2

Basic Concepts

Throughout the book the symbol N will denote a non-empty finite set of vari-
ables. The intended interpretation is that the variables correspond to prim-
itive factors described by random variables. In Chapter 3 variables will be
represented by nodes of a graph. The set N will also serve as the basic set
for non-graphical tools of discrete mathematics introduced in this monograph
(semi-graphoids, imsets etc.).

CONVENTION 1. The following conventions will be used throughout the book.
Given sets A, B C N the juxtaposition AB will denote their union AU B. The
following symbols will be reserved for sets of numbers: R will denote real
numbers, Q rational numbers, Z integers, 7 non-negative integers (including
0), N natural numbers (that is, positive integers excluding 0). The symbol
|A] will be used to denote the number of elements of a finite set A, that is,
its cardinality. The symbol |z| will also denote the absolute value of a real
number z, that is, |z| = max {x, —x}. O

2.1 Conditional independence

A basic notion of the monograph is a probability measure over N. This phrase
will be used to describe the situation in which a measurable space (X;, X;) is
given for every i € N and a probability measure P is defined on the Cartesian
product of these measurable spaces ([[;cn Xi, [[;cn &i)- In this case I will
use the symbol (X4, X4) as a shorthand for (J[;c4 Xi, [[;c4 &) for every
() # A C N. The marginal of P for ) # A C N, denoted by P4, is defined by
the formula
PA(A) = P(Ax Xny\a) for A€ X,.

Moreover, let us accept two natural conventions. First, the marginal of P for
A = N is P itself, that is, PV = P. Second, a fully formal convention is that
the marginal of P for A = () is a probability measure on a (fixed appended)
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measurable space (Xg, Xp) with a trivial o-algebra Xy = {0, Xy }. Observe that
a measurable space of this kind only admits one probability measure P?.

To give the definition of conditional independence within this framework
one needs a certain general understanding of the concept of conditional prob-
ability. Given a probability measure P over N and disjoint sets A,C C N,
conditional probability on X4 given C (more specifically given X¢) will be
understood as a function of two arguments Psjc : X4 x X¢ — [0, 1] which
ascribes an Xg-measurable function Pajc(Alx) to every A € X4 such that

PAC(AxC) = / Pyic(Alz) dPC (z) for every C e A .
o

Note that no restriction concerning the mappings A — Py c(Alz), » € X¢
(often called the regularity requirement — see Section A.6.4, Remark A.1)
is needed within this general approach. Let me emphasize that P4 only
depends on the marginal PA¢ and that it is defined, for a fixed A € X},
uniquely within the equivalence P¢-almost everywhere (P®-a.e.). Observe
that, owing to the convention above, if C' = ) then the conditional probability
P4c coincides, in fact, with the marginal for A, that means, one has Pyjp =
P4 (because a constant function can be identified with its value).

Remark 2.1. The conventions above are in accordance with the following uni-
fying perspective. Realize that for every ) # A C N the measurable space
(X4, X4) is isomorphic to the space (Xx, X4) where X4 C Xy is the coordi-
nate o-algebra representing the set A, namely

/?A:{AXXN\A; AEXA}:{BEXN; BZAXXN\A for AQXA}

Thus, A € B C N is reflected by X4 C Xp and it is natural to require
that the empty set ) is represented by the trivial o-algebra X over Xy and
N is represented by Xy = Xy. Using this point of view, the marginal P4
corresponds to the restriction of P to X4, and P4|c corresponds to the con-
cept of conditional probability with respect to the o-algebra X=. Thus, the
existence and the uniqueness of P4 ¢ mentioned above follows from basic
measure-theoretical facts. For details see the Appendix, Section A.6.4. A

Given a probability measure P over N and pairwise disjoint subsets
A, B,C C N one says that A is conditionally independent of B given C with
respect to P and writes A 1L B|C [P] if for every A € X4 and B € X

Papjc(A x Blz) = Pajc(Alz) - Ppic(Blz)  for P%ae. z€Xo. (2.1)

Observe that in case C' = () it collapses to a simple equality PAZ(A x B) =
PA(A) - PB(B), that is, to a classic independence concept. Note that the
validity of (2.1) does not depend on the choice of versions of conditional
probability given C' since these are determined uniquely within equivalence
PC-a.e.
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Remark 2.2. Let me specify the definition for the case of discrete measures
over N, when X; is a finite non-empty set and X; = P(X;) is the class of all
its subsets for every i € N. Then P4 is determined uniquely exactly on the
set {z € Xg; PY({z}) > 0} by means of the formula

PAC(A x {z})
Pe({x})
so that A 1L B|C [P] is defined as follows:

Pyjc(Alr) = for every A C Xa,

Papic(A x Blz) = Pajc(Alz) - Ppjc(Blz)

for every A C X4, B C Xp and = € X¢ with PY({z}) > 0. Of course, A and
B can be replaced by singletons. Note that the fact that the equality P¢-a.e.
coincides with the equality on a certain fixed set is a speciality of the discrete
case. Other common equivalent definitions of conditional independence are
mentioned in Section 2.3. A

However, the concept of conditional independence is not exclusively a prob-
abilistic concept. This concept was introduced in several non-probabilistic
frameworks, namely in various calculi for dealing with uncertainty in artificial
intelligence — for details and overview see [133, 117, 31]. Formal properties
of respective conditional independence concepts may differ in general, but an
important fact is that certain basic properties of conditional independence
appear to be valid in all these frameworks.

2.2 Semi-graphoid properties

Several authors independently drew attention to the above-mentioned basic
formal properties of conditional independence. In modern statistics, they were
first accentuated by Dawid [29], then mentioned by Mouchart and Rolin [93],
and van Putten and van Shuppen [103]. Spohn [124] interpreted them in
the context of philosophical logic. Finally, their significance in (probabilistic
approach to) artificial intelligence was discerned and highlighted by Pearl and
Paz [99]. Their terminology [100] was later widely accepted, so that researchers
in artificial intelligence started to call them the semi-graphoid properties.

2.2.1 Formal independence models

Formally, a conditional independence statement over N is a statement of the
form “A is conditionally independent of B given C” where A, B,C' C N
are pairwise disjoint subsets of N. A statement of this kind should always
be understood with respect to a certain mathematical object o over N, for
example, a probability measure over N. However, several other objects can
occur in place of o; for example, a graph over N (see Chapter 3), a possibility
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distribution over N [18, 149], a relational database over N [112] and a struc-
tural imset over N (see Section 4.4.1). The notation A 1l B|C [o] will be
used in those cases, but the symbol [0] can be omitted if it is suitable.

Thus, every conditional independence statement corresponds to a disjoint
triplet over N, that is, a triplet (A, B|C') of pairwise disjoint subsets of N.
Here, the punctation anticipates the intended role of component sets. The
third component, written after the straight line, is the conditioning set while
the two former components are independent areas, usually interchangeable.
The formal difference is that a triplet of this kind can be interpreted either as
the corresponding independence statement or, alternatively, as its negation,
that is, the corresponding dependence statement. Occasionally, 1 will use the
symbol A /L. B|C o] to denote the dependence statement which corresponds
to (A, B|C). The class of all disjoint triplets over N will be denoted by 7 (N).

Having established the concept of conditional independence within a cer-
tain framework of mathematical objects over IV, every object o of this kind
defines a certain set of disjoint triplets over N, namely

Mo = {(A,B|C) € T(N); A1 B|C [o]}.

Let us call this set of triplets the conditional independence model induced by
o. This phrase is used to indicate that the involved triplets are interpreted
as independence statements, although from a purely mathematical point of
view it is nothing but a subset of 7(N). A subset M C T (N) interpreted
in this way will be called a formal independence model. Thus, the conditional
independence model induced by a probability measure P over N (according
to the definition from Section 2.1) is a special case. On the other hand, any
class M C T(N) of disjoint triplets over N can be formally interpreted as a
conditional independence model if one defines

AL B|C[M] = (A B|C)eM.

The restriction of a formal independence model M over N to a non-empty
set ) #£ T C N will be understood as the set M N7 (T) denoted by Mr.
Evidently, the restriction of a (probabilistic) conditional independence model
is again a conditional independence model (induced by the marginal).

Remark 2.3. 1 should explain my limitation to disjoint triplets over N, since
some authors, e.g. Dawid [33], do not make this restriction at all. For simplicity
of explanation consider a discrete probabilistic framework. Indeed, given a
discrete probability measure P over N, the statement A 1 B|C [P] can
also be defined for non-disjoint triplets A, B,C' C N in a reasonable way [41,
81]. However, then the statement A 1L A|C [P] has specific interpretation,
namely that the variables in A are functionally dependent on the variables in
C' (with respect to P), so that it can be interpreted as a functional dependence
statement. Let us note (cf. §2 in [81]) that one can easily derive that

A\C 1. B\ AC | C [P] and }

ALB|C[P] & {(AHB)\CJJ_(AHB)\CCU(B\A) [P]
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Thus, every statement A 1L B|C of a general type can be “reconstructed”
from functional dependence statements and from pure conditional indepen-
dence statements described by disjoint triplets. The topic of this monograph
is pure conditional independence structures; therefore I limit myself to pure
conditional independence statements. A

Remark 2.4. To avoid misunderstanding, the reader should be aware that the
noun model may have any of three different meanings in this monograph. First,
it can be used in its general sense in which case it is usually used without an
adjective. Second, it is a part of the phrase “(formal) independence model” in
which case the word independence indicates that one has in mind the concept
introduced in this section. Note that this terminology comes from the area of
artificial intelligence — see Pearl [100]. Third, it can be a part of the phrase
“statistical model” in which case the adjective statistical indicates that one has
in mind the concept mentioned in Section A.9.2, that is, a class of probability
measures. Note that this terminology is often used in statistics — see Remark
A.3 for more detailed explanation.

