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Neural Networks Approach

3.1 Introduction

Neural networks are massively parallel, distributed processing systems
representing a new computational technology built on the analogy to the human
information processing system. That is how we know the neural networks today,
but the evolution of artificial neural networks, from the early idea of neuro-
physiologist Heb (1949) about the structure and the behaviour of a biological
neural system up to the recent model of artificial neural system, was very long. The
first cornerstones here were laid down by the neurologists McCulloch and Pitts
(1943) who, using formal logic, modelled neural networks using the neurons as
binary devices with fixed thresholds interconnected by synapses. Nevertheless, the
list of pioneer contributors in this field of work is long. It certainly includes the
names of distinguished researchers like Rosenblatt (1958), who extended the idea
of the computing neuron to the perceptron as an element of a self-organizing
computational network capable of learning by feedback and by structural
adaptation. Further pioneer work was also done by Widrow and Hoff (1960), who
created and implemented the analogue electronic devices known as ADALINE
(Adaptive Linear Element) and MADALINE (Multiple ADALINE) to mimic the
neurons, or perceptrons. They used the least mean squares algorithm, simply called
the delta rule, to train the devices to learn the pattern vectors presented to their
inputs. In 1969, Minsky and Papert (1969) portrayed perceptron history in an
excellent way but their view, that the multilayer perceptron (MLP) systems had
limited learning capabilities similar to the one-layer perceptron system, was later
disproved by Rumelhart and McClelland (1986). Rumelhart and McClelland in fact
showed that multilayer neural networks have outstanding nonlinear discriminating
capabilities and are capable of learning more complex patterns by
backpropagation learning. This essentially terminates the most fundamental
development phase of perceptron-based neural networks.

After a period of stagnation, the research interest was turned to the possible
alternative network variants that have been found in self-organizing networks
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(Amari and Maginu,1988), resonating neural networks (Grossberg, 1988),
Sfeedforward networks (Werbos, 1974), associative memory networks (Kohonen,
1989), counterpropagation networks (Hecht-Nielsen, 1987a), recurrent networks
(Elman, 1990), radial basis function networks (Broomhead and Lowe, 1988),
probabilistic networks (Specht, 1988), etc. Nevertheless, up to now, the most
comprehensively studied and, in engineering practice, most frequently used neural
networks are the multilayer perceptron networks (MLPN) and radial basis function
networks (RBFN), which are frequently the subject of further research and
applications.

Neural networks have, since the very beginning of their practical application,
proven to be a powerful tool for signal analysis, features extraction, data
classification, pattern recognition, efc. Owing to their capabilities of learning and
generalization from observation data, the networks have been widely accepted by
engineers and researchers as a tool for processing of experimental data. This is
mainly because neural networks reduce enormously the computational efforts
needed for problem solving and, owing to their massive parallelity, considerably
accelerate the computational process. This was reason enough for intelligent
network technology to leave soon the research laboratories and to migrate to
industry, business, financial engineering, efc. For instance, the neural-network-
based approaches developed and the methodologies used have efficiently solved
the fundamental problems of time series analysis, forecasting, and prediction using
collected observation data and the problems of on-line modelling and control of
dynamic systems using sensor data.

Generally speaking, the practical use of neural networks has been recognized
mainly because of such distinguished features as

e general nonlinear mapping between a subset of the past time series values
and the future time series values

e the capability of capturing essential functional relationships among the
data, which is valuable when such relationships are not a priori known or
are very difficult to describe mathematically and/or when the collected
observation data are corrupted by noise

e universal function approximation capability that enables modelling of
arbitrary nonlinear continuous functions to any degree of accuracy

e capability of learning and generalization from examples using the data-
driven self-adaptive approach.

3.2 Basic Network Architectures

The model of the basic element of a neural network i.e. the neuron, as still used
today was originally worked out by Widrow and Hoff (1960). They considered the
perceptron as an adaptive element bearing a resemblance to the neuron (Figure
3.1). A neuron, as the fundamental building block of a neural information
processing system, is made up of (see Figure 3.1)

e acell body with an inherent nucleus
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¢ dendrites that feed the external signals to the cell body

e axons that carry the signals out of the cell to other cell bodies

This configuration was translated in terms of analogue computational technology

as shown in Figure 3.1, where

e the core part of the element, called a perceptron, contains a summing

element X and a nonlinear element NL

e the multiple signal inputs x, are connected via adjustable weighting

elements w, with the core part of the element
e the signal output(s) y,

An additional perceptron input w,, called the bias, is understood as a threshold

(switching) element.

Wy
X1 Wo
W, Summing
X, = Element
Neuron w,

Inputs weights X,=1 bias

output

Nonlinear
Element

—> Y,

Perceptron

Figure 3.1. Symbolic representation of neuron and perceptron

The output signal is defined as

Vo =f(iw[x[+w0)

i=1
and the bias follows the relationship

wa+w0 >0

meaning that the perceptron fires, i.e. it is activated and produces an output signal

when this condition is met, otherwise not.

Our attention should now be shifted to the question of what nonlinear function
should be implemented in the core part of the perceptron as its activation function.
The early attempt of Block (1962) to select the binary step function for this
purpose was later modified in favour of a sigmoid activation function (Figure 3.2).

A Frs—ag
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sigmoidal function: f(x) = 1/(1+exp(-x))

Figure 3.2. Sigmoid activation function

The perceptron basically learns through a training process, based on a set of
collected data. During the training, the perceptron adjusts its interconnection
weights according to the data presented at its input. For adjusting the perceptron
weights, Widrow and Hoff (1960) originally proposed using the delta rule, i.e. the
recursive gradient-type of learning algorithm (the so-called a-LMC Algorithm)
that adds to the current weight value w(k) a compensation term xe(k)x(k), to build
the next weight value

w(k + 1) = w(k) + ne(k)x(k),

where 7 is a proportionality term, g(k) is the error at the adjusting step 4, and x(k)
the value of the input signal at the current step £.

Although rather simple, the delta learning rule has, in the majority of cases,
demonstrated a high efficiency and a high convergence speed in perceptron
training. Even so, a single perceptron alone cannot learn enough to be capable of
solving more complex problems because it’s radius of computational action is
rather restricted by the simplicity of it’s structure. This was demonstrated in an
example of a perceptron as a pattern classifier. Owing to it’s restricted structural
capabilities the perceptron can only solve the linearly separable problems. 1t is
thus far away from being a general-purpose processing device. But, the
fundamental erroneous belief of Minsky was that even multiple perceptron layer
devices cannot build a universal general-purpose processing machine. This was
disproved by building the multilayer perceptrons (MLPs) that, in addition to the
perceptron input layer and output layer, also include so-called hidden layers
inserted between the input and the output layer to form a cascaded network
structure with extended connectionist capabilities (see Section 3.3.1). The term
hidden layer was selected for the intermediate layer because this layer is only
accessible through the input and/or the output layer but not directly. In practice,
one hidden layer is usually sufficient to build the network with the extended
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computational capabilities for solving the majority of practical problems. Only in
some rare cases some additional hidden layers could be needed. This also holds in
time series analysis and forecasting applications.

Accidentally, the concept of the perceptron emerged at that time when the
difficulties in solving complex intelligent problems using classical computing
automata of John von Neumann had grown to be insurmountable. It was realized
that, for solving such problems, massive, highly parallel, distributed data
processing systems are required. Building of such highly sophisticated
computational systems was already put on the agenda of some leading research
institutions. However, discovery of the perceptron as a simple computing element
that can easily be mutually interconnected with other perceptrons to build huge
computing networks was viewed as a more promising way for development of the
massive parallel computational systems needed at that time. Minsky and Papert
(1969) expected that the use of more complex, MLP configurations could help in
building the future intelligent, general-purpose computers with learning and
cognition capability. This was very soon proven using perceptrons as the basic
elements of ADALINE (A) in single-layer perceptrons to build a multi-layer
MADALINE architecture (see Figure 3.3).

ADALINE outputs
(A)
ADALINE ADALINE ADALINE
Layer-1 Layer-2 Layer-3

Figure 3.3. ADALINE-based MADALINE

In 1950, Rosenblatt used a single perceptron layer for optical character
recognition. It was a multiple input structure fully connected to the perceptron

layer with adjustable multiplicative constants W, called weights. The input signals,

before being forwarded to the processing elements (i.e. perceptrons) of the single
network layer, are multiplied by the corresponding values of the weighting
elements. The outputs of the processing units build a set of signals that determine
the number of pattern classes that can be distinguished in the input data sets by the
linear separation capability of perceptron layer. For weight adjustment Rosenblatt
used the delta rule.
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3.3 Networks Used for Forecasting

Hu (1964) was the first to demonstrate - on a practical weather forecasting example
- the general forecasting capability of neural networks. Werbos (1974) later
experimented with the neural networks as tools for time series forecasting, based
on observational data. However, apart from some isolated attempts to solve the
forecasting problems using the then still poorly developed neural networks
technology, the research work in practical application of neural networks had
generally undergone a long period of stagnation. The stagnation was broken and
the work on neural network applications enthusiastically resumed after the
backpropagation training algorithm was formulated by Rumelhart er al. (1986).
Experimenting with the backpropagation-trained neural networks, Werbos (1989,
1990) also concluded that the networks even outperform the statistical forecasting
methods, such as regression analysis and the Box-Jenkins forecasting approach.
Lapedes and Farber (1988) also successfully used neural networks for modelling
and prediction of nonlinear time series.

In the following, typical neural networks used for forecasting and prediction
purposes will be described.

