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Constructing Fuzzy Models from Input-Output
Data

In the previous chapter we presented a discussion of the approximation capa-
bilities of fuzzy models. In summary, we have shown that fuzzy models can
be used to reproduce the behavior of any continuous function. This chapter
presents some of the methods used to construct fuzzy models that replicate
the behavior of a given function. The information about the function is pre-
sented in the form of input—output data, which means that a set of points
over the domain of the function (input) is selected and then evaluated in the
function (output).

The construction of fuzzy models involves the selection of several param-
eters: position, shape and the distribution of the membership functions, rule
base construction, selection of the logical operations, consequences of the rules,
etc. This large number of “degrees of freedom” makes it very difficult to im-
plement a unique method to select all these parameters at once. A typical
approach is to set in advance the logical operations and the type of mem-
bership functions using certain criteria (differentiability, linguistic integrity,
implementability, etc.). The remaining parameters can be estimated from the
data using different strategies, but in general all are based on a single objec-
tive, which is to minimize the approximation error between the output values
and the values given by the fuzzy model.

According to the tuned parameters and the strategies, different methods have
been proposed in the literature. This chapter presents the following strategies:

Mosaic or table lookup scheme [18]

Using gradient descent [18] [19]

Using clustering and gradient descent [12] [4]
Using evolutionary strategies [20] [21]

The mosaic or table lookup scheme fixes in advance the type, number and
position of the membership functions and calculates only the consequences
of the rules. The methods based on gradient descent fix in advance the type
and number of the membership functions and calculate their positions and
the value of the consequences. The methods based on clustering and gradient
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descent fix only the type of membership functions and by means of clustering
algorithms select the number and initial positions of the membership func-
tions. Consequences and refined positions of the membership functions are
found by means of a gradient descent algorithm.

Evolutionary strategies deserve a different comment since they can be
used to optimize all possible aspects integrated in a fuzzy model including
the set of inputs used to construct the model. Some interesting features of
the evolutionary strategies are the fact that they can introduce complex con-
straints to enforce some desired features into the model and also the fact that
they perform a gradient-free optimization.

Table 2.1 summarizes the methods and the parameters that are adjusted
by the method. The following sections are dedicated to explain these methods.
Finally, the chapter closes with an example of an industrial application of the
fuzzy models constructed from input—output data.

Table 2.1. Parameters Adjusted by the Different Training Methods

Method Type |Number| Location |Consequences
of MFs | of MFs |of the MF's

Mosaic scheme Fixed Fixed Fixed Adjusted
Gradient descent| Fixed Fixed Adjusted Adjusted
Clustering +

gradient descent | Fixed |Adjusted| Adjusted Adjusted
Evolutionary

strategies (1) Adjusted| Adjusted| Adjusted Adjusted

Summary:

Fuzzy inference systems (FIS) can be systematically constructed from
“pure” input—output data. All methods are based on the optimization of
a cost function to minimize the “distance” between the predictions of the
FIS and the output data. The main differences among the methods are the
initialization and the adjusted parameters.

2.1 Mosaic or Table Lookup Scheme

The basic scheme of the method was proposed by Wang [18]. Here some sim-
ple modifications are introduced, and these modifications are related to the
consequence calculation. In this method the position, the shape and the dis-
tribution of the membership functions are choices for the designer. The rule
base is composed and the method finds only the consequences of the rules.

Assume a sequence of input—output {z,y°}i = 1,..., N data is collected,
the inputs ' € U C P and the output y* € V C R. The subset U is a portion
of the space R? and is defined as U = [a1,b1] X ... X [ap, by]. The procedure
to construct the model is laid out in the following.
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For each of the p inputs of the system distribute over the interval [a;, b;]
N; membership functions. The shape, the position and the distribution is
a user’s choice. The only condition is that the full interval is covered and
at least two membership functions are placed on each point of the input
domain. As shown in the previous sections, the shape and the distribution
affect the smoothness and the accuracy of the approximation.

Generate the rule base using all possible combinations among the an-
tecedents and the AND operator (choosing in advance “min” or “product”
operator). The rule [ of the rule base for Mamdani fuzzy systems is

IF zi is AL AND ... AND x; is Ai, THEN y IS 7'
and for Takagi—Sugeno fuzzy systems
IF z{ is A} AND ... AND z is AL THEN y = ala| +... 4 aba} + 0

Calculate the inference of each rule. For rule [ of the form

) = min{pl (o), w2 (), ... 1 (21)} (2.1)
() = b @) ). .. () (2.2)
the general expressions for these fuzzy system with L rules will be given
by
L
Z y ()
i =1
f@') = —F—— (2.3)
> w(ah)
1=1

for the Mamdani models and

L
Z(allmi +...+ aéx; + b g (%)

fla') = = I (2.4)

> ()

=1

for Takagi—Sugeno models.

Calculate the consequence parameters

— In the Mamdani model the parameter to be calculatedis 'l = 1,..., L
such that f(z%) ~ y'. Observe that Equation (2.3) can be written as

L
fa) =) g’ (2.5)
=1
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wy(x?) = M = w} (2.6)

L .
> )
=1

The N output values can be represented as the vector Y in terms of
the inference process:

1 1,1 1 1
Y w; wy ... Wp Y €1
2 2 9 2 —2
Y wy; wy ... W Y €2
= : + (2.7)
N N , N N —L
y wy Wy ... Wy 7 enN
——
Y w 0 E

— In the Takagi-Sugeno model the parameters to be calculated are
al ... aé and b' [ = 1,..., L such that f(2') ~ y’. Using the reasoning

applied for the Mamdani models, Equation (2.4) can be written as

L
f(z%) = Z(allarzl +...+ a;x; + b w; () (2.8)
1=1
where w;(z*) has the same form shown in Equation (2.6).