However, there is a simple reason why two different concepts are named
by the same noun. The reason is that every formal independence model M C
7T (N) can be understood as a statistical model M, provided that a distribution
framework ¥ (see Section A.9.5) is fixed. Indeed, one can put

M={Pe?¥; AL B|C[P] whenever (A,B|C) e M}.

Every statistical model of this kind will be called the statistical model of CI
structure. Note that this concept generalizes the classic concept of a graphical
model [157, 70]. Indeed, the reader can learn in Chapter 3 that a graph G
having N as the set of nodes usually induces the class Mg of Markovian
measures over N, that is, a statistical model. This graphical statistical model
is, however, defined by means of the formal independence model M. Note
that the class M is often introduced in another way — see Section 8.2.1 for
equivalent definitions in case of acyclic directed graphs in terms of recursive
factorization and in terms of parameterization. A

2.2.2 Semi-graphoids

By a disjoint semi-graphoid over N is understood any set M C T (N) of
disjoint triplets over N (interpreted as independence statements) such that
the following conditions hold for every collection of pairwise disjoint sets
A, B,C,D C N:

1. triviality AlLD|C [M],

2. symmetry A1l B|C [M] implies B 1L A|C [M],

3. decomposition A I BD|C [M] implies A 1L D|C [M],
4. weak union AU BD|C [M] implies A 1L B|DC [M],
5. contraction A1 B|DC [M]and A Il D|C [M]

implies A 1L BD|C [M].
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Note that the terminology above was proposed by Pearl [100], who formu-
lated the formal properties above in the form of inference rules, gave them
special names and interpretation, and called them the semi-graphoid axioms.
Of course, the restriction of a semi-graphoid over N to 7 (T) for non-empty
T C N is a semi-graphoid over T'. The following fact is important.

Lemma 2.1. Every conditional independence model M p induced by a prob-
ability measure P over N is a disjoint semi-graphoid over N.

Proof. This can be derived easily from Corollary A.2 proved in the Appendix
(see p. 235). Indeed, having a probability measure P over N defined on a
measurable space (Xy,Xy) one can identify every subset A C N with a
coordinate o-algebra X4 C Xy as described in Remark 2.1. Then, for a disjoint
triplet (A, B|C') over N, the statement A 1L B|C [P] is equivalent to the
requirement X4 1L Xp|Xc [P] introduced in Section A.7. Having in mind
that X4p = X4 V X for A, B C N the rest follows from Corollary A.2. O

Note that the above mentioned fact is not a special feature of a proba-
bilistic framework. Conditional independence models occurring within other
uncertainty calculi (in artificial intelligence) mentioned at the end of Section
2.1 are also (disjoint) semi-graphoids. Even various graphs over N induce
semi-graphoids, as explained in Chapter 3.

Remark 2.5. The limitation to disjoint triplets in the definition of a semi-
graphoid is not substantial. One can introduce an abstract semi-graphoid on a
join semi-lattice (S, V) as a ternary relation x 1L x| x over elements A, B, C, D
of S satisfying

e Al B|C whenever BVC=C,
AL B|C iff B A|C,
e ALUBVD|C iff [ALB|DVC and A1 D|C].

Taking S = P(N) one obtains the definition of a non-disjoint semi-graphoid
over N. A more complicated example is the semi-lattice of all o-algebras
A C X in a measurable space (X, X) and the relation 1L of conditional inde-
pendence for o-algebras with respect to a probability measure on (X, X') (see
Corollary A.2). Note that the above concept of an abstract semi-graphoid is
essentially equivalent to the concept of a separoid introduced by Dawid [33],
which is a mathematical structure unifying a variety of notions of “condi-
tional independence” arising in probability, statistics, artificial intelligence,
and other fields.

Let me conclude this remark by a note which indicates the obstacles that
authors in mathematics meet if they want to establish new terminology. Pearl
and Paz [99] decided to use the word “graphoid” to name a new concept they
introduced (see p. 29 for this concept). However, it appeared that this word
had already been “occupied”: it was used to name one of equivalent definitions
of a matroid [155]. One of the motives which led Dawid [33] to use the word
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“separoid” to name his general concept was to avoid a terminological clash.
However, it appeared that this word had also been used independently by
Strausz [128] to name a certain abstract binary relation between sets whose
alm is to generalize geometric separation of sets in R™ by hyperplanes. An
interesting observation is that, by coincidence, there is a weak connection
between two concepts of a separoid. For example, an undirected graph G and
the relation of separation for sets of nodes in G, which is defined as in Section
3.1 but non-disjoint sets are allowed, can give an example of both separoids.
The difference is that Dawid’s separoid is a ternary relation A 1 B|C [G]
while a binary relation A 1L B|{ [G] can serve as an example of Strausz’s
separoid. A

2.2.3 Elementary independence statements

To store a semi-graphoid over N in the memory of a computer it is not nec-
essary to allocate all |7 (N)| = 4/VI bits. A more economic way of their rep-
resentation is possible. For example, one can omit trivial statements which
correspond to triplets (A, B|C) over N with A = () or B = (). Let us denote
the class of trivial disjoint triplets over N by T4(N).

However, independence statements of principal importance are elementary
statements, which correspond to elementary triplets, that is, disjoint triplets
(A, B|C) over N where both A and B are singletons (cf. [3, 79]). A simpli-
fying convention will be used in this case: braces in singleton notation will
be omitted so that (a,b|K) or a 1L b| K will be written only. The class of
elementary triplets over N will be denoted by 7. (V).

Lemma 2.2. Suppose that M is a disjoint semi-graphoid over N. Then, for
every disjoint triplet (A, B|C) over N, one has A 1l B|C [M] iff the following
condition holds

VaeA VbeB VCCKCABC\{ab} allb|K[M]. (2.2

In particular, every semi-graphoid is determined by its “trace” within the
class of elementary triplets, that is, by the intersection with 7, (V). Moreover,
if My, My are semi-graphoids over N then M; N7 (N) C My N T.(N) is
equivalent to M1 C Ma.

Proof. (see also [79]) The necessity of the condition (2.2) is easily derivable
using the decomposition and the weak union properties combined with the
symmetry property.

For converse implication suppose (2.2) and that (A, B|C) is not a trivial
triplet over N (otherwise it is evident). Use induction on |AB]; the case |AB| =
2 is evident. Supposing |AB| > 2 either A or B is not a singleton. Owing to the
symmetry property one can consider without the loss of generality |B| > 2,
choose b € B and put B’ = B\ {b}. By the induction assumption, (2.2)
implies both A 1L b| B'C' [M] and A 1. B'|C [M]. Hence, by application of
the contraction property A 1l B|C [M] is derived. O
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Sometimes, an elementary statement mode of representing a semi-graphoid,
that is, by the list of contained elementary triplets, is more suitable. The
characterization of those collections of elementary triplets which represent
semi-graphoids is given in Proposition 1 of Matis [79].

Remark 2.6. Another reduction of memory demands for semi-graphoid repre-
sentation follows from the symmetry property. Instead of keeping a pair of
mutually symmetric statements a 1L b| K and b 1L a | K one can choose only
one of them according to a suitable criterion. In particular, to represent a
semi-graphoid over N with |N| = n it suffices to have only n - (n — 1) - 2773
bits. Note that the idea above is also reflected in Section 4.2.1 where just one
elementary imset corresponds to a “symmetric” pair of elementary statements.

However, further reduction of the class of considered statements is not
possible. The reason is as follows: every elementary triplet (a,b|K) over N
generates a semi-graphoid over N consisting of (a, b| K}, its symmetric image
(b,a|K) and trivial triplets over N (cf. Lemmas 4.6 and 4.5). In fact, these
are minimal non-trivial semi-graphoids over N and one has to distinguish
them from other semi-graphoids over N. These observations influenced the
terminology: the adjective “elementary” is used to indicate the respective
disjoint triplets and independence statements. A

2.2.4 Problem of axiomatic characterization

Pearl and Paz [99, 100] formulated a conjecture that semi-graphoids coin-
cide with conditional independence models induced by discrete probability
measures. However, this conjecture was refuted in Studeny [130] by finding
a further formal property of these models, which is not derivable from semi-
graphoid properties, namely

[AL B|CD and C AL D|A and C L D|B and A1 B|0] &
< [CLD|AB and AL B|C and AL B|D and C 1 D|0].

Another formal property of this sort was later derived in An et al. [3]. Con-
sequently, a natural question occurred. Can conditional independence models
arising in a discrete probabilistic setting be characterized in terms of a finite
number of formal properties of this type? This question is known as the prob-
lem of axiomatic characterization because a result of this kind would have
been a substantial step towards a syntactic description of these models in the
sense of mathematical logic. Indeed, as explained in § 5 of Studeny [132], then
it would have been possible to construct a deductive system that is an analog
of the notion of a “formal axiomatic theory” from Mendelson [92]. The consid-
ered formal properties then would have played the role of syntactic inference
rules of an axiomatic theory of this sort. Unfortunately, the answer to the
question above is also negative. It was shown in Studeny [132] (for a more
didactic proof see [144]) that, for every n € N, there exists a formal property
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of (discrete) probabilistic conditional independence models which applies to
a set of variables N with |[N| = n but which cannot be revealed on a set of
smaller cardinality. Note that a basic tool for derivation of these properties
was the multiinformation function introduced in Section 2.3.4.

