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The Human Mast Cell
An Overview

Guha Krishnaswamy, Omar Ajitawi, and David S. Chi

Summary
Mast cells are fascinating, multifunctional, tissue-dwelling cells that have been tra-

ditionally associated with the allergic response. However, recent studies suggest these
cells may be capable of regulating inflammation, host defense, and innate immunity.
The purpose of this review is to present salient aspects of mast cell biology in the con-
text of mast cell function in physiology and disease. After their development from bone
marrow-derived progenitor cells that are primed with stem cell factor, mast cells con-
tinue their maturation and differentiation in peripheral tissue, developing into two well-
described subsets of cells, MCT and MCTC cells. These cells can be distinguished on the
basis of their tissue location, dependence on T lymphocytes, and their granule contents.
Mast cells can undergo activation by antigens/allergens (acting via the high-affinity
receptor for immunoglobulin E, also referred to as FcεRI), superoxides, complement
proteins, neuropeptides, and lipoproteins. After activation, mast cells express histamine,
leukotrienes, and prostanoids, as well as proteases, and many cytokines and chemokines.
These mediators may be pivotal to the genesis of an inflammatory response. By virtue
of their location and mediator expression, mast cells may play an active role in many
diseases, such as allergy, parasitic diseases, atherosclerosis, malignancy, asthma, pul-
monary fibrosis, and arthritis. Recent data also suggest that mast cells play a vital role
in host defense against pathogens by elaboration of tumor necrosis factor alpha. Mast
cells also express the Toll-like receptor, which may further accentuate their role in the
immune-inflammatory response. This chapter summarizes the many well-known and
novel functional aspects of human mast cell biology and emphasizes their unique role
in the inflammatory response.

Key Words: Mast cells; immunoglobulin E; cytokine; gene expression; host defense;
inflammation.
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1. Introduction

Paul Ehrlich was the first researcher to describe cells in connective tissue
that stained reddish–purple (referred to as metachromasia) with aniline dyes,
calling them “mästzellen,” a term that may have referred to feeding or could be
interpreted as “well-fed” based on their granule contents (1). The metachroma-
sia exhibited by mast cells is caused by the interaction of dyes with acidic
heparin, a well-known constituent of mast cell granules. The discovery of these
cells by Paul Ehrlich and the historical development of mast cell research are
described in greater detail in Chapter 1. Mast cells tend to be located
perivascularly and in sentinel locations to respond to noxious stimuli as well as
to allergens. The mast cell expresses the high-affinity receptor for immunoglo-
bulin E (FcεRI) and the crosslinking of IgE occupying this receptor leads to
mast cell activation and the manifestations of immediate-type hypersensitivity
(2–4). In some cases, other ligand–receptor interactions can lead to mast cell
degranulation, which are summarized in Fig. 1.

2. Mast Cell Development and Differentiation

Mast cells develop from progenitor cells that in turn arise from uncommit-
ted hematopoietic stem cells in the bone marrow (5,6). These cells express the
receptor for stem cell factor (SCF receptor or c-kit) that binds to SCF, the latter
being a major growth factor for mast cells (5–7). Researchers have described a
CD34+, c-kit+, and CD13- precursor that develops into mast cells in the pres-
ence of specific growth factors (8,9). Mast cell progenitors also have been
described in peripheral blood by others, which may suggest the presence of a
distinct pool of cells separate from leukocytes or mononuclear cells (10). The
interactions between SCF and c-kit and the subsequent signaling that follows
are crucial for the growth and development of mast cells (11). In humans, stud-
ies have demonstrated that mutations of c-kit and elevated levels of the c-kit
proto-oncogene are associated with the development of the syndrome of mas-
tocytosis, a condition characterized by mast cell infiltration of skin and other
tissues (12,13). SCF has multiple biological effects on mast cells, including
modulating differentiation and homing, prolonging viability, inducing mast cell
hyperplasia, and enhancing mediator production (7). However, mast cells that
have been deprived of SCF undergo programmed cell death (PCD) or apoptosis
(14). It is likely that PCD in mast cells is mediated by the modulation of Bcl-2
and Bcl-XL (15). Interleukin 6 (IL-6), eotaxin, and nerve growth factor (NGF)
also enhance mast cell development from hematopoietic stem cells, and the
development of mast cells from stem cells derived from umbilical cord blood
often requires SCF in conjunction with IL-6 (5,16). Adventitial cells, including
fibroblasts, contribute to further differentiation and maturation of mast cells in
tissue by elaboration of SCF, NGF, or other mechanisms (17,18). After tissue
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localization, mast cells can undergo further differentiation into distinct sub-
sets. Two mast cell subtypes have been described in tissue—the mucosal (MCT)
or connective tissue (MCTC) mast cell (Table 1). These subtypes are based on
structural, biochemical, and functional differences and have been well charac-
terized by several researchers (3,19–21). Please see Chapter 4 for more infor-
mation.