3.3.1 Multilayer Perceptron Networks

Although in the meantime the variety of proposed neural network structures has
grown, the multilayered perceptron has remained the prevailing one and also the
most widespread network structure. This particularly holds for the three-layer
network structure in which the input layer and the output layer are directly
interconnected with the intermediate single hidden layer. The inherent capability
of the three-layer network structure to carry out any arbitrary input-output mapping
highly qualifies the multilayer perceptron networks for efficient time series
forecasting. When trained on examples of observation data, the networks can learn
the characteristic features “hidden” in the examples of the collected data and even
generalize the knowledge learnt, which will be discussed later in detail.

The multilayer perceptron, because of its cascaded structure, performs the
input-output mapping of nonlinearities. For instance, the input-output mapping of a
one hidden layer perceptron network can generally be written as

y= 1, (Zwi i (£ (wlx)):

Relying on the Stone-Weierstrass theorem, which states that any arbitrary function
can be approximated with a given accuracy by a sufficiently large-order
polynomial, Cybenko (1989) and Hornik ef al. (1989) proved that a single hidden
layer neural network is a universal approximator because it can approximate an
arbitrary continuous function with the desired accuracy provided that the number
of perceptrons in it is high enough. This network capability is general, i.e. it does
not depend on the shape of the perceptron activation function if it is nonlinear.



Neural Networks Approach 85

Multilayer perceptron networks
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Figure 3.4 Multilayer perceptron architecture

Rumelhart and McClelland (1986, MIT book) suggested for multilayer neural
networks the backpropagation learning rule. This has also widely been accepted.
Later, various accelerated versions of the rule have been elaborated that speed up
the learning process. In the meantime, the multilayer perceptron networks trained
to learn using backpropagation algorithm are simply called backpropagation
networks.

The learning capability of backpropagation networks is mainly due to the
internal mapping of the characteristic signal features in the process of network
training onto the hidden layer. The mappings stored in this layer during the training
phase of the network can be automatically retrieved during it’s application phase
for further processing. Although the features-capturing capability of the network
can be extended enormously when a second hidden layer is added, the additional
training and computational time required in this case, however, advises the
network user not to do this, if it is not absolutely required by the complexity of the
problem to be solved.

Training of backpropagation networks (without internal feedback) is a process
of supervised learning, relying on the error-correction learning method in which
the desired, ie. a given, output pattern is expected to be matched by the final
output pattern of the network within a specified accuracy. This is to be achieved by
adjusting the network weights according to a parameter tuning algorithm,
traditionally performed by a backpropagation algorithm that is considered as a
generalization of the delta rule.

3.3.2 Radial Basis Function Networks

The idea of function approximation using localized basis functions is the result of
the research work done by Bashkirov ef al. (1964) and by Aizerman, Braverman
and Rozenoer (1964) on the potential function approach to pattern recognition.
Moody and Darken (1989) used this idea to implement a fast learning neural
network structure with locally tuned processing units. Similarly, Broomhead and
Lowe (1988) have described an approach to local functional approximation based
on adaptive function interpolation. This has found a remarkable resonance within
the researchers working on function approximation using radial basis functions,
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that is considered to be the birth of a new category of neural networks, named
radial basis function networks.

The new category of networks was enthusiastically welcomed by the neural
network society because the new networks have demonstrated the improved
capability of solving pattern separation and classification problems.
Backpropagation networks, in spite of their universal approximation capability, fail
to be reliable pattern classifiers. This is because during the training phase
multilayer perceptron networks build strictly separating hyperplanes that exactly
classify the given examples, so that the new, unknown examples are randomly
classified. This is a consequence of using the sigmoidal function as the network
activation function with its resemblance to the unit step function, which is a global
function. Also, the sigmoidal function, since it belongs to the set of monotonic
basis functions, has a slowly decaying behaviour in a large area of it’s arguments.
Therefore, the networks using this kind of activation function can reach a very
good overall approximation quality in the large area of arguments; however, they
cannot exactly reproduce the function values at the given points. For this one needs
locally restricted basis functions, such as a Gaussian function, bell-shaped
Jfunction, wavelets or the B-spline functions.

The locally restricted functions can be centred with the exact values at some
selected argument values. The function values around these selected argument
positions can decay relatively fast, controlled by the approximation algorithm.
Powel (1988) suggested that the locally restricted basis functions should generally
have the form

F@) =S wo(le-x)

where ¢(|x—x])is a set of nonlinear functions relying on the Euclidean distance
|x - x,| . Moody and Darken (1989) selected for their radial basis function networks

the exponential activation function

2
e =i
2 2
o

i

F =exp| -

which is similar to the Gaussian density function centred at ¢,. The function spread
o, around the centre determines the ratio of the function decay with its distance

from the centre.

The common configuration of an RBF network firmly consists of three layers
(Figure 3.5): the input layer, the hidden layer, and the output layer. In the neurons
of hidden layer the activation functions are placed. The input layer of the network
is directly connected with the hidden layer of the network, so that only the
connections between the hidden layer and the output layer are weighted. As a
consequence, the training procedure here is entirely different from that in the
backpropagation networks. The most important issue here is the selection for each
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neuron in the hidden layer the centre ¢, and the spread around the centre o, ; this is

mostly done using the k-means clustering algorithm, which is capable of
determining the optimal position of centres. In addition, the value of the spread
parameter o, should be selected small enough in order to restrict the basis

function spreading, but also large enough to enable a smooth network output
through the joint effect with the neighbouring functions.
The network training process mainly includes two training phases:

e initialization of RBF centres, for instance using unsupervised clustering
methods (Moody and Darken, 1989), linear vector quantization
(Schwenker et al, 1994), or decision trees (Kubat, 1998)

e output weight training of the RBF using an adaptive algorithm to estimate
its appropriate values.

Radial Basis Function Network

neuron-n

outputs
Input Layer RBF hidden Layer  Output Layer

Figure 3.5. Configuration of an RBF network

In some cases, it is recommended to add a third training phase (Schwenker ef al.
2001) in which the entire network architecture is adjusted using an optimization
method.

3.3.3 Recurrent Networks

Research in the area of sequential and time-varying patterns recognition has
created the need for time-dependent nonlinear input-output mapping using neural
networks. To achieve this extended network capability, the time dimension has to
be introduced into the network topology, for instance by introducing short-term
memory features, that would enable network to perform time-dependent mappings.
Elman (1990) proposed a kind of globally feedforward, locally recurrent network
using the context nodes as the principal processing elements of the network. Such
nodes have also been the principal processing elements of the network proposed by
Jordan (1986) for providing the networks with the dynamic memory. Both Jordan
and Elman networks belong to the category of simple recurrent networks.
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An Elman network (Figure 3.6) is a four-layer network made out of input
layer, hidden layer, output layer and the context layer, the nodes of which are the
one-step delay elements embedded into the local feedback paths. In the network,
the neighbouring layers are interconnected by adjustable weights.

Originally, Elman proposed his simple recurrent network for speech processing.
Nevertheless, owing to its eminent dynamic characteristics the network was widely
accepted for systems identification and control (Sastry et al., 1994). This was
followed by applications in function approximation and in time series prediction.

Elman Network
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Figure 3.6. Configuration of the Elman network

Independently, Hopfield (1982) reported to the US National Academy of
Sciences about neural networks with emergent collective computational abilities.
In his report, Hopfield (1984) presented the neurons with graded response and their
collective computational properties. He also presented some applications in
neurobiology and described an electric circuit that closely reflected the dynamic
behaviour of neurons, which is known as the Hopfield network (see Figure 3.7).

The Hopfield network is a single-layer fully interconnected recurrent network

with a symmetric weight matrix having the elements W, = w; and zero diagonal

elements. As shown in Figure 3.7, the output of each neuron is fed back via a delay
unit to the inputs of all neurons of the layer, except to its own input. This provides
the network with some auto-associative capabilities: the network can store by
learning, following the Hebbian law or the delta rule, a number of prototype
patterns called fixed-point attractors in the locations determined by the weight
matrix. The patterns stored can then be retrieved by associative recalls. On request
to recall any of patterns stored, the network repeatedly feeds the output signals
back to the neuron inputs until it reaches its stable state.

The recall capability of recurrent networks of retaining the past events and of
using them in further computations is the advantage that the feedforward networks
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do not have. This capability enables the networks to generate time-variable outputs
in response to the static inputs.

Because of incorporating internal feedback loops, the critical issue of recurrent
networks is their stability, determined by the time behaviour of the network energy
Jfunction. For a binary Hopfield net with a symmetric weights matrix this function
is defined as

i n n
E=-=> Y wxx,
2 izl j=1
Hopfield Network
X War Delay unit-1
g
w,, Delay unit-2 o
X -1
2 -: -
neuron-2 Z P yz
8 W3z >
2 2.
£ 5.
w : Delay unit-n £,
1 0
X, " Z'1 _|°
> Y,
w, »

Figure 3.7. Configuration of a Hopfield network

In the case of a stable network this function must decrease with time and ultimately
reach its minimum, or it’s value remains constant. The minima reached are usually
local minima because there are a number of states corresponding to fixed-point
actuators or stored patterns to which the network must converge. Each finally
reached state of the network has its associated energy defined above.

For the generalized form of binary Hopfield network, in which the sigmoid
function

J(x)=

—-X

l+e
is used, the changes in time are continuously described following the equation

du ;
dt

4
D,

J

K

:; WiV — +Uj’
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where x is a constant positive value, y, is the output value of the unit i, D, is the
factor controlling the sigmoid decay resistance, and U, is the external input to the

unit j. The resulting energy function in this case is defined by
1
E= —EZZw,.fuiuj -2uU,
i X ’ i

Network stability, as proven by Hopfield (1982), is generally guaranteed by the
symmetric network structure.