On the other hand, having fixed N, a finite number of possible probabilistic
conditional independence models over N suggests that they can be character-
ized in terms of a finite number of formal properties of semi-graphoid type.
Thus, a related task is, for a small cardinality of IV, to characterize them in
that way. It is no problem to verify that they coincide with semi-graphoids
in the case |[N| = 3 (see Figure 5.6 for illustration). Discrete probabilistic
conditional independence models over N with |N| = 4 were characterized in
a series of papers by Matus [84, 85, 87]; for an overview see Studeny and
Bocek [136] where the respective formal properties of these models are explic-
itly formulated — one has 18300 different models of this kind and these can be
characterized by more than 28 formal properties.

Remark 2.7. On the other hand, several results on relative completeness of
semi-graphoid properties were achieved. In Geiger et al. [45] and indepen-
dently in Matus [82] models of “unconditional” stochastic independence (that
is, submodels consisting of unconditioned independence statements of the form
A 1L B|0) were characterized by means of properties derivable from the semi-
graphoid properties. An analogous result for the class of saturated or fized-
context conditional independence statements — that is, statements A Il B|C
with ABC' = N — was achieved independently by Geiger and Pearl [46] and
by Malvestuto [77]. The result from Studeny [138] can be interpreted as a
specific relative-completeness result, saying that the semi-graphoid generated
by a pair of conditional independence statements is always a conditional inde-
pendence model induced by a discrete probability measure. Note that the
problem of axiomatic characterization of CI models mentioned above differs
from the problem of axiomatization (in the sense of mathematical logic) of a
single CI structure over an infinite set of variables N, which was treated in
Kramosil [62]. VAN

2.3 Classes of probability measures

There is no uniformly accepted conception of the notion of a probability dis-
tribution in the literature. In probability theory, authors usually understand
by a distribution of a (n-dimensional real) random vector an induced prob-
ability measure on the respective sample space (R"™ endowed with the Borel
o-algebra), that is, a set function on the sample (measurable) space. On the
other hand, authors in artificial intelligence usually identify a distribution of
a (finitely valued) random vector with a pointwise function on the respective
(finite) sample space, ascribing probability to every configuration of values (=
to every element of the sample space [[,.n Xi, where X; are finite sets). In
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statistics, either the meaning wavers between these two basic approaches, or
authors even avoid the dilemma by describing specific distributions directly
by their parameters (e.g., elements of the covariance matrix of a Gaussian
distribution). Therefore, no exact meaning is assigned to the phrase “proba-
bility distribution” in this book; it is used only in its general sense, mainly in
vague motivational parts. Moreover, terminological distinction is made bet-
ween those two above-mentioned approaches. The concept of a probability
measure over N from Section 2.1 more likely reflects the first approach, which
is more general. To relate this to the second approach one has to make an addi-
tional assumption on a probability measure P so that it can also be described
by a pointwise function, called the density of P. Note that many authors
simply make an assumption of this type implicitly without mentioning it.

All probability measures over N

Marginally continuous measures

/ Measures with finite multiinformation \
Discrete measures \

Regular
Gaussian measures

Positive measures

o
\ /

Fig. 2.1. A comparison of basic classes of probability measures over N.

In this section, basic facts about these special probability measures are
recalled and several important subclasses of the class of measures having den-
sity, called “marginally continuous measures”, are introduced. One of them,
the class of measures with finite multiinformation, is strongly related to the
method of structural imsets described in later chapters. The information-
theoretical methods are applicable to measures belonging to this class which,
fortunately, involves typical measures used in practice. Inclusion relationships
among introduced classes of measures are depicted in Figure 2.1.
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2.3.1 Marginally continuous measures

A probability measure P over N is marginally continuous if it is absolutely
continuous with respect to the product of its one-dimensional marginals, that
is, P < [l;en P} The following lemma contains an apparently weaker
equivalent definition.

Lemma 2.3. A probability measure P on (Xy, Xy ) is marginally continuous
iff there exists a collection of o-finite measures y; on (X;, X;), i € N such that

P < Tlien wi-

Proof. (see also §1.2.2 in [37]) It was shown in [130], Proposition 1, that in
the case [N| = 2 one has P < [[;cn P} iff there are probability measures \;
on (X;, X;) with P < HieN Ai. One can easily show that for every non-zero
o-finite measure p; on (X;, X;) a probability measure A; on (X;, X;) with p; <
Ai < p; exists. Hence, the condition above is equivalent to the requirement
for the existence of o-finite measures p; with P < [[;cy #i- Finally, one can
use the induction on |N| to get the desired conclusion. O

Thus, the marginal continuity of P is equivalent to the existence of a
dominating measure pu for P, that is, the product u = [, p; of some o-finite
measures p; on (X;, X;), @ € N such that P < p. In particular, every discrete
measure over N is marginally continuous since the counting measure on Xy
can serve as its dominating measure. Note that nearly all multidimensional
measures used in practice are marginally continuous (see Sections 2.3.5, 2.3.6
and 4.1.3 for other examples). However, there are probability measures over
N which are not marginally continuous; in particular, some singular Gaussian
measures — see Example 2.3 on p. 35.

Having fixed a dominating measure pu for a marginally continuous measure
P over N by a density of P with respect to u will be understood (every version
of) the Radon-Nikodym derivative of P with respect to u.

Remark 2.8. Let us note without explaining details (see Remark 1 in [130])
that the assumption that a probability measure P over N is marginally con-
tinuous also implies that, for every disjoint A,C C N, there exists a regu-
lar version of conditional probability P4jc on X4 given Xc in the sense of
Loéve [74]. The regularity of conditional probability is usually derived as a
consequence of special topological assumptions on (X;, X;), ¢ € N (see the
Appendix, Remark A.1). Thus, the marginal continuity is a non-topological
assumption implying the regularity of conditional probabilities. The concept
of marginal continuity is closely related to the concept of a dominated experi-
ment in Bayesian statistics — see §1.2.2 and §1.2.3 in the book by Florens et
al. [37]. A

The next step is an equivalent definition of conditional independence for
marginally continuous measures in terms of densities. To formulate it in an
elegant way, let us accept the following (notational) conventions.
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CONVENTION 2. Suppose that a marginally continuous probability measure
P on (Xy,Xy) is given. Let us fix one-dimensional o-finite measures which
define a dominating measure p for P. More specifically, P <y = [],cn
where p; is a o-finite measure on (X;, &;) for every i € N.

Then, for every §) # A C N, we put pia = [[;c 4 ti, choose a version fa of
the Radon-Nikodym derivative dP4 /dju 4, and fix it. The function fa will be
called a marginal density of P for A. It is an X4-measurable function on the
set X 4.

In order to be also able to understand f4 as a function on Xy, let us
accept the following notation. Given ) # A C B C N and x € Xp, the symbol
x4 will denote the projection of x onto A, that is, x4 = [2;];e4 whenever
T = [%‘L’eB.

The last formal convention concerns the marginal density fj for the empty
set. It should be a constant function on (an appended) trivial measurable space
(Xg, Xp). Thus, in the formulas below, one can simply put fy(zy) = 1 for every
x€Xp, 0 #£BCN. &

Remark 2.9. This is to explain the way of defining marginal densities in Con-
vention 2. First, let me emphasize that the marginal density is not the Radon-
Nikodym derivative of respective marginals of P and p since pa = [];c 4 1
need not coincide with the marginal u? of u = [L;cn ti unless every p; is a
probability measure.

Indeed, a marginal of a o-finite measure may not be a o-finite measure
(e.g., u? in the case u(Xy) = oo) so that the Radon-Nikodym derivative
dP4/dp may not exist. Instead, one can take the following point of view.
Let us fix a density f = dP/dp and introduce, for every ) # A C N, its
“projection” f}4 as a function on X4 defined p14-almost everywhere (j4-a.e)
as follows:

FA) = / f(52) duma(z)  for y€Xa.
XN\ A

One can easily conclude using the Fubini theorem that f'4 = dP4/du in the
sense f14-a.e., so that there is no substantial difference between f!'“ and any
version of the marginal density f4. The convention for the empty set saying

0 = [ 5@ duta) = 1.
XN
follows this line. A

Lemma 2.4. Let P be a marginally continuous measure over N. Let us accept
Convention 2. Given (A, B|C') € T(N) one has A 1L B|C [P] iff the following
equality holds

faBc(rape) - fo(xe) = fac(zac) - fee(rpe)  for prae. z € Xy. (2.3)
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Proof. Note that minor omitted details of the proof (e.g. verification of equal-
ities p-a.e.) can be verified with the aid of basic measure-theoretical facts
gathered in Section A.6.