The N output values can be represented as the vector Y in terms of
the inference process

“
as
1 1.1 1.1 .1 1.1 1.1 .1 :
a
y wiTy ... WiT, wi Wiry ... WiT, WI bf
: : .o : : .o : 2
N N1 N.1,.N . N1 N.1,.N a1
Yy wy'wy .ow Ty wy wy Ty .. wp T, wy :
SN—— .
v w al
L
L0 ]
)
€1
€2
+ (2.9)
eEN
——
E

In both cases the vector F is the approximation error and the aim is to
reduce the norm of this vector as much as possible. Using the quadratic
norm to measure the approximation error, we obtain
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min || 5]|> = min| Y~ 7] (2.10)

It is a least-squares problem and the consequences can be calculated using
least squares. The solution to this least-squares problem is

0 = arg mein||E||2 =Wrw)"'vyTw (2.11)

This solution is applicable as far as the rank(W?W) = dim(6); otherwise
other methods must be applied to guarantee a reliable set of consequences
for the rules. In Section 2.5, a method based on recursive least squares is
detailed.

Summary:

A mosaic or table lookup scheme is probably the simplest method to con-
struct fuzzy models from data. The method demands from the user the
definition of the antecedent of the rules and finds the consequences by
using least squares.

2.1.1 INlustrative Example

In this example we show a simple application of the method mosaic or table
lookup scheme to approximate the function f(z) = sin(z) over the interval
[0, 27] using 629 points equidistant along the domain of . In this case we illus-
trate the results using six membership functions over the input domain. Four
models are presented: three of the Mamdani type and one Takagi-Sugeno. The
three Mamdani models are created with three different types of membership
functions: triangular, polynomial and Gaussian. For the model using Takagi—
Sugeno rules only the results using triangular membership are illustrated.

Observe that the interpolations generated by the Mamdani models are men-
tioned in previous Chapter: linear for the triangular membership functions
(see Figure 2.1), polynomial for the polynomial membership functions (see
Figure 2.2) and between the neighborhoods of the consequences for the Gaus-
sian membership functions.

The best model is by far the Takagi-Sugeno model (see Figure 2.4). In
fact, in the figure it is difficult to distinguish the approximation from the
original function. Figure 2.4 shows some straight segments corresponding to
the consequences of the rules. The successful result of the Takagi-Sugeno can
be explained in part because the model exhibits 12 degrees of freedom (two
adjustable parameters per rule a} and b') in contrast with the Mamdani mod-
els with only 6 degrees of freedom (only one adjustable parameter per rule g').
Having more degrees of freedom can be beneficial as long as the number of
points is large enough and as long as they are well spread over the input do-
main (persistent excitation). Otherwise the generalization capabilities of the
model can be compromised.

Among the Mamdani models the best model is the model generated us-
ing Gaussian membership functions. The result is explained in part for the



26 2 Constructing Fuzzy Models from Input-Output Data

resemblance between the shapes of the sine function and the Gaussian mem-
bership functions. Also, it is interesting to observe how the “flat” sections of
the polynomial membership functions affect the approximation by generating
local plateaus in the function approximation.

Observe that the results of this example are only an illustration of the
method and are by no means a benchmark to judge the capabilities of some
membership functions or model types.

(b)
Figure 2.1. (a) Approximation generated by a Mamdani fuzzy model trained using
the mosaic or table lookup scheme using triangular membership functions with 6

membership functions. (-) Original function (- -) Approximation generated by the
fuzzy model (*) Consequences of the rules (b) Membership functions

2.2 Using Gradient Descent

This method requires the definition of the number of membership functions
and their shape. Normally the AND function is fixed to be the “product”
because an analytical expression for the gradient of the cost function is needed.
The initial position of the membership functions is another element that must
be chosen. The method proceeds as follows:

e For each of the p inputs of the system, distribute over the interval [a;, b;],
N; membership functions. The shape, the initial positions and the distri-
bution are user’s choices. The membership functions must cover the input
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Mosaic— Table Look Up Approximation of the fun (x)

(b)
Figure 2.2. (a) Approximation generated by a Mamdani fuzzy model trained using
the mosaic or table lookup scheme using polynomial membership functions with 6

membership functions. (-) Original function (- -) Approximation generated by the
fuzzy model (*) Consequences of the rules (b) Membership functions

Mosaic— Table Look Up Approximation of the fun ()

(b)
Figure 2.3. (a) Approximation generated by a Mamdani fuzzy model trained using
the mosaic or table lookup scheme using polynomial membership functions with 6

membership functions. (-) Original function (- -) Approximation generated by the
fuzzy model (*) Consequences of the rules (b) Membership functions
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(b)

Figure 2.4. (a) Approximation generated by a Takagi—Sugeno fuzzy model trained
using the mosaic or table lookup scheme using triangular membership functions with
6 membership functions. (-) Original function (- -) Approximation generated by the
fuzzy model (.-) Consequences of the rules (b) Membership functions

interval, and at least two membership functions should be placed on each
input domain.

Generate the rule base using all possible combinations among the an-
tecedents and the AND operator using “product”.

Initialize the value of the consequences using prior knowledge, least squares
or recursive least squares.

Optimize the value of the consequences ' and the parameters of the mem-
bership functions. The criteria will be to minimize the cost function de-
scribed in the previous section, but now the optimization will also adjust
the membership functions of the antecedents. The cost function can be
described as

1N

i i py\2
T= 336~ 1 0)) (212)
=1
where 6 is a vector representing all the “adjustable” parameters (conse-
quences, parameters of the membership functions) of the fuzzy system
f(.,.). The problem will be the minimization of the cost function J. This
minimization is a nonlinear, nonconvex optimization problem. The objec-
tive is to obtain an “acceptable” solution and not necessarily “the global
minima” of this cost function. Different schemes for optimization can be
applied to find this solution. Probably the simplest one will be the gra-
dient descent method. This method consists of an iterative calculation of
the parameters oriented to the negative direction of the gradient. The ex-



2.2 Using Gradient Descent 29

planation behind this method is that by taking the negative direction of
the gradient, the steepest route toward the minimum will be taken. This
descent direction does not guarantee convergence of the scheme; for this
reason, the o parameter is introduced and it can be modified to improve
the convergence rate and properties. Some choices of « are given by New-
ton and quasi-Newton methods [22].

oJ
00
« is sometimes called the “learning rate.” The gradient descent method

can be modified; for example, by calculating the consequences by means
of least squares (see ANFIS scheme [19]).

