2

Background Material

This chapter consists primarily of some background material, with the selec-
tion of topics being dictated by our later needs. Some facts and structural
concepts of the linear case have a marked parallel in MJLS, so they are in-
cluded here in order to facilitate the comparison. In Section 2.1 we introduce
the notation, norms, and spaces that are appropriate for our approach. Next,
in Section 2.2, we present some important auxiliary results that will be used
throughout the book. In Section 2.3 we discuss some issues on the probability
space for the underlined model. In Sections 2.4 and 2.5, we recall some basic
facts regarding linear systems and linear matrix inequalities.

2.1 Some Basics

We shall use throughout the book some standard definitions and results from
operator theory in Banach spaces which can be found, for instance, in [181] or
[216]. For X and Y complex Banach spaces we set B(X,Y) the Banach space
of all bounded linear operators of X into Y, with the uniform induced norm
represented by ||.||. For simplicity we set B(X) £ B(X,X). The spectral radius
of an operator T € B(X) is denoted by 7, (7). If X is a Hilbert space then the
inner product is denoted by (.;.), and for 7 € B(X), 7* denotes the adjoint
operator of 7. As usual, 7 > 0 (T > 0 respectively) will denote that the
operator T € B(X) is positive-semi-definite (positive-definite). In particular,
we denote respectively by R™ and C” the n dimensional real and complex Eu-
clidean spaces and B(C",C™) (B(R™, R™) respectively) the normed bounded
linear space of all m x n complex (real) matrices, with B(C™) = B(C",C")
(B(R™) £ B(R",R")). Unless otherwise stated, |.| will denote the standard
norm in C", and for M € B(C™,C™), |M|| denotes the induced uniform norm
in B(C™,C™). The superscript * indicates the conjugate transpose of a matrix,
while ’ indicates the transpose. Clearly for real matrices * and ’ will have the
same meaning. The identity operator is denoted by Z, and the n x n identity
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matrix by I, (or simply I). Finally, we denote by X\;(P), ¢ = 1,...,n the
eigenvalues of a matrix P € B(C™).

Remark 2.1. We recall that the trace operator tr(.) : B(C") — C is a linear
functional with the following properties:

1. tr(KL) = tr(LK). (2.1a)
2. For any M, P € B(C") with M > 0,P > 0,

<'_I{lin /\i(P)> tr(M) < tr(MP) < (4_11113){ )\i(P)) tr(M). (2.1b)
In this book we shall be dealing with finite dimensional spaces, in which
case all norms are equivalent. It is worth recalling that two norms .||, , |||l
in a Banach space X are equivalent if for some ¢; > 0 and ¢ > 0, and all
r € X,
lzlly < callzlly s llzlly < el -

As we are going to see in the next chapters, to analyze the stochastic model
as in (1.3), we will use the indicator function on the jump parameter to
markovianize the state. This, in turn, will decompose the matrices associ-
ated to the second moment and control problems into N matrices. Therefore
it comes up naturally that a convenient space to be used is the one we define
as H™™, which is the linear space made up of all N-sequences of complex
matrices V = (Vq,...,Vy) with V; € B(C", C™), i € N. For simplicity, we set
H™ £ H™". For V = (Vi,...,Vy) € H*™, we define the following equivalent
norms in the finite dimensional space H™"™:

N
Vil £ Ivill
i=1

V1l

N 1/2
(mew)

max{[|Vi[; ¢ € N}. (2.2)

>

VI

max

We shall omit the subscripts 1,2, max whenever the definition of a spe-
cific norm does not affect the result being considered. It is easy to verify
that H™™ equipped with any of the above norms is a Banach space and,
in fact, (||.]|,,H™™) is a Hilbert space, with the inner product given, for
V= (Vh...,VN) and S = (Sh...,SN) in Hn’m, by

N
(Vi) 2> (V" Sh). (23)
=1

It is also convenient to define the following equivalent induced norms |.||,
and |||, in the finite dimensional space B(H"). For T € B(H"),
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171l £ SUPvem v, 1712 2 SUPy e v,

Again, we shall omit the subscripts 1,2 whenever the definition of the spe-
cific norm does not matter to the problem under consideration. For V' =
V1,..., V) € H"™ we write V* = (V{*,..., V%) € H™" and say that
V € H" is hermitian if V = V*. We set