I. First, choose and fix a density f : Xy — [0,00) of P such that

VOAACN VeeXy  fH(za)= / f(xa,y) dumaly) < oo,

XN\ A
and, moreover, for every disjoint A,C' C N, one has
VareXy flc (z¢)=0 = flAC (xac) =0, (2.4)

where conventions f'V = f and f! = 1 are accepted. Indeed, these rela-
tionships hold p-a.e. for every version f of dP/du and every version can be
overdefined by 0 whenever these relationships do not hold. It is no problem
to verify that f'4 = dP4/dua for every ) # A C N.

II. Second, for every disjoint pair of sets A,C C N, introduce a function
hajc : Xa x Xg — [0, 00) as follows:

L2t £1C(2) > 0,

hA|C (JC‘Z) = { fe(z) for x € X4, z € X¢.

0 if f1¢(z) =0,

One can verify using the Fubini theorem (for 4 x P¢), the Radon-Nikodym
theorem (for f1¢ = dPY/duc), again the Fubini theorem (for puc x p4) and
the Radon-Nikodym theorem (for f14¢ = dPAY /duac) that the function

(A, 2) = Pajc(Alz) = / hajc (z|2) dpa(z) where A€ Xy, z € Xe,
A

is (a version of) the conditional probability on X4 given X¢.
ITI. Realize that (2.3) can be written as follows (see Remark 2.9):

FHAP @ ape) - 1) = % wac) - 1P (@Be) (2.5)
for p-a.e. x € Xy. Further, this can be rewritten in the form
hapic(zaplzc) - f19@e) = hajc(@alze) - hpic(zplec) - £19@c)  (2.6)

for p-a.e. x € Xy. Indeed, owing to (2.4), (2.5) and (2.6) are trivially valid on
the set {z € Xy; f1%(x¢) = 0} while they are equivalent on its complement.

IV. The next step is to observe that (2.6) is equivalent to the requirement
that VA € Xy, VB € Xp, VC € X¢ it holds

/ / hapic(zap|re) dpap(zap) AP (zc) =
C AxB

//hA|c($A|$C) dMA(fCA)-/hB\c(xBlﬂfd dup(zp) AP (zc).
cC A B
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Indeed, as mentioned in Section A.6.1 the equality in (2.6) is equivalent to
the requirement that their integrals with respect to papc over all measurable
rectangles A x B x C coincide. This can be rewritten using the Fubini theorem,
the Radon-Nikodym theorem and basic properties of the Lebesgue integral in
the form above.

V. As explained in Step II, the last equation can be understood as follows:

/ Pagic(A x Blz) AP (2) = / Paic(Alz) - Peic(Blz) dPC(2). (27)
C C

Having fixed A € X4 and B € Xp the equality (2.7) for every C € X¢ is
equivalent to the condition that the integrated functions are equal P®-a.e.

Hence, one can conclude that the condition (2.1) from p. 10 holds for every
A€ X4 and B € X, that is, A 1L B|C [P]. O

Let us observe that, in (2.3), one can write “for uapc-a.e. ¢ € Xapc”
instead. Of course, the validity of (2.3) trivially does not depend on the choice
of (versions) of densities. The point of Lemma 2.4 is that it does not even
depend on the choice of a dominating measure p since A 1. B|C [P] does
depend on it as well. Note that this fact may not be so apparent when one
tries to introduce the concept of conditional independence directly by means
of marginal densities.

2.3.2 Factorizable measures

Let 0 #£ D C P(N)\ {0} be a non-empty class of non-empty subsets of N and
D = Jpep- We say that a marginally continuous measure P over N factor-
izes after D (relative to a dominating measure p for PP) if the (respective)
marginal density of P for D can be expressed in the form

fp(zp) = H gs(zg) for p-ae. € Xy, (2.8)
SeD

where gg : Xg — [0,00), S € D are Xg-measurable functions, called potentials.
An equivalent formulation is that there exists a version of fp of dPP /du and
potentials gg such that (2.8) holds for every = € Xy. In fact, the factorization
does not depend on the choice of a dominating measure p. One can show
that the validity of (2.8) relative to a general dominating product measure
p = [Liep pi where all p; are o-finite, is equivalent to the validity of (2.8)
relative to [ [, p P} and with other potentials (this can be verified with the
help of Lemma 2.3). Of course, the factorization after D is equivalent to the
factorization after D™®*, and potentials are not unique unless |D| = 1.
Further equivalent definition of conditional independence for marginally
continuous measures is formulated in terms of factorization (see also [70],

§3.1).
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Lemma 2.5. Let P be a marginally continuous measure over N, y a dom-
inating measure for PAB¢ and (A, B|C) a disjoint triplet over N. Then
A 1l B|C [P] if and only if P factorizes after D = {AC, BC'} relative to
. More specifically, if Convention 2 is accepted then A 1L B|C [P] iff there
exist an Xyc-measurable function g : X4 — [0,00) and an X'pc-measurable
function h : Xpe — [0, 00) such that

faBc (CCABc) = g(a:Ac) : h(l‘Bc) for p-ae. x e Xy. (2.9)

Proof. One can use Lemma 2.4. Clearly, (2.3) = (2.9) where g = fac and

fec(zBo)
h(zpc) = { Hetaey i fe(ze) >0,

for x € Xy,
0 if fo(wo)=0, 0N

because for p-a.e. © € Xy one has fo(ze) =0 = fpo(zpe) =0.

For the proof of (2.9) = (2.3) one can first repeat Step I in the proof of
Lemma 2.4 (see p. 21), that is, to choose a suitable version f of the density.
Then (2.9) can be rewritten in the form

fHBC (2 ape) = g(xac) -h(zpe) for prae. x € Xy. (2.10)

Now, using the Fubini theorem and basic properties of the integral mentioned
in Section A.6.1, one can derive from (2.10) by integrating

flAC(IEAc) =g (IAC) . hlc(zc) for pra.e. z € Xy,
leC(ZCBc) = glc(ﬂjc) . h(l‘Bc) for pra.e. z € Xy, (2.11)
) = gt (xc) - W (zc) for p-a.e. x € Xy,

where the functions

9" zc) = [ g9(y,zc) dpa(y),
Xa

WOac) = [ h(zac)dup(z) O To €Xe
XB

are finite pc-a.e. (according to the Fubini theorem, owing to (2.10) and the
fact that f'45C is 4 pc-integrable). Thus, (2.10) and (2.11) give together

PPz ape) - 1 %xe) = g(zac) - Mape) - ¢*C (xc) - h*C(2c) =
= fYA% 2 0) - fYBC(2pe) for prae. z e Xy,

which is equivalent to (2.3). O

As a consequence, one can derive a certain formal property of conditional
independence which was already mentioned in the discrete case (see [3, 125]
and Proposition 4.1 in [81]).
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Corollary 2.1. Suppose that P is a marginally continuous measure over N
and A, B,C,D C N are pairwise disjoint sets. Then
ClL D|AB[P], ALB|0[P], AL B|C|[P], A1 B|D [P]
implies A Il B|CD [P].
Proof. Tt follows from Lemma 2.4 that the assumption C' 1L D | AB can be

rewritten in terms of marginal densities as follows (throughout this proof I
write f(zg) instead of fg(zg) for any S C N):

fwasep) - f(xas) - f(wo) - f(zc) - flap) =

= f(xapc) - f(xap) - f(xg) - f(xc) - f(xp) for p-ae. x € Xy.
Now, again using Lemma 2.4, the assumptions A Il B|f), A 1L B|C and
A 1L B|D imply that

f(xapep) - f(xa)  f(zB) - f(zc) - f(zp) =

= f(zac) - f(xpc) - f(xap) - f(xpp) - f(xg) for p-ae. x € Xy.
Since f(z4) = 0 = f(xapecp) = 0 for p-ae. x € Xy (and similarly for

B,C, D) one can accept the convention f~!(z4) = 0 whenever f(z4) = 0
and obtain

g(xacp)
fxasep) = f(xa) - f(wac) - flzap)-
f@pe) - fxpp) - flzg) - [ (B) - f(xc) [ (xp) for prae. x € Xy.

h(zpcp)

Hence, by Lemma 2.5 one has A 1L B|CD. O

2.3.3 Multiinformation and conditional product

Let P be a marginally continuous measure over N. The multiinformation of P
is the relative entropy H(P | [[;cn P1}) of P with respect to the product of
its one-dimensional marginals. It is always a value in [0, +00] (see Lemma A.4
in Section A.6.3). A common formal convention is that the multiinformation
of P is +00 in case P is not marginally continuous.

Remark 2.10. The term “multiinformation” was proposed by my PhD super-
visor Albert Perez in the late 1980s. Note that miscellaneous other terms were
used earlier in the literature (even by Perez himself); for example “total corre-
lation” [154], “dependence tightness” [101] or “entaxy” [76]. The main reason
for Perez’s later terminology is that the above concept directly generalizes a
widely accepted information-theoretical concept of “mutual information” of
two random variables; multiinformation can be applied to the case of any fini-
te number of random variables. Indeed, it can serve as a measure of global
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stochastic dependence among a finite collection of random variables (see §4
in Studeny and Vejnarovd [144]). Asymptotic behavior of “empirical multiin-
formation”, which can be used as a statistical estimate of multiinformation
on the basis of data, was examined in Studeny [129]. A

To clarify the significance of multiinformation for the study of conditional
independence, I need the following lemma:

Lemma 2.6. Let P be a marginally continuous measure on (Xy, Xn) and
(A,B|C) € T(N). Then there exists a unique probability measure @) on
(XABC7 XABC) such that

QA = pAC, QB =PBY and A1 B|CQ]. (2.12)

Moreover, PA8C <« Q < Tl;capc P} and the following equality holds true
(the symbol H denotes the relative entropy introduced in Section A.6.3):

HPAPC] T P+ HPC| [T P1Y) =

1€ ABC e’ (2 13)
H(PABC|Q)+ H(PAY| ] P+ H(PBC| [T P,
i€ AC i€eBC

Proof. Note again that omitted technical details can be verified by means of
basic measure-theoretical facts from Section A.6.

