the F2 designs (the corre-
lation coefficient for the RI design does not have this form). Multinormal
vectors with such correlation structure are denoted Orenstein–Uhlenbeck
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processes. Yet, as we shall see in the following sections, the statistical prop-
erties of the inferential procedures based on the multinormal process do not
depend on the exact form of the correlation function but on a rather weaker
property.

5. DETECTING A QTL

Mapping a QTL is a multistage process. The first step, following the
phenotypical and genotypical data collection, is the determination of the
reflection in the collected data of the presence of a QTL. It should be noted
that even when a genetic influence on the trait is undisputable, its effect
may be too weak, and our data may not be sufficient, in order to distinguish
it from random fluctuations. Therefore, the first question to be addressed
is: Can we detect a strong enough signal for the presence of a QTL? If the
answer for this question is affirmative then we can proceed in the process
of mapping the QTL. If, however, the answer is negative, then we ought to
revise our strategy. Such a revision may include an increase in the sample
size within the framework of the current design, using a different cross
design, and so on.

The field in statistics theory that deals with the issue of determining the
presence of a signal in a noisy environment is called hypothesis testing.
According to this theory, one should select a test statistic with a distribution
that best reflects the presence of a signal, and base the conclusion on the
computed value of that statistic. In the case of QTL mapping we identified
such statistics—the statistics of the form Z in the BC and RI designs and the
statistics in the F2 design. Large values of the statistics in the latter
case or large absolute values of the statistics in the former cases are an indi-
cation of the presence of a QTL in the vicinity of the marker: a strong effect
of the QTL will be reflected by a nonzero noncentrality parameter of the
statistics, which will tend to deviate its value away from 0.

The simple theory of hypothesis testing, which is based on normal distri-
bution, would have been applicable had we looked at a single marker, and a
single marker only. However, in our case we examine a sequence of test sta-
tistics, one for each marker. An extreme value in any of the test statistics is
an indication of the presence of a QTL. Thus, in reality, our test statistic is
maxti | (ti)| in the case of the BC and RI designs and maxti [ (ti) + (ti)]
in the case of the F2 design, when the maximization is taken across all mark-
ers. It turns out that the distribution of these statistics is no longer normal,
even though each component has a normal distribution. The determination
of the threshold, which will assure a given significance level for the experiment,



is based on the distribution of the maximal test statistic in the absence of a
QTL. This distribution, as we shall see in equations (11) and (12), depends
on the form of the test statistics, the number of markers used for scanning,
and on the correlation between the inferential statistics. This correlation is a
function of the distance between markers and the design of the cross.

The probability of reaching the threshold is less than the product of the
number of markers examined by the probability of reaching the threshold
with a single marker. This last probability is easily computed using the nor-
mal distribution in the case of the BC and RI, or the χ2 distribution on 2° of
freedom in the case of the F2. This upper bound, also known as the
Bonferroni upper bound, is actually a reasonable approximation of the true
probability when the correlation between markers is not too high. However,
when the correlation between markers is high, a better approximation of the
probability takes the form:

(11)

when the basic test statistic is a single normal variable Z, and the form:

(12)

when the basic test statistic is a χ2 statistic. Here, the number of markers,
used for the Bonferroni upper bound, is replaced by the term in the square
brackets. The components that determine the value of these approximations
are the number of chromosomes scanned (C); the sum of lengths between
the first and the last marker in each chromosome, across all those
chromosomes (L, measured in cM); the threshold (z in the first formula and u
in the second); the probability of reaching the threshold with a single marker
( in the first formula and in the second); and the
components that reflect the correlation between markers. These components
are the average distance between consecutive markers (∆, measured in cM)
and the rate with which the correlation between two markers approaches 1 as
the markers get closer to each other (β). This last term is equal to 0.02 in the
BC design, 0.08 in the RI design, and it turns out to be (0.02 + 0.04)/2 = 0.03
in the F2 design.

The function υ(⋅) appearing in these formulae was originally developed in
the context of random walks and renewal theory. It appears in other fields of
statistics as well, including change-point detection and scanning statistics.
It takes the form:

(13)
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where Φ(⋅) is the cumulative probability function of the normal distribution.
It turns out that the function υ(⋅) approaches the value of 1 as y approaches 0.
The function can be approximated by for small values of y
(16). When markers become denser and denser, the distance between them, ∆,
becomes smaller. This makes the arguments of the function υ(⋅) in (11) and
(12) approach 0. In the asymptotic case, the formula represents the probabil-
ity of false detection with a continuum of markers. This formula is obtained
by removing the function υ(⋅) from the expressions in (11) and (12). At the
other extreme, the function can be approximated by 2/y for large values of y.
Substituting the function with this approximation reproduces the Bonferroni
upper bound, because ∆ = L / (m – C). Therefore, one can view the function
υ(⋅) as a correction term, which takes into account both the discreteness of
the markers and the correlation between them.