Hn*é{V:(Vh7VN)€Hn7V;:V;*vZ€N}

and
H"t 2 {V = (V4,...,VN) € H"™;V; >0, i€ N}
and write, for V.= (V1,...,Vy) € H" and S = (S1,...,Sy) € H", that V > S
ifV—S=(Vi—51...,Vn — Sy) € H"", and that V > S if V; — S; > 0
for i € N. We say that an operator 7 € B(H") is hermitian if 7(V) € H™*
whenever V' € H™, and that it is positive if 7(V) € H"" whenever V € H"*.
We define the operators ¢ and ¢ in the following way: for V = (V;,...,Vy) €

Hn’m, with V,; = [Uﬂ Um] c B(C”7Cm),vij eCm

Vi1 (V1)
(V))& | @ | €C™ and ¢(V) = € ChNmn,
Vin SD(VN )
With the Kronecker product L ® K € IB%((C”2) defined in the usual way for
any L, K € B(C™), the following properties hold (see [43]):
(LK) =L*"®@ K* (2.4a)
o(LKH) = (H' ® L)p(K),H € B(C"). (2.4b)
Remark 2.2. 1t is easy to verify, through the mapping ¢, that the spaces H™™
and CN™" are uniformly homeomorphic (see [181], p. 117) and that any

operator Z in B(H™™) can be represented in B(CN™") through the mapping
. We shall denote this operator by ¢[Z]. Clearly we must have

ro(Z) = 1o (¢[Z]).

Remark 2.5. Tt is well known that if W € B(C")* then there exists a unique
W1/2 € B(C™)* such that W = (W'/2)2. The absolute value of W € B(C"),
denoted by |W|, is defined as |W| = (W*W)'/2. As shown in [216], p. 170,
there exists an orthogonal matrix U € B(C") (that is, U~! = U*) such that

W=U|W| (or [W|=U"'W =U*W), (2.5)

and [|[W|[ = [ [W]]]
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Remark 2.4. For any W € B(C") there exist W7, j = 1,2, 3, 4, such that W7 >
0 and ||[W7|| < [[W]| for j =1,2,3,4, and W = (W —=W?2) +/=T(W3 - W1).
Indeed, we can write

W=v'+-1v?

where
1
Vi= S (W W)
Vie (W —W).

Since V! and V? are self-adjoint (that is, Vi = V¥ i = 1,2), and every self-
adjoint element in B(C™) can be decomposed into positive and negative parts
(see [181], p. 464), we have that there exist W* € B(C")™, i = 1,2, 3,4, such
that

vi=w!-w?

Vi=Ww? - W
Therefore for any S = (Si,...,Sy) € H", we can find S7 € H"", j =1,2,3,4
such that ||SjH1 <|5]|; and

S = (S' —8%) +v—1(8% - 8%).

2.2 Auxiliary Results

The next result follows from the decomposition of square matrices into positive
semi-definite matrices as seen in Remark 2.4 in conjunction with Lemma 1
and Remark 4 in [156].

Proposition 2.5. Let Z € B(H"). The following assertions are equivalent:

1LY 32 |[ZFV)||, < oo for all V e H'Y.

2.1,(2) < 1.

3. ||Zk|| < B¢k k=0,1,... forsome 0<(<1andp>1.
4| Z2*(V)||, = 0 as k — oo for all V € H™F.

Proof. From Remark 2.4 for any S = (Si,...,Sy) € H", we can find S’ €

H"™", j = 1,2,3,4 such that ||S7||, <||S]|, and

S = (8" = 8%) + V=1(5% — §%).

Since Z is a linear operator we get
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12X, = [[25(5T) = 2°(5%) + V=1 (2"(5%) = 25(sN)

4 _ 2.6
SN =0

The result now follows easily from Lemma 1 and Remark 4 in [156], after
noticing that H" is a finite dimensional complex Banach space. O

The next result is an immediate adaptation of Lemma 1 in [158].

Proposition 2.6. Let Z € B(H"). If r,(Z) < 1 then there exists a unique
V e H" such that

V=ZWV)+S
for any S € H". Moreover,
V=& ((Ivne = $12D) 7 2(8)) = 3 25(8).
k=0

Furthermore, if Z is a hermitian operator then
S=5"sV=V"
and if Z is a positive operator then

S>>0 =V>0
S>>0 =V>0.

The following corollary is an immediate consequence of the previous result.