I. First, let us verify the uniqueness of ). Supposing both Q' and Q? satisfy
(2.12) one can observe that (Q')¢ = (Q?)¢ and Q114|C ~ Q124|C’ Q}B‘C ~ Q2B|C7
where = indicates the respective equivalence of conditional probabilities (on
Xa tesp. Xg) given C' mentioned in Section 2.1. Because of A 1L B|C [Q1],
i = 1,2, one can derive using (2.1) that Q}p o ~ Q%p ¢ for measurable
rectangles which together with (Q1)¢ = (Q?)® implies Q! = Q2.

II. For the existence proof assume without loss of generality ABC = N
and put = [[,cn P1i}, As in Step I of the proof of Lemma 2.4 (see p. 21)
choose a density f = dP/du and respective collection of marginal “projection”
densities f'4, A C N satisfying (2.4). For brevity, I write f(x) instead of
4 (z4) in the rest of this proof so that (2.4) has the form

Vo e Xy Vdisjoint A,C C N f(l‘c) =0 = f(l‘Ac) =0. (2.14)

III. Let us define a function g : Xy — [0, 00) by

fwac) fase)
g(x){ Foer it fze)>0,

forz e Xy =X ,
0 it f(zc) =0, T aBe

and introduce a measure @ on (Xy, Xn) as follows:

QD) = /g(w) du(z) for D e Xn = Xupc.
D
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IV. Under the convention f(zac)/f(zc) =0 in the case f(xz¢) = 0 one can
write for every E € X4 using the Fubini theorem, (2.14), and the Radon-
Nikodym theorem:

QA(E) = / o(z) dp(z) =

ExXp
f /f (zprc) dup(ep) dpac(zac) =
f CEAC )d/lAC’(xAC) = /f(CCAc) dﬂAC’(xAC) =
= PAC(E).

Hence, Q4¢ = PAY and @ is a probability measure. Replace (Xa,X4) by
(Xp, XB) in the preceding consideration to obtain Q¢ = PBC. The way Q
has been defined implies ) < p and g = d@Q/dp. This form of g implies that
Q is factorizable after {AC, BC'} so that A 1L B|C [Q] by Lemma 2.5.

V. To see PABC < (Q observe that (2.14) implies g(z) = 0 = f(z) = 0 for
every x € Xy, accept the convention f(z)/g(x) =0 in the case g(x) = 0, and
write for every D € X using the Radon-Nikodym theorem

@ )= M x T) = T T) =
D/g(x) dQ(x) D/g(x) 9(x) dp() D/f()du() P(D).

Thus, P < @ and f/g = dP/dQ.
VI. To derive (2.13) realize that it follows from the definition of ¢ (under the
convention above) that

7@ 1wo) = LD fwac)- flope)  for every v € X
g(x)
Hence, of course
VeeXy Inf(z)+Inf(ze)=1In % +In f(zac) +1n f(zpe).

According to (A.3) and Lemma A.4 in Section A.6.3, each of the five logarith-
mic terms above is P—quasi integrable and the integral is a value in [0, 00] —
use the fact that [, h(zp =[x, Mzp) ) dPP(xp) for every D C N.
Thus, (2.13) can be derived O

Remark 2.11. The measure @ satisfying (2.12) can be interpreted as a con-
ditional product of PAC and PBC. Indeed, one can define the conditional
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product for every pair of consonant probability measures — that is, measures
sharing marginals — in this way. However, in general, some obscurities can
occur. First, there exists a pair of consonant measures such that no joint mea-
sure having them as marginals exists. Second, even if joint measures of this
type exist, it may happen that none of them complies with the required con-
ditional independence statement. For both examples see Dawid and Studeny
(32].

Thus, the assumption of marginal continuity implies the existence of a
conditional product. Note that the regularity of conditional probabilities Py|c
or Pp|c in the sense of Remark A.1 is a more general sufficient condition for
the existence of a conditional product (see Proposition 2 in [130]). The value
of H(PABY|Q) in (2.13) is known in information theory as the conditional
mutual information of A and B given C (with respect to P). In the case of
C = () just the mutual information H(PAZ|P4 x PP) is obtained, so that it
can be viewed as a generalization of mutual information (but from a different
perspective than multiinformation). Conditional mutual information is known
as a good measure of stochastic dependence between A and B conditional on
knowledge of C; for an analysis in a discrete case see §3 in Studeny and
Vejnarova [144]. A

2.3.4 Properties of multiinformation function

Supposing P is a probability measure over N the induced multiinformation
function mp : P(N) — [0, 00| ascribes the multiinformation of the respective
marginal P to every non-empty set S C N, that is,

mp(S) = H(P?| HP{i}) for every 0 #S C N.
€S

Moreover, a natural convention mp(l) = 0 is accepted. The significance of
this concept is evident from the following consequence of Lemma 2.6.

Corollary 2.2. Suppose that P is a probability measure over N whose multi-
information is finite. Then the induced multiinformation function mp is a
non-negative real function which satisfies

mp(S) =0 whenever SC N, |S| <1, (2.15)
and is supermodular, that is, for every (A, B|C) € T(N)
mp(ABC’)—I—mp(C)—mp(AC)—mp(BC’) >0. (216)

These two conditions imply mp(S) < mp(T) whenever S C T C N. More-
over, for every (A, B|C) € T(N) one has

mp(ABC) +mp(C) —mp(AC) —mp(BC) =0 iff A1 B|C [P]. (2.17)
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Proof. The relation (2.15) is evident. Given a set S C N, let us substitute
(A,B|C) = (S, N\ S|0) in Lemma 2.6. Equation (2.13) gives

mp(N) =mp(N) +mp(0) = H(P|Q) + mp(S) + mp(N\ 5).

Since all terms here are in [0, +00] and mp(N) < oo it implies mp(S) < oo.
Therefore (2.13) for general (A, B|C) can always be written in the form

mp(ABC) + mp(C) — mp(AC) — mp(BC) = H(PABC | Q),

where @ is the conditional product of PA¢ and PZC. Using Lemma A.4 we
derive (2.16). It suffices to see mp(S) < mp(T) whenever |T'\ S| = 1, which
follows directly from (2.16) with (A, B|C) = (S,T\ S|0) and (2.15). The
uniqueness of the conditional product () mentioned in Lemma 2.6 implies
that A 1L B|C [P] iff PABC = Q, that is, H(PAP | Q) = 0 by Lemma A .4.
Hence (2.17) follows. O

The class of probability measures having finite multiinformation is, by def-
inition, a subclass of the class of marginally continuous measures. It will be
shown in Section 4.1 that it is quite a wide class of measures, involving several
classes of measures used in practice. The relation (2.17) provides a very use-
ful equivalent definition of conditional independence for measures with finite
multiinformation, namely by means of an algebraic identity. Note that just
the relations (2.16) and (2.17) establish a basic method for handling condi-
tional independence used in this monograph. Because these relations originate
from information theory — the expression in (2.16) is nothing but the condi-
tional mutual information mentioned in Remark 2.11 — I dare to call them
information-theoretical tools. For example, all formal properties of conditional
independence from Section 2.2.2 and the result mentioned at the beginning of
Section 2.2.4 were derived using these tools. Corollary 2.2 also implies that the
class of measures with finite multiinformation is closed under the operation
of taking marginals. Note without further explanation that it is closed under
the operation of conditional product as well.

The following observation appears to be useful later.

Lemma 2.7. Let P be a probability measure on (Xy,Xn) and P < p =
[I,cn ti where p; is a o-finite measure on (X;, ;) for every i € N. Let () #
S C N such that —co < H(P¥| [[,cq pi) < 00 and —oo < H(P{ | ;) < o0
for every i € S. Then 0 < mp(S) < oo and

mp(S) = HPS | [[w) =D HPH ;). (2.18)
€S €S

Proof. This is just a rough sketch (for technical details see Section A.6). Sup-
pose without loss of generality S = N and put v = [,y P} By Lemma
2.3 one knows P < v. Since P1%} <« p; for every i € N choose versions of
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dP/dv and dP{%} /dy; and observe that dP/dv - [],.n dP} /dy; is a version
of dP/dp, defined uniquely P-a.e. (as P < v < ). Hence we derive

for P-a.e. z € Xy.

The assumption of the lemma implies that all logarithmic terms on the right-
hand side are P-integrable. Hence, by integrating with respect to P, (2.18) is
obtained. O

2.3.5 Positive measures

A marginally continuous measure P over N is positive if there exists a dom-
inating measure p for P whose density f = dP/du is (strictly) positive,
that is, f(z) > 0 for p-a.e. x € Xy. Note that the positivity of a density
may depend on the choice of a dominating measure. However, whenever a
measure £ of this kind exists one has y < P. Since P < [[,cpy P} and
[Licn Pl <« [I;cn #i = p one can equivalently introduce a positive mea-
sure P over N by a simple requirement that P < [],cy Pl} < P and always
take [[,cn P} in place of p.