For the training of recurrent networks, Rumelhart ef al. (1986) proposed a
general framework similar to that used for training feedforward networks, called
backpropagation through time. The algorithm is obtained by unfolding the
temporal operation of the network into a layered feedforward growing with each
time step. This, however, is not always satisfactory. Williams and Zipser (1988)
presented a learning algorithm for continuously running fully connected recurrent
neural networks (Figure 3.9) that adjusts the network weights in real time, i.e.
during the operational phase of the network. The proposed learning algorithm is
known as a real-time recurrent learning algorithm.

There are two basic learning paradigms for recurrent networks:

o fixed-point learning, through which the network reaches the prescribed
steady state in which a static input pattern should be stored

e trajectory learning, through which a network learns to follow a trajectory
or a sequence of samples over time, which is valuable for temporal pattern
recognition, multistep prediction, and systems control.

For trajectory learning, both the backpropagation through time and the real-
time recurrent learning are appropriate. From the mathematical point of view,
using the backpropagation through time we turn the recurrent network - by
unfolding the temporal operation - into a layered feedforward network, the
structure of which at every time step grows by one layer.

Almeida (1987) and Pineda (1987) have presented a method to train the
recurrent networks of any architecture by backpropagation. Under the assumption
that the network outputs strictly depend only on present and not on the past input
values, Almeida derived the generalized backpropagation rule for this type of
network, and addressed the problem of network stability using the energy function
formulated by Hopfield (1982). Pineda (1987), however, directly addressed the
problem of generalization of the backpropagation training algorithm and it’s
extension to recurrent neural networks. Hertz ef al. (1991), based on the results of
this work, have worked out a backpropagation algorithm for networks, the
activation function of which obeys the evolutionary law

dv,
T— =V, + wv. +Xx,),
o g(; iV T X)
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that was formulated by Cohen and Grossberg (1983). In the above equation, 7 is the
time constant and X, is the external input to the unit i. Solving this equation and

defining the network equilibrium state for the unit & of the network

b =2wev, +x,
J

the network should relax and ultimately reach the value y,. Thereafter, the weights
are updated using the gradient descent method by

Aw, = av,g(h)y;

where v, and 4, are the equilibrium values of unit / and the equilibrium net input
to the unit k respectively, and y, is the equilibrium value of the matrix inverse
unit.
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Figure 3.8. Fully connected recurrent neural network

A particular type of recurrent networks that do not obey the restrictions of the
Hopfield networks are the dynamic recurrent networks, proposed for
representation of systems whose internal state changes with time. They are
particularly appropriate for modelling of nonlinear dynamic systems, generally
defined by the state-space equations

X(k+1) = fix(k), u(k))
Y(k) = Cx(k).
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3.3.4 Counterpropagation Networks

A counterpropagation network, as proposed by Hecht-Nielsen (1987a, 1988), is a
combination of a Kohonen’s self-organizing map of Grossberg’s learning. The
combination of two neuro-concepts provides the new network with properties that
are not available in either one of them. For instance, the network can for a given set
of input-output vector pairs (x,),),(x,,1,),-(x,,y,) learn the functional

relationship y = f{x) between the input vector x = (x,,x,,...,x,) and the output vector
¥ =, ¥,»--»¥,)- 1f the inverse of the function f{x) exists, then the network can also
generate the inverse functional relationship

x=f".

When adequately trained, the counterpropagation network can serve as a bi-
directional associative memory, useful for pattern mapping and classification,
analysis of statistical data, data compression and, above all, for function
approximation.

Counter Propagation
network

Kohonen Layer

Figure 3.9. Configuration of a counterpropagation network

The overall configuration of a counterpropagation network is presented in
Figure 3.9. It is a three-layer network configuration that includes the input layer,
the Kohonen competitive layer as hidden layer, and the Grossberg output layer.
The hidden layer performs the key mapping operations in a competitive winner-
takes-all fashion. As a consequence, each given particular input vector
(%,5X,,,--»%,,) activates only a single neuron in the Kohonen layer, leaving all

other neurons of the layer inactive (see Figure 3.10). Once the competition process
is terminated, a set of weights connecting the activated neuron with the neurons of
the output layer defines the output of the activated neuron (say p) as the sum of
products
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n
Yp = _ZIWjixi >
=

where n is the number of input layer neurons connected with the activated neuron.
Using the set of weights learnt and stored, the network is capable of recognizing
the pattern once learnt and the patterns in its neighbourhoods because similar
inputs will activate the same Kohonen neuron.

After locating the Kohonen neuron, we turn to the Grossberg layer, i.e. the
output layer of the network, and train it. To produce the desired mapping of the
pattern at the network output using the output of the activated Kohonen neuron, all
we need is to connect this neuron with each neuron in the Grossberg layer using
the corresponding weights. As a result, a star connection between the Kohonen
neuron and the network output, known as Grossberg’s outstar, builds the output
VeCtor (), ¥, Y,,)> as shown in Figure 3.10.

Outstar of Counter Propagation,
network

Input Layer Output Layer

Kohonen Layer

Figure 3.10. Outstar of counterpropagation network

The input vectors of a counterpropagation network should generally be
normalized, i.e. they should satisfy the relation

[+ =1

The normalization can be carried out by decreasing or increasing the vector length
to be on the unit sphere using the relation

— X
x:|—

a

The question that remains is how to initialize the weight vectors before the network
training starts. The preference of taking the randomized weight vectors has not
always given reliable learning results. It has in some cases even created serious
solution problems. The way out was found in using the convex combination
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method by taking for all the weight vectors the same value 1/+/n, where  is the
dimension of weight vectors.

3.3.5 Probabilistic Neural Networks

The idea of probabilistic neural networks was born in the late 1980s at Lockheed
Palo Alto Research Centre, where the problem of special patterns classification
into submarine/non-submarine classes was to be solved. Specht (1988) suggested
using a newly elaborated special kind of neural network, the probabilistic neural
networks. To solve the classification problem, the new type of network had to
operate in parallel with a polynomial ADALINE (Specht, 1990).

Probability network

N

Outputs
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. e
Input Layer Pattern Unit Summation Unit Output Layer
Figure 3.11. Architecture of a probability network

Supposing that B,P,..., P, are the a priori probabilities for the vector x to belong to
a corresponding category, and denoting by L, the merit of classification loss for the
category i, the Bayesian decision rules PLp,, fori=1,2,..., m, can help determine
the largest product value. In case that, say, AL p, > P.L,p, holds, the input vector x

is assigned to the category i. In this case the decision boundary for the above
decision, that can be a nonlinear decision surface of arbitrary complexity, is
defined by

_BLp,

b LP

The structure of probabilistic networks is similar to that of backpropagation
networks, but the two types of network have different activation functions. In
probabilistic networks the sigmoid function is replaced by a class of exponential
functions (Specht, 1988). Also, the probabilistic networks require only a single
training pass, in order that - with the growing number of training examples - the
decision surfaces finally reach the Bayes-optimal decision boundaries (Specht,
1990). This is achieved by modelling the well-known Bayesian classifier that
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follows the strategy of minimization of the expected classification risk. The
strategy can be explained in terms of an n-dimensional input vector x belonging to
one of m possible classes with the probability density functions

D1(X), py(X)5e0s P, (X)

The architecture of a probabilistic network, shown in Figure 3.11, consists of an
input layer followed by three computational layers. It has a striking similarity with
a multilayer perceptron network. The network is capable of discriminating two
pattern categories represented through the positive and negative output signals. To
extend the network capability of multiplying discrimination, additional network
outputs and the corresponding number of summation units are required.

The input layer of a probabilistic network is simply a distribution layer that
provides the normalized input signal values to all classifying networks that make
up a multiple classes classifier. The subsequent layer consists of a number of
pattern units, fully connected to the input layer through adjustable weights that
correspond to the number of categories to be classified. Each pattern unit forms the
product of the input vector x with the weight vector w. The product value, before
being led to the corresponding summation unit, undergoes the initial nonlinear
operation

(on;-1)

F(xw)=e °

However, since both the input pattern and the weighting vectors are normalized
to the unit length, the last relation is to be rewritten as

Z(x/ Wi )Z
=

F(xw)=e 2

The summation units finally add the signals coming from the pattern units
corresponding to the category selected for the current training pattern.

3.4 Network Training Methods

We now turn our attention to some training aspects of neural networks, particularly
to the aspects of training process acceleration and training process results. Our
primary interests are the supervised learning algorithms, the most frequently used
in real applications, such as the backpropagation training algorithm, also known
as the generalized delta rule.

The backpropagation algorithm was initially developed by Paul Werbos in
1971 but it remained almost unknown until it was “rediscovered” by Parker in
1982. The algorithm, however, became widely popular after being clearly
formulated by Rumelhart er al. (1986), which was a triggering moment for
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intensive use of multilayer perceptron networks in many simulated engineering
applications. The real-life application had at that time to be “postponed” due to the
lack of a suitable neuro-technology. In the 1990s Rumelhart put much effort into
popularizing the training algorithm among the neural network scientific
community. Presently, the backpropagation algorithm is also used (in slightly
modified form) for training of other categories of neural networks.