Distinctive features help differentiate the two subsets. For example, the MCT

mast cell predominantly expresses the protease tryptase (Fig. 2A demonstrates
tryptase staining of mast cells derived from umbilical cord blood mononuclear
cells). This subset usually is localized to mucosal surfaces, often in close prox-

Fig. 1. Mast cells undergo activation by IgE-dependent and IgE-independent
stimuli, leading to release of a cascade of mediators culminating in the inflammatory
response. Histamine, platelet-activating factor (PAF), lipid mediators (leukotrienes,
prostanoids), proteases, cytokines, chemokines, nitric oxide, and endothelin may be
released in the tissue, which can lead to inflammatory cell recruitment, endothelial
activation, and cellular adhesion.
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imity to T cells. These T lymphocytes are especially of the T-helper 2-type
(Th2 secreting IL-4 and IL-5). This subset usually is seen in increased numbers
infiltrating the mucosa in patients suffering from allergic and parasitic disease.
Because of their unique T cell-dependence, the numbers of MCT cells are dimin-
ished in individuals infected with human immunodeficiency virus (HIV) (3).
Structurally, granules from MCT are scroll-rich (Fig. 2B demonstrates a typi-
cal scroll-like granule in mast cells developed from umbilical cord blood mono-
nuclear cells).

The MCTC mast cell, however, expresses tryptase, chymase, carboxypepti-
dase, and cathepsin G. It tends to predominate in the gastrointestinal tract as
well as in skin, synovium, and subcutaneous tissue (Table 1). Increased num-
bers of MCTC mast cells are seen in fibrotic diseases whereas its numbers are
relatively unchanged in allergic or parasitic diseases and in HIV infection. The
presence of these MCTC cells could help explain why patients with HIV infec-
tion continue to have allergic reactions (e.g., to medications). MCTC mast cells
have lattice and grating structures and are scroll-poor.

Table 1
Mast Cell Subtypes

Feature MCTC cell MCT cell

Structural features
Grating/lattice granule ++ –
Scroll granules Poor Rich

Tissue distribution
Skin ++ –
Intestinal submucosa ++ +
Intestinal mucosa + ++
Alveolar wall – ++
Bronchi + ++
Nasal mucosa ++ ++
Conjunctiva ++ +

Mediator synthesized
Histamine +++ +++
Chymase ++ –
Tryptase ++ ++
Carboxypeptidase ++ –
Cathepsin G ++ –
LTC4 ++ ++
PGD2 ++ ++
TNF-α ++ ++
IL-4, IL-5, IL-6, IL-13 ++ ++
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3. Mast Cell Activation and Mediator Production
Human mast cells and basophils express the receptor for IgE, FcεRI (2).

FcεRI (in contrast to the other receptor for IgE, FcεRII) binds IgE with high
affinity (22). The other receptor for IgE, FcεRII, has been detected on eosino-

