A Rendering Architecture

2.1 Introduction

Writing a production renderer is a large software development project that
requires a balance between the creativity of designing algorithms and the dis-
cipline of writing robust code. A renderer often starts out as a toy program to
demonstrate a new optical effect. Over time, the software evolves into a large,
poorly modularized system or gets locked into a particular architecture that is
difficult to extend. Starting with a sound design will save effort in the long run.

This chapter presents an object-oriented design for a production renderer with
a micropolygon architecture. It should be considered a skeleton upon which the
content of the subsequent chapters may be hung. Our sample renderer will
adhere to the RenderMan standard (Pixar, 2000) and example header files will be
written in C++. We assume that the reader is familiar with both.

The first section will chart the course from the RenderMan Application
Programmers’ Interface (API) to the front door of the rendering engine. This
part is independent from the choice of rendering algorithms, and is applicable to
anything from a real-time RIB previewer to a global illumination renderer.

Next, micropolygon architectures and the Reyes pipeline will be discussed from
a theoretical point of view. In preference to immediately presenting a Reyes imple-
mentation, a supporting cast of classes will be introduced that take on the burden
of many steps. Each has been designed to create interfaces at logical points and pro-
mote modularity. An overview of the rendering architecture is shown in Figure 2.1.

In the final section, the Reyes framework will be coded in terms of these support-
ing classes. A ray-tracing framework will then be shown, and the two will ultimately
be combined to create a hybrid production renderer. These final steps are simplified
by the versatility of the object-oriented design presented earlier in the chapter.

2.2 The Hierarchical Graphics State

Just below the RenderMan API sits the state subsystem. It manages the hier-
archical graphics state using five stack data structures:

e Mode
e Option

31

32 Production Rendering

RenderMan API

Stacks |« State
A4
Framework » Primitives
A 4 A 4
Scene Hider Shader
graph evaluator

Display

Figure 2.1 An overview of the architecture.

e Attribute
e Transformation
e Object and Light

After examining each of these stacks, we will show how to assemble them into a
single class that manages the hierarchical graphics state. Finally, how the state
impacts the process of inserting primitives into the scene will be covered.

2.2.1 The Mode Stack

The interface supports the concept of modes to prevent bad input. Functions
with names like RiXxxBegin() and RiXxxEnd() change the mode of the inter-
face. For example, between RiMotionBegin() and RiMotionEnd() the interface
is in motion mode. The complete set of modes are as follows:

<undefined> Before RiBegin or after RiEnd
base Between RiBegin and RiEnd

Chapter2 - ARendering Architecture 33

frame Between RiFrameBegin and RiFrameEnd
world Between RiWorldBegin and RiWorldEnd
attribute Between RiAttributeBegin and RiAttributeEnd
transform Between RiTransformBegin and RiTransformEnd

solid Between RiSolidBegin and RiSolidEnd
object Between RiObjectBegin and RiObjectEnd
motion Between RiMotionBegin and RiMotionEnd

Each Begin function sets the current mode as shown above. The corresponding
End function restores the current mode to what it was before the Begin-End
block. Therefore, a stack of modes is necessary to handle nested blocks. The
Begin function pushes the appropriate mode onto the stack. All of the End func-
tions pop the mode stack. The current state is always the one at the top of the
stack.

One type of bad input that must be recognized is improper nesting of Begin
and End. This can happen when the user forgets to explicitly end a block or
incorrectly orders RiXxxEnd() operations:

AttributeBegin
TransformBegin
Translate 10000 0 O
ReadArchive “planet.rib”

AttributeEnd JF WRONG:Must close Transform block
i first
TransformEnd # These are in the wrong order

Detecting improper nesting is trivial with the mode stack. RiAttributeEnd()
simply confirms that the current state is attribute before popping the mode stack.
RiTransformEnd() looks for transform mode, and so on. If the current mode
does not match, the error handler is called with the error code RIE_NESTING.

Functions that set RenderMan options are only allowed while in base or
frame mode. Attributes may be set in any mode except object. Primitives may be
specified while in world, attribute, transform, solid, object or motion modes.
Violations of these three rules cause the error handler to be called with codes
RIE_NOTOPTIONS, RIE_NOTATTRIBS, and RIE_NOTPRIMS, respectively. Attempts
to call functions while in the <undefined> mode result in the RIE_NOTSTARTED
error code. Most other mode-related errors fall under the RIE_ILLSTATE catch-
all. For a complete (but sometimes inaccurate) account of which functions are
allowed in each mode, see the table at the end of Chapter 3 in The RenderMan
Companion (Upstill, 1990).

While the interface can be in only one mode at a time, there are often two or
more acceptable states for each function in the API. It is convenient to create a
class called ModeSet to represent a set of modes. Then we can easily verify if the
current mode is in the set of acceptable modes. The stack need only contain a
single mode, so it can be declared using C+ + templates as:

Stack<Mode> modeStack;

34 Production Rendering

2.2.2 The Option Stack

State variables such as raster resolution which apply to the whole scene and not
to individual primitives are called optionsin RenderMan. Options are fixed before
RiWorldBegin() and remain in effect throughout rendering. At first glance it
might seem that an option stack is unnecessary and that all options could be
implemented as global variables. Upon closer examination of the RenderMan
Interface specification it becomes clear that RiFrameBegin() preserves the
options and RiFrameEnd() restores them. Since frame blocks cannot be nested a
stack of size two will suffice (a backup and restore model would also be viable).
Unlike a mode, the set of all options cannot be represented by a single integer.
Each element in the option stack is an aggregation of variables. By defining a suit-
able class all of the RenderMan options can be bundled into a convenient package:

class Options {
public:
Options();
Options(const Options &options);
~0ptions();
Options &operator= (const Options &options);

// Camera options

RtInt xRes, yRes, pixelAspectRatio; // RiFormat

RtFloat frameAspectRatio; // RiFrameAspectRatio

RtFloat left, right, bottom, top; // RiScreenWindow

RtFloat xMin, xMax, yMin, yMax; // RiCropWindow

RtToken projection; // RiProjection

RtFloat nearClip, farClip; // RiClipping

RtFloat fStop, focallength, // RiDepthOfField
focalDistance;

RtFloat openShutter, closeShutter; // RiShutter

// Display options

};.

When the mode stack is pushed, a new value is stored at the top of the stack and
the current contents need not be examined. In this respect, the mode stack
resembles a traditional stack from computer architecture or a container library.
In the case of the option stack, there is no new set of values to store. When
RiFrameBegin() is called the top of stack is simply duplicated to preserve the
old values, without actually changing them.

The push operation on the option stack is therefore defined as follows:

o take the options object currently at the top of the stack,
e copyit,
e put the copy on the top of the stack.

Chapter2 - ARendering Architecture 35

Original option stack After pushOption() After RiFormat(1280, 1024, —1)
xres = 640; xres = 1280;
(empty) — top —p| yres = 480; — top —» yres = 1024;
etc. etc.
xres = 640; xres = 640; xres = 640;
— top —{ yres = 480; yres = 480; yres = 480;
etc. etc. etc.

Figure 2.2 The“copy on push” semantics of the option stack.

For the moment, the top two elements of the stack are identical. Subsequent calls
to functions such as RiFormat () will only manipulate the options at the top of
the stack, as depicted graphically in Figure 2.2. The push serves to protect the
options at the bottom of the stack until RiFrameEnd(). Because the copy-on-
push semantics are non-standard, the option stack must be implemented as a
custom class that takes care of the copy in the push method:

CopyStack<Options> optionStack;

2.2.3 The Attribute Stack

In RenderMan, attributes are state variables such as colour and opacity that can
be changed after RiWor1dBegin(), when the user is defining primitives. Each
primitive can have its own set of attributes, distinct from all of the other primi-
tives. Whatever the prevailing values of the attributes are at the time the primi-
tive is added to the scene remain associated with that primitive until rendering is
complete.