Computing the power is an essential requirement for designing the experi-
ment. The power is the probability of detecting the QTL, i.e., the probability
of reaching the given threshold when a QTL is present. This probability
depends on the expectations of the statistics computed at the markers. These
expectations are tilted to have a nonzero value on the chromosome carrying
the QTL. As we saw in (10), the expectations depend on the noncentrality
parameter and on the correlations between the markers and the QTL. A sim-
ple lower bound for the power can be obtained by considering the probabil-
ity of reaching the threshold in either of the two markers flanking the QTL.
A refined approximation will take into account the possibility of reaching the
threshold for markers that are further away from the QTL. We will not pres-
ent these approximations here. The interested reader is referred to ref. 5.

6. ESTIMATING MAP LOCATION

In the first stage of mapping a QTL the issue is to evaluate the reflection in
the data of the presence of a QTL. If the answer to this evaluation is affirma-
tive, then the continuation of the process of mapping involves narrowing
down the candidate region likely to contain a QTL as much as possible. In its
initial stage, this process involves the construction of a confidence interval
(CI) for the QTL based on the data used for detection.

One procedure for constructing confidence intervals is by examining tests
for the presence of a QTL at various loci. A QTL is assumed to exist some-
where along the chromosome. However, its exact location is unknown.
According to this procedure, a locus s is included in the confidence interval
if the hypothesis that s is the exact location of a QTL is not rejected. It fol-
lows that if the significance level for that test is 10%, then the confidence



level of the resulting CI is 90%. Likewise, if the significance level of the tests
is 5%, then the confidence level is 95%.

One approach for constructing such location tests makes the simplifying
assumption that the QTL is completely linked to one of the markers, or in
other words, the correlation coefficient between the QTL and one of the
markers is 1. Yet, the marker that is completely linked to the QTL remains
unknown. The problem of constructing a CI reduces, through this assump-
tion, to the problem of testing each of the markers for being completely
linked to the QTL. In the CI, all the markers that were not rejected by the test
are included. Naturally, this approach may produce better results when mark-
ers are densely spaced, in which case the simplification made does not intro-
duce much error. It may be less satisfactory when the number of markers is
limited. In the latter case one may try other approaches of constructing con-
fidence intervals. We will not refer to such approaches. The reader may find
an evaluation of several of these approaches in ref. (5).

The decision to exclude a marker s from the CI (reject the hypothesis that
s is the QTL) may be based on the relation:

(14)

when a single degree of freedom statistic is used (BC, RI) or on the relation:

(15)

when a 2° of freedom statistic is used (F2).
The selection of x to assure the desired confidence level may depend, how-

ever, on the unknown parameter of noncentrality, because the distribution of
the statistics in (14) and (15) depends on that parameter. Still, a remedy to this
problem may be provided by the notion of sufficiency. As was claimed before,
the statistic Z(s) in case (14) and the statistic (Zα(s), Zδ(s)) in case (15) are suf-
ficient statistics for the parameters of model (1), including the noncentrality
parameter. Consequently, the conditional probability of the events (14) or
(15), given the value of the sufficient statistic, is independent of that unknown
parameter. The threshold x can be selected based on this conditioned compu-
tation. The result is a confidence interval with the prescribed confidence level,
regardless of what the true value of the noncentrality parameter is.

It should be noted that technically the problem of constructing a confi-
dence interval for the QTL location is not like the problem of constructing a
confidence interval for the population expectation. In the latter case, one typ-
ically takes an interval of about two standard deviations in each direction of
the sample average in order to get a CI with a confidence level of 95%. This
construction relies on the fact that the distribution of the sample average is
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normal. The length of this interval decreases at a rate that is proportional
where n is the sample size (because the variance of the sample aver-

age is equal to the variance of a single observation, divided by the sample
size). In QTL mapping, on the other hand, the estimate of the location of the
QTL does not have a normal distribution, even when the sample size is large.
Therefore, taking two standard deviations about its value will not result in a
proper CI.

The difference between the normal case and QTL mapping is reflected
also in the expression for the expected length of the CI. An approximation
for this length for the case of a one degree of freedom statistic Z is provided
in (5):

(16)

Again, ∆ is the average distance between markers, β is the rate of conver-
gence to 1 of the covariance between markers as the distance between
decreases, and υ(y) is the function presented in (13). The term µ is the non-
centrality parameter. x is the threshold for the test. This threshold is essen-
tially independent of the sample size. The noncentrality parameter, on the
other hand, increases at a rate proportional to It turns out, since the
approximation is roughly proportional to 1/µ2, that the expected length of
the confidence interval decreases at a rate proportional to 1/n (compared to
the in the normal case).