0k +1) = 0(k) + a (2.13)

The gradient of the cost function will be in general
R D Of (@ 0) N Of (a0
S S VNN Lo AL P L PP
i=1 1=1

Using the general expression of the fuzzy system can be parameterized as
) — A
7 =1
Fla) —=3 (2.15)

The updating of the consequence parameters will be independent of the pa-
rameterization of the membership functions and will be given by

N .
) 1 iy (@)
4D =)+ a ) (- S (2.16)
The expressions to update the parameters of the membership functions are
different for each parameterization. Special attention is devoted to the gra-
dient calculation to guarantee a 0.5 overlap between contiguous membership
functions. The updating formulas for some of the membership functions are
shown in the next sections.

Summary:

The gradient descent method calculates parameters on the antecedents and
the consequences of the fuzzy inference system. The method demands from
the user the definition of the initial location of the membership functions
of the antecedents. The method can be combined with a calculation of the
consequences by using least squares. In this case the method is known as
the ANFIS scheme. Such a method exhibits faster convergence, especially
for Takagi—Sugeno models.
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2.2.1 Gradient Updating for Trapezoidal Membership Functions

Assuming the parameterization given in the expression

i i opi i i : z; — dj i — ¢
wj(zi, aj, b3, cj, dj) = min | max bi-—ai-’o , max 1_di-—ci-70 1

b b (2:17)
the updating formulas will be
al(k+1) = al (k)
N .
IS = ) N ey () D03 ()
tad T l;f‘” @) en pa - *19)
b;-(k:—l—l)— (k)
N .
' — 1) - 1y Ha(a) Op ()
+0‘;T;(yl—f($ ))WW (2.19)
¢ (k+1) = ci(k)
N .
ASS @) N e ) )
HE P e DR (CR s Fal el
dé(k+1)— ;(k)
N .
' — 1) iy () O ()
”;Tg@l—f@))@@g) o 2V

where the set U is the set of rules that includes the function ué(w) in the
antecedents and

0 ifaf<al

O (wf ot b L
ESJ: o if al < af < B} (2.22)
a; AN ’
! 0 ifal> b
P ( t) 0 if 932 < aé.
,U,; i a;’.fxif : i t i
bl @z £ 65 <7 < (2.23)
! 0 ifal >0
9 2( t) 0 if J;f < cz.
,u‘j €L; _ di.—:cs . i t i
act (df_c;)z if ¢j < i < dj (2.24)
! 0 ifal>d
ot () 0 if 2t < c;
5 (i xt—cd L. ]
uajdi, : (d{l—ci)Z if ¢f < af <dj (2.25)
! 0 ifal>d
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It is important to remark that the updating should preserve the condition a?— <
b < ¢ < dj. This adaptation rule can be applied to triangular membership
functions by just making b% = c}.

2.2.2 Gradient Updating for Triangular Membership Functions
with Overlap %

The membership functions are parameterized by using only their modal val-
ues. This parameterization not only preserves the overlap but also reduces
the number of parameters to be tuned. Triangular membership functions are
parameterized by the position of their three vertices; but the condition of
overlap % makes the lower right vertex of one membership function to be at
the same position as the modal value of the next membership function. So,
instead of tuning three parameters (the vertices), only one parameter is tuned
for each membership function.

The parameterization for a triangular membership function using the
modal values as parameters is

M;(xi,méﬂfl,m;,m;ﬂ) = max |0, min wi_ méfl 11— fz — mé .
My T My My Ty
(2.26)
The updating formula will be
. , N oot t
mi(k+ 1) =mi(k) + a3 EJ;@))
t=1
= p(xt) Ops_y (x7) —l oo (at) Op(xf)
@~ 1) D ()
lezu Hi-a(@f)  Om; leZv wi(xf)  omj
_ zt) Opi(ah)
F 0 - platy S S
lew 'U’j+1(x7,) m;
(2.27)

where the sets U, V and W are the set of rules that includes the functions
iy (2), p5(.) and gl (.), respectively, and with

) 0 if 2t <mt_,
aﬂ;—l(xi) _ zifm; if ’Li ’ t i 9 28)
i~ ) G 7 M <z <mj (2.
’ 0 if o} > m}
0 if 2f <m!_,
% t
it m;_1—%; : 7 t i
Ops(zi) _ | Gtz mi <@ <mj (2.20)
omi ) M= g i gt i '
J (m},,—mi)? ifmj <aj <mji,

ot i
0 if z; >mj
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oui 1 (a) 0 if 2} < m
,uj+1 €T o xf—m}Jrl . i t i
i ) Gmiom)? if mi <y <mjyy (2.30)
J I :
0 if o7 > mjy,

Here the adaptation must be constrained such that the condition m§ < mg- 1
is preserved.

2.2.3 Gradient Updating for Polynomial Membership Functions

Assuming the parameterization given in the expression

0 if ; < (L;l
(zi — al)?(22; +al, — 3% )/(al, — 0% )3 if aé-i <z < b,
1, (x;) =<1 if b, <w; < c;
—(w; — dj,)? (2w + df, — 3ch)/ (¢, — db,)? if ¢, < x; < dj,
(2.31)
the expressions to update the parameters a?, b;-, c; and d;- are similar to the

ones used for the trapezoidal membership functions. Only the expression for
the gradient of the membership functions changes.

aé(k‘ +1) = aj-(k;)

N t (Et xt i SCt
o CIED S g o MEL I (o

N it
W' = (=) N~ 1y (") On (i)
+ g — f(z - v 2.33
> S - i T @)
i(k+1) = (k)
N it
' = f@") N 1y () O ()
+ g — f(z - - 2.34
; lezu( ( ))u](wﬁ) ot (2.34)
di(k+1) = d (k)
N i (ot
(y' — f(=")) | wy (") Op ()
ta @ - fa) o (2.39)
2 & wylar) od;
with
out (a) 0 if 2} < af
,U/Z €, bl.fzg 2 ai-fzz . i i
5@1 ={ 6% (a;)7£;§4 )i aj < zf < b} (2.36)
0 if xf > bl
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0 z( t) 0 if xﬁ < a,é.
i (T; (ai—zt)2(bi—zt) .. ; .
f;bz = —6% if a; < m‘; < bj (2.37)
! 0 if 2! > b
; 0 if 2t < ¢t
O (x}) (di—at)?(ci—at) ., ; o
o ) T g <mi<d (2.38)
! 0 it ot > di
P ( ty 0 if xﬁ < cg.
s (2 (c—a)2(di=al) .o 3 4
aa O e tG << (2.39)
! 0 if 2} > d!