The requirements for the attribute stack are much the same as for the option
stack except that attribute blocks can be nested arbitrarily deep. A stack of
size two is therefore inadequate. The attribute stack must be able to grow
unbounded. Again, for convenience, all of the attributes are grouped into a
single class:

class Attributes {
public:
Attributes();
Attributes(const Attributes &attributes);
~Attributes();
Attributes &operator= (const Attributes &attributes);

// Geometry attributes

RtBound bound; // RiBound

RtBound detail; // RiDetail

RtFloat minVisible, TowerTransition, // RiDetailRange
upperTransition, maxVisible;

RtToken typeApproximation; // RiGeometricApproximation

RtFloat valueApproximation;

36 Production Rendering

RtToken orientation; // RiOrientation
RtInt sides; // RiSides

// Shading attributes

by

The attribute stack also uses copy-on-push to protect lower values in the stack
without changing any of the current values of the attributes.

CopyStack<Attributes> attributeStack;

RiAttributeBegin() pushes the attribute stack, as do RiFrameBegin(),
RiWor1dBegin(), RiSolidBegin() and RiObjectBegin(). All of the cor-
responding End functions pop the attribute stack.

For immediate mode renderers (those that render each piece of geometry as it
is passed through the API) the stack data structure is sufficient. Any stage of the
pipeline can simply check the top of the stack and know that it applies to the
primitive currently being processed.

Production renderers are more often retained mode, where geometry is stored
in some sort of scene database and rendering does not begin until the entire
scene has been defined. Retained mode renderers cannot check the attribute
stack while rendering because the stack is only valid during the scene description
stage. Instead, primitives must be tagged with the prevailing top-of-stack attri-
butes as they are added to the scene database. These attributes must be stored in
memory that will not be destroyed when the attribute stack is popped.

Since many primitives may share a set of identical attributes, a little bit of
ingenuity can go a long way to reduce the demand on memory. The first primi-
tive added to the scene will make a copy of the current attributes object. Within
the stack, the pointer to that copy is cached. When the next primitive is added, it
can be given the previously stored pointer and a reference count incremented.
The same pointer my be reused until one of the attributes changes, at which time
the cache is invalidated. The next primitive will get a fresh copy. An attributes
object at the top of the stack that is never picked up by a primitive need not be
copied to long-term memory.

Sometimes modelling programs generate RIB that alternates between two sets
of attributes (or rotates among several) foiling the single cache strategy above. To
make best use of memory in these cases, insert the durable copies of attributes
objects into a hash table indexed by a digest (or checksum) of the individual
attribute values in the object.

2.2.4 The Transformation Stack

A stack data structure of 4 X 4 matrices neatly captures the hierarchical coord-
inate systems described in Chapter 1. Like the option and attribute stacks, the
transformation stack must have copy-on-push semantics.

Chapter2 - A Rendering Architecture 37
CopyStack<Transform> transformStack;

Calls to RiTranslate(), RiScale() and RiRotate() only affect the matrix at
the top of the stack. Like attributes, retained-mode renderers should tag primi-
tives with the top-of-stack matrix as they are added to the scene database.
The previous discussion on caching attributes pointers applies equally to trans-
forms. In fact, the object-to-world transformation matrix can be regarded as
simply another RenderMan attribute. However, transformations are treated
separately from all of the other attributes so that the transformation stack
can be pushed and popped without affecting the attribute stack (i.e.
RiTransformBegin() only pushes the transformation stack). The converse is
not true. RiAttributeBegin() pushes both the transformation stack and the
attribute stack, as do RiFrameBegin(), RiWor1dBegin(), RiSolidBegin() and
RiObjectBegin().

Pay attention to whether transformations are in Utah order, with points
expressed as rows and multiplied by matrices on the right. If so, then the top of
the stack should be pre-multiplied (i.e. on the left) by new transformations. If
points appear as columns to the right of matrices, then the stack must follow a
post-multiply discipline.

For the purpose of transformational motion blur, it may be advantageous to
maintain two (or more) transformation stacks, one for each motion sample. For
example, the primary transformation stack could represent the object-to-world
matrix at shutter open time while a second stack tracks the same information for
shutter close time.

CopyStack<Transform> transformOpenStack;
CopyStack<Transform> transformCloseStack;

2.2.5 The Object and Light Stacks

Objects are created with RiObjectBegin() and light sources are created with
RiLightSource() or RiArealightSource(). These functions return opaque
data handles for future reference (in the case of RIB, the user must provide a
unique identifier). With few exceptions, objects and lights can be created at any
time between RiBegin and RiEnd.

Object and light handles are scoped by both frame blocks and world blocks.
Handles created during the world block go out of scope upon Rillor1dEnd() —
likewise for the frame block and RiFrameEnd (). In order to correctly scope these
handles, create a stack where each element consists of a set of object and light
handles. An empty set is pushed onto the stack by RiFrameBegin() and
RiWor1dBegin() (there is no need for a copy-on-push).

Stack<ObjectsAndLights> objectlLightStack;
Whenever an object or light handle is created, it is added to the set at the top of

the stack. Upon RiFrameEnd() or RiWorldEnd(), free the memory associated
with the objects and lights in the set and pop the stack.

38 Production Rendering

The world block may be contained within a frame block, but otherwise frame
and world blocks cannot be nested. Therefore a stack of size three is sufficient
(remember, objects can be defined in base mode prior to RiFrameBegin()).

2.2.6 The State Object

Functions in the RenderMan API that begin and end blocks are redirected to the
state object. All of the API functions use the state object to verify proper mode
prior to carrying out their orders. Functions that modify options, attributes or
transformations gain access to the top of the appropriate stack here. As primi-
tives are being added to the scene graph, they can be annotated with a dynam-
ically allocated copy of the top-of-stack attributes and transformations.

class State {
// Singleton design pattern (Gamma et al., 1995),
public:
static State *Instance();
protected:
State();
~State();
private:
static State *instance;

public:
// Changing states
RtVoid begin(RtToken name); RtVoid end();
RtVoid frameBegin(RtInt frame); RtVoid frameEnd();
RtVoid worldBegin(); RtVoid worldEnd();
RtVoid attributeBegin(); RtVoid attributeEnd();
RtVoid transformBegin(); RtVoid transformEnd();
RtVoid solidBegin(RtToken operation); RtVoid solidEnd();
RtVoid motionBegin(RtInt n, RtFloat times[1);

RtVoid motionEnd();

RtObjectHandle objectBegin(); RtVoid objectEnd();
RtVoid addLight(RtLightHandle newlLight);

// Verify current mode is in set of acceptable modes.
// If not, throw error code and return false.
bool verifyMode(ModeSet allowableModes,

RtInt errnumIfDifferent);

// Accessing tops of stacks

Options &topOptions();

Attributes &topAttributes();

Transform &topTransformOpen();

Transform &topTransformClose();

// Get durable copy of top-of-stack attributes or transform
Attributes *cloneAttributes();

Transform *cloneTransformOpen();

Transform *cloneTransformClose();

Chapter2 - ARendering Architecture 39

// Add constructed primitive to object, Tight, blur, or
// framework.
void insert(Primitive *prim);

protected:
Stack<Mode> modeStack;
CopyStack<Options> optionStack;
CopyStack<Attributes> attributeStack;
CopyStack<Transform> transformOpenStack, transformCloseStack;
Stack<ObjectsAndLights> objectlLightStack;

// Internal methods called by begin and end methods above.
// For example, frameBegin calls all of the push functions.

void pushMode(Mode m); void popMode();

void pushOption(); void popOption();

void pushAttrib(); void popAttrib();
void pushTransform(); void popTransform();
void pushObjectLight(); void popObjectLight();
//

// In object mode, motion mode, or when defining an area light,
// gather primitives here. Otherwise, these pointers will all
// be NULL and the primitive will pass through to the

// Framework.