Corollary 2.7. Suppose that Z € B(H"™) is a positive operator with ro(Z) <
1. If

V=Z2V)+S
V=2V)+85,
with § > S (8> 8) then V>V (V> V).
Proof. Straightforward from Proposition 2.6. O
The following definition and result will be useful in Chapter 3.

Definition 2.8. We shall say that a Cauchy sequence {z(k);k = 0,1,...} in
a complete normed space Z (in particular, C" or B(C™)) is Cauchy summable

if (cf. [157]) .
Zsup llz(k +7) — 2(k)|| < oc.
k=0 720

The next proposition was established in Lemma (L1) of [157].
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Proposition 2.9. Let {z(k); k =0,1,...} be a Cauchy summable sequence in
Z and consider the sequence {y(k);k =0,1,...} in Z given by

y(k+1) = Ly(k) + 2(k)

where L € B(Z). If ro (L) < 1, then {y(k);k =0,1,...} is a Cauchy summable
sequence and for any initial condition y(0) € Z,

lim y(k) = (Z - L£)"* lim z(k).

k—oco k—o0

2.3 Probabilistic Space

In this section we present in detail the probabilistic framework we shall con-
sider throughout this book. We shall be dealing with stochastic models as in
(1.3) with, at each time k, the jump variable 0(k) taking values in the set
N ={1,..., N}, and the remaining input variables taking values in .. Thus,
for the jump variable, we set 91 the o-field of all subsets of N, and for the
remaining input variables, we set g as the Borel o-field of 2. To consider
all time values, we define

0L H(fzk x Nj)
keT

where Ny, are copies of N, x and [] denote the product space, and T represents
the discrete-time set, being {...,—1,0,1,...} when the process starts from
—o0, or {0,1,...}, when the process starts from 0. Set also T, = {i € T;i < k}
for each k € T, and

Séa{HSkxd)k;Ske§k and 1, € N for each keT}
keT

and for each k € T,

skéa{Hslxwlx II 2 xN:Si e andwle‘ﬁforleﬂfk}

LET T=k+1

so that §x C §. We define then the stochastic basis (12,5, {§x}, P), where P
is a probability measure such that

PO(k+1) =78k =POK+1) =75]0(k) = Ppo);

with p;; > 0 for 4,5 € N, Z;V=1 pi; = 1 for each ¢ € N, and for each £k € T,
(k) is a random variable from (2 to N defined as 0(k)(w) = B(k) with w =
{(&(k),B(k)); k € T}, &(k) € £, B(k) € N. Clearly {6(k); k € T} is a Markov
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chain taking values in N and with transition probability matrix P = [p;;]. The
initial distribution for (0) is denoted by v = {v1,...,vn}.

We set C™ = Ly(£2,F,P,C™) the Hilbert space of all second order C™-
valued F-measurable random variables with inner product given by (z;y) =
E(z*y) for all z,y € C™, where E(.) stands for the expectation of the
underlying scalar valued random variables, and norm denoted by [|.|[,. Set
L (C™) = k@TC’m, the direct sum of countably infinite copies of C™, which is

€

a Hilbert space made up of r = {r(k); k € T}, with r(k) € C™ for each k € T,

and such that ) )
7l £ >~ Elr(®)]*) < oe.
keT
For r = {r(k);k € T} € £2(C™) and v = {v(k); k € T} € ¢5(C™), the inner
product (r;s) in £o(C™) is given by

(ris) £ E(r*(k)o(k)) < [|rlly o], -

keT

We define C™ C £3(C™) in the following way: r = {r(k);k € T} € C™
if r € £2(C™) and r(k) € L2(92,Fk,P,C™) for each k € T. We have that
C™ is a closed linear subspace of ¢2(C™) and therefore a Hilbert space. We
also define C}* as formed by the elements r, = {r(k);k € Ty} such that
r(l) € La(£2,8;,P,C™) for each | € T. Finally we define @y as the set of all
So-measurable variables taking values in N.

2.4 Linear System Theory

Although MJLS seem, prima facie, a natural extension of the linear class,
their subtleties are such that the standard linear theory cannot be directly
applied, although it will be most illuminating in the development of the results
described in this book. In view of this, it is worth having a brief look at some
basic results and properties of the linear time-invariant systems (in short LTT),
whose Markov jump counterparts will be considered later.