A typical example is a positive discrete measure P on Xy = [[;cn Xi
with 1 < |X;| < o0, ¢ € N such that P({z}) > 0 for every & € Xy (or, more
generally, only for z € [[,cy Y; with Y; = {y € X;; PU({y}) > 0}). These
measures play an important role in (the probabilistic approach to) artificial
intelligence. Pearl [100] noticed that conditional independence models induced
by these measures further satisfy a special formal property (in addition to the
semi-graphoid properties), and introduced the following terminology.

A disjoint semi-graphoid M over N is called a (disjoint) graphoid over N
if, for every collection of pairwise disjoint sets A, B,C, D C N, one has

6. intersection A 1L B|DC [M] and A Il D|BC [M]
implies A 1L BD|C [M].

It follows from Lemma 2.1 and the observation below that every conditional
independence model induced by a positive measure is a disjoint graphoid.

Proposition 2.1. Let P be a marginally continuous measure over N and sets
A,B,C,D C N be pairwise disjoint. If PPCP is a positive measure over BC'D
then

Al B|DC[P] and AL D|BC[P] = Al BD|C [P].

Proof. (see also [70] for an alternative proof under additional restrictive
assumption) This is a rough hint only. Let ¢ be a dominating measure for
P such thatf = dP/d[L is a density with fBCD(xBCD) = f('TBCD) > 0 for p-
a.e. ¢ € Xy (I am again following the notational convention from the proof of
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Corollary 2.1, p. 24). The assumptions A 1L B|DC [P] and A 1L D|BC [P]
imply by Lemma 2.4 (one can assume f(xg) > 0 for p-a.e. x € Xy whenever
E C BCD)

f(xacp) - f(xpep) f(wapc) - f(xpep)

f(zep) f(zBe)

for pra.e. x € Xy. The terms f(xpep) can be cancelled, so that one derives
by dividing

= f(fEABCD) =

f(xacp) - f(xse) = f(xapc) - f(zep) for p-a.e. v € Xy .

One can take the integral with respect to pp and by the Fubini theorem get

f(xACD) . f(l‘c) = f(IAc) . f(:ZTCD) for H-a.e. r € XN,

that is, A 1l D|C [P] by Lemma 2.4. This, together with A 1l B|DC [P]
implies the desired conclusion by the contraction property. ad

Let us note that there are discrete probability measures whose induced
conditional independence model is not a graphoid, that is, it does not satisfy
the intersection property (see Example 2.3 on p. 35). On the other hand,
Proposition 2.1 holds also under weaker assumptions on PBCP.

2.3.6 Gaussian measures

These measures are usually treated in multivariate statistics, often under the
alternative name “normal distributions”. In this book Gaussian measures over
N are measures on (Xy, Xn) where (X;, X;) = (R, B) is the set of real numbers
endowed with the o-algebra of Borel sets for every i € N. Every vector e € RV
and every positive semi-definite N x N-matrix X € R¥*Y defines a certain
measure on (Xy, Xy) denoted by N (e, X) whose expectation vector is e and
whose covariance matriz is 3. The components of e and X' are then regarded
as parameters of the Gaussian measure.

Attention is almost exclusively paid to regular Gaussian measures which
are obtained in the case that X' is positive definite (equivalently regular). In
that case N'(e, X) can be introduced directly by its density with respect to
the Lebesgue measure on (Xy, Xn)

f ) 1 (@x—e) Xl (x—e
_ . 3
e.z(® V@IV det (%) xp

where X! denotes the inverse of the covariance matrix X, called the con-
centration matriz. Its elements are sometimes considered to be alternative
parameters of a regular Gaussian measure. Since the density fe s in (2.19) is
positive, regular Gaussian measures are positive in the sense of Section 2.3.5.

for x € Xy, (2.19)
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On the other hand, if X is not regular then the respective singular Gaus-
sian measure N (e, X) (for a detailed definition see Section A.8.3) is con-
centrated on an affine subspace in RN = Xy having the Lebesgue measure
0. Thus, singular Gaussian measures are not marginally continuous except
for some rare cases (when the subspace has the form {y} x X4, A C N for
y € X\ a); for illustration, see Example 2.3 on p. 35.

Given a Gaussian measure P = N(e, X) over N and non-empty disjoint
sets A,C C N a usual implicit convention (used in multivariate analysis and
applicable even in case of a singular Gaussian measure) identifies the condi-
tional probability P4c with its unique “continuous” version

PA|C(*| z) = ./\/(6,4 + XA 26,0 . (z — EC), Yaa—Yac- 26’»0 . EC-A)

for every z € X¢, where X' 4. denotes the respective submatrix of X' and
Y& denotes the generalized inverse of ¥'c.c (see Section A.8.1, p. 237). The
point is that, for every z € X¢, it is again a Gaussian measure whose cova-
riance matrix X 0 = X4 —Yac - Yoo Yoa actually does not depend
on the choice of z (see Section A.8.3 for further details on the conditioned
Gaussian measure). Therefore, the matrix X' 4| is called a conditional covari-
ance matriz. Recall that in the case C'= () one has X 4o = X 49 = X 4.4 by
a convention. Elements of miscellaneous conditional covariance matrices can
serve as convenient parameters of Gaussian measures — e.g. Andersson et al.
[9].

An important related fact is that the expectation vector of a Gaussian
measure is not significant from the point of view of conditional independence.
It is implied by the following lemma that the covariance matrix alone contains
all information about conditional independence structure. Therefore it is used
in practice almost exclusively.

Lemma 2.8. Let P = N(e, X¥) be a Gaussian measure over N and (4, B|C)
is a non-trivial disjoint triplet over N. Then

AL B|C[P] iff (Zapc)as=0.

Proof. The key idea is that topological assumptions (see Remark A.1) imply
the existence of a regular version of conditional probability on X4p given
C, that is, a version PAB|C such that the mapping D +— PAB‘C(D |z) is a
probability measure on X,p for every z € X¢o. Clearly, for every A € Xy,
the mapping z — PAB|C(A x Xp|z), z € X¢, is a version of conditional
probability on X4 given C; an analogous claim is true for B € X'. Thus, (2.1)
can be rewritten in the form VA € X4, VB € &'z,

Pypic(A x Bl z) = Papjc(A x Xg| 2) - Papjc(Xa x B| 2) (2.20)

for P-a.e. z € X¢. Since all involved versions of conditional probability are
probability measures for every z € X¢, it is equivalent to the requirement that
(2.20) hold for every A € V4, B € Y5 where V4 resp. Vg are countable classes
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closed under a finite intersection such that o(Y4) = X4 resp. o(Vg) = Xp.
This can be shown using Lemma A.3 since, given B € Xp and z € X¢, the
class of sets A € X4 satisfying (2.20) is closed under proper set difference and
monotone countable union. The classes Y4 resp. Vg exist in case of Borel
o-algebras on R4 resp. RE. The set of 2 € X¢ for which (2.20) holds for every
A € Y4 and B € Y5 has P€ measure 1 (since Y4 and YVp are countable). For
these z € X¢ then (2.20) holds for every A € X4 and B € X by the above
mentioned consideration. Hence,

A1 B|C [P] & A B|0 [Pagic(]2)] for P%a.e. z € Xc.

However, in this special case one can suppose that Py Blc (x| ) is a Gaussian
measure (see Section A.8.3) with the same covariance matrix X 4 )¢ for every
z € X¢ (while the expectation does depend on z). It is a well-known fact that
— regardless of the expectation vector — one has A Il B|() with respect to a
Gaussian measure iff the A x B-submatrix of its covariance matrix consists of
zeros; see (A.9) in Section A.8.3. O

The previous lemma involves the following well-known criteria for elemen-
tary conditional independence statements (see also Proposition 5.2 in [70],
Corollaries 6.3.3 and 6.3.4 in [157] and Exercise 3.8 in [100]).

Corollary 2.3. Let P be a Gaussian measure over [NV with a covariance matrix
Y = (0ij)ijen and a correlation matrix I" = (0;;)i jen. Then for distinct
a,be N

allb|@[P] & oup=0 & 04 =0,

and for distinct a,b,c,€ N
aJ-Lb‘{C} [P] < Occ*Oab = Oac " Ocb < OQab = OQac * Ocb -

If 3 is regular and A = (kj;)i jen is the concentration matrix, then for
distinct a,b € N
a L b|N\{a,b} [P] & ka=0.

Proof. The first part is an immediate consequence of Lemma 2.8 since we im-
plicitly assume o;; > 0 for i € N. For the last fact, first observe by elementary
computation that a non-diagonal element of a regular 2 x 2-matrix vanishes
iff the same element vanishes in its inverse matrix. In particular,

a L b|N\{a,b} [P] < (Z(wyn\fap})ab =0 < (Z(apynfapy) Jar =0.