//

RtObjectHandle openObject;

RtLightHandle openArealight;

BlurredPrimitive *openBlurPrim;

The State class has a member function called insert () that takes a pointer to a
Primitive. Primitive is the root class for all geometric primitives such as
Polygon, Sphere, and NuPatch, and will be considered in a later section.
Functions in the API that define geometric primitives should instantiate a class
derived from Primitive and pass it to the State object for insertion into the
scene graph. For example, RiPolygonV() might be implemented as follows:

RtVoid RiPolygonV(RtInt nverts,
RtInt n, RtToken tokens[], RtPointer parms[])
{
State *state = State::Instance();
Primitive *prim = new Polygon(nverts, n, tokens, parms);
state->insert(prim);

The State object will normally just forward the primitive to the framework for
rendering, but there are exceptions where it will gather up individual primitives
to build a composite of some sort.

40 Production Rendering

If the current mode is object (i.e. after RiObjectBegin() and before
RiObjectEnd()) then the new primitive will be appended to the currently open
object. The object itself is an aggregate primitive: a primitive made up of other
primitives. It subsequently may be inserted into the hider one or more times, or
it may never get inserted at all, in which case the component primitives will not
be rendered.

In the case of an area light source, primitives are used to define the shape of the
light. They are not intended to be rendered as objects. The State class is responsi-
ble for creating the handle to the area light, which it caches internally. Subse-
quent primitives are added to the area light definition until RiAttributeEnd() is
called. At that point, the cached handle is cleared and the State object returns to
the mode of passing primitives through to the framework.

The final exception is the motion mode. Inside a motion block, two or more
poses of a deforming primitive can be defined. If each pose were simply for-
warded to the framework then they would be rendered as individual unblurred
objects. It is the State object’s responsibility to collect the poses and then insert
a single deforming primitive into the framework upon RiMotionEnd().

The insert() member function just needs to handle the special cases and
pass all other primitives through to the framework:

void State::insert(Primitive *prim)
{
if (openObject != NULL)
append prim to openObject
else if (openArealight != NULL)
append prim to openArealight
else if (openBlurPrim != NULL)
append prim to openBlurPrim
else
insert prim into Framework
}

A straightforward way to represent objects, area lights or blurred primitives is
to derive a class from Primitive and give it a member variable that is a set of
other Primitives. For example:

class BlurredPrimitive : public Primitive {
protected:
vector<Primitive *> poses; // Deforming primitive keyframes
public:
void append(Primitive *p) { poses.push_back(p); }
b

2.3 Micropolygon Architectures

Most modern production renderers share what could be called a micropolygon
architecture. The traditional definition of a micropolygon is a “flat-shaded sub-pixel

Chapter2 - A Rendering Architecture 4

quadrilateral” (Cook et al., 1987) but all three aspects of that definition have
been challenged by various implementations over the years:

o Shading is still performed at every vertex of a micropolygon, but the interior
is often Gouraud shaded instead of flat shaded. Only in the case of ray tra-
cing are micropolygons shaded at points in their interior.

e When projected to raster space, micropolygons are often the size of a pixel.
The requirement is that micropolygons be small enough that their shape is
not discernible in the image, even after stretching due to displacement map-
ping. Abandoned is the notion that micropolygons with edges half the width
of a pixel will satisfy the Nyquist limit and somehow eliminate shader aliasing.

o The traditional four-sided micropolygon need not be planar, so the name
“micro-bilinear-patch” would be more accurate but harder to communicate.
The name “micropolygon” has stuck. A particular renderer may choose to use
micropolygons that have three sides but it must be consistent in that choice.

Users of a renderer do not create micropolygons directly. Instead, they specify
higher-order geometric primitives that are often curved, such as NURBS or sub-
division surfaces. Partway down the pipeline, the renderer converts these higher-
order primitives into a mesh of micropolygons through a process known as
dicing. Dicing is a particular kind of tessellating that is done adaptively within
the renderer and results in micropolygons, not multiple-pixel facets as are found
in low polygon count models for real-time graphics. The broader term tessellat-
ing refers to any process that converts a curved surface to a polygonal represen-
tation, including what is done in a modelling program to prepare the geometry
for a polygon-oriented renderer. Polygons as a geometric primitive are discour-
aged in production rendering for several reasons:

Information about the underlying curved surface has already been lost.
The coarseness of tessellation must be decided by the user or modelling
program.

o Tessellation that is constant in parametric space may result in facets that are
very large near the camera and very small in the background.

Dicing, on the other hand, is always an adaptive process done by the renderer,
where more information about how many pixels the surface will cover is avail-
able. Parts of a primitive near the camera will be diced more finely than those in
the background to maintain the approximate size of one micropolygon per pixel.
Another term related to micropolygons and dicing is grid. A grid is simply a
two-dimensional array (or mesh) of micropolygons. Just as you might wash your
car in sections, dicing works on a section of a geometric primitive to create a grid
of micropolygons. The grid representation is more compact than storing
micropolygons independently because data at the interior vertices is shared.

2.3.1 Advantages

Micropolygons serve as a standard data format to isolate the primitives from the
latter stages of the Reyes pipeline, such as shading and hiding. Having a common

42 Production Rendering

data structure allows these complex stages of the pipeline to be written for a sin-
gle geometry type, and not be further complicated by having to directly support
every available geometric primitive. Adding a new primitive to the renderer is also
simplified. It just needs to know how to convert itself into micropolygons.

Because all of the micropolygons in a grid are the same size in parametric (or
uv) space, parametric surfaces may take advantage of subdivision coherence by
applying fast forward differencing algorithms. The decision of whether to opti-
mize primitives in this way can be made on a case-by-case basis, as the code will
be isolated to the dice() function of each primitive.

The most obvious advantage of a micropolygon architecture is the ease with
which it can support displacement mapping, a feature that has become popular
in production renderers. Since the geometry is already diced into pixel-sized elem-
ents, it is relatively straightforward to move each vertex in a direction and dis-
tance prescribed by a procedural displacement shader. To distinguish it from
lower quality approximations, micropolygon displacement is often called “true
sub-pixel displacement”: “true” because the surface is actually deformed and not
just the shading normal, and “sub-pixel” because micropolygons are usually the
size of a pixel or smaller.

Shading performance is improved by keeping unshaded micropolygons in
their grid form. Being able to shade a surface at the same time is an example of
vectorization, where similar calculations are performed together. Vectorized
shading amortizes various costs associated with shading over the entire grid,
rather than repeating the work for every vertex that gets shaded. Shading one
grid at a time also improves the performance of accessing texture files. The ver-
tices in a grid will usually access contiguous parts of the same texture maps,
reducing the number of texture files that need to be open at one time and maxi-
mizing cache performance by obeying locality of reference. Since micropolygons
are often aligned with the axes of texture coordinates, the need for run-time tex-
ture filtering is reduced.