2.4.1 Stability and the Lyapunov Equation
Consider the following difference equations

2k +1) = f(x(k)) (2.7)

and
z(k+1) = Ax(k) (2.8)

with k € {0,1,2,...}, z(k) € C", f : C* — C™ and A € B(C"™). A sequence
x(0),z(1),... generated according to (2.7) or (2.8) is called a trajectory of
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the system. The second equation is a particular case of the first one and is of
greater interest to us (thus we shall not be concerned on regularity hypotheses
over f in (2.7)). It defines what we call a discrete-time homogeneous linear
time-invariant system. For more information on dynamic systems or proofs of
the results presented in this section, the reader may refer to one of the many
works on the theme, like [48], [165] and [213].

First we recall that a point . € C™ is called an equilibrium point of System
(2.7), if f(ze) = x.. In particular, . = 0 is an equilibrium point of System
(2.8). The following definitions apply to Systems (2.7) and (2.8).

Definition 2.10 (Lyapunov Stability). An equilibrium point x. is said to
be stable in the sense of Lyapunov if for each € > 0 there exists ¢ > 0 such
that ||z(k) — x|l < € for all k > 0 whenever ||z(0) — z.|| < 4.

Definition 2.11 (Asymptotic Stability). An equilibrium point is said to
be asymptotically stable if it is stable in the sense of Lyapunov and there
exists 6 > 0 such that whenever ||z(0) — z.|| < 6 we have that x(k) — z. as k
increases. It is globally asymptotically stable if it is asymptotically stable and
x(k) — e as k increases for any x(0) in the state space.

The definition above simply states that the equilibrium point is stable
if, given any spherical region surrounding the equilibrium point, we can find
another spherical region surrounding the equilibrium point such that trajecto-
ries starting inside this second region do not leave the first one. Besides, if the
trajectories also converge to this equilibrium point, then it is asymptotically
stable.

Definition 2.12 (Lyapunov Function). Let x. be an equilibrium point for
System (2.7). A positive function ¢ : I’ — R, where I is such that x. € I' C
C™, is said to be a Lyapunov function for System (2.7) and equilibrium point
Te if

1. ¢(.) is continuous,

2. ¢(xe) < d(x) for every x € I' such that x # x.,

3. Ap(x) = ¢(f(z)) — d(x) <0 forallz e T.

With this we can proceed to the Lyapunov Theorem. A proof of this result
can be found in [165].

Theorem 2.13 (Lyapunov Theorem). If there exists a Lyapunov function
¢(x) for System (2.7) and x., then the equilibrium point is stable in the sense
of Lyapunov. Moreover, if Ap(x) < 0 for all x # x., then it is asymptotically
stable. Furthermore if ¢ is defined on the entire state space and ¢(x) goes to
infinity as any component of x gets arbitrarily large in magnitude then the
equilibrium point x. is globally asymptotically stable.
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The Lyapunov theorem applies to System (2.7) and, of course, to System
(2.8) as well. Let us consider a possible Lyapunov function for System (2.8)
as follows:

b(o(k)) = 2 (k) Va(k) (2.9)
with V' > 0. Then

Ag(z(k)) = ¢(z(k + 1)) — o(x(k))
2 (k+1D)Va(k+1) — 2™ (k)Va(k)
=z (k)A*V Ax(k) — 2* (k) « Va(k)
¥ (k) (A*VA-V)x(k).

With this we can present the following theorem that establishes the con-
nection between System (2.8), stability, and the so called Lyapunov equation.
All assertions are classical applications of the Lyapunov theorem with the
Lyapunov function (2.9). The proof can be found, for instance, in [48].

Theorem 2.14. The following assertions are equivalent.

1. x = 0 is the only globally asymptotically stable equilibrium point for System

(2.8).
2.1,(A) < 1.
3. For any S > 0, there exists a unique V > 0 such that

V—-AVA=S. (2.10)
4. For some V > 0, we have
V—-—A"VA>O0. (2.11)

The above theorem will be extended to the Markov case in Chapter 3
(Theorem 3.9).

Since (2.8) has only one equilibrium point whenever it is stable, we com-
monly say in this case that System (2.8) is stable.

2.4.2 Controllability and Observability
Let us now consider a non-homogeneous form for System (2.8)
z(k+1) = Az(k) + Bu(k) (2.12)

where B € B(C™,C") and u(k) € C™ is a vector of inputs to the system.

The idea behind the concept of controllability is rather simple. It deals
with answering the following question: for a certain pair (A, B), is it possible
to apply a sequence of u(k) in order to drive the system from any x(0) to a
specified final state x; in a finite time?
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The following definition establishes more precisely the concept of control-
lability. Although not treated here, a concept akin to controllability is the
reachability of a system. In more general situations these concepts may differ,
but in the present case they are equivalent, and therefore we will only use the
term controllability.