The adaptation algorithm should preserve the condition a§- < b;'- < c;'- < d;

2.2.4 Gradient Updating for Polynomial Membership Functions

. 1 A
with Overlap ; and bj =c; =m;
The parameterization of the membership functions is made using only their
modal values. This parameterization guarantees the overlap of % with the
neighboring membership functions. The number of adjusted parameters is re-
duced: instead of adjusting four parameters (a;-, bs, ¢, d;-), for each member-
ship function, only one parameter mz- is adjusted. Observe that the overlap

% is preserved only if the parameters aé. 15 bj-, cé, d§—1 describing the polyno-
mial membership function are equal among each other and equal to the modal

value m; The parameterization using the modal values is as follows:

0 if & <mj_,

(1}1,—771;71)2(2I7;+m3-71—37713)

i —mi)® if mi_y < x; < mj

! Jz J . .

—(J;i—m}+1)2(27;i+m;+1—3m}) . i i
1 if mj <a; <mjyy

0 if:z:i>m;.+1

w5, () = (2.40)

The parameters mé are updated with a similar formula as the one used
for the triangular membership functions with overlap %:

mé»(k:—l—l) :m§(k)+azw

~ B
=l t ,ul(xt) 8/1’]—1( 215) 1 th ,ul(a;t) 8,uj (1‘5)
lezu(y K ))%71(375) 0 ; * ;(y ut ))/L;(xﬁ) 8m;
1 2t pa(z’) aﬂﬁl(mf)
+ l;\](y f( )),LL;.H(‘T?) 37713

(2.41)
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where the sets U, V and W are the set of rules that includes the functions
15-1(), p5(.) and pfq (), respectively, and with

ot () 0 if 2f <mf_,
Hi—1\Ti) (mj_y—z)*(my—ai) o t i
o STt M <ei<my o (242)
! 0 if zt > m?
j
0 if 2t < m§.71
] (m.'—lixi)Q(mi 71’:) . i t i
Ops(x}) )~ e ifmfi_y <y <mj 2.43
W n _6(m§+1*z£ Q(m.?*mf) i mi < ot < ( ’ )
! (mi—mi gt T S TS Mg
0 if o} >mh
et i
8M;+1(-T§) (m".Jrl—y(t))Z(m'i —zh) if i < mi .
g v j Z; j i) . i i
T =\ 0 e ifmj <a; <mjy,y (2.44)
am] J J+1 X
0 if af >m,,

Observe that the adaptation must preserve the condition m} < mj, , .

2.2.5 Gradient Updating for Gaussian Membership Functions

The parameterization of the membership functions is given by

pi(at) = exp(—(F—2)?) (2.45)
The updating formula for the parameters E; and O’;» will be given by
(k4 1) = zi(k)
n O‘i (y' —jgf(xt)) Z2(g]l _ f(xt)),ul(xt)xg :;J (2.46)

t=1 leu 9

oi(k+1) =0}k

NE

t_ f(gt xt — z%)?
+a w > 27 - f(fct))uz(wt)(l(ﬂg]) (2.47)

leu

~
Il
—

where U is the set of rules with the antecedent term g (.).

2.2.6 Illustrative Example

This example uses the same simple sine function presented in Section 2.1.1.
The same 629 equidistant points were used to approximate the function
f(z) = sin(z) over the interval [0,27]. In this case the number of mem-
bership functions is 6 and they were initially equally distributed along the
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input domain in the same way as in the example of Section 2.1.1. Again, we
prepared four models: three of the Mamdani type and one Takagi—Sugeno.

The three Mamdani models were created with three different types of mem-
bership functions triangular, polynomial and Gaussian, and they were trained
during 400 iterations (epochs) using pure gradient descent. For the model
using Takagi—Sugeno rules, only the results using triangular membership are
illustrated. The Takagi-Sugeno model was trained during 400 iterations using
a combination of gradient descent and least squares (ANFIS Scheme [19]).
The ANFIS scheme was more efective in the Takagi—Sugeno scheme showing
a faster convergence. For the Mamdani models, the use of ANFIS or “pure”
gradient descent did not show major differences.

Observe that all the approximations are better than the approximations
given by the models obtained with the method of mosaic or table lookup. The
Mamdani model with ¢riangular membership functions improves the approx-
imation by extending the overlap of the most external membership functions
(see Figure 2.5). Observe that the function no longer crosses the points of the
consequences and the interpolation is no longer linear, all because the overlap
of the membership functions is no longer %

On the other hand, the Mamdani models using polynomial and Gaussian

membership functions improve the approximation by narrowing the central
membership functions and putting their centers closer (see Figures 2.6 and
2.7). The improvement shown by the approximation using polynomial mem-
bership functions (see Figure 2.6) is very remarkable compared with the ap-
proximation obtained with the simple mosaic or table lookup method.
The Takagi—Sugeno model shows again a good approximation with some im-
provement as shown in Table 2.2, but compared with the other models the
improvement brought by the gradient descent method was not as significant
as it was for the other models. However, observe that even that the member-
ship functions did not have significant changes; the functions describing the
consequences show completely different slopes.