Micropolygons overcome two difficulties associated with perspective projec-
tions. If the micropolygons are small in pixel space (as they are intended to be),
then the perspective distortion of interpolated values is negligible and it is
unnecessary to correct for it. Because micropolygons are shaded in world or
camera space before the perspective projection, there is no need for an inverse
perspective transformation.

2.4 Reyes Pipeline

Reyes! is the original micropolygon framework and remains a popular choice
today. Loren Carpenter wrote the Reyes “prototype” renderer in 1981. He later

IReyes is named after Point Reyes in California and is also an acronym for Renders
Everything You Ever Saw. While it has become popular to use all capitals to emphasize
REYES as an acronym, we will use the traditional capitalization from the 1987 paper,
“The Reyes Image Rendering Architecture”. Unfortunately, Reyes is pronounced exactly
the same as “rays”.

Chapter2 - ARendering Architecture 43

recast Reyes as a test-bed for the research and development of hiders. Rob Cook’s
stochastic sampler (Cook et al., 1984), Ed Catmull’s analytic hider (Catmull,
1984), and Carpenter’s A-buffer (Carpenter, 1984) were all developed under the
Reyes test-bed. By the time Cook, Carpenter and Catmull published their paper
(Cook et al., 1987), they had taken a preference for Cook’s stochastic hider and
presented it as part of the architecture along with the Reyes framework.

This text will use the definition of Reyes as a framework (or test-bed) inde-
pendent of the choice of hider. A hider takes shaded micropolygons as input and
produces pixels as output. The hider could be a Z-buffer, super sampler, stochas-
tic sampler, A-buffer, analytic hider, ray tracer, or some other technique.
Reyes will interface to the hider through an abstract interface. How a hider uses
pixel filters and whether or not it resamples are independent of the Reyes
process.

The five main operations of the Reyes framework are bound, split, dice, shade
and hide. If a renderer does all of those steps in that order, then it is certainly a
Reyes renderer. In performing an object-oriented analysis of Reyes, it is most
important to understand the data types which flow from one stage of the
pipeline to the next. In Figure 2.3 the process blocks will be implemented by
methods and the data types passed between them will be objects.

Scene
graph
Shaded grids
Primitives |
A4
Split Bust
Smaller primitives Shaded micropolygons
A\ 4 A 4
Dice Hide
Unshaded grids Pixels
v A 4
Shade Display

Figure 2.3 Reyes data flow.

44 Production Rendering

2.4.1 Bound

Early in the Reyes pipeline, a bounding volume is calculated for primitives. Some
primitives such as infinite planes may not be boundable at all. The usual solution
for this problem is to simply not allow unboundable primitives in a Reyes ren-
derer. A more flexible solution is to ask each primitive whether it is boundable or
not and only calculate a bound for those that are finite. Unbounded primitives
can be processed by the Reyes framework, but not nearly as elegantly and effi-
ciently as those with well-defined bounding volumes.

2.4.2 Split

Splitting is an example of a divide and conquer approach. To split a primitive is
to reduce it to one or more simpler primitives. The straightforward way to split
a parametric surface such as a bicubic patch is to cut it along its centre paramet-
ric lines (where u = 0.5 and v = 0.5) into four smaller bicubic patches. An
aggregate primitive, such as a set of polygonal faces, can be directly split into
individual objects or repartitioned into two or more smaller sets.

The primitives that result from a split need not be the same type as the ori-
ginal, unsplit primitive. For example, a sphere might be split into NURBS patches.
Ideally the new primitives will represent exactly the same surface as the original.
However, it is sometimes acceptable to approximate the original surface. Because
bicubic patches cannot accurately represent quadric surfaces, splitting a sphere
into bicubic patches would be an approximation but might be close enough.
Fractals and other procedural geometry may have infinite detail in theory, but
eventually they must be split into finite surfaces if they are to be rendered.

The requirements of the split operation are that the child primitives stay
within the parent’s bound, and that splitting must eventually lead to primitives
that are diceable.

2.4.3 Dice

Armed with good split routines, we could design a renderer that just keeps
splitting until the primitives are as small as a pixel and then replace each with a
single micropolygon. That is essentially the way the renderer described in
Ed Catmull’s thesis (Catmull, 1974) worked. However, splitting quickly reaches a
point of diminishing returns. This is often the case with divide and conquer
algorithms. Consider the case of quicksort. It can be written to partition the
input down to single elements but in practice a lightweight sorting algorithm
(such as insertion sort) is called upon once quicksort gets down to sets of seven
items or so. The overhead of partitioning begins to dominate. Sometimes you
just have to stop dividing and start conquering!

With Reyes, conquering comes in the form of dicing. Dicing is the process of
converting a high-order primitive into a grid of micropolygons. The process is
driven by the natural coordinate system for the primitive, such as uv coordinates
for parametric primitives. Vertices generated by dicing will initially be in world
or camera space. Raster space is only used for an estimate of how finely to dice in
order to maintain a micropolygon size of about one pixel.

Chapter2 - ARendering Architecture 45

2.4.4 Shade

The result of dicing is an unshaded grid. The role of the shading system is to turn
that unshaded grid into a shaded grid. Shading occurs only at the vertices of the
micropolygon grid. Micropolygon interiors may either be flat shaded (by taking
the shade at the upper left vertex) or Gouraud shaded by interpolating the shad-
ing results at the four vertices.

Shading may be done in world or camera coordinates but it must not be done
in screen or raster space. Angles between vectors are important in shading. For
example, the angle between the vector to a light source and the normal of a sur-
face is used in diffuse shading. The perspective transformation does not preserve
angles between vectors. Therefore, shading in screen space would yield incorrect
results. Inverse transforming vectors back to camera space while shading is awk-
ward. It is more natural and efficient to shade in world or camera coordinates.

All of the input variables to the shading system must be available or derivable
from data in the unshaded grid. Add user-programmable shaders, and this
requirement places a hefty demand for flexibility in the data structure design.
The most important outputs from the shading system are colour and opacity
(or, in the case of displacement shaders, position and normal). Production ren-
derers often support final output of quantities other than colour and opacity,
such as arbitrary variables defined in shaders. Again, this requires a flexible data
structure.

Displacement shaders are evaluated before all other shaders. To support ray
tracing, displacement shading should be separated and called independently by
the framework. The result of displacement shading is a displaced but otherwise
unshaded grid.

2.4.5 Hide

Computer graphics pioneers named a procedure for figuring out what geometry
was visible and what was hidden behind other geometry a “hidden surface algo-
rithm”. Apparently inspired by a glass-is-half-full notion, optimists relabelled
the process “visible surface determination”. We prefer the terse name hider. A
production renderer might provide several hiders and give the user the option
of selecting one based on tradeoffs such as speed versus quality.

Hiders tend to have memory requirements that are proportional to the num-
ber of pixels in the raster. For example, a Z-buffer hider might store colour, alpha
and depth for each pixel. That is a manageable amount of memory, but more
sophisticated hiders store a list of micropolygons (or micropolygon fragments)
per supersample. When hider memory requirements become intractable, the
solution is to divide the raster up into bite-sized chunks called buckets. Buckets
can be scanlines or rectangular areas of pixels. The idea is to finish processing
one bucket in its entirety, then reuse the hider memory to process the next
bucket. If a hider needs to use buckets, it must communicate that fact and the
desired bucket size back to the framework so that it can cooperate in processing
the scene in bucket order.

The input to a hider is a grid of micropolygons and the output is pixels. The
hider does not return the pixels to the framework. Instead, it communicates

46 Production Rendering

directly with the display driver(s) to output the pixels to a framebuffer or
graphics file.