Fig. 2. (A) Tryptase immunostaining of human cord blood-derived mast cells
(×400). In this specimen, more than 95% of human cord blood-derived mast cells
expressed tryptase, with only 20% expressing chymase. (B) Ultrastructurally, mast
cells demonstrate microvilli-like projections on the surface and typical granules. This
picture demonstrates the presence of scroll-like granules within the mast cell derived
from umbilical cord blood mononuclear cells.
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phils, mononuclear cells, lymphocytes, and platelets. FcεRI is a multimeric
complex composed of four chains, designated as α (which has the IgE-binding
domain), β, and the two disulfide-linked γ chains (23,24). Typically, multiva-
lent antigen binds to IgE, which in turn binds by the Fc portion to the α-chain
of FcεRI, leading subsequently to receptor aggregation and internalization and
culminating in receptor-mediated signaling. The β and γ chains of FcεRI pos-
sess the immune receptor tyrosine-based activation motifs, which are consid-
ered pivotal to signal transduction (25). The bridging of two IgE molecules by
multivalent antigen or by univalent antigen in presence of a carrier molecule
results in activation of Lyn kinase, which then phosphorylates the β and γ
chains (22). The absence of Lyn has been associated with defective mast cell
signaling in mice (26). Syk kinase then becomes activated sequentially, fol-
lowed by involvement of phospholipase C γ, mitogen-activated protein kinases
(MAPK), and phosphoinositol-3 kinase (27). The generation of inositol triph-
osphate and of diacylglycerol and other second messengers leads to release of
calcium intracellularly as well as protein kinase C activation, events culminat-
ing in FcεRI-mediated secretion. Degranulation appears to be associated with
activation of G proteins that cause actin polymerization and relocalization.
These events also are accompanied by the transcription of several cytokine
genes, leading to further evolution of the inflammatory cascade.

In a typical allergic reaction, antigen/allergen (for example, latex or peanut
allergen) crosslinks two IgE molecules occupying FcεRI, resulting in a cascade
of rapid sequence signaling events and leading to degranulation and elabora-
tion of mediators (28). Mast cells also can be activated to degranulate by a
variety of stimuli including; opiates, components of the complement cascade
(29–31), neuropeptides (vasoactive intestinal peptide, calcitonin gene-related
peptide, and substance P), superoxide anion, radio-contrast media, oxidized
low-density lipoproteins, histamine releasing factors, chemokines (monocyte
chemotactic proteins-1, -2, and -3 [MCP-1, -2, -3], and monocyte inflamma-
tory peptide 1 α [MIP-1 α]), regulated upon activation normal T-cell-expressed
and secreted (RANTES), connective tissue-activating peptide, pathogenic bac-
teria (32,33), parasites (34,35), enterotoxin B (36), cholera toxin (37), or
changes in osmolality (38,39). We have recently demonstrated that IL-1, cat-
echolamines, and cell–cell interactions (e.g., mast cell-fibroblast contact) can
enhance mast cell activation and cytokine expression (40–43), which indicates
the occurrence of multiple pathways of mast cell activation.

Mediators secreted by mast cells can be subdivided into preformed (secre-
tory granule-associated) and others newly synthesized after cellular activation
(3,44). Preformed mediators (summarized in Fig. 3) include histamine, proteo-
glycans (heparin, chondroitin sulfate E), serotonin, proteases (such as tryptase,
chymase, β-hexosaminidase, β-glucuronidase, β-D-galactosidase, cathepsin G,
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and carboxypeptidase), some cytokines (tumor necrosis factor [TNF]-α), and
basic fibroblast growth factor (bFGF). The newly generated products include the
lipid mediators (prostaglandin D2 and leukotrienes, generated from arachidonic
acid), thromboxanes, 5,12-hydroxy-eicosatetraenoic acid, nitrogen radicals,
oxygen radicals, inflammatory cytokines, and several chemokines.

4. The Mediators Expressed by Mast Cells and Their Role
in the Inflammatory Response

Plaut et al. (45) first demonstrated that murine mast cells were capable of
expressing many cytokines. Since then, we and others have shown that human
mast cells express a spectrum of cytokines and chemokines (3,46,47). Both in
vivo and in vitro studies have shown that human mast cells are capable of
expressing pleiotropic cytokines and growth factors, such as TNF-α (3,48–
51), granulocyte macrophage colony-stimulating factor (52), IL-3 and IL-4
(36,53–59), IL-5 (54–56,60), IL-6 (55,56,61–64), IL-8 (54,65,66), IL-10 (67),
IL-13 (68–70), IL-16 (71), MIP-1 α (72), MIP-1 β (73), regulated upon activa-
tion normal T-cell-expressed and -secreted (3,73), and MCP-1 (74,75). Human
mast cells also are capable of expressing growth factors. Vascular endothelial

Fig. 3. After activation of mast cells by IgE and antigen, the release of preformed
and newly synthesized mediators occurs, leading to acute and chronic inflammatory
effects, mediated by vascular injury, cellular recruitment, and culminating in tissue
remodeling and angiogenesis.
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growth factor (VEGF), a cytokine crucial to angiogenesis and the growth of
blood vessels, and NGF (76,77), are recognized products of mast cells. Auto-
crine production of SCF has been shown from mast cells (78,79).