In general, the improvement in the approximation provided by the tuning
of the membership functions using the gradient descent method is clear. The
observed improvement, which in one case (Mamdani polynomial model) was
of almost two orders of magnitude, is partially explained by the increased
number of degrees of freedom (consequences + parameters of the membership
functions) introduced in the gradient descent method (see Table 2.2).
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Gradient Descent Approximation of the fur n(x)

(b)
Figure 2.5. (a) Approximation generated by a Mamdani fuzzy model trained using
the gradient descent method using triangular membership functions with 6 mem-
bership functions initially equally spaced. (-) Original function (- -) Approximation
generated by the fuzzy model (*) Consequences of the rules (b) Membership func-
tions after training

Gradient Descent Approxima tion of th

(b)
Figure 2.6. (a) Approximation generated by a Mamdani fuzzy model trained using
the gradient descent method using polynomial membership functions with 6 mem-
bership functions initially equally spaced. (-) Original function (- -) Approximation
generated by the fuzzy model (*) Consequences of the rules (b) Membership func-
tions after training
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Gradient Descent Approximation of the fus

(b)
Figure 2.7. (a) Approximation generated by a Mamdani fuzzy model trained using
the gradient descent method using polynomial membership functions with 6 mem-
bership functions initially equally spaced. (-) Original function (- -) Approximation
generated by the fuzzy model (*) Consequences of the rules (b) Membership func-
tions after training

Gradient Descent Approximation of the function sin(x;

(b)
Figure 2.8. (a) Approximation generated by a Takagi—Sugeno fuzzy model trained
using the mosaic or table lookup scheme using triangular membership functions with
6 membership functions equally spaced. (-) Original function (- -) Approximation
generated by the fuzzy model (.-) Consequences of the rules (b) Membership func-
tions after training
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Table 2.2. Approximation Error (3°%%[f(z) — f(z)]*)of the Different Models
Trained with the Mosaic or Table Lookup Scheme and the Gradient Descent Method

for 400 Steps.

Table look up|Gradient Descent
Model Error | DOF | Error DOF
Mamdani triangular M.F. | 1.3392| 6 |0.0615 24
Mamdani Gaussian M.F. [0.2378| 6 [0.0449 18
Mamdani polynomial M.F.|12.9666| 6 [0.1755 30
Tak.Sug. triangular M.F. |0.0206 | 12 |0.0117 30
DOF=degrees of freedom number of adjustable parameters

2.3 Using Clustering and Gradient Descent

The methods studied so far had placed the fuzzy sets of the input domains on
their initial positions according to the choice made by the designer (typically
equally distributed). Two choices has been made by the designer — the number
of membership functions and their initial distribution. The methods based on
clustering aim to obtain both parameters at the same time, the number of
fuzzy sets needed to make the function approximation and their distribution
along the input domains.

The methods based on clustering are considered as data-driven methods.
The main idea of these methods is to find structures (clusters) among the data
according to their distribution in the space of the function and assimilate each
cluster as a multidimensional fuzzy set representing a rule. The cluster proto-
types can be either a point (to construct Mamdani models) or a hyperplane
(to construct Takagi—Sugeno models).

The fuzzy inference system is constructed by means of projecting the clus-
ters into the input space and approximating the projected cluster with a one-
dimensional fuzzy set. The advantage of these methods is that they generate
automatically the membership functions, leaving as the user’s choices only
the parameters of the clustering algorithms (number of clusters and distance
function). According to the type of model to be constructed the method will
be slightly different. Here is a summary of the methods:

2.3.1 Algorithm for Mamdani Models

e Collect the data and construct a set of vectors Zt = {z*",y'} where z*
and gyt are, respectively, the inputs and the output of the function. Observe
that here we assume z! € R” and y' € R.

e Search for clusters using the Fuzzy C-means algorithm [2] or the mountain-
clustering algorithm [4] for problems where the dimension of the input
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space is small. Appendix B includes a description of the mentioned algo-
rithms.

Project the membership functions from the partition matrix U into the
input space.

Approximate the projected membership function using convex member-
ship functions (triangular, Gaussian, polynomial, trapezoidal, etc.)
Construct the rules with the projected membership functions.

Calculate the consequences using recursive least squares.

Adjust the parameters of the antecedents (if needed) using gradient de-
scent.

2.3.2 Algorithm for Takagi—Sugeno Models

Collect the data and construct a set of vectors Zt = {z!",y'} where !
and y® are, respectively, the inputs and the output of the function. Observe
that here we assume z¢ € ®" and y' € R.

Search for clusters using the Gustafson and Kessel (G-K) algorithm [3].
Appendix B describes the G-K algorithm.

Check for similarities among the clusters. Do two clusters describe a similar
hyperplane?

Project the membership functions from the partition matrix U into the
input space.

Approximate the projected membership function using convex member-
ship functions (triangular, Gaussian, polynomial, trapezoidal, etc.)
Construct the rules with the projected membership functions.

Generate the consequences using the covariance matrices of each cluster.
Calculate the consequences that are not covered by the clusters using re-
cursive least squares.

Adjust the parameters of the antecedents (if needed) using gradient de-
scent.

Summary:

The clustering + gradient descent method calculates the initial location
of the membership function by projecting the partition matrices obtained
from a clustering applied to the input—output data. The consequences are
generated from the centers of the clusters and for the Takagi—Sugeno mod-
els from the centers and their covariance matrices. The parameters can be
refined to improve the approximation by applying gradient descent.

2.3.3 Illustrative Example

This example uses the same function (f(z) = sin(z)) presented in Sections
2.1.1 and 2.2.6. The data are composed of 629 equidistant points that were
used to approximate the function f(z) = sin(z) over the interval [0, 27]. In
this case the models were constructed based in two clustering procedures.
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Fuzzy C-Means to construct Mamdani models and Gustafson and Kessel to
construct a Takagi—Sugeno model. For both procedures the number of clusters
selected a priori was 6 and the stopping criteria e = 5 x 107°. This selection
was made such that the results are comparable with the ones shown in previous
examples. Both clustering algorithms were executed and they generated the
clusters shown in Figures 2.9(a) and 2.10(a). Observe that the cluster of the
G-K algorithm are characterized by their center and “main direction” of its
covariance matrix. The partition matrix was projected over the input domain
obtaining the membership functions shown in Figures 2.9(b) and 2.10(b).

(a)

Membership functions from the projected Fuzzy C—Means clusters

(b)
Figure 2.9. (a) Center of the clusters found by the Fuzzy C-means algorithm.

Original function (-) Center of the clusters (*) (b) Membership functions projected
from the partition matrix U

The projected membership functions obtained from the partition matrix
U are approximated by convex membership functions as they are shown in
Figures 2.11 and 2.12.