2.5 Primitives

A retained mode renderer must store all primitives in a scene graph before ren-
dering begins. Therefore, the top-level representation of primitives should be as
concise as possible to conserve resources. The representation passed across the
API is rather concise, so it is hard to go wrong by allocating space and copying
the data verbatim. As primitives are processed by a rendering pipeline, they will
generally be expanded into a more memory-intensive representation and then
discarded (or at least kept in a geometry cache of a limited size).

As of revision 3.2, the RenderMan specification defined 20 primitive types
(including procedural primitives and instanced objects). The early stages of a
rendering framework manipulate these top-level primitives. Clearly this is a
good place to use a base class, rather than hardcoding 20 cases throughout the
code and needing to modify each occurrence to support whatever primitives
may be required in the future.

Primitives that support the following operations will fit easily into a variety of
frameworks:

class Primitive {
public:
virtual bool boundable();
virtual Bound bound();
virtual bool splitable();
virtual void split(Framework &f, bool usplit, bool vsplit);
virtual bool diceable(MicroPolygonGrid &g, Hider &h, bool
&usplit, bool &vsplit);
virtual void dice(MicroPolygonGrid &g);

protected:

virtual Point evalP(float ugrid, float vgrid);
virtual Vector evaldPdu(float ugrid, float vgrid);
virtual Vector evaldPdv(float ugrid, float vgrid);
b

2.5.1 Bounding

The boundable() function returns true if the primitive can be bounded, and
bound () returns a bounding volume in camera coordinates. The framework will
not call bound() unless boundable() returns true. Most primitives should be
boundable except things like infinite planes or half-spaces.

The typical choice of bounding volume is a box aligned with the axes of
camera space. While it is permissible to bound in world or object coordinates,
camera coordinates are preferable because they maximize the probability that
the primitive can be trivially rejected in a frustum or occlusion culling step.

Chapter2 - A Rendering Architecture 47

For correct results the bound must completely contain the primitive, includ-
ing displacements. If motion blur is in effect, the bound must contain the primi-
tive at all positions along its motion path while the shutter is open. If the
primitive is split, then all of the child primitives must also be contained in the
bound.

The good news is that the bound does not need to be perfectly tight. Bounds
are used for culling and for diceability estimates, so a loose bound may hurt per-
formance but at least it will not make the image incorrect. Many primitives obey
the convex-hull property, which means a bound that contains all of the control
vertices will also contain the surface. If a primitive does not have the convex-hull
property, it can often be converted to an equivalent surface that does.

2.5.2 Splitting

Splitable() returns true if the primitive can be reduced to simpler primitives.
It is a good idea to ensure that all primitives are splitable. A flexible framework
will ask a primitive if it is splitable before telling it to split itself. In theory, a
primitive that is always diceable need not be splitable, but there are rare occa-
sions when the framework must split a primitive or discard it (even if it is visible).

sp1it() creates one or more primitives and inserts them back into the scene
graph by calling f.insert(newprim). Parameters usplit and vsplit are hints
on whether to split parametric primitives in the u dimension, v dimension or
both. The framework will not call sp1it() if splitable() returns false. After
calling prim->split(), the framework will delete prim.

2.5.3 Dicing

diceable() returns true if the primitive can be diced into a micropolygon grid.
It can ask the hider for hints such as desired micropolygon size, maximum num-
ber of micropolygons per grid, how finely an example camera-space line or
bound should be diced, etc. If it returns false,diceable() mustset usplitand
vsplit to recommend how the primitive should be split. If it returns true, it
must set g.xdimand g.ydimto the reccommended grid dimensions.

dice() creates an unshaded grid of micropolygons. The dimensions are
passed in as g.xdim and g.ydim. dice() fills the points of the grid in camera
coordinates. The base class implementation of dice() can be something like:

Primitive::dice(MicroPolygonGrid &g)
{
for vgrid = 0 to 1 step 1.0/g.ydim
for ugrid = 0 to 1 step 1.0/g.xdim
add evalP(ugrid, vgrid) to g

Derived classes that do not support evalP() must override dice(). Other
classes may choose to override dice() to implement faster algorithms such as
forward differencing.

48 Production Rendering

evalP() takes parameters ugrid and vgrid, which range from 0 to 1 over a
single grid (as opposed to the entire surface). It returns the point P on the sur-
face at parametric coordinates ugrid and vgrid.

evaldPdu() and evaldPdv() return partial derivatives dP/du and dP/dv at
coordinates ugrid and vgrid. Ideally, these are derived analytically rather than
through finite differentials. An analytic normal can be obtained from the cross
product of dPdu and dPdv.

2.6 Grids

A grid’s lifespan starts when the diceable() function sets its dimensions and
ends when the hider busts it into individual micropolygons. In between, dicing
fills in the values of vertex variables such as the position P at each point in the
grid. It may get trimmed and displaced prior to being shaded, which sets final
values for colour and opacity (Ci and 01).

class MicroPolygonGrid f{

public:
MicroPolygonGrid();
~MicroPolygonGrid();

int xdim, ydim; // Grid dimensions
int nverts; // Total vertices = (xdim+1) * (ydim+1)

void addVariable(RtToken name, RtPointer value, int type,
int detail);

RtPointer findVariable(RtToken name, int type, int detail);

bool isbackfacing();

bool trim();

void displace();

void shade();
MicroPolygon *bust();

protected:
const Primitive *parent; // Primitive from which we came
TokenValuelist vertexvars;

Vs

Grid dimensions are so frequently accessed that they are shown here as public
member variables. Primitive’s diceable() function sets them and also sets the
total number of vertices as a convenience. Subsystems such as the shader evalu-
ator usually just want to know how big the grid is, but SL functions like calcu-
Tatenormal () need to distinguish the grid’s width from its height.

A micropolygon grid only becomes really usable when the dice() function
sets the values of the vertex variables. It stores these in the private vertexvars
member variable by calling the addVariable() function. The position P will be
always be diced. If motion blur is in effect, another position at shutter close time
Pclose will also be added. If the user declares reference geometry as a vertex

Chapter2 - ARendering Architecture 49

variable Pref, that should be diced as well, and so on. Uniform variables should
not be stored in vertexvars because it would just contain redundant values.
Varying variables can be stored here, but can also be interpolated on the fly from
u, v, and the values at the four corners of the grid.

The isbackfacing() method returns true if every micropolygon in the grid
faces away from the camera. However, it must always return false if backface
culling was turned off for this primitive with RiSides(2). The Sides attribute is
available through parent, which points to the primitive that was diced to create
this grid.

The trim() member function actually applies trim curves to the grid. Again,
the trim curves are attributes and can be accessed through the parent pointer. If
the entire grid gets trimmed away, then trim() will return true.

Grids know how to displace and shade themselves by calling the shader evalu-
ator. Displacement shading is separated from the others (light, surface and
atmosphere) to accommodate ray tracing hiders that wish to intersect displaced
but otherwise unshaded grids.

Finally, the bust () member function can be called to break up the grid into
individual micropolygons. Although the grid representation is more compact,
individual micropolygons can actually save memory if most are consumed by
the current bucket and only a handful are forwarded to other buckets for
further processing.

2.7 Shader Evaluator

The shader evaluator converts unshaded grids to shaded grids by executing
shader code that has been preprocessed offline by the shader compiler. By some
estimates, shading accounts for half of the design complexity and 90% of the
CPU cycles in a production renderer (and two chapters of this book). Fortunately,
the interface to the shading subsystem can be summed up in two functions:

S1Shader *1oadShader(const char *shadername);
void runShader(S1ShaderInstance *shader, MicroPolygonGrid
*grid);

where SlShaderInstance is defined as:

class SlShaderInstance f{
S1Shader *theShader;
TokenValuelist ParameterValues;
}

The ToadShader () function is called as a result of one of the shader functions in
the API such as RiSurface(), RiDisplacement() or RiLightSource(). It
returns a pointer to an S1Shader that represents only the shader code, and no
data. This should be augmented by the token-value list that was passed across the
RenderMan API, and stored with the attributes as an S1ShaderInstance.