In the following, we will confine our discussion mainly to multilayer
perceptron networks. As mentioned earlier, this kind of networks, based on given
training samples or input-output patterns, implements nonlinear mapping of
functions that is applicable to function approximation, pattern classification, signal
analysis, efc. In the process of training, the network learns through adaptation of
synaptic weights in such a way that the discrepancy between the given pattern and
the corresponding actual pattern at network output is minimized. Because the
synaptic adaptation mostly follows the gradient descent law of parameter tuning,
the backpropagation training algorithm is considered as the search algorithm of
unconstrained minimization of a suitably constructed error function at network
output.

In order to illustrate the basic concept of the backpropagation algorithm, let us
consider its application to the training of a single neuron located in the output layer
of a multilayer perceptron (see Figure 3.12). In addition, let us suppose that as the
nonlinear activation function the hyperbolic tangent function

1—exp(—yu,;
y:f(u/.):tanh()/uj):# (3.1)
1+ exp(—yuj)
is chosen, where
U, =Y wx, +6,, 7 >0. (3.2)

i=1

Furthermore, x; is the ith input with corresponding interconnecting weight w; to the
neuron and 6, is the bias input to the same neuron. Typically, all neurons in a
particular layer of the multilayer perceptron have the same activation function. The
aim of the learning algorithm is to minimize the instantaneous squared error
function of the network output

2 2
S,=05(d,~y;) =0.5(e,) . (3.3)
defined as the square of the difference (d, —y;) between the desired output signal
and the actual output signal of the network, by modifying the synaptic weights w,.
The minimization process in parameter tuning steps Aw, is based on the steepest

descent gradient rule
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A %, (3.4)
w, =—-1n— .
=g

i

where 77 is a positive learning parameter determining the speed of convergence to
the minimum.

X,=1 N& w, bias

output

Inputs
x

Yj

X, : N
weights
desired
Learning rate p output

—] Training
Algorithm

di

‘Summing e
Element

Figure 3.12. Backpropagation training implementation for a single neuron

Now, taking into account that from (3.3) follows:
e, =(d,~v,)=(d, - (u,)), (3.5)

where

By applying the chain rule

_ s, .861.
Aw, = (3.6)
de; ow,
to Equation (3.5) we get
A Oe; Oe; Ou; 3.7)
w =-ne. ——=-—pe., —— . —— .
T T o

i i

This can further be transformed to
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Aw=rne, - ~x,.:7ye/.-f'(u/.)~xl.:775/mxi

o (”/)
au/.

where J; can be expressed as

J, =ejf'(uj):—;.
J

The derivation f '(uj) of the selected activation function (3.1) is

F() =50 = y[1-tanh® (yu,) | =y [1- ],
and the corresponding weight updates (3.7)
Aw, =nye; '(l_yjz)'x,-a

with 7y >0.

(3.8)

3.9)

(3.10)

Note that the weight update stabilizes if y; approaches —1 or +1, since the

partial derivative Oy, / Ou, , equal to }/(1— yjz), reaches its maximum for y, =0

and its minima for +1. However, if the sigmoidal activation function is used and if

it is unipolar, described by

1
¥ —f(”j)—m’
then
of (u.
£(w))- f;) ()

Therefore, the weight increment takes the form

Aw, =nye; -y, (1-y;) %

(3.11)

(3.12)

(3.13)
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It should also be noted that in this case the partial derivative dy, / oOu; reaches its
maximum for y, =0.5 and, since 0<y, <1, it approaches its minimum as the
output y, approaches the value zero or the value one.

The synaptic weights are usually changed incrementally and the neuron
gradually converges to a set of weights which solve the specific problem.
Therefore, the implementation of the backpropagation algorithm requires an
accurate realization of the sigmoid activation function and of its derivative.

The backpropagation algorithm described can also be extended to train
multilayer perceptron networks.

3.4.1 Accelerated Backpropagation Algorithm

The backpropagation algorithm generally suffers from a relatively slow
convergence and with the possibility of being trapped at a local minimum. Also, it
can be accompanied by possible oscillation around the located minimum value.
This may restrict its practical application in many cases. Therefore, such unwanted
drawbacks of the algorithm have to be removed, or at least reduced. For instance,
the speed of algorithm convergence can be accelerated:

e Dby selection of the best initial weights instead of taking the ones that are
generated at random

e through adequate preprocessing of training data, e.g. by employing the
feature extraction algorithms or some data projection methods

e by improving the optimization algorithm to be used.

Numerous heuristic optimization algorithms have been proposed for speed
acceleration; unfortunately, they are generally computationally involved and time
exhausting. In the following, only two of the most efficient are briefly reviewed:

e adaptation of learning rate
e using a momentum term.

It is usually assumed that the learning rate of the algorithm is fixed and uniform for
all weights during the training iterations. In order to prevent parasitic oscillations
and to ensure the convergence to the global minimum, the learning rate must be
kept as small as possible. However, a very small value of learning rate slows down
the convergence speed of algorithm considerably. On the other hand, a large value
of the learning rate results in an unstable learning process. Therefore, the learning
rate has to be optimally set between the two extreme values of learning rate, e.g. by
using the adaptive learning rate, and in this way the training time can be
considerably reduced. Similarly, the speed up of convergence can be achieved by
extending the training algorithm by a momentum term (Krose and Smagt, 1996).
In this case the learning rate can be kept at each iteration step as large as possible
within the admitted values, while maintaining the learning process stable.

One of the simplest heuristic approaches of learning rate tuning is to increase
the learning rate slightly (typically by 5%) in an iteration step if the new value of
the output error (sum squared error) function S is smaller than the previous
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iteration step. On the other hand, if the new value of the error function exceeds the
value of the previous one, then the learning rate should be decreased by
approximately 30%, and in the latter case the new weight updates and the error
function are discarded, i.e. in this case we set weight update as

Aw; (k+1) =0,
and that leads to weights in (k + 1)th iteration as identical as (k - 1)th, i.e.
W, (k+1)= W (k—l)).
After starting with a small learning rate, the approach will behave as follows:

" =an" ™, for S(w(k))<S(w(k-1)),
7 =bn" Y, for S(w(k))=k,S(w(k-1)). (3.14)

77“) = 77(/‘71), otherwise

with @ = 1.05, b = 0.7 and k) = 1.04 being typical values (Vogl et al. 1988;
Cichocki and Unbehauen, 1993).

In some training applications not all the training patterns are available before
the learning starts. In such situations an on-line approach has to be used.
Schmidhuber (1989) proposed the simple global updates of the learning rate for
each training pattern as

oS

Aw, (k)=-n" =2, 3.15
v (k)= 5 (3.15)
with
S -8
7 =min{ "2 p (3.16)
[vs. |,

where the index /) indicates the maximum learning rate (typically Miman) = 20)

max) max )

and S, is a small offset error function (typically 0.01< S, <0.1).

Various suggestions have been made for practical use of both adaptable
learning rate and the momentum term, with the best known being the conjugate
gradient algorithm (Johansson et al, 1992). Alternatively, the second-order
derivative-based Levenberg-Marquardt algorithm (Hagan and Menhaj, 1994),
proposed for accelerated minimization of the cost function, is preferably used for
accelerated neural networks training. The key idea of the algorithm is to use a
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search vector Py to calculate the parameter value W,,,, based on a current value
W, as

Win=Witaip, (3.17)

where ¢, is a scalar value. The search vector Py is to be chosen so that the relation
V(W) <V (W) holds, where V(W) is the performance index of the network,

generally a sum square error function.
Now, considering the Taylor series expansion of V(W ,M) at point Jy/,

V(W) =V (WitakP )~V (W) + v (we) P (3.18)

k

it is obvious that, in order for the cost function ¥ to decrease and for a positive
value of ¢y, the second term of (3.18) must be negative. This will be the case if

the steepest descent condition
Wk+1:Wk_0!kV(Wk) (3-19)

is met. However, the steepest descent method, as discussed earlier, when used in its
original form, exhibits some drawbacks that need to be eliminated for its practical
use. To overcome this, the approximation of the objective function in the
immediate neighbourhood of a strong minimum by a quadratic function with
positive definite Hessian matrix or by using Newton’s method for pursuing the
minimization problem is preferred.

Let us now consider the Taylor series expansion

1
VW) =V (W)+Vv (i) s, 5 AWy () aw, (3.20)

where V2V (W) is the Hessian matrix and AW, = g,P,. If the gradient of the

truncated Taylor series expansion (3.20) is taken with respect to A}y, and set to
zero (since we are looking for the minimum of the cost function), it follows that
-1
AW ==[VV ()] VV(wy). (3.21)

This reduces the Newton method to

Wea=w=[VV (W) ] VY (w,). (322)
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Direct practical use of this method, however, is hampered by the need for
Hessian matrix calculation, whose elements are the second derivatives of the
performance index with respect to the parameter vector. To overcome this obstacle,
the first and the second derivatives of the performance index

V0¥ = X el () = & () e (o) (3.23)

are built and expressed as
vV (w)=J"(w,)e(w,) (3.24)

and

VIV (wy) =J" (w,)J () + Zes(w, ) Ve, (). (3.25)

i=1
where J(wy) is the Jacobian matrix and
e(wk)zT—Y(Wk), (3.26)

with the target vector T and the actual output of the neural network Y(wy).