The rule base was constructed and the models were further optimized
using gradient descent for 400 steps. Figures 2.13 and 2.14 show the approx-
imation of the function. It is important to comment that for the Mamdani
models there are little differences with the models shown in previous examples,
but it is not the case of the Takagi-Sugeno models. Observe the orientation
of the consequences of the rules, which are almost tangent to the function.

Table 2.3 summarizes the results obtained with the three methods shown.
Perhaps the most remarkable results are the improvement of the models using
Gaussian functions. The reason for such a benefit from the clustering can be
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Original function with G—K clusters

Membership functions from the projected G-K clusters

(b)

Figure 2.10. (a) Clusters found by the G-K algorithm. Original function (-) Center
of the clusters (*) Main direction of the covariance matrix (.-) (b) Membership
functions projected from the partition matrix U

explained by the strong similarity between the projected partition function
from the clusters and the Gaussian membership functions. Observe that these
results are simple illustrations of the methods and do not represent an abso-
lute benchmark. For other functions the performance exhibit by the models
will be different.

Table 2.3. Approximation error (3%%°[f(z) — f(z)]?)of the Different Models

=1
Trained with the Mosaic or Table Lookup Scheme, the Gradient Descent Method
for 400 Steps and Clustering Gradient Descent Method for 400 steps)

Table lookup|Gradient descent|Clustering + GD
Model app. error app. error app. error
Mamdani triangular M.F. 1.3392 0.0615 0.0858
Mamdani Gaussian M.F. 0.2378 0.0449 0.0037
Mamdani polynomial M.F.| 12.9666 0.1755 0.1959
Takagi-Sugeno model. 0.0206 0.0117 0.5058
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Membership functions from the projected Fuzzy C—Means clusters

Polynomial approximation of the projected Membership Functions

(b)

Triangular approximation of the projected Membership Functions

(c)

Gaussian approximation of the projected Membership Functions

(d)

Figure 2.11. Membership functions for Mamdani models.(a) Membership functions
projected from the partition matrix U (b) Approximation with polynomial M.Fs.
(c)Approximation with triangular M.Fs. (d) Approximation with Gaussian M.Fs.
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Membership functions from the projected G-K clusters

(b)
Figure 2.12. Membership functions for Takagi-Sugeno models.(a) Membership

functions projected from the partition matrix U from the G-K clustering (b) Ap-
proximation with polynomial M.Fs.
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Clustering & Gradient Descent Approximation of the function sin(x)

— sinG)
Mamdani FIS Polynomial MF
«_Consequences

(a)

Clustering & Gradient Descent Approximation of the function sin(x)

Mamdani FIS Triangular MF
*_Consequences

(b)

Clustering & Gradient Descent Approximation of the function sin(x)

— sneo
Mamdani FIS Gaussian MF
“ »_Consequences

(d)
Figure 2.13. Function approximation of the models obtained using clustering and
gradient. Original function (-) Approximated function (—) Consequences (*) Conse-
quence of the TS model (-.). (a) Membership functions projected from the partition
matrix U (b) Approximation with polynomial M.Fs. (c)Approximation with trian-
gular M.Fs. (d) Approximation with Gaussian M.Fs.
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Polynomial MFs after Clustering & Gradient Descent Tuning

Triangular MFs after Clustering & Gradient Descent Tuning

Gaussian MFs after Clustering & Gradient Descent Tuning

(b)

Polynomial MFs after G—K Clustering & Gradient Descent Tuning

(c)

(@)

45

Figure 2.14. Membership functions for the models obtained by clustering and gra-
dient descent optimization.(a) Mamdani model with polynomial M.Fs. (b) Mamdani
model triangular M.Fs. (¢) Mamdani model with Gaussian M.Fs.(d) Takagi-—Sugeno

model with polynomial M.F's.



46 2 Constructing Fuzzy Models from Input-Output Data
2.4 Using Evolutionary Strategies

The evolutionary strategies are computational algorithms that use methods
derived from the concept of “natural evolution.” Some of the methods include
reproduction, mutation and selection. The use of these algorithms has been
oriented to the search of parameters such that a certain computational entity
can achieve some goals.

In this case the computational entity will be a fuzzy system, the goal will
be to approximate a function with certain accuracy and a limited complexity
and the parameters could be the number of membership functions, their dis-
tribution, etc.

Basic methods in these strategies are the so-called genetic algorithms [23].
In genetic algorithms, the data are represented as binary strings. The param-
eters are encoded on these binary strings. It is important to remark that the
efficiency of these techniques is strongly affected by the “code book” used to
construct the strings [24]. Initiallty, a group of these strings is generated as
the initial “population.” The fulfillment of the goal is tested for each element
of the population (cost evaluation) and a “fitness” value is generated such
that, if the value is larger, the objective is better achieved. The procedure can
be outlined as follows:

e Take the initial population N and evaluate the “fitness” of the individuals
(binary strings).

e Reproduce the population according to the “fitness,” such that those indi-
viduals with higher values of fitness will have a higher probability of being
reproduced.

e Make random couples among the individuals of the reproduced population
and apply the “crossover” operation. The crossover operation takes two
individuals and generates a random number | < L where L is the length
of the string. This operation generates two new individuals by taking the
first | elements of one string and the remaining L — [ element from the
other string. For example, take the first string A;AsA3A4A5Ag and the
second string BBy B3B4BsBg. In this case L = 6. Suppose | = 2. The
crossover will be represented as

A1A2A3A4A5A6

By By B3 By Bs Bg

AlAngB4B5B6

BlBQA3A4A5A6
e Finally, some members of the population are selected for “mutation.” A
random number [ is generated such that 0 < [ < L for each selected
member and the bit [ is flipped. Suppose the string A1 AsA3A4A5A¢ =

101100 is selected for mutation and [ = 4. The string after mutation is
A1A2A3A4A5A6 = 101000.
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e The “fitness” of the generated population is evaluated and the procedures
of reproduction, crossover and mutation are repeated for a given number
of times (generations).