50 Production Rendering

Later, the displace() and shade() member functions of the
MicroPolygonGrid class will call runShader (). They will retrieve the appropri-
ate S1ShaderInstance from the attributes of the parent primitive and pass
this as the second argument.

The shader evaluator will turn around and access vertex variables in the grid
by calling findVariable(). It must have read and write access to the vertex vari-
ables because displacement shaders update P and N while surface shaders set
Ciand Oi.

2.8 Micropolygons

Once a grid is shaded it may get busted into micropolygons.

class MicroPolygon {
public:
MicroPolygon(MicroPolygonVertex *v0, MicroPolygonVertex *vl,
MicroPolygonVertex *v2, MicroPolygonVertex *v3);
MicroPolygon(const MicroPolygon &mp);
~MicroPolygon();

VertexProxy v[4]; // Four corners
int xmin, xmax, ymin, ymax; // Bucket coordinates
float zmin, zmax; // Camera coordinates

// Add renderer-specific fields here

Each micropolygon has four vertices, represented by the VertexProxy class
described below. The xand y bounds of the micropolygon are specified in bucket
coordinates — not pixel coordinates within each bucket but the position of
the bucket itself within the 2D array of buckets. This allows the hider to
quickly determine which buckets the micropolygon overlaps and whether it is
necessary to forward it to another bucket. The z bounds are simply in camera
coordinates.

Any number of renderer-specific fields can be added after the bounds. A link
back to the primitive which led to this micropolygon is possible, but it may be
preferable for micropolygons to be self-contained. Therefore, flags such as matte
object, smooth interpolation, and backface culling should be copied to the
micropolygon when it is created. If micropolygons are to be trimmed, then
information regarding trim curves that intersect the micropolygon should be
stored here as well.

2.8.1 Shaded Vertices

Micropolygons that have already been shaded do not need to carry the full com-
plement of vertex variables that were present in the original grid for the benefit
of the shader evaluator. All that is necessary are those values that the hider needs
in order to do its job of colouring each pixel.

Chapter2 - A Rendering Architecture 51

class MicroPolygonVertex f{
public:

MicroPolygonVertex();

virtual ~MicroPolygonVertex();

Point P;
int referenceCount; // Used by VertexProxy
by

class ShadedVertex : public MicroPolygonVertex ({
public:

ShadedVertex();

virtual ~ShadedVertex();

Point Pclose;

Colour Ci;

Colour 0i;

// Add arbitrary output variables here

Pclose is here because it is the hider’s job to do motion blur. If the micropoly-
gon is not blurred then Pclose will equal P from the base class (or a flag can be
cleared in the MicroPolygon class indicating that there is no motion blur).
Obviously, colour and opacity must be provided to the hider for it to resolve
hidden surfaces and colour the pixels.

Supporting arbitrary output variables really requires a more complex design.
A way must be found to identify them at run time, store them with each shaded
vertex, and have the hider create multiple display outputs.

2.8.2 Unshaded Vertices

Ray tracing hiders may wish to displace and bust grids, intersecting the resulting
unshaded micropolygons. Since shading happens after the point of intersection
has been determined, unshaded micropolygons must carry all of the inputs to
the surface shader in their vertices.

class UnshadedVertex : public MicroPolygonVertex {
public:

UnshadedVertex();

virtual ~UnshadedVertex();

Vector N;

Vector dPdu, dPdv;

// Add surface shader parameters here
b

The set of shader parameters to include must be determined at run time because
it depends on the choice of surface shader and may vary from primitive to
primitive.

52 Production Rendering
Grid of 4 micropolygons Compact
VA V2 V3 representation
"2l
V2
V3
M1 M2
V4
V5
va V5 V6 V6
V7
V8
M3 M4 Vo
xdim = 2
ydim = 2
nverts = 9
V7 V8 V9
Busted grid, sharing vertices
V1 V2 V3
ref =1 ref =2 ref = 1
M1 M2
V4 V5 V6
ref =2 ref =4 ref =2
M3 M4
\4 V8 V9
ref =1 ref =2 ref =1

Figure 2.4 Micropolygon representations.

Chapter2 - ARendering Architecture 53

2.8.3 Vertex Proxy

The increase in resource requirements that comes with busting a grid can
be somewhat mitigated by sharing MicroPolygonVertex objects between adja-
cent micropolygons.

// Proxy design pattern for smart reference (Gamma et al., 1995)
class VertexProxy f
public:

VertexProxy(MicroPolygonVertex *v);

~VertexProxy();

MicroPolygonVertex *operator->();
MicroPolygonVertex &operator*();

private:
MicroPolygonVertex *barePointer;
b

The VertexProxy class acts as a smart pointer (Edelson, 1992), counting
references and deleting the actual MicroPolygonVertex object when all
MicroPolygon objects that shared it go out of scope. Figure 2.4 shows how
busted micropolygons may share vertices. Operator overloading allows the
standard -> pointer syntax to be used. Grid’s bust () method sets all of this up
by creating one MicroPolygonVertex for every vertex in the grid, and then
constructing MicroPolygon’s from sets of four. The constructor for
MicroPolygon creates four VertexProxy objects from them.

2.9 Hiders

The primary function of a hider is to take grids of shaded micropolygons, deter-
mine visible surfaces, and output pixels. It also manages the scene graph and may
perform occlusion culling. The choice of scene graph data structure is up to the
hider. Ray trace hiders will generally use a 3D spatial partitioning data structure
such as a BSP tree, octtree, kd-tree or 3D voxel array. Other hiders often use a 2D
array of buckets.

A production renderer may support many hiders and allow the user to select
one at run time (although the ray trace framework must be paired with a ray
trace hider). Hiders may be immediate or retained mode. Examples of hiders
include Z-buffer, super sampler, stochastic sampler, A-buffer, analytic, ray tracer
and scan converter.

class Hider {

public:
virtual void worldBegin();
virtual void insert(Primitive *);
virtual void remove(const Primitive *);

54 Production Rendering

virtual bool bucketBegin();

virtual Primitive *firstPrim();

virtual void hide(MicroPolygonGrid &g);
virtual Colour trace(Point p, Vector r);
virtual void bucketEnd();

virtual bool isRasterOriented();

virtual float shadingRate();

virtual int gridSize();

virtual float rasterEstimate(Bound &b);

virtual float rastertstimate(Point &p0O, Point &pl);
b

The wor1dBegin() function initializes the scene graph and hider state for a new
frame. For example, a stochastic hider may set up tables of pseudorandom
numbers here.

For immediate mode hiders, the insert () member function actually renders
the primitive and then discards the data. Retained mode hiders will usually
examine the primitive’s bound to decide where to place it within the scene
graph. The remove() method must be able to locate the primitive within the
scene graph and delete it.

bucketBegin() signals the start of a new bucket. It returns false if all
buckets have been exhausted and there are no more to render. Immediate mode
hiders will have already rendered all the primitives and will return false imme-
diately. Hiders that do not use buckets treat the entire raster as one big bucket.
They return true from the first call of bucketBegin() and false thereafter.