It is likely that heterogeneity of human mast cells exists in regards to
cytokine expression in vivo and studies by Bradding et al. (63), demonstrated
this phenomenon in mast cells obtained from bronchial biopsies of patients
suffering from asthma. By immunocytochemistry, these investigators noted that
although MCTC cells predominantly expressed IL-4, the MCTC cells expressed
both IL-5 and IL-6 (63). In our studies, cord blood-derived mast cells expressed
the eosinophil-active growth factors IL-5 and GM-CSF and the eosinophil
chemotactic C-X-C chemokine, IL-8, after activation (42). The production of
these cytokines in cord blood-derived mast cells was further enhanced by the
addition of the monokines IL-1β and TNF-α in a dose-dependent manner while
dexamethasone inhibited production of these cytokines. How these various
cytokines and chemokines interact with the inflammatory response is summa-
rized below.

Mast cells have been incriminated in such diverse diseases as allergy,
asthma, rheumatoid arthritis, atherosclerosis, interstitial cystitis, inflammatory
bowel disease, progressive systemic sclerosis, chronic graft-vs-host disease,
fibrotic diseases, sarcoidosis, asbestosis, ischemic heart disease, keloid scars,
and malignancy (3). The mediators released by mast cells can independently
and, in synergy with macrophage- and T-cell-derived cytokines, induce much
of the inflammatory pathology observed in inflammation and serve to orches-
trate a complex immune response. Histamine, LTB4, LTC4, PAF, and PGD2

may have multiple effects on inflammatory cell recruitment (eosinophils),
smooth muscle hyperplasia, and vascular dilatation (80,81). Tryptase, chymase,
and TNF-α from mast cells activate fibroblasts, leading to collagen deposition
and fibrosis. Mast cell-derived TNF-α regulates NF-κB-dependent induction
of endothelial adhesion molecule expression on endothelial cells in vivo (49).
Mast cell granules and tryptase also can potentiate endotoxin-induced IL-6 pro-
duction by endothelial cells. Mast cell-derived cytokines and chemokines fur-
ther regulate IgE synthesis and cell migration, basophil histamine release,
smooth muscle proliferation, and endothelial chemotaxis and proliferation. IL-4
and IL-13 can regulate adhesion molecule expression on endothelial cells but
also can class switch B cells to synthesize IgE (82,83). Data suggest that mast
cells also can directly activate B cells to switch to IgE. IL-5, another product of
mast cells, also can serve to activate eosinophils while accentuating IgA pro-
duction from B cells. Chemokines (such as IL-8) and leukotrienes (specifically
LTC4) released by mast cells can recruit neutrophils and eosinophils to inflamed
airways, which can further potentiate damage (3). Mast cells also have been pos-
tulated to provide the IL-4 pulse that allows the development of Th2 cells that
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selectively secrete IL-4 and IL-5 on activation (84). Exciting recent data also
suggest that certain mast cell-derived chemokines, especially MIP-1α, can
potentiate a shift of T cells towards a Th1-phenotype, whereas others, such
as MCP-1, can shift these cells functionally to a Th2-phenotype (85). Thus, T cells
and mast cells can complement the functions of each other and contribute to the
“cytokine pool” that leads subsequently to chronic inflammation.

5. Functions of Mast Cells in Physiological and Pathological States
Mast cells may play crucial roles in various disease states, including vascu-

lar disease, fibrotic states, rheumatological disease, certain malignancies, and
in host defense against infectious pathogens. The probable roles of the mast
cell in human diseases are summarized in Fig. 4.