Definition 2.15 (Controllability). The pair (A, B) is said to be control-
lable, if for any £(0) and any given final state x s, there exists a finite positive
integer T and a sequence of inputs u(0),u(l),...,u(T — 1) that, applied to
System (2.12), yields z(T) = xy.

One can establish if a given system is controllable using the following
theorem, which also lists some classical results (see [48], p. 288).

Theorem 2.16. The following assertions are equivalent.

1. The pair (A, B) is controllable.
2. The following n x nm matriz (called a controllability matrix) has rank n:

[BAB--- A"'B].
3. The controllability Grammian S. € B(C") given by

k
Se(k) =Y A'BB*(A")'

=0

is nonsingular for some k < co.
4. For A and B real, given any monic real polynomial v of degree n, there
exists F' € B(R™,R™) such that det(sl — (A + BF)) = (s).

Moreover, if r,(A) < 1 then the pair (A, B) is controllable if and only if
the unique solution S, of S = ASA* + BB* is positive-definite.

The concept of controllability Grammian for MJLS will be presented in
Chapter 4, Section 4.4.2.

Item 4 of the theorem above is particularly interesting, since it involves
the idea of state feedback. Suppose that for some F € B(C",C™), we apply
u(k) = Fa(k) in System (2.12), yielding

z(k+1)=(A+ BF)x(k),

which is a form similar to (2.8). According to the theorem above, an adequate
choice of F' (for A, B and F real) would allow us to perform pole placement
for the closed loop system (A+ BF'). For instance we could use state feedback
to stabilize an unstable system.

The case in which the state feedback can only change the unstable eigen-
values of the system is of great interest and leads us to the introduction of
the concept of stabilizability.
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Definition 2.17 (Stabilizability). The pair (A, B) is said to be stabilizable
if there exists F € B(C™,C™) such that r,(A+ BF) < 1.

This concept will play a crucial role for the MJLS, as will be seen in the
next chapters (see Section 3.5). Consider now a system of the form

z(k+1) = Az(k) (2.13a)
y(k) = Lxz(k) (2.13b)

where L € B(C",CP) and y(k) € CP is the vector of outputs of the system.
The concepts of controllability and stabilizability just presented, which relate
structurally z(k) and the input u(k), have their dual counterparts from the
point of view of the output y(k). The following theorem and definitions present
them.

Definition 2.18 (Observability). The pair (L, A) is said to be observable,
if there exists a finite positive integer T such that knowledge of the outputs
y(0),y(1),...,y(T — 1) is sufficient to determine the initial state z(0).

The concept of observability deals with the following question: is it possible
to infer the internal behavior of a system by observing its outputs? This is a
fundamental property when it comes to control and filtering issues.

The following theorem is dual to Theorem 2.16, and the proof can be found
in [48], p. 282.

Theorem 2.19. The following assertions are equivalent.

1. The pair (L, A) is observable.
2. The following pn X n. matriz (called an observability matrix) has rank n:

L
LA

LA

3. The observability Grammian S, € B(C") given by

k
So(k) =Y (A*)'L*LA’
i=0
is nonsingular for some k < co.

4. For A and L real, given any monic real polynomial ¥ of degree n, there
exists K € B(RP,R™) such that det(sI — (A+ KL)) =(s).

Moreover, if r,(A) < 1 then the pair (L, A) is observable if and only if the
unique solution S, of S = A*SA + L*L 1is positive-definite.
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We also define the concept of detectability, which is dual to the definition
of stabilizability.

Definition 2.20 (Detectability). The pair (L, A) is said to be detectable
if there exists K € B(CP,C™) such that ro(A+ KL) < 1.

These are key concepts in linear system theory which will be extended to
the Markov jump case in due course throughout this book.

2.4.3 The Algebraic Riccati Equation and the Linear-Quadratic
Regulator

Consider again System (2.12)
x(k+1) = Az(k) + Bu(k).