The Gauss-Newton modification of the method assumes that the second term in
the right-hand side expression of (3.25) is zero. Therefore, applying the former
assumption (3.22) yields the Gauss-Newton method as

Wk+1:Wk_|:JT(Wk)J(Wk):|_] JT(Wk)e(Wk)a (3.27)

An additional difficulty appears here with when the Hessian matrix is not
positive definite, i.e. its inverse does not exist. In this case the modification of the
Hessian matrix

G =V (w,)+ul (3.28)

should be considered. Suppose that the eigen-values and the eigen-vectors of
VV (W) are the sets {4} and {z,} respectively. Multiplying both sides of
(3.28) by z; we have

GZ,':VZV(Wk)Zi“'ﬂIZf:ﬂiZ["'/UZf (3.29)
GZi:(ﬁi"'/u)Zi (330)
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Therefore, the eigen-values and eigen-vectors of G are {4,+u} and {}

respectively. G can be made positive definite by increasing x until 4,+ x>0 for

all i.
Therefore, the Levenberg-Marquardt modification to Gauss-Newton method is

Wia=Wi _[JT(Wk)J(Wk)"‘ﬂITl JT(Wk)e(Wk) (3.31)

whereby the parameter x4 is multiplied by some factor f whenever a step would
result in an increased value of V' (w, ). When a step reduces this value, x is divided

by S. Notice that when y is large the algorithm becomes steepest descent with the
step size approximately 1/ 4. On the other hand, for small x the algorithm becomes

Gauss-Newtonian.

Obviously, the calculation of the Jacobian matrix is the key step in applying
this algorithm. At first, all the adjustable parameters of the network should be
arranged in one column vector w,. For a neural network mapping problem the

terms in the Jacobian matrix can be computed by simple modification to the
backpropagation algorithm (Hagan and Menhaj, 1994). In the standard
backpropagation version, partial derivatives of the performance function with
respect to the adjustable parameters are needed, while in Levenberg-Marquardt
algorithm the derivative of the error is needed for the Jacobian matrix. This means
that the Jacobian matrix can be calculated using the sensitivity term of the
performance index derived in the standard backpropagation algorithm with one
modification at the final layer, i.e. by dropping the error term (Hagan and Menhaj,
1994). The Jacobian matrix computation for a neuro-fuzzy network is described in
Chapter 6.

The algorithm described above can easily be extended to train the multilayer
perceptron networks.

3.5 Forecasting Methodology

Forecasting methodology is generally understood as a collection of approaches,
methods, and tools for collection of time series data to be used for forecast or
prediction of future values of the time series, based on past values. The forecasting
methodology includes the following operational steps:

e data preparation for forecasting, i.e. acquisition, preprocessing,
normalization, and structuring of data, determination of training and test
data sets, and the like

e network architecture determination, i.e. selection of the type of network to
be used for forecasting, determination of number of network input and
output nodes, number of layers, the number of neurons within the layers,
determination of interconnections between the neurons, selection of neuron
activation functions, etc.
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e design of network training strategy, i.e. selection of training algorithm,
performance index, and the training monitoring approach
o overall evaluation of forecasting results using fresh observation data sets.

3.5.1 Data Preparation for Forecasting

Data used for analysis and forecasting of time series are generally collected by
observations or by measurements. In engineering, of major interest is the analysis
of data obtained by sampling of corresponding sensor signals and forecasting their
future behaviour. Therefore, our attention will be primarily focused on forecasting
of experimental data taken from sensing elements placed within the experimental
setups or within the plant automation devices. Here, depending on the nature of
signals provided by sensors, two main critical issues are:

e the number of data needed for representative characterization of the
observed signal in view of its linearity, stationarity, drift, ezc.

e the sampling period required for recording the entire frequency spectrum of
the sampled signal, but that will still considerably limit the noise frequency
spectrum.

In practice, the preprocessing of acquired data, because of the presence of noise,
drift, and sensor inaccuracy, represents a trial-and-error procedure. In the
preprocessing phase it should also be made clear whether data filtering, smoothing,
etc. are needed, or whether mathematical transformation of data will facilitate the
learning process of the network within its training and/or reduce the network
training time.

Data normalization is a process of final data preparation for their direct use for
network training. It includes the normalization of preprocessed data from their
natural range to the network’s operating range, so that the normalized data are
strictly shaped to meet the requirements of the network input layer and are adapted
to the nonlinearities of the neurons, so that their outputs should not cross the
saturation limits.

In practice, the simplest normalization

and the linear normalization

X, — X,

i min
ni
‘max ‘min

are most frequently used. Moreover, instead of linear normalization, nonlinear
scaling or logarithmic scaling of input signals is used to moderate the possible
nonlinearity problems during the network training. For instance, logarithmic
transformation can squeeze the scale in the region of large data values, and
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exponential scaling can expand the scale in the region of small data values, efc. But
by far the most critical data preparation issue here is the risk of possible loss of
critical information present within the acquired data.

Structuring of data is needed when preparing the mutually related input and
output data pairs to be used in supervised learning and/or when preparing
multivariate data in general. In the case of training the networks for forecasting

purposes, the next value X,,, of the univariate time series is related to the past
values of the time series up to the present value X,. In the next training step the

value X,,, is related to the past values of the time series up to the value X, ,, efc.

Before structuring the data of a multivariate time series for training of a
network forecaster, the fact should be recalled that this kind of time series is a set
of simultaneously built multiple time series with the values of each individual time
series being related to the corresponding values of other time series. This is
because the multivariate time series are built by simultaneous observation of two or
more processes, so that the resulting observation across all the individual
samplings at a certain time builds an observation vector

X, =[x, %;.....x;,] .

**in

Thus, the resulting multiple time series in fact represents a set of observation

vectors X;,i=1,2, ..., m, building up the observation matrix
Xpp XppeeeniXy,
Xy Xopponnn X
21 22 2.
X= ",
xml me""xmn

in which the time series of individual processes are represented through the
corresponding matrix columns.

A training set is used to teach the network to behave as a forecaster and the test
set is used, after the training, to test its forecasting capability. Both data sets are to
be built from the entire collected data set. Unfortunately, no selection guide is
available for splitting the prepared data set into two subsets. The recommendations
range from a 90% to 10% ratio, up to a 50% to 50% ratio. Haykin (1995)
advocated that the numbers of patterns N in the training set required to classify the
test examples with an error of € should approximately be

where W is the number of weights in the network.
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Yet, whatever ratio is selected, attention should be paid to ensuring that the
training data set is large enough to cover all the dominant characteristic features
required for reliable network training as a forecaster. The remaining data set can
then be used for testing the trained network on the data samples never used in the
training. For this reason, it is recommended that the non-training data set should be
large enough to enable building of not only the test data set but also the validation
data set to be used in the overall network evaluation.

3.5.2 Determination of Network Architecture

This is the core task in building the neural network structure optimally adapted to
the specific problem the network should optimally solve. In our case it would be
the optimal predictor or the optimal forecaster. This task, although being very
challenging, is also the most difficult to execute because it requires from the
designer much skill and practical experience. Since being a nontrivial task with a
multiplicity of possible solutions, there are opinions that this work is more a kind
of art than an expert’s routine. The issues addressed in the following present the
activities to be carried out when developing the network architecture. They include
the

determination of input nodes required
determination of output nodes

selection of number of hidden layers
selection of hidden neurons

determination of node interconnection pattern
selection of activity function of neurons.

Determination of the required number of input nodes is a relatively easy task,
because it depends predominantly on the number of independent variables
presented in the data set prepared. As a rule, each independent variable should be
represented by its own input node. In the case of input data prepared for
forecasting, the number of input nodes is directly determined by the number of
lagged values to be used for forecasting of the next value

x(t+1) = f[x(9), x(¢-1), x(£-2), ... , x(t-n)],

as represented in Figure 3.13.
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Number of input neurons for one
step ahead prediction

X(t-1) Output
X(t+1)
X(t-2)
X(t-n)
Input Layer Hidden Layer Output Layer

Figure 3.13. Number of input neurons for one-step-ahead forecasting

In practice, the single-step-ahead forecaster is most frequently selected because
it is relatively simple and guarantees the most accurate forecasting results.
Otherwise, when building a multistep predictor, the determination of the required
number of input nodes is a trade-off process in the sense that (following the general
inclination) this number should be selected as small as possible but so that it still
guarantees good forecasting results, and as large as needed for the extraction of all
relevant characteristic features and the autocorrelation structure embedded in the
training data. To solve this problem optimally, some experimental runs could be of
considerable use.

The number of output nodes, again, is also a problem-oriented task. In the one-
step-ahead forecasting it is apparent that only one output node is sufficient as the
forecasting node. Correspondingly, in the case of multistep-ahead forecasting, the
number of output nodes should correspond to the forecasting horizon, i.e. to the
number of forecasts to be simultaneously presented at the network output.
Alternatively, a single output node can be used and all the future forecasts required
determined in the iterative steps.

In most forecasting applications, only one hidden layer is used, although some
aberrations are exceptionally needed. The sufficiency of a single layer is covered
by the Kolmogorov’s superposition theorem, which states that any continuous
function f{x) — which can also be an n-dimensional vector function f(x,,x,,...,x,) —

defined on a closed n-dimensional cube, say [0,1]", can be represented as
2n+1 n
FG Xy X,) = Xy 0,(x),
i= j=

where y, and ¢, are continuous, single-variable functions. The functions v,
depend on the function to be approximated f and the functions ¢, are

monotonously increasing functions fixed for a given ».
The theorem, as originally formulated by Kolmogorov, is an existence theorem
that does not suggest any particular function to be used for approximation of a
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given mapping, so that its relevancy to neural networks was not directly evident.
There were even opposite views to the relevance: one opposing the relevancy
(Girosi and Poggio.1989) and another in favour of it. However, it was the
refinement of the theorem by Sprecher (1965) that motivated Hecht-Nielsen
(1987b) to point out this reliance. He also proposed that the kth processing
elements of the hidden layer should have the activation function

z, =§/1"¢)(xj+gk)+k,

where the real constant 4 and the monotonously increasing real continuous function
w depend on n, but are independent of /. Furthermore, the rational constant ¢ should
satisfy the conditions of the Sprecher theorem 0 < ¢ < §, § > 0. The activation
function of the output layer units should be

2n+l1

y; = kgl g,(z),

where g, are the real and continuous functions depending on ¢ and e.