These algorithms are very powerful for the search of “global” solutions in the
search space, and there is a probability equal to 1 that the algorithm will find
the “global solution” after a number of generations given by [20]

1

1-(1 —pMA;(’L’”)N

(2.48)

where pj is the probability of mutation, N,y is the number of global solutions
in the final population, L is the length of the strings and N is the number of
strings in the population.

The application of these algorithms to the design of fuzzy systems is mainly
oriented to the generation of the number and distribution of the membership
functions. One example of codification is: Assume a number of triangular,
trapezoidal or polynomial membership functions with overlap % have been
fixed for each input. Then the string will represent the distance from the pre-
vious point, as shown in Figure- 2.15. The length of the string is L = 28, four
groups of seven bits. An example of mutation is shown in Figure- 2.16, where

0011111 0101110 | 0011001 |0011011
31 . 46 25 27 o

\
\
\ ~ ~ ~

\ ~ ~ ~

0 31 77 102 129

Figure 2.15. Codification of the membership functions

[ = 10. Finally, an example of the effect of the crossover operation is shown
in Figure- 2.17, where [ = 10. Other codification methods and details can be
seen in [20].
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0011111 (0101110 |0011001 0011011
31 46 25 27

0 31 77 102 129

l

0011111 [0111110 |0011001 0011011
31 62 25 27

0 31 99 124 151

Figure 2.16. Mutation operation in a fuzzy partitions

Summary:

The evolutionary strategies are mainly based on discrete optimization al-
gorithms such as the genetic algorithms. The method can calculate param-
eters such as number and location of the membership functions.
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Figure 2.17. Crossover operation between two fuzzy partitions
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2.5 Generalization and Consequences Estimation

The issue of generalization is quite related with the issue of consequence esti-
mation in fuzzy systems, as will be explained in the following lines. General-
ization is the capacity of the designed system (the fuzzy inference system) to
generate “good” output values when new inputs are presented to the system.
Two issues limit the capacity of generalization:

e Lack of excitation during model construction
e Too many degrees of freedom in the model

These two issues are strongly related because as the degrees of freedom grow
the data must excite all the new modes introduced by the new degrees of
freedom. There are two ways to improve the generalization:

e Reducing the degrees of freedom with the drawback of reducing the accu-
racy of the approximation.

e Generating many data for all possible operating modes. For some practical
cases, this is almost an impossible task.

Assuming the input—output data are given in advance, the challenge is to de-
sign a system with good approximation properties and good generalization.
The application of the methods reviewed in previous sections postulates the
generation of the consequences of the rules by means of least squares. As
mentioned in Section 2.1, the calculation of the least squares using Equa-
tion (2.11) will be possible only if rank(WTW) = dim#@. In cases where
rank(WTW) < dim 6, the estimation will be very poor and the consequences
of those unexcited rules will be very far from their real value. A reasonable
solution is to initialize the rules using information given by a simpler model
(with very few degrees of freedom) and to improve the estimation of the con-
sequences of those rules that have been excited using recursive least squares.
The advantage of the recursive least-squares algorithm is that it only updates
those terms that have been excited. The procedure can be detailed in two
steps.

2.5.1 Consequence Initialization

The initialization of the consequences can be done in two ways using the
information given by a simple model with sufficient excitation or using expert
knowledge. The use of expert knowledge demands, the designer that initialize
those rules with empirical knowledge. The initialization using a simple model
with sufficient excitation operates as follows:

e The smallest fuzzy model f(x!) is constructed by placing only two member-
ship functions (triangular or polynomial) on each input with their modal
values placed, respectively, in the maximum and the minimum values of the
universe of discourse and fixing the overlap value in % This distribution
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of the membership functions will generate a fuzzy system with 2V rules
where N is the number of inputs. This fuzzy system has the property that
any input presented will excite the whole set of rules. This property guar-
antees enough excitation such that the 2%V consequences can be estimated
using the least-squares solution given in the Equation (2.11).

e [f the constructed model uses triangular or polynomial membership func-
tions with overlap %, the consequences of the rules can be initialized using

the model f(z?) as follows:

yjljzij _ f(Mjljéij) (2.49)
with S
MIrI2IN — {m;l,m52, . ,mé\]fv}T

where mi-i are the modal values of the membership functions of the fuzzy
model f(x?). If the model is not constructed as described above, the initial
consequences can be estimated by using a data set generated from the
model f (x?), so that the condition of sufficient excitation is guaranteed.
This can be done just by generating input data regularly distributed and
with “enough” density over the input space U.

This initialization method guarantees that the constructed fuzzy model will
be at least as good as the best multilinear model, if the smaller model is
constructed with triangular membership functions, or at least as good as the
best third-order multipolynomial model. These bounds guarantee the quality
of the generalization even if the training data have no information about some
of the regions described in the rule base.

2.5.2 Consequence Estimation

Once the consequences have been initialized, the recursive least-squares algo-
rithm can be applied to improve the estimation. The algorithm is described
as follows using the notation presented in Section 2.1:

0k + 1) = 0(k) + (k) [y — WO (k)] (2.50)

with Wt = {w! wi, ..., wk}, 0(k) = {g*(k),5%(k),...,y"(k)} and:

V(k) = P(k+1)Wiia (2.51)
1 t
— T EOWT S 1P(k)W (2.52)
P(k+1) = [I —y(k)W'P(k) (2.53)

with the initial value P(0) = af, where « is a large scalar value. The procedure
is repeated and each time the index k is incremented. Also, the index t is
incremented until it reaches the value N, and then the value of t is reset to
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t = 1. The initial values of #(0) are the initialization values given by the
procedure described before. The following example is presented in order to
illustrate how the present method improves the generalization.

Ezxample 2.1. The objective is to approximate the function of two variables
f(z,y) = 62 + 4y + cos(mx) + cos(my) + 50 on the interval (z,y) € U U =
[—2,2] x [-2,2]. The function is plotted in Figure- 2.18.

Original Function

f(x.y)

Figure 2.18. Function to be approximated f(z,y) = 6z+4y-+-cos(mz)+-cos(my)+50

The function is sampled at 153 points. The sampling was done such that
only one point falls in the interval V' = [—2,0] x [—2,0]. The data points are
depicted in Figure 2.19.