The purpose of bucketBegin() is to give the hider a chance to perform
bucket-specific initialization. For example, a bucket-oriented Z-buffer hider
would only need as many depth values as there are pixels in a bucket, and all
would be reset to infinity here.

The list of primitives in the current bucket is traversed by firstPrim(). The
head is removed from the list and returned. When there are no more primitives
in the current bucket, firstPrim() returns NULL.

The hide() function does most of the work in a retained mode hider. If the
hider is bucket-oriented, the first thing it will do is ask the grid to bust itself into
individual micropolygons. Micropolygons which only overlap the current
bucket will be processed and discarded immediately. An individual micropolygon
that lands in another bucket will be forwarded to that bucket to be processed later
when the hider gets around to working on it. If the grid had not been busted into
individual micropolygons, then the entire grid would need to be kept in memory
until the hider finished processing the last bucket that overlapped any part of the
grid. Busting the grid allows the hider to discard most of it, thus saving memory.

Hiders that do not use buckets are free to leave the micropolygons in grid
form. For example, a hider that simply passes micropolygons to OpenGL for a
quick preview rendering would be better off converting the grid to a quadrilat-
eral strip data structure than busting it into individual micropolygons.

As shown here, the trace() function is straight out of the RenderMan speci-
fication. It takes an origin point and a direction to trace a ray, returning the

Chapter2 - ARendering Architecture 55

shaded colour of the first intersection (black if none are found). In practice,
there will be additional parameters. For example, the recursion depth will
often be passed down so that ray tracing can be terminated after a user-specified
maximum number of bounces. See Chapter 6 on ray tracing for more
information.

It is the bucketEnd() function that finalizes the colour of each pixel.
Sampling hiders perform filtering here. If the display driver accepts arbitrary
rectangles, then the pixels which make up the bucket can be sent for display and
the memory reused by the hider. For scanline-oriented display drivers, the hider
must buffer the pixels until it has a complete row of buckets.

Rounding out the Hider class are several functions used by the diceable()
test in the Primitive class. Raster-oriented hiders are those that allow microp-
olygons to be larger (in world space) if they are near silhouette with respect to
the camera and thus have a small footprint in raster space. Ray tracing hiders are
not raster oriented because rays can come from any direction and the microp-
olygon size needs to be consistent.

Each hider can define its own shading rate (i.e. the desired size of micropoly-
gons in terms of pixels) and limit on number of micropolygons per grid. Ray
tracers tend to use large micropolygons to conserve memory. They make up for
the sacrifice in image quality by shading at the actual intersection point of a ray
and the micropolygon, not just at the micropolygon corners.

Two functions are provided to help the diceability test estimate raster space
projections. The first takes a primitive bound in camera coordinates, projects to
raster coordinates, and returns the area in terms of pixels. The second form takes
two points in camera coordinates and returns the distance between them in
pixels after being projected to raster coordinates. It is useful for determining
independent dicing rates in the parametric u and v directions.

2.9.1 Occlusion Culling

It is within the firstPrim() method that the hider may optionally perform
occlusion culling. Before returning a primitive, it checks to see if it is potentially
visible within the current bucket. If not, it forwards that primitive to the next
bucket it overlaps. The hider keeps examining primitives in the list until a poten-
tially visible one is found or the list is exhausted. Some occlusion culling algo-
rithms are more effective if the primitives are processed from front to back, so
consider sorting the list in bucketBegin(). Note that a split operation might
result in new primitives being added to the current bucket after it was sorted.
Adding them to the front of the list is a good approximation to keeping the list
sorted because that is where the parent primitive was before it got split.

For a simple example, consider what it would take to add occlusion culling to
a Z-buffer hider. It already maintains the depth of the nearest object rendered
thus far on a pixel-by-pixel basis. For a quick occlusion culling test, it only needs
to examine the front of a primitive’s bounding box. If the bound is axis-aligned
then the front face will have a single depth. If all of the pixels in the current
bucket which overlap the front face of the bounding box have a nearer depth,
then the primitive cannot be visible and can be culled.

56 Production Rendering

Top layer contains furthest Second layer. Maximum depth ~ Bottom layer of hierarchical Z-buffer.
depth in entire bucket value for each 4 pixel area One depth value per pixel

inf 15 [145 14
inf 14.5

inf 13 13 12.5

inf
8.5 8 1 12
8.5 12

Figure 2.5 Construction of a hierarchical Z-buffer.

If the hider supports transparency, then only opaque (or nearly opaque) samples
should contribute to the occlusion culling test. Even if the primitive is determined
to be potentially visible within this bucket, the resulting grids and even
individual micropolygons can be tested for occlusion later. Of course, there are
diminishing returns the further down the pipeline geometry gets before being
culled.

In the example above, an occluded primitive would require a depth test of
every single pixel overlapped by its bounding volume. In a scene of high depth
complexity where many primitives are occluded, the number of pixels tested
could become a bottleneck.

A more advanced occlusion culling scheme is based upon the Hierarchical
Z-Buffer Visibility algorithm (Green et al., 1993). Think of this data structure as
a pyramid whose foundation is the Z-buffer for the bucket. In the second layer,
each 2 X 2 square from the Z-buffer is summarized by a single z value equal to
the maximum of the 4 below. Continuing this process results in each layer being
one-fourth the size of the layer below (half as many rows and half as many
columns) until the top of the pyramid is a single z value. This number represents
the maximum depth of all the pixels in this bucket. Having bucket dimensions
that are both powers of two simplifies this process. An example of constructing
the data structure for a bucket with only 16 pixels is shown in Figure 2.5.

Now when a z value is updated in the Z-buffer, the z value in the second layer
is re-evaluated to see if the maximum for that 2 X 2 square has decreased. If it
has, the second layer is updated and the process continues upward until a value
that need not change is encountered.

Occlusion culling starts at the top of the pyramid and works its way down
only as necessary. If the value at the top of the pyramid is closer than the front
face of the primitive’s bound, then the primitive is culled for this bucket after
comparing only two values. Otherwise, the hider drops down a layer and exam-
ines values that represent areas overlapped by the bound. Nodes closer than the
front face of the primitive, are determined to be hiding that part of the object,
and require no further examination. Only those areas with greater depths result
in recursion to lower layers. In Figure 2.6, note how the bottom-right quadrant
is removed from consideration after processing the second layer. Only two pixels

Chapter2 - A Rendering Architecture 57

Front is less than infinity. Ignore 12 square. Front is greater than 13 and
Proceed to second layer Recurse on 14.5 square 12.5. Occlusion cull primitive
145 14
inf 14.5 inf
13 12.5
Y i 2 cTooTT 1 |t
inf : Front = ! : Front = :_ 1 Front = :‘
{ 135 1 | 135 1 | 135 1
[) [P e
8.5 12 8.5 12

Figure 2.6 Occlusion culling.

in the bottom layer need to be examined in order to cull the primitive in this
example.

2.10 Frameworks

A framework is the part of a renderer that manages the pipeline. It determines
which operations will be performed on primitives, and in what order those oper-
ations will take place. Most renderers are built upon a single framework but with
good object-oriented design, a renderer can support multiple frameworks that
can be selected by the user at run time.

class Framework f

public:
virtual void worldBegin();
virtual void insert(Primitive *);
virtual void remove(const Primitive *);
virtual void worldEnd();
virtual Colour trace(Point p, Vector r);

protected:
Hider *hider;
b

The abstract base class for frameworks has member functions that are called by
the State class at wor1dBegin() and worldEnd() time. Primitives are added
and deleted from the scene graph by calling insert() and remove(), respect-
ively. The trace() member function is only implemented by frameworks that
support ray tracing.