Consequently, as it was shown (Hecht-Nielsen, 1987b), the Kolmogorov’s theorem
can be implemented exactly by a three-layer feedforward neural network having n
input elements in the input layer, (2n+1) processing elements in the hidden layer,
and m processing elements in the output layer. This confirms the statement that
even a single hidden-layer network is sufficient to reveal all the characteristic
features present on the input nodes of the network. Introducing additional hidden
layers increases the feature extraction capability of the network at the cost of the
significantly extended training and operational time of the forecaster.

Lippmann (1987), in his celebrated paper on neurocomputing, stated clearly
that a three-layer perceptron can form arbitrarily complex decision regions and can
separate meshed classes, which means that no more than three network layers are
needed in perceptron-like feedforward nets. This particularly holds for the
networks with one output, as required for one-step-ahead forecasting. Cybenko
(1989), finally underlined that the networks never need more than two hidden
layers to solve most complex problems. Also, the investigation of neural network
capabilities related to their internal structure has proven that two-hidden-layer
networks are more prone to fall into bad local minima. DeVilliers and Barnard
(1992) even pointed out that both the one- and two-hidden-layer networks perform
similarly in all other respects. This can be understood from the comparison of
complexity degree of two investigated networks measured by the Vapmik-
Chervonenkis dimension, as was done by Baum and Hausler (1989).

We now turn to the problem of the number of hidden neurons placed within
the hidden layer. To determine the optimal number of hidden neurons there is no
straight-forward methodology, but some rules of thumb and some suggestions how
to do this have been proposed. For instance, in single-hidden-layer networks, it is
recommended to take the number of hidden-layer neurons in the neighbourhood of
75% of the number of network inputs, or say between 0.5 and 3 times the number
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of network inputs. The geometric pyramid rule, on the other hand, suggests
assigning

N,=a\N,xN, ,

hidden neurons to a single hidden layer, where N, is the number of network
inputs, N, the number of its outputs, and a is multiplication factor the value of

which, depending on the complexity of the problem to be solved, should be
selected in the range 0.5 < o <2. Baum and Haussler (1989) suggested the number
of neurons in the hidden layer be determined as

N < NerErol
h — ]
N, +N,

where N

r

is the number of training examples, E,, is the error tolerance, N, is the
number of data points per training example, and N, is the number of output

neurons.

Anyhow, the determination of the optimal number of hidden neurons involves
trial-and-error experimentation: starting with a number of neurons within the layer
to be decided — based on final accuracy of each learning process — to increase or
decrease the number of hidden neurons and to start a new learning process. In this
way the redundant hidden neurons can be deleted and the neurons needed for
optimal performance of the layer added. Here, both starting with a relatively large
or small number of neurons is possible, but starting with a large number of neurons
bears the risk of long-time computation and of getting trapped in local minima.

Khorasani and Weng (1994) have presented an approach to structural
adaptation of feedforward neural networks by neuron pruning, i.e. by addition and
deletion of hidden neurons based on the activity status of individual neurons during
the learning, measured by the variance of the neuron output signal and by the
strength of the backpropagated error. This is a proper indication of neuron activity
that helps decide which low-activity redundant neurons are to be deleted.

There is also a reliable way to determine the number of hidden neurons using
the Akaike’s information criterion (AIC), originally defined as

AIC = (-2) In(Maximum likelihood) + 2(number of adjusted parameters).

The criterion statistically evaluates the goodness of a model by combining the
evaluated mean squares error for training data and the number of parameters to be
estimated. Seen otherwise, AIC combines a measure of fit and the penalty term to
account for model complexity. Its potential application suitability for neural
networks model building was recognized by Kurita (1990) and Fogel (1991), who
reformulated the original form of the criterion (for statistically independent,
normally distributed output errors with zero mean and with constant variance) as
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AIC = NkIn(o*) + 2K ,

where N is the number of training data, k is the number of output units of the
network, o’ is the maximum likelihood estimate of the mean square error for
training data and K is the number of model parameters.

The application principle of the AIC is that, if two models have the same mean
square error for a training data set, then the smaller sized model should be selected.
Alternatively, from a set of possible models, the model with the smallest value of
AIC is to be selected (Ishikawa and Moriyama, 1996; Anders and Korn, 1999).
This, however, requests a set of models to be built and their parameter estimated
before this application principle is used.

Unfortunately, direct application of the AIC to neural networks is rather
circumstantial. It is, however, facilitated when using the network information
criterion (NIC) of Stone (1977)

>

1 t[BAT]
NIC = = In(L(W)) + == —

which is a generalization of the AIC. The first term in the above expression
represents the estimated maximum logarithmic likelihood. The matrices 4 and B
are defined as

A=-E[V’InL]
B=E[VInLVInL,].

If the classes of models investigated include the true model, then it holds
asymptotically that 4 = B and

t{BA' 1=t[I]=K,

where K is, again, the number of model parameters. In this case the NIC takes the
form

NIC = —llnL(sz)+£ .
T T
This is similar to the AIC, which in this transcription becomes

AIC = 21n Ly + 2K
T T
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Murata et al. (1994) used this generalization to determine the number of hidden
units required to mimic the system based on input-output examples only. Attention
was paid to avoiding possible network overfitting by taking a small number of
redundant hidden neurons. A large number of hidden layer neurons could, for the
given training example, deliver better learning results but, due to the increased
network complexity, for some fresh examples could deliver worse results.

What the interconnections of network nodes concerns, full interconnection is
recommended for initial network configuration, in which the output of each neuron
of a layer is connected with the input of each neuron of the subsequent layer.
However, in some applications, deviations from full interconnection have also been
successful.

For activation function selection, there is generally no rich choice left. For
backpropagation networks, mostly the

e sigmoid function

B 1
1+e™™

is selected as an activation function in numerous applications, including
time series forecasting. But in some applications the

e  hyperbolic tangent function

ex_e—x
y=—"—0>
e +e”

has also been used successfully, for instance when solving the problems
that rely on learning of deviations from average behaviour (Klimasauskas,
1991)

e step and ramp function are some additional alternatives favourable for
processing binary variables.

In any case, to avoid functional destruction of the neuron, the function selected
should be limited at its output, usually between the values —1 and +1. Although
there are no guidelines for selecting the activation functions in individual network
layers and for distributing them within the layers, it is still best to build
homogeneous individual layers and for the hidden neurons possibly to use the
sigmoid activation function. But still, some researchers have successfully used the
hyperbolic tangent as an activation function of hidden-layer neurons. Very seldom
heterogeneous network layers have been used. For time series forecasting, the
general experience has shown that for output neurons the linear activation function
delivers the best results. Some theoretical evidence for this has also been given
(Rumelhart et al., 1986). It was shown that only for forecasting of time series with
trend, output neurons with a nonlinear activation function are required.
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3.5.3 Network Training Strategy

Network training is a process in which the network learns to recognize the patterns
inherent to the training signals. In network training for time series forecasting all
relevant characteristic features embedded in the training data that reflect the
autocorrelation structure of the time series should be revealed and learnt. The
training is usually carried out in off-line mode using an unconstrained nonlinear
minimization algorithm, most frequently a gradient descent method, for tuning the
interconnection weights of the network. The objective is to achieve the optimal
network behaviour across the training set.

Network learning can generally be executed in supervised mode (Hopfield
model) or in unsupervised mode (Kohonen model). For supervised learning the
network is provided by data examples that include the desired output. For
unsupervised learning the desired output values are not required because the
network finds the adequate output values itself.

The objective of training is to find the set of most suitable values of
interconnecting weights through their tuning during the network training. By doing
so, the network should still attain the highest generalization attribute. This,
however, can be aggravated if, instead of the global minimum, only a local
minimum has been found. So, particular precautions should be provided to avoid
pitting into one of the local minima. Such and similar issues seriously affect the
training success, so that some careful considerations are required when preparing
the experiment design for network training. This includes some decisions to be
made concerning the network initialization for training, selection of the appropriate
training algorithm, monitoring the training process using an appropriate
performance index, formulation of training stopping criteria, efc.

Network initialization is a decision that is to be made before the weights tuning
process starts. This is a difficult decision, because the training speed and the total
training time required are strongly influenced by this decision. To circumvent this,
various suggestions have been made, the most popular being that, in order to
prevent neuron saturation and other unpleasant phenomena, some small, randomly
distributed parameter values should initially be taken. However, setting all weights
initially at the same small value should be avoided because it could possibly
hamper the tuning process to start and/or to learn. This definitely does not hold for
unsupervised training, like it holds for training of a Kohonen layer of a
counterpropagation network, where the competition process take place. Here, the
unique value 1/+/N is initially taken for all weights, N being the number of
network inputs. This is required because by starting the competition process it is
advantageous that all competitors have the same initial parameter values for every
training run.