The function will be approximated by a fuzzy system using five triangular
membership functions equally distributed on each domain with overlap 0.5.
A total of 25 rules is generated and the consequences will be estimated using
three methods: least squares (LS), recursive least squares (RLS) and RLS with
the consequence initialization method explained in Section 2.5.1. Observe in
Figure 2.20 that the LS method and the “pure” RLS fail to approximate the
function in the domain V and even the LS solution fails to make a good
approximation in the region where the “training” points were selected.

The third method as was explained in Section 2.5.1 first calculates the
smallest fuzzy model f (z,y) with only two membership functions with overlap
0.5 covering the whole domain on each input. The model has four rules that
are excited by all the points such that the consequence estimation does not
represent any numerical problem. The approximation generated by this model
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Data used to construct the model
2 — . T T

051 . . .

-2 L I I I I LR ’ P
-2 -15 -1 -0.5 0 0.5 1 15 2

Figure 2.19. Sampled points to approximate the function f(z,y) = 6z + 4y +
cos(mx) + cos(my) + 50

Model Without Initalzation Caleulated LS Model Without Initalzation Calculated with RLS.
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Figure 2.20. (a) Approximation obtained with the consequences calculated using
LS (b)Approximation obtained with the consequences calculated using RLS

is shown in Figure 2.21. Equation (2.49) is used to initialize the consequences
of the rules in the model with 25 rules such that it generates an approximation
perfectly equivalent to the approximation given by the model f (z,9).

Then the consequences are estimated using RLS. The results are shown in
Figure 2.22. Observe that the approximation is good in the whole domain U
and there are no big changes in the region V' where almost no data exist during
the training. A final comparison was performed by generating 141 points in
the domain U but excluding the region V' (the same conditions used for the
training) to observe the approximation error in the “well-excited” region. The
results are presented in Table 2.4, and the error index is calculated as F =
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solution is badly conditioned. The RLS solution is better because it updates
only the excited rules but the badly excited rules are not updated, making a
bad generalization on “poorly” excited regions. Finally, the best performance
is by far the one of the proposed method. The reason is that this method
assumes the generalization given by a “well”-excited model (f(z,y)) and the
tuning will only improve the approximation on these regions where there is
enough excitation.

Table 2.4. Example: Comparison Between Methods for Consequences Calculation

Method Approx. error
Least Squares 0.3455
Recursive Least Squares 0.1659
RLS with initialization using f(z,y)|  0.0146

Summary:

Fuzzy models should make good predictions even when they are asked to
predict on regions that were not excited during the construction of the
model. The generalization capabilities can be controlled by an appropriate
initialization of the consequences (prior knowledge) and the use of the
recursive least squares to improve the prior choices. The prior knowledge
can be obtained from the data.

2.6 Example of an Industrial Application

This section presents an industrial application of a static model. In this case
the system helps to supply hot water for domestic use. The water is heated
using steam coming from the cooling circuit of an electric power plant. The
heat is transferred to the cold water by a heat exchanger (see Figure 2.23).
Since the demand of hot water (F},,) and the supply of steam change (Fsteqm
and Tgteam ), the system must be commanded by a control system to guarantee
a supply of hot water at a constant temperature (Th,,) (Set-point = 60°C).
This objective is achieved by combining a feedback controller constructed
with a PID (proportional integral derivative) and a feed-forward controller
constructed using a fuzzy model (see Figure 2.24). The fuzzy model is con-
structed using experimental data supplied by the manufacturer of the heat
exchanger. The fuzzy model is constructed to map the flow of water (F},y,),
the temperature of the steam (Tsteqm) and the temperature of the cold water
(Tew) into a steam flow (Flsieqm) to guarantee that the hot water is supplied
at the correct temperature (60°C).
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Fsteam = f(Fhun Tsteama Tcw)

Since the function is constructed using nominal data and the controller is not
supposed to be “fine-tuned” on each installation, the feed-forward action will
be insufficient to guarantee the supply of the water at the correct tempera-
ture. For this reason an additional feedback controller is put in place.

Steam

Condensate
-—CF

PID Slave,

Dt
t

Tew

- - =
\VZ| Thw Fhw
60°C
Shower

LAY

II v
!
’ .

\
\

Figure 2.23. Diagram of the installation of the heat exchanger including the in-
strumentation and the control system

Fuzzy Fhvvvv
5N

Nominal

Fsteam

_ Setpoint
Sp =60
)~ PID Fsteam | PID Heat
Master / Slave Exchanger
Thw Fsteam

Figure 2.24. Diagram of the control system for the heat exchanger

The data supplied by the manufacturer of the heat exchanger are shown in
Figure 2.25 together with the result of the approximation [see Figure 2.25(d)].
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The system was implemented using triangular membership functions since
the memory and the computational time available in the microcontroller were
limited. Figure 2.26 shows the membership functions of the feed-forward con-
troller.

Flow of water into the shower — F,

Imin

sample

wwwwww

(b)

Temperature of the Steam

)

soan

N

imin

SSSSSS

Figure 2.25. Signal collected from the heat exchanger to guarantee a nominal
temperature of 60°C (a) Flow of hot water F., (b) Temperature of the cold water
Tew (¢) Temperature of the steam Tsieqm (d) Flow of steam Fsieqm (-) Original value
(--) Value generated by the fuzzy system
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Figure 2.26. Membership functions of the feed-forward controller

2.7 Conclusions

This chapter has presented different methods to construct fuzzy models that
approximate nonlinear functions. The issue of lack of excitation and gener-
alization has been analyzed and a method to guarantee good generalization
has been proposed. This method guarantees a lower bound in the quality of
the model (the fuzzy model will be at least as good as the best multilinear
approximation). The example of the industrial application shows a method to
construct feed-forward controllers using fuzzy inference systems for function
approximation.



2 Springer
http://www.springer.com/978-1-85233-828-2

Fuzzy Logic, Identification and Predictive Control
Espinosa Oviedo, J.J.; Vandewalle, |.P.L; Wertz, V.
2005, XX, 264 p., Hardcowver

ISBN: @78-1-85233-828-2