5.1. Vascular Disease

Mast cells are uniquely positioned around capillary vessels and may thus
play crucial roles in vascular injury and atherosclerosis (4). Mast cell granule
components, released upon activation, could have both anticoagulant and
thrombogenic functions (86–88). On the other hand, mast cells may play sev-
eral pathological roles in atherosclerosis. Increased numbers of mast cells have
been found in the shoulders of atherosclerotic plaques, and here they appear to
be associated with plaque rupture culminating in luminal thrombosis (89).
Kovanen et al. (90) found increased numbers of mast cells at the site of athero-

Fig. 4. Multiple roles of human mast cells in chronic disease states and
immunophysiology or pathology.
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matous rupture in patients who had died of acute myocardial infarction. Mast
cell chymase and cathepsin G have been shown to convert angiotensin I to
angiotensin II, which is a potent vasoconstrictor and can mediate several vas-
cular, biological responses (91,92). Mast cell chymase cleaves apolipoprotein
B-100 of low-density lipoprotein, which facilitated lipid aggregation and foam
cell development (93), while at the same time also degrading apolipoprotein A
of high-density lipoprotein, thereby reducing cholesterol efflux and increasing
lipid deposition and thereby atherosclerosis (94). On the other hand, mast cells
have been reported to produce tissue plasminogen activator (95), as well as
plasminogen activator inhibitor-1 (96). Mast cell tryptase also can cleave fibrino-
gen, thereby retarding coagulation (97). One can therefore surmise multiple
effects of mast cells on atherothrombotic disease, and the ultimate role of mast
cells in any given situation may depend on the balance of these various effects.

5.2. Host Defense

Mast cells may play crucial roles in host defense by modulating both innate
and adaptive immune responses (38,44,98). Various functions of mast cells
make them crucial players in host defense. First, these cells can directly phago-
cytose foreign particles (and bacteria) and also express receptors, such as inter-
cellular adhesion molecule (ICAM)-1 and ICAM-3, CD 43, CD 80, CD 86,
and CD 40L, allowing interaction with T and B lymphocytes. Second, they
enhance the development of Th2 cells and allow B cells to class switch to IgE.
A role as antigen presenting cells has also been proposed for mast cells (99).
By influencing both humoral and cell-mediated immune mechanisms, mast
cells regulate host defense. Third, activated complement products (and neu-
ropeptides), often generated during an innate immune response to an infectious
event, induce mast cell degranulation, thereby integrating innate immunity and
neuroimmune mechanisms. Fourth, mast cells are themselves capable of secret-
ing a plethora of cytokines, chemokines, and other mediators that can activate
lymphocytes and macrophages. These include the cytokines (TNF-α, IL-1 β,
IL-4, IL-5, IL-8, and IL-13 [32,100]), lipid mediators, and histamine, which
can have profound effects on vascular endothelium, including the alteration of
vascular permeability and adhesiveness. This can allow other circulating in-
flammatory cells to adhere and emigrate into tissue. Thus, mast cells are key
players in host defense, with a role in immune surveillance, phagocytosis, and
immune activation.

5.3. Tissue Remodeling/Fibrosis

Mast cells are increased in numbers in many fibrotic diseases and may play
a crucial role in the development of fibrosis (101). The percentages of mast
cells in bronchoalveolar lavage fluid from patients with sarcoidosis or intersti-
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tial fibrosis are greater than from control individuals (102), and patients with
idiopathic interstitial pulmonary fibrosis show evidence of mast cell degranu-
lation and elevated mast cell numbers (103). In the kidney tissue of patients
with IgA nephropathy, mast cell numbers correlate with the degree of intersti-
tial fibrosis and creatinine clearance. In these kidney tissues, mast cells express
tryptase and bFGF (104), which may be partially responsible for the fibrosis
observed. The mast cell appears to be the dominant source of bFGF in some
patients with pulmonary fibrosis (105). Similarly, patients with pulmonary fibro-
sis associated with scleroderma show higher numbers of mast cells and quanti-
ties of histamine and tryptase in bronchoalveolar lavage fluid than patients
with normal chest roentgenograms (106). Mast cells also are found in intimate
contact with myofibroblasts in keloid scars, suggesting they may play a role in
fibroblast activation and scar formation (107). Thus, it appears that mast cells
play a pivotal role in fibrotic disorders (108,109).