The second observation is that (¥pyp)~' = (X Y)p.p = App for
every non-empty set D C N (see Section A.8.1). In particular, one has
((2D|N\D)_1)ab = (AD-D)ab = Kqp for D = {a,b}. O
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Remark 2.12. The proof of Lemma 2.8 reveals a notable difference between the
Gaussian and discrete case. While in the discrete case a conditional indepen-
dence statement A Ll B|C[P] is equivalent to the collection of requirements

A 1L B|0 [Papjc(*]2)] for every z € X¢ with PY(2) > 0,
in the Gaussian case it is equivalent to a single requirement
A 1L B0 [Papjc(]2)] for at least one z € X¢,

which already implies the same fact for all other z € X (one uses the con-
ventional choice of “continuous” versions of Pyp|c in this case). Informally
said, the “same” conditional independence statement is, in the Gaussian case,
specified by a smaller number of requirements than in the discrete case. The
reason behind this phenomenon is that the actual number of free parameters
characterizing a Gaussian measure over N is, in fact, smaller than the num-
ber of parameters characterizing a discrete measure (if [X;| > 2 for i € N).
Therefore, discrete measures offer a wider variety of induced conditional inde-
pendence models than Gaussian measures. This is perhaps a surprising fact
for those who anticipate that a continuous framework should be wider than a
discrete framework. The point is that the “Gaussianity” is quite a restrictive
assumption. A

Thus, one can expect many special formal properties of conditional inde-
pendence models arising in a Gaussian framework. For example, the following
property of a disjoint semi-graphoid M was recognized by Pearl [100] as a
typical property of graphical models (see Chapter 3):

7. composition A 1L B|C [M]and A Il D|C [M]
implies A 1L BD|C [M]

for every collection of pairwise disjoint sets A, B,C, D C N. It follows easily
from Lemma 2.8 that it is also a typical property of Gaussian conditional
independence models:

Corollary 2.4. Let P be a Gaussian measure over N and A,B,C,D C N
are pairwise disjoint. Then

A1 B|C[P] and A1 D|C[P] = Al BD|C [P].

Proof. Given a covariance matrix X observe that (X 4ppc)aB.aB = X ap|c
and (¥ app|c)ap.ap = Xapjc (see Section A.8.1 — this holds for a gen-
eral positive semi-definite matrix X' since one can fix a pseudoinverse matrix
(X)¢c.c)- The premises of the rule (¥ appjc)a.p =0 and (¥ appjc)ap =0
imply (X appjc)a.sp = 0. 0

However, the composition property is not a universally valid property of
conditional independence models, as the following example shows.
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Ezample 2.1. There exists a discrete (binary) probability measure P over N
with |N| = 3 such that

a1l b|0[P] and a JLb|{c} [P] for any distinct a,b,c € N.

Indeed, put X; = {0,1} for i € N and ascribe the probability 1/4 to all of
the following configurations of values: (0,0,0), (0,1,1), (1,0,1) and (1,1,0).
An example of a positive measure can be obtained by minor modification:
one chooses a parameter 0 < € < 1/8, ascribes the probability 1/4 — € to the
above-mentioned configurations and € to the remaining ones. &

Another special property of Gaussian conditional independence models is
the following one which was also mentioned by Pearl [100] in the context of
graphical models:

8. weak transitivity A 1L B|C [M] and A 1L B|Cd [M]
implies A 1L d|C [M] ord 1L B|C [M]

for pairwise disjoint A, B,C' C N, d € N\ ABC.

Corollary 2.5. Let P be a Gaussian measure over N, sets A, B,C C N are
pairwise disjoint and d € N \ ABC'". Then

AU B|CI[P] and AL B|Cd[P] = { Al d|C[Plordl B|C[P]}.

Proof. Tt suffices to assume that A and B are singletons. Indeed, owing to
Corollary 2.4 (and semi-graphoid properties) A 1L B|C' is equivalent to the
condition {a 1L b|C for every a € A, b € B} and a similar observation can
be made for the other CI statement involved in the premise. There is no pair
a€ A, be B with -{a 1 d|C} and ={d 1L b| C' } because this contradicts
the fact {a 1L b|C and a 1L b| Cd} implied by the premise. In other terms,
either {Va € A a1l d|C}or {VYbe B d 1 b|C} and one can again use
Corollary 2.4 to get the desired conclusion.

Lemma 2.8 allows one to reduce the general case to the case C' = ().
Indeed, one can consider X'yn¢|c in place of the covariance matrix X' which
is also a positive semi-definite matrix (see Section A.8.1) and therefore it is a
covariance matrix of a Gaussian measure over N \ C' (see Section A.8.3).

If A={a}, B = {b} and C = () then two cases can be distinguished.
If 055 > 0 for i € abd then apply Corollary 2.3 to the correlation matrix
I' = (0ij)ijeabd of P™*: 0 = 04y = 0ad - 0av- Hence pqq = 0 or gz = 0 which
yields the desired fact. If o,, = 0 then the fact that the covariance matrix
X is positive semi-definite implies det(Xy4.44) > 0 (see Section A.8.1) which
implies 0, = 0 and a 1L d |0 by Lemma 2.8. An analogous consideration can
be repeated if oy, = 0 or o4q = 0. a

The above result makes it possible to construct the following example.
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Example 2.2. There exists a pair P, Q) of regular Gaussian measures over N
with |N| = 3 such that M = Mp N Mg is not a CI model induced by
any Gaussian measure over N. Indeed, put N = {a,b,c} and define matrices
Y = (0ij)ijen and X' = (0};)ijen as follows: 0y = oj; = 1 for i € N,
Ope = Och = Oge = 0p, = 1/2 and o0y; = oj; = 0 for remaining i,j € N.
Put P =N(0,X), Q@ = N(0,X’) and observe that M p is the semi-graphoid
closure of (a, be|@) while M, is the semi-graphoid closure of (b, ac|(). Thus,
(a,b|c), (a,b0) € M = Mp N Mg while (a,c|0) ¢ M and (c,b|0) ¢ M. By
Corollary 2.5 M is not a Gaussian CI model. &

In fact, the above counterexample means that the poset of CI models
induced by regular Gaussian measures over N (ordered by inclusion) is not a
lattice. Note that in case |[N| = 3 this poset coincides with the poset of DAG
models (see Section 3.2) which is shown in Figure 7.4. However, if |[N| > 3
then these posets differ — see Exercise 3.8b in [100].

An additional important fact is that every regular Gaussian measure has
finite multiinformation. This follows from Lemma 2.7.

Corollary 2.6. Let P be a regular Gaussian measure with a correlation
matrix I'. Then its multiinformation has the value

mp(N) = —% “In(det(I)). (2.21)

Proof. Take the Lebesgue measure A on (Xy, Xy) in place of p in Lemma 2.7.
Substitution of (A.12) from Section A.8.3 into (2.18) gives

_@ In(27) — M — % -In(det(X)) — Z {M R % -1n(0m')}

2 : 2 2
1EN
1 1 1 det(X 1
= E Ino;; — = - In(det(X)) = —= - 1In det(¥) = —— -In(det(I)),
2 ien 2 2 HiEN O34 2
which is the fact that was needed to show. O

On the other hand, a singular Gaussian measure need not be marginally
continuous as the following example shows. It also demonstrates that the
intersection property mentioned in Section 2.3.5 is not universally valid.

Ezample 2.3. There exists a singular Gaussian measure P over N with |[N| = 3
such that

a L b|{c} [P] and a A b|D[P] for any distinct a,b,c € N.
Put P = N(0,%) where ¥ = (0y;)ijen with o;; = 1 for every i,j € N

and apply Corollary 2.3. It is easy to verify (see Section A.8.3) that P is
concentrated on the subspace {(z,z,z);2z € R} while P14 = N(0,1) for
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every ¢ € N. Since [[,.y P11} is absolutely continuous with respect to the
Lebesgue measure on R*Y, P is not marginally continuous.

Note that the same conditional independence model can be induced by a
(binary) discrete measure; put X; = {0,1} for ¢« € N and ascribe the proba-
bility 1/2 to configurations (0,0,0) and (1,1, 1). &

2.3.7 Basic construction

The following lemma provides a basic method for constructing probability
measures with prescribed CI structure.

Lemma 2.9. Let P, Q be probability measures over N. Then there exists a
probability measure R over N such that Mpr = Mp N Mg. Moreover, if
P and @ have finite multiinformation then a probability measure R over IV
with finite multiinformation such that Mr = Mp N Mg exists. The same
statement holds for the class of discrete measures over N, respectively for the
class of positive discrete measures over N.