Hebb (1949) has proposed the simplest training algorithm for neural networks,
known as the Hebb learning rule. A neurophysiologist himself, he enunciated the
learning principle of natural neurons: if two interconnected neurons at the same
time fire, then the strength (weight) of the synapse connecting them increases.
Extended to artificial neural networks, this principle states that the common weight
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Wy connecting the output of the perceptron i and the input of the perceptron j will

increase by an amount
Awg/ =XV

where x; is the output of the perceptron j, y,the output of the perceptron i, and # is

a measure controlling the learning step size (Figure 3.14). Accordingly, the
Hebbian learning updating the weights, or the Hebbian learning rule, can be
expressed as

W, (1 +1) = w, (1) + 1%, (1), (1)

P; Wij pj

O -O—

7 X,

Figure 3.14. Interconnected perceptrons

Figure 3.15. Multiple interconnected perceptron

The rule can be generalized and applied to a multiple-input perceptron as
w(t+1) = w(t) +nx"wx ,

where the relation

M=

a T
y= W/.szwx:xw

is taken into account (Figure 3.15).
Nevertheless, the direct application of the Hebbian rule bears the risk of an
endless increase of weight values, which could saturate the output neurons. As a
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remedy, an increase in the normalization of weights at every iteration step is
necessary. Oja (1982) proposed using for this the normalization relationship

w, (1) +nx (1) y(2)
J;[w,- (1) + 7%, () (O]

w,(t+1) =

derived through modification of the Hebbian rule itself. The modification
normalizes the weight vector size to the value 1 by decreasing the values of all
other weight vectors if one of its components increases, in this way keeping the
total length of the vector constant.

The above rule modification can, for a small value of n and after power
expansion, be approximated as

w; (t+1) = w, () +ny(O)[x; = y(Ow, ()],

which is known as Oja’s rule.

Yet, the fact that the application of the Hebbian rule is considerably limited to
single-layer neural networks, the original version of the backpropagation
algorithm is favoured for training of multilayer networks. The training is
performed off-line in a supervisory learning mode, which is convenient because, in
practice, a large number of data are available that have to be processed prior to
their application for training. Besides, for forecasting purposes the pairs of related
input and output data also have to be built and processed. Finally, the supervisory
mode of learning facilitates the implementation of monitoring of training
performance and the determination of the training stopping point.

When applying the backpropagation algorithm, which is a typical gradient
steepest descent method, decisions have to be made concerning the

o learning rate, i.e. the step size or the magnitude of weight updating
e momentum, which is required for escaping the trapping in local minima.

An appropriate selection of learning rate is particularly important because the
steepest descent method suffers from slow convergence and weak robustness.
Convergence acceleration by taking a larger learning rate bears the danger of
network oscillatory behaviour around the minimum. To avoid this, and still to take
a larger learning rate, addition of a momentum parameter was recommended
(Rumelhart ez al., 1986). By doing this, the original learning step according to the
delta rule

w(t+1) =w() +ne,(H)x,(7)
is extended by the momentum term to result in

Wi/‘ (t + 1) = W[,‘(Z)—" 775‘,’(’)3?,- (t) +a[wg/ (t) - Wij (Z _1)] >
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where o is the momentum constant, with the value 0.5 < a < 0.9. The added term
represents the memorized value of the last increment so that the next weight
change keeps approximately the same direction as the last one. This stabilizes the
learning convergence.

An alternative way for speeding up and stabilizing the convergence was found
in adaptive step size implementation. Silva and Almeida (1990) recommend the
following weight update strategy

w,; (@) =w, (-1 +n,OV,;C(),
where V, (1)C(¢) are the gradient components of individual iteration steps

Vifc(t) = ZV: M P
vl oWy

with NV as the number of training set samples. In the above updating relation, 7,(¢)
is taken as

ny (0 =cn -1 it VAV, Ce=1)>0

1 .
7. :c—n,.j(t—l) it V,C()V,Ct-1)<0,

7
1

where ¢, is a positive constant.

To circumvent the problem of avoiding the numerous flat and steep regions of
the error surface Yu et al. (1995) advocated the dynamic learning rate to be
imbedded into the backpropagation algorithm, based on information delivered by
the first and the second derivatives of the objective function with respect to the
learning rate. The clue to the proposed strategy is that it avoids the calculation of
the values of the second derivative in weight space, using the information collected
from the training instead. To bypass the calculation of the pseudo-inverse Hessian
matrix that is inherent in second-order optimization methods, the conjugate
gradient method is used.

The overwhelming number of upgraded learning algorithms are mainly focused
on learning velocity increase and search stability improvement by adding a term
containing the derivatives in weight space. But, some improvements of both
objectives, namely of learning velocity and of convergence stabilization, are also
achievable by manipulating the parameters of the neuron transfer function. Such an
updating proposal was made for supervised pattern learning that adaptively
manipulates the learning rate by updating neuron internal nonlinearity (Zhou et al.,
1991). Using some simulated data sets, it was shown that the updating law
proposed increases the learning speed and is very suitable for identification of
nonlinear dynamic systems.
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3.5.4 Training, Stopping and Evaluation

Originally, the simple principle was accepted that the network should be trained
until it has learnt it’s task. This is certainly difficult to find out, because there is no
direct approach how to do this. The general statement that a high enough number
of iterations, or training steps, is good enough, in the sense that the network has
learnt well enough to be a qualified expert in a specific domain, say in forecasting,
does not hold. Thus far, at least theoretically, reaching the global minimum of the
objective function is accepted as the training efficiency merit, so that by
approaching this minimum the error function will steadily decrease until the
minimum has been reached. Finding out that there is no further decrease of the
error function would then be an indication to stop the training process.

In practice, to find the global minimum, network training can require a number
of repeated training trials with various initial weight values. After each training run
the training results have to be evaluated and compared with the results achieved in
the previous runs, this in order to select the best run. Some researchers have here
centred their attention on the problem of a priori determination of a maximum
number of training runs required for the training. Iyer and Rhinehart (2000) have
developed an analytical procedure for determining the desirable lower number of
training runs, sufficient - within a certain level of confidence - that the best one is
within them. The procedure is based on the weakest-link-in-the-chain analysis
described by Bethea and Rhinehart (1991).

The authors use the cumulative distribution function for the weakest link in a
set of N training, with runs starting with the random initial weight values

F(a)=1-[1-F (a)]".

This, rearranged as

F.(a)=1-[1-F,(a)]",

represents the probability that any single optimization has an error value x <a.
The two relations, simultaneously taken, define the required number of random
starts as

v Inll=F, @]
Inf1- £, ()]

For example, if, at the confidence of 99% level, the best of random starts should
result in one of the best 20% values for the sum of squared errors, then the required
number of random starts will be

N :M ~ 20
In(1-20)
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A more recent approach to solving the problems of appropriate training termination
departs from some stopping criteria. For instance, based on the automated stopping
criterion of Natarajan and Rhinehart (1997), Iyer and Rhinehart (2000) take as the
stopping criterion the performance-to-cost ratio of the network. Assuming that the
entire cost of a validation set consisting of N, data points is C, =CN, , where C is

the cost of single data points, and assuming that the cost of training and test data
sets are CN, and CN, respectively, then the corresponding performance-to-cost

ratio is

1
" E.C(N,+N.+N,)’

P

where E, is the cumulative error on the test set for a trained network. Setting this

result in relation to the total costs for training termination has reached the
minimum RMS error without the validation cost will become

o :; S
EC(N, +N,)

so their ratio

with

However, even when using the predetermined number of training steps, there will
generally be no guarantee that the network parameters will be adequately tuned.
The optimal stopping strategy is to stop training after the network has learnt all
about the problem class it has to solve. This happens when the training stopping is
effected at the point where the network has reached the maximal generalization.
For the practising expert, this means that the stopping should be triggered exactly
at the point where the network output error has reached its minimal value, This is
known as early stopping. If the training is continued beyond this point, then the
result could be the network overtraining or network overfitting.
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Figure 3.16. Early stopping of training

But still, the dilemma remains: in order to stop the training process, how do we
realize that the network has learnt all the required knowledge from the training data
and has reached its maximum generalization? Then, from learning theory we know
that after reaching the point of maximum generalization, the network — although
learning more and more from the training set - will start impairing the related test
set performance (Figure 3.16) due to its overtraining (Vapnik, 1995). To prevent
this, the method of early stopping with cross-validation has been suggested by
Prechelt (1998).

Cross-validation is a traditional statistical procedure for random partitioning of
collected data into a #raining set and a test set, and for further partitioning of the
training set into the estimation set and the validation set. 1t is obvious that, if only
a restricted data set is available, the partition of the entire set reduces the size of the
training set. This, again, makes the location of the early stopping point difficult.
For managing this problem, a predicate or a stopping criterion should be found
that can indicate when to stop the training.

Prechelt (1998), using the error function (or the objective function) E, training
error Ey; (as the average error per example across the training set), and the test and
validation errors E, and E, respectively, has defined three possible stopping
criteria:

e Stop as soon as the generalization loss exceeds a threshold value ¢, i.e.
when g, (¢) >¢, where the error function g, (f) is based on the lowest
validation set error £, and the validation error E, .

e Stop as soon as the quotient

glos: (t) >e
LAQ)

>

where P, () is the training progress defined by
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trE r
P.(1)=1000—= Eul?)
kmin, E_(")

with #' =7—k+1, and the training strip length £.

e Stop when the generalization error increased in v successive strips.

Prechelt (1998), in order to interrogate the validity of the criteria, conducted 1296
training runs, producing 18144 stopping criteria. In the experiments, 270 of the
records from 125 different runs reached automatically the 3000 epoch limit without
using stopping criteria.