7. FINE-MAPPING STRATEGIES

After detecting a QTL, a confidence interval for its location is computed.
This confidence interval tends to be quite wide, perhaps 20 or 30 cM wide.
Such wide intervals most likely contain dozens of genes that are good candi-
dates to be the QTL. However, direct techniques of cloning, which may be
used in order to verify that a given polymorphic sequence is the QTL, are
lengthy and expensive. Therefore, it is critical to narrow down the search
region, to below 1 cM, before the more direct measures can be applied. The
process of narrowing down the interval containing the QTL is often called
fine-mapping.

There is a major difference between fine-mapping of a Mendelian trait and
fine-mapping of a QTL. In the former case there is a 1:1 relation between the
presence or absence of the trait and the genetic composition at the functional
composition. Thereby, one can barricade the functional polymorphism pre-
cisely by the identification of recombinant chromosomes and relating them
to the phenotypical expression. In the latter case, on the other hand, there is



no such 1:1 relation, only statistical correlations between the genetic compo-
sition and the phenotypic expression. Consequently, one must revert to sta-
tistical procedures in order to carry out the task. These statistical procedures
may be based on hypothesis testing, parallel in spirit to the task of QTL
detection, or on the construction of a CI, similar to problem of estimating
map location. The main concern in fine-mapping, however, is that the result-
ing region will be narrow enough.

Examining (16) we see that the two main parameters that determine its
width are the parameter of noncentrality (µ) and the parameter that cap-
tures the rate of recombination in a close proximity to the QTL (β). The
larger these parameters are, the shorter the confidence interval is expected
to be. Fine-mapping is most efficiently conducted by selecting an experi-
mental design that maximizes these parameters. An example of such design
is to use an advanced intercross design, or Fi, as proposed in (3). Fi stands
for the ith generation of intercrossing. The rate of recombination (β)
increases approximately linearly in i. This leads to a reduction in the width
of the CI.

An alternative experimental design is the recombinant inbred segregation
test (RIST). According to this design, RI strains are selectively crossed with
their parental lines in such a way that ensures recombination in the investi-
gated region. The simple chromosomes identification, which is used in
Mendelian traits, is replaced by a statistical test to determine on which side
of the recombination point the QTL is located. Choosing the appropriate
RIST design, either the RIST-BC or the RIST-F2 design, will maximize the
noncentrality parameter and improve the performance of the procedure.
For a comprehensive review on fine-mapping strategies see ref. (2).

8. DISCUSSION

In this chapter we have presented the statistical framework for QTL analy-
sis in its various stages. Because any QTL will usually explain only a small
fraction of the phenotypical variation, large samples cannot be avoided. We
have emphasized on the two parameters that have the largest effect on this
theory. The first is the noncentrality parameter, which reflects the proportion
of variance explained by the QTL being studied, and the second is the extent
of correlation between the functional polymorphism and the genetic marker
tested and between pairs of markers. Different designs can be implemented
for QTL analysis, and in this chapter we have described how the relevant
parameters affect the use of each of the main experimental designs, namely,
F2, BC, and RI strains.
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QTL analysis consists of a number of steps as described throughout the
chapter. The general theory presented here can serve as a basis for the analy-
sis of any such stages. For example, although both the first and the second
stages, QTL detection and map location, are affected by the same two param-
eters, their effect might be of opposite direction: the detection stage requires
as little recombination as possible, whereas extensive recombination is
preferred for localization.

The difficulty in QTL analysis lies in the large samples required for detec-
tion and the limited breakdown of the correlation in adjacent chromosomal
regions. The sample sizes may reach unattainable numbers if the genetic
architecture of the trait consists of many genes with small effect each. This
has caused very few success stories in QTL analysis. Nevertheless, some
have indeed succeeded in taking a QTL project all the way to the identifica-
tion of the relevant genes. One such example is the Mom1 gene affecting
multiplicity and size of tumor induced by the ApcMin mutation in mice (1). In
tomato, the ORFX gene was found to have an effect on fruit weight (7). More
recently, a complex genetic architecture influencing high-temperature
growth could be resolved in yeast, using an elegant genetic approach (18).
With the advances of the postgenomic era other examples will undoubtedly
follow. Multidisciplinary approaches, including comparative genetics,
expression analysis, bioinformatics, proteomics, and so on, will undoubtedly
help in this difficult endeavor.
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