The mechanisms behind this relationship between mast cells and fibrosis/
tissue remodeling are unclear. Mast cell products, such as tryptase, TNF-α,
and bFGF, induce fibroblast proliferation (105,110,111). However, fibroblasts
appear to enhance mast cell survival, suggesting the presence of a bidirectional
relationship between these cell types (3,112). Fibroblast expression of SCF
and its interactions with c-kit on mast cells may provide one explanation for
these observations. Fibroblasts, however, also are closely opposed to mast cells
in fibrotic diseases, suggesting the additional possibility of cognate, cell–cell
interaction such as that mediated by CD40–CD40L ligation (113,114). To fur-
ther complicate the picture, mast cells are themselves capable of laying down
some forms of collagen and mast cell tryptase can activate collagenases capable
of matrix degradation. These data suggest multiple mechanisms by which and
multiple levels where mast cells can regulate tissue fibrosis and repair (115).

5.4. Systemic Mastocytosis and Malignancy

A disorder characterized by excessive numbers of mast cells and tissue
infiltration by these cells is systemic mastocytosis. In this condition, muta-
tions of c-kit (Asp 816 Val mutation) occur (11,116–118), and a subsequent
pathological infiltration of affected tissue by mast cells may be seen, resulting
in many of the manifestations (119). The patients may present with skin lesions
(pigmented macules that urticate with contact [Darrier’s sign]) or systemic symp-
toms arising from mast cell infiltration of solid organs, such as the liver, spleen,
lymph nodes, and bone marrow (119,120). Cutaneous manifestations include
urticaria pigmentosa, diffuse and erythematous mastocytosis, mastocytoma
(mast cell deposits or tumors), and telangiectasia macularis eruptiva perstans
(121). Some patients have skin limited and indolent, slowly progressive dis-
ease, whereas others develop rapidly progressive and fatal mast cell leukemia,
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a feature especially found in some patients with the c-kit mutation (13,122,
123). Osteoporosis is often a feature of mastocytosis, and mast cells may con-
tribute to bone resorption (124). Patients with mastocytosis may develop myelo-
proliferative syndromes, myelodysplasia, and/or lymphoreticular malignancy, the
mechanisms of which are unknown (125). Interestingly, the marker, α-tryptase
is elevated in the serum of patients and provides us with an excellent diagnos-
tic clinical tool (126). By inducing angiogenesis, the secretion of VEGF and
bFGF, and the elaboration of collagenases, mast cells can contribute to tumor
pathology and invasiveness (127–129).

5.5. HIV and Rheumatological Disease

A probable role for mast cells and IgE-mediated pathology has been reported
in HIV infection (130). The chemokine receptor, CCR3 is expressed on mast
cells and may provide one explanation for the chemotactic effects of tat protein
on mast cells (130). In one study, increased adventitial mast cell numbers were
noted in the arteries of patients dying of cocaine toxicity (131,132), but the role
of mast cells in HIV and cocaine-induced vascular pathology is unclear (132).

Mast cells may play a role in various arthritides. For example, the release of
mast cell mediators (α- and β-tryptase and histamine) has been demonstrated
in the joint of various forms of inflammatory arthritis (133,134). In osteoar-
thritis, a degenerative but potentially inflammatory disorder, mast cell counts
and tryptase and histamine levels are elevated in synovial fluid (135,136). Acti-
vated mast cells also are seen in the lesions present in patients with rheumatoid
arthritis (137–139), whereas mast cell chemotactic activity and their expres-
sion of VEGF have been demonstrated in rheumatoid synovium (140,141).
Mast cell infiltration of the minor salivary glands is observed in patients with
Sjögren’s syndrome, and this infiltration often is associated with fibrosis and
c-kit expression (142). Patients with fibromyalgia demonstrate higher dermal
deposits of IgG and increased dermal mast cell numbers, but the role these play
in pathogenesis of the disease is unknown (143).

6. Conclusions

Mast cells are fascinating, multifunctional, bone marrow-derived, tissue-
dwelling cells. They can be activated to degranulate in minutes, not only by
IgE and antigen signaling via the high affinity receptor for IgE, but also by a
diverse group of stimuli. These cells can release a wide variety of immune
mediators, including an expanding list of cytokines, chemokines, and growth
factors. Mast cells have been shown to play roles in allergic inflammation and,
more recently, they have been shown to modulate coagulation cascades, host
defense, and tissue remodeling. The role of mast cells in asthma, atherosclero-
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sis, HIV, cocaine abuse, fibrotic disorders, and rheumatological disease is being
actively studied. The availability of novel molecular tools, such as the chip array
technology, should shed more light on these true biological roles of these ubiq-
uitous cells.
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