An extensively studied and classical control problem is that of finding a se-
quence 4(0),u(1),...,u(T — 1) that minimizes the cost Jr(zo,u) given by

T-1

Ir(zo,u) = Y [IC(R)IP + |Du(k)|*] + E(2(T)*Va(T)), (2.14)

k=0

where ¥V > 0 and D*D > 0. The idea of minimizing Jr(z¢, u) is to drive the
state of the system to the origin without much strain from the control variable
which is, in general, a desirable behavior for control systems. This problem is
referred to as the linear-quadratic requlator (linear system + quadratic cost)
problem. It can be shown (see for instance [48] or [183]) that the solution to
this problem is

u(k) = F(k)z(k) (2.15)

with F(k) given by
F(k) = —(B*Xr(k+1)B+D*D) 'B*Xp(k+1)A  (2.16a)
Xrk)=C"C+A*Xp(k+1)A—- A" Xr(k+1)B
X(B*Xp(k+1)B+D*D) 'B*Xp(k+1)A  (2.16b)
Xr(T)=V.
Equation (2.16b) is called the difference Riccati equation. Another related

problem is the infinite horizon linear quadratic regulator problem, in which it
is desired to minimize the cost

I(zo,u) =Y [[C2(k)|* + | Du(k)|I] .- (2.17)
k=0

Under some conditions, the solution to this problem is
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u(k) = F(X)xz(k), (2.18)
where the constant gain F(X) is given by
F(X)=—(B*XB+D*D) 'B*XA (2.19)
and X is a positive semi-definite solution of
W =C*C+ A*WA— A*WB(B*WB + D*D) 'B*WA. (2.20)

Equation (2.20) is usually referred to as the algebraic Riccati equation or in
short, ARE . If r,(A+BF (X)) < 1, then X is said to be a stabilizing solution
of (2.20). Questions that naturally arise are: under which conditions there is
convergence of X7 (0) given by (2.16b) as T goes to infinity to a positive semi-
definite solution X of (2.20)? When is there a stabilizing solution for (2.20)?
Is it unique? The following theorem, whose proof can be found, for instance,
in [48], p. 348, answers these questions.

Theorem 2.21. Suppose that the pair (A, B) is stabilizable. Then for any
Y > 0, Xr(0) converges to a positive semi-definite solution X of (2.20) as
T goes to infinity. Moreover if the pair (C, A) is detectable, then there exists
a unique positive semi-definite solution X to (2.20), and this solution is the
unique stabilizing solution for (2.20).

Riccati equations like (2.16b) and (2.20) and their variations are employed
in a variety of control (as in (2.14) and (2.17)) and filtering problems. As we
are going to see in Chapters 4, 5, 6 and 7, they will also play a crucial role for
MJLS. For more on Riccati equations and associated problems, see [26], [44],
and [195].

2.5 Linear Matrix Inequalities

Some miscellaneous definitions and results involving matrices and matrix
equations are presented in this section. These results will be used throughout
the book, especially those related with the concept of linear matrix inequal-
ities (or in short LMIs), which will play a very important role in the next
chapters.

Definition 2.22 (Generalized Inverse). The generalized inverse (or Moore—
Penrose inverse) of a matriz A € B(C",C™) is the unique matriz AT €
B(C™, C™)such that

1. AATA = A,

2. ATAAT = AT,
3. (AAN" = AAT,
4. (ATA)" = ATA.
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For more on this subject, see [49]. The Schur complements presented below
are used to convert quadratic equations into larger dimension linear ones and
vice versa.

Lemma 2.23 (Schur complements). (From [195]). Consider an hermitian

matriz Q such that
_ | @Qn Q12]
@= {sz Q2|
1. @ > 0 if and only if
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Next we present the definition of LMI.

Definition 2.24. A linear matriz inequality (LMI) is any constraint that can
be written or converted to

F(z) = Fo+x1Fy + 2oF + ... 4 2y B <0, (2.21)

where x; are the variables and the hermitian matrices F; € B(R™) for i =
1,...,m are known.

LMI (2.21) is referred to as a strict LMI. Also of interest are the nonstrict
LMIs, where F(z) < 0. From the practical point of view, LMIs are usually
presented as

fXq, .., XN) < g(Xq,..., XnN), (2.22)

where f and g are affine functions of the unknown matrices Xi,..., Xy.
For example, from the Lyapunov equation, the stability of System (2.8) is
equivalent to the existence of a V' > 0 satisfying the LMI (2.11). Quadratic
forms can usually be converted to affine ones using the Schur complements.
Therefore we will make no distinctions between (2.21) and (2.22), quadratic
and affine forms, or between a set of LMIs or a single one, and will refer to all
of them as simply LMIs. For more on LMIs the reader is referred to [7], [42],
or any of the many works on the subject.
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