Note that the remove() member function is never called from the API.
Inserted primitives are generally consumed by the rendering pipeline. The
remove () method exists for situations where the framework or hider internally
deletes a primitive from the scene graph, for example to replace it with a more
refined model.

58 Production Rendering

2.10.1 Reyes Framework

It is straightforward to write the Reyes framework in terms of the Framework
base class, given primitives that know how to bound, split and dice themselves.
Three of the five functions are trivial:

void ReyesFramework::worldBegin()
{

hider->worldBegin();
}

void ReyesFramework::remove(const Primitive *prim)
{

hider->remove(prim);
}

Color ReyesFramework::trace(Point p, Vector r)
{

return colourBlack;
}

The scene graph will be maintained by the hider. Since Reyes does not support
ray tracing, calls to the trace() member function always return black (indicat-
ing that the ray did not hit anything).

Inserting a primitive with Reyes requires some special handling:

void ReyesFramework::insert(Primitive *prim)
{
if prim is visible to camera rays AND
prim’s z coordinates are between clipping planes AND
prim’s bounds overlap viewing frustum AND
prim’s level of detail falls within visible range

if prim passes in front of epsilon plane
{
if (prim->splitable())
prim->split(*this, true, true);
}
else
hider->insert(prim);

There are several situations where Reyes can cull a primitive without adding it to
the scene graph. Sometimes primitives are flagged as invisible to camera rays,
because they are only intended to block shadow rays, for example. Such primi-
tives will be totally invisible to the Reyes framework and can be culled. A more
common situation is that the primitive is entirely in front of the near clipping

Chapter2 - ARendering Architecture 59

plane, behind the far clipping plane, or otherwise outside of the viewing frus-
tum. Because Reyes does not ray trace reflected objects, primitives off screen do
not contribute to the final image and are also culled. Finally, a primitive whose
level of detail is out of range gets culled. For example, a highly detailed represen-
tation should not be inserted when the bounds project to a single pixel
on-screen.

The other special handling has to do with the notorious eye-splits problem in
Reyes. If the primitive already passed the clipping test, then at least part of it is
on the far side of the near clipping plane. If part of it is also on the near side of
the epsilon plane (immediately in front of the camera) then it must be split in
order to avoid a perspective divide by zero situation.

Primitives that pass all of the above tests are forwarded to the hider for inser-
tion into the scene graph. If the hider happens to be immediate mode, it will
actually consume and render the primitive before returning from its insert()
member function.

Reyes is traditionally paired with a retained mode hider. In that case,
worldEnd() is where the work is actually done:

void ReyesFramework::worldEnd()
{
while (hider->bucketBegin()) {
Primitive *p;
while ((p = hider->firstPrim()) != NULL) {
MicroPolygonGrid g;
bool usplit, vsplit;
if (p->diceable(g, *this, usplit, vsplit)) {
p->dice(g);
if (lg.isbackfacing() && !g.trim()) {
g.displace();
g.shade();
hider->hide(g);
}
}
else if (p->splitable())
p->split(*this, usplit, vsplit);
delete p;
}
hider->bucketEnd();
}
hider->wor1dEnd();
}

The outer loop iterates over the hider’s buckets. When the buckets are exhausted,
bucketBegin() returns false. If a hider is not bucket-oriented, then
bucketBegin() will only return true one time — representing the entire raster.
An immediate mode hider will have already rendered everything with its
insert() member function and will return false immediately.

60 Production Rendering

The inner loop iterates over the primitives in the bucket. Those that are dice-
able are diced. If the resulting grid is entirely backfacing or entirely trimmed
away by trim curves, then the grid is ignored. Otherwise, it is displaced, shaded
and passed back to the hider for final hiding.

Undiceable primitives are split. This results in more primitives being inserted
into the framework, possibly into the current bucket. Primitives that are neither
diceable nor splitable should never happen, and are duly ignored.

2.10.2 Ray Tracing Framework

Use of the ray tracing framework implies that even primary rays will be traced.
This framework must be used in conjunction with a ray tracing hider. Like
Reyes, most of the member functions inherited from the Framework class are
direct pass-throughs to the hider:

void RayTracefFramework::worldBegin()
{

hider->worldBegin();
}

void RayTraceFramework::insert(Primitive *prim)
{

hider->insert(prim);
}

void RayTraceFramework::remove(const Primitive *prim)
{

hider->remove(prim);
}

Color RayTraceFramework::trace(Point p, Vector r)
{

return hider->trace(p, r);
}

void RayTraceFramework::worldEnd()
{
while (hider->bucketBegin())
hider->bucketEnd();
hider->worldEnd();
}

The wor1dEnd () member simply iterates over the buckets. It is up to the ray tra-
cing hider to seed the ray tracing process by creating rays that originate at the
camera and pass through the pixels on the image plane. It may choose to do this
in bucketEnd() or worldEnd(), depending on whether the hider is bucket-
oriented. If more than one ray per pixel is generated, the hider must filter the
results before sending the final pixels on to the display subsystem.

Chapter2 - A Rendering Architecture 61

Note that the ray tracing framework never sends grids to the hider. Ray tra-
cing hiders will either intersect rays with high level primitives (such as NURBS)
or tessellate the primitives on demand when a ray passes nearby.

2.10.3 Hybrid Framework

The Reyes framework does primary visibility efficiently, while the ray tracing
framework handles shadow and reflection rays. By combining the two, the result-
ing hybrid framework can trivially provide the best features of each approach:

class HybridFramework : public Framework {
public:

HybridFramework();

~HybridFramework();

virtual void worldBegin();

virtual void insert(Primitive *);
virtual void remove(const Primitive *);
virtual void worldEnd();

virtual Color trace(Point p, Vector r);

protected:

ReyesFramework *reyes;
RayTraceFramework *raytrace;
b

HybridFramework: :HybridFramework()
{
reyes = new ReyesFramework();
raytrace = new RayTraceFramework();
}

HybridFramework: :~HybridFramework()
{

delete reyes;

delete raytrace;
}

void HybridFramework: :worldBegin()
{
reyes->worldBegin();
raytrace->worldBegin();
}

void HybridFramework::insert(Primitive *prim)
{
reyes->insert(prim);
raytrace->insert(prim);
}

void HybridFramework::remove(const Primitive *prim)

62 Production Rendering

{
reyes->remove(prim);
raytrace->remove(prim);
}

void HybridFramework: :worldEnd()
{

reyes->worldeEnd();
}

Color HybridFramework::trace(Point p, Vector r)
{

return raytrace->trace(p, r);
}

The work is handed off symmetrically between the Reyes and ray tracing frame-
works with the exceptions of wor1dEnd() and trace().Instead of letting the ray
trace hider generate primary rays, the Reyes side does the job of primary visibil-
ity more efficiently. When a request to trace a secondary ray comes along, the
ray trace side handles it. Such requests are generated by shaders to determine
shadows, reflections and refractions.

2.11 Conclusion

The architecture presented in this chapter certainly isn’t the only way to design
a production renderer, but it should provide a flexible foundation on which to
build various rendering algorithms. Details on how to implement primitives,
shader evaluators, ray tracing, global illumination and hiders will be covered in
the remaining chapters. Those writing a renderer from scratch will find that
those modules fit neatly into this architecture. Others who are maintaining
mature renderers may find inspiration for improvements to their designs.

2 Springer
http://www.springer.com/978-1-85233-821-3

Production Rendering

Design and Implementation

Stephenson, |, (Ed.)

2005, XN, 302 p. 115 illus., 32 illus. in color., Hardcover
ISBN: 978-1-85233-821-3