Proof. Let P be a measure on a space (Xy, An) = ([[;cn Xi, [[;en i) and
Q be a measure on (Yn,Vn) = ([Licn Yoo [Lien Vi) Let us put (Z;, 2;) =
(Xz X Y, Xy X yl) for i € N, introduce (ZN,ZN) = HZGN(Z’“ZZ) which can
be understood as (Xy x Yy, Xn x V) and define a probability measure R
on (Zy,Zy) as the product of P and Q. The goal is to show that for every
(A,B|C) € T(N)

ALB|C[R & {ALB|C[P] and AL B|C[Q]}.  (2.22)

Let us take the unifying perspective indicated in Remark 2.1: (Zy, Zx) and R
are fixed, and respective coordinate o-algebras X4, V4, Z4 C Zn are ascribed
to every A C N. Then P corresponds to the restriction of R to Xy, @ to the
restriction of R to Yy and (2.22) takes the form (see Section A.7 for related
concepts):

ZAJ_LZB|ZC [R] = /?A J_L.)EB|/”EC [R] and j}A J_L\)_)B|5)C [R] (2.23)

As X4 x Yg-measurable rectangles generate Z4 for every A C N by the
“weaker” formulation of the definition of conditional independence in terms
of g-algebras observe that the fact Z4 1 Zp|Zc [R] is equivalent to the
requirement: VA® € X4, AY € Y4, B* € X, BY € Vi

R(A"NAYNB™NBY | Z¢)(2) = R(A"NAY | Z¢)(2)- R(B*NBY | Z¢)(2) (2.24)

for R-a.e. z € Zy. On the other hand, X4 1L Xp|Xc [R] is equivalent, by
a usual definition of conditional independence in terms of o-algebras, to the
requirement: VA* € X4, B € X'

P(A"NB" | Xc)(x) = P(A" | Xo)(x) - P(B” | Xc)(2) (2.25)
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for R-a.e. 2 = (z,y) € Zy. 1 write P(x|Xco)(x) instead of R(x|Xc)(z)
because it is a function of z which only depends on P. Analogously, the fact
Ya UL Y| Ve [R] is equivalent to the requirement: VAY € Y4, BY € Vg

Q(AYNBY[Vc)(y) = QA | Vo) (y) - Q(BY [ Ve)(y) (2.26)

for R-a.e. z = (z,y) € Zn. Now, given A* AY B* BY one can show using
Lemma A.5 (see Section A.6.4) that, given a version of conditional probability
P(A® N B® | X¢) and a version of Q(AY N BY|)¢), their product is a version
of conditional probability R(A* N AY N B* N BY | Z¢). More specifically, the
condition (W) in Lemma A.5 can be used with the class G consisting of sets
C*NCY where C* € X, CY € V¢, and one uses the assumption R = P x Q and
the Fubini theorem. Hence, the uniqueness of conditional probability implies
that

R(A"NAYNB™NBY | Z0)(2) = P(A"NB" | Xo)(x) - QAYNBY | Vo) (y) (2.27)

for R-a.e. z = (z,y) € Zy. Thus, to evidence (2.24)=-(2.25) put AY = BY =
Zn, use (2.27) and the fact Q(Zy | Vo)(y) = 1 for R-ae. z = (z,y) € Zy; to
evidence (2.24)=(2.26) put A* = B* = Zy. Conversely, (2.25),(2.26)=-(2.24)
by the repeated use of (2.27), which means that (2.23) was verified.

If both P and @ have finite multiinformation then R = Pl x QUi
are marginals of R on (Z;, Z;) for i € N and R < [[;cn P x [[;cn Q) =
[Tien P} QUF} Thus, R is a marginally continuous measure over N. More-
over, one can also apply Lemma 2.6 to R with “doubled” N = N, U N, and
(A, B|C) = (Ny, N,|0) to see that

HR| [ PP < [[ @) =PI [ P +H@Q| ] QY.

ieN jEN iEN jEN

Note for explanation that, in the considered case, R is the conditional product
of P and @ and therefore the term H(PAP¢|Q) in (2.13) vanishes by Lemma
A4 from Section A.6.3. In particular, the multiinformation of R is the sum
of the multiinformations P and ) and, therefore, it is finite. The statement
concerning discrete and positive discrete measures easily follows from the given
construction. a

Elementary constructions of probability measures are needed to utilize
the method from Lemma 2.9. One of them is the product of one-dimensional
probability measures.

Proposition 2.2. There exists a discrete (binary) probability measure P over
N such that

A1l B|C [P] forevery (A,B|C) € T(N).

Proposition 2.3. Suppose that [N| > 2 and A C N with |A| > 2. Then there
exists a discrete (binary) probability measure P over N such that
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In2 ifACS,
mp(S) = {O otherwise.

Proof. Put X; = {0,1} for i € N and ascribe the probability 2!~V to every
configuration of values [z;];eny With even ), , ; (remaining configurations
have zero probability). O

Lemma 2.10. Suppose that [N| > 3,2 <! < |N|and L C {S C N;|S| =1}.
Then there exists a discrete probability measure P over N such that

V (a,b|K) € T(N) with |abK| =1 allb|K [P] & abK ¢ L. (2.28)

Proof. If £ = () then use Proposition 2.2. If £ # () then apply Proposition 2.3
to every A € L to get a binary probability measure P 4; such that

V elementary triplet (a,b|K) with [abK| =1 a 1L b|K [P4)] < abK # A.

Note that (2.17) in Corollary 2.2 can be used to verify the above claim. Then
Lemma 2.9 can be applied repeatedly to get a discrete probability measure
over N satisfying (2.28). O

This gives a lower estimate of the number of “discrete” probabilistic CI
structures.

Corollary 2.7.If n = |N| > 3 then the number of distinct CI structures
induced by discrete probability measures over N exceeds the number g2t/

where [n/2] denotes the lower integer part of n/2.

Proof. Let us put [ = n/2 for even n, respectively | = (n+1)/2 for odd n. By
Lemma 2.10 for every subclass £ of {S C N;|S| =} a respective probability
measure P exists. By (2.28) these measures induce distinct CI models over
N. Therefore, the number of distinct induced CI models exceeds 2° where s
is the number of elements of {S C N;|S| = [}. Find suitable lower estimates
for s. If I = n/2 then write

8_<m>_(1 122 13 @ol) 242 iy

! (L) 1-2-...1 1-2-...1

Similarly, in the case [ = (n + 1)/2 write

-1\ 1:3-...-@2—1) 2:4-...-(21—2) _ 1 .|z
s ( ! > 1-2-...-1 2. 0= =2 2%

which implies the desired conclusion 2% > 22" i1 both cases. a
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2.4 Imsets

An imset over N is an integer-valued function on the power set of N, that
is, any function u : P(N) — Z or, alternatively, an element of ZP(N) | Basic
operations with imsets, namely summation, subtraction and multiplication
by an integer are defined coordinate-wisely. Analogously, we write u < v for
imsets u,v over N if u(S) < v(S) for every S C N. A multiset is an imset
with non-negative values, that is, any function m : P(N) — Z*. Any imset u
over N can be written as the difference u = 4™ — u™ of two multisets over N
where ut is the positive part of u and u~ is the negative part of u, defined as
follows:

u™ () = max {u(9),0}, wu ()= max{—u(S),0} for SC N.

By a positive domain of an imset u will be understood the class of sets Df =
{§ C N; u(S) > 0}, the class D, = {S C N; u(S) < 0} will be called a
negative domain of u.

Remark 2.15. The word “multiset” is taken from combinatorial theory [1]
while the word “imset” is an abbreviation for integer-valued multiset. Later
in this book certain special imsets will be used to describe probabilistic con-
ditional independence structures (see Section 4.2.3). A

A trivial example of an imset is the zero imset denoted by 0 which ascribes
a zero value to every S C N. Another simple example is the identifier of a
set A C N denoted by §4 and defined as follows:

1 ifS=A4,
5A(S){o if SCN, S+#A.

Special notation m“!, respectively m4!, will be used for multisets which serve
as identifiers of classes of subsets, respectively classes of supersets, of a set
A C N:
i -
mAL(S) _{1 if SCA,

and mAT _ = 4
0 Otherwise 5 <S) {

0 otherwise.

It is clear how to represent an imset over N in memory of a computer, namely
by a vector with 2V integral components which correspond to subsets of N.
However, for a small number of variables, one can also visualize imsets in a
more telling way, using special pictures. The power set P(N) is a distributive
lattice and can be represented in the form of a Hasse diagram (see Section
A.2). Ovals in this diagram correspond to elements of P(NV), that is, to subsets
of N, and a link is made between two ovals if the symmetric difference of the
represented sets is a singleton. A function on P(N) can be visualized by
writing assigned values into respective ovals. For example, the imset u over

N = {a,b,c} defined by the table
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S || 0 {a}{b}{c}{a, b}{a, c}[{b, c}|{a, b, c}
uS)|F1]=3[-1] 0| +3 | +2 | 0 | —2

can be visualized in the form of the diagram from Figure 2.2. The third pos-
sible way of describing an imset (used in this monograph) is to write it as
a combination of simpler imsets with integral coefficients. For example, the
imset u from Figure 2.2 can be written as follows:

u :_2'6N+3'6{a,b}+2'6{a,c}_3'6{a}_6{b}+5@-

Fig. 2.2. Hasse diagram of an imset over N = {a, b, c}.

In this book, certain special imsets over N will be used. Effective dimension
of these imsets, that is, the actual number of free values is not 2/N! but 2!V —
|N| — 1 only. There are several ways to standardize imsets of this kind. T will
distinguish three basic ways of standardization (for justification of terminology
see Remark 5.3 in Section 5.1.2). An imset u over N, respectively a real
function v on P(N), is o-standardized if

Zu(S)zO and VieN Z u(S)=0.

SCN SCN,ies

Alternatively, the second condition in the preceding line can be formulated in
the form ng\r\{j} u(S) = 0 for every j € N. An imset u, respectively a real
function v on P(N), is £-standardized if

u(S) =0 whenever SC N, |S] <1,
and u-standardized if

u(S)=0  whenever SC N, |S| > |N|—1.
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An imset u over N will be called normalized if the collection of integers
{u(S); S € N} has no common prime divisor. Besides basic operations with
imsets, an operation of a scalar product of a real function m : P(N) — R and
an imset u over N defined by

(m,u) = Z m(S) - u(S),

SCN

will be used. Indeed, it is a scalar product on the Euclidean space RPY). Note
that the function m can be an imset as well; it will often be a multiset.
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