We will now consider the problem of network overtraining or network
overfitting in more detail. Both the problem of overfitting and the opposite
problem of underfitting arise as a consequence of improper training stopping.
Therefore, both of them should be prevented because each of them lowers the
generalization capability of the trained network. For example, if a network to be
trained is less complex than the task to be learnt, then the network - after being
trained - can suffer from underfitting and can, therefore, poorly identify the
features within a large training data set. On the contrary, a too complex network
can, after being trained, suffer from overfitting and can, therefore, extract the
features within the training set along with the superposed noise. As a consequence,
a complex network can produce predictions that are not acceptable.

Network complexity is primarily related to the number of weights. The term is
used in connection with the model selection for prediction in the sense that the
prediction accuracy of a network determines its complexity. This is the starting
point of network model selection: how many and of what size of weights (and how
many hidden units) should the model have in order to implement the wanted
prediction accuracy without (or at least with a low) overfitting?

From the statistical point of view, the underfitting and overfitting are related to
the statistical bias and the statistical variance they produce. They strongly
influence the generalization capability of the trained network as follows:

o the statistical bias is related to the degree of target function fitting and
restricts the network complexity, but does not care about the trained
network generalization

e statistical variance, which is the deviation of network learning efficiency
within the set of training data, cares about the generalisation of the trained
network.

For instance, underfitting produces a very high bias at network outputs, whereas
overfitting produces a large variance. The difficulty of their simultaneous reduction
or their balancing in the process of learning, which is essential for achieving the
highest possible degree of generalization, is known as the bias-variance dilemma.
The dilemma is to be understood as follows: the bias of a neural network with a
high fitting performance across the given training set of data is very low, but its
variance is very high. By reducing the variance the network data fitting
performance of the network will decrease. As a consequence, a trade-off between
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the low bias and the low variance is necessary, as demonstrated in Figure 3.17 on
the example of polynomial curve fitting of a set of given data points.

o,
pS

xY

Figure 3.17. Polynomial curve fitting of data

A polynomial of degree n can exactly fit a set of (» + 1) data points, say
training samples. If the degree of the polynomial is lower, then the fitting will not
be exact because the polynomial (as a regression curve 4) cannot pass through all
data points (Figure 3.17). The fitting will be erroneous and will suffer from bias
error, formulated as the minimized value of the mean square error. In the opposite
case, if the degree of the polynomial is higher than the degree required for exact
fitting of the given training data set, the excess number of it’s degrees will lead to
oscillations because of missing constraints (curve B in Figure 3.17). The
polynomial approximation will, therefore, suffer from variance error.
Consequently, a polynomial of the optimal degree should be chosen for data fitting
that will provide a low bias error as well as a low variance error, in order to resolve
the bias-variance dilemma.

Translated in terms of neural network training, polynomial fitting is seen as an
optimal nonlinear regression problem (German et al., 1992). This means that, in
order to fit a given data set optimally using neural network, we need a
corresponding model implemented as a structured neural network with a number of
interconnected neurons in hidden layer. If the size of the selected network (or the
order of its model) is too low, then the network will not be able to fit the data
optimally and the data fitting will be accompanied by a bias error that will
gradually decrease with increasing network size until it reaches its minimal value.
Increasing the network size beyond this point, the network will also start learning
the noise present in the training data, because there will be more internal
parameters than are required to fit the given data. With this, also the variance error
of the network will increase. The cross-point of the bias and the variance error
curve will guarantee the lowest bias error and the lowest variance error for fitting
the given data set. The corresponding network size (i.e. the corresponding number
of neurons) will solve the given data fitting problem optimally. At this point the
network training should be stopped, which is known as early stopping or stopping
with cross-validation. The network trained in this way will guarantee the best
generalization.

For probabilistic consideration of polynomial fitting, the expected value of the
minimum square error across the set of training data
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MSE,, = E,{[p(x)~ f ('}

is taken, where the training points are represented by the function f{x) and the
fitting polynomial or the actual network output by p(x). Expanding the MSE,

formally as
MSE,, = Ep{[p(x) = E, {p(x)} + E, {p(x)} = f ()"}
and rearranging its expansion as
MSE,, = Ep{[p(x)~ E, {p()} T} + EL {E, {p(0)} = f(OT'},
one gets the sum of the statistical variance
VAR, = Ep{[p(x)~ E, {p(x)}T'}
and the statistical bias
BIAS,, = E,{E, {p(x)} -~ f(0T'} .

In summary, the optimal network size is essential for optimal problem solving
because a relatively small network will not be able to fit the given data accurately
and thus will not be able to learn the most important features incorporated in the
data. For this reason, the network size should be increased. On the other hand,
because a large-sized network tends to learn not only the characteristic features of
the given data, but also the accompanying noise and other non-relevant
components’ idiosyncrasies hidden in the data, its size should be reduced. In both
cases, a network size reduction and/or an increase in optimal network size should
be found that ensures the optimal network performance. In practice, this is usually
achieved by balanced network growing and/or by network pruning.

Network growing is a process of successive addition of new neurons and their
related interconnections to the initial small-sized network until the optimal network
performance is reached. This is a common way of designing optimal-sized radial
basis function networks.

Network pruning, again, is a process of successive elimination of less relevant
interconnections between the neurons within the large-sized network until the
further elimination essentially worsens the network performance. A survey of
algorithms to be used for network pruning was given by Reed (1993), who
distinguished two major pruning methods:

e sensitivity calculation methods, based on the sensitivity of the error
function of the trained network with respect to the removal of individual
weight connections as the indication of their pruning

e penalty term methods, based on modification of the error function of a
trained network by a penalty term.
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Mozer and Smolensky (1988) used p as a measure of relevancy, defined as the
difference between the error after removing a unit and the error before removing a
unit. Karinin (1990), however, considers the error sensitivity with respect to
removal of individual connections and removes the low-sensitivity connections. Le
Cun et al. (1990), again, proposed the optimal brain damage procedure under the
condition that the Hessian matrix H is diagonal and estimated the saliency of the
weights and the second derivative of the error with respect to the weights. Hassibi
et al. (1992) removed the diagonallity restriction of the Hessian matrix and
considered the general case of an arbitrary form of Hessian matrix, which they
termed the optimal brain surgeon. Both approaches are based on consideration of
sensitivity of weights perturbation on the error function £ using the Taylor series

SE = (a_Ej5W+l5WTH5W+(”5W"3)°
ow 2

where

SE = E(w+Sw)

2
(5
ow

is the corresponding Hessian matrix.
Now, knowing that for a network trained to the local minimum in error, the
partial derivative

and

o _
ow

0

holds. Neglecting all higher order terms in the corresponding Taylor series and
eliminating a specific weight, say w;, measures should be undertaken to minimize

the increase in error JF, taking into account the condition of weight elimination
as given by

ow; +w; =0.
The condition of weight elimination in vectorial form is given by

T -
e;ow+w, =0,
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where e,.jT. is the unit vector in the weight space and w; is the weight connecting

the ith input of the jth hidden unit.
To solve the minimization problem, we form the corresponding Lagrangian

L :lé'wTHé'w+/1(eTé'w+ w.),
2 i b

where A is the Lagrange multiplier. The derivative of the Lagrangian with respect
to Ow and the equation

r -
e;ow+w; =0,

define the optimal weight change

W
ow=—>=—H"e,.
(my

v

Correspondingly, the related optimal value of Lagrangian L for the weight w; is

where [H ’1],]. is the ith element of the inverse Hessian matrix H. The L, value of
the Lagrangian determined in this way represents the increase of mean square error
caused by the removal of the weight Wi s known as saliency of the weight w . It

is obvious that, because the saliency depends on the square value of w), the small

values of weights have a low influence on the mean square error. However,

because the saliency is inversely proportional to [H ’l]i/., small values of [H ’l]ij

can also have a strong influence on the mean square error.

Although pruning methods, such as optimal brain damage, and optimal brain
surgeon, rely on the weight ranking with respect to saliency, i.e. on changes in
training error caused by pruning an individual weight, there is still an essential
difference between them: the optimal brain damage procedure does not require
retraining of the network after removing a weight element, whereas the optimal
brain surgeon procedure requires this.

The disadvantage of both methods is that, if no stopping criterion is built, the
removal of the least significant weights can lead to network overfitting. As an
efficient stopping criterion, the calculation of the test error using Akaike’s (1970)
final prediction error (FPE) estimation and its modification is used to cover the
estimation of average generalization error in regularized networks (Moody, 1991).
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In practice, to apply the above procedures, the second derivative (Buntine and
Weigend, 1994) of the inverse of Hessian matrix (Hassibi et al.,1992) has to be
calculated anew for every weight to be eliminated. Stahlberger and Riedmiller
(1996) proposed a fast network pruning method, called Uni-OBS, that still relies on
the optimal brain surgeon procedure but it requires only a single calculation of the
inverse Hessian matrix to eliminate a group of weights. This certainly simplifies
the calculation of net pruning. For accelerated calculations of matrix
multiplication, some fast computational algorithms are required or some algebraic
transformations that also accelerate the calculation process. An amendment of the
Uni-OBS method, called G-OBS (generalised optimal brain surgeon), can
simultaneously eliminate, say m, weights in one step with slight increase in error
given as

OFE :%5WTH5W,

The related elimination condition is given by
(w+w)'S,,

S, being the selection matrix that determines the m weights to be removed

simultaneously. Using the above weights elimination conditions and the
corresponding Lagrange method, we get for the resulting error the relation

Sw=—H"S(S"HS)"'S"w

and
OFE =%WTS(STHS)’1STW.

For acceleration of the pruning process, Levin et al. (1994) proposed a method for
elimination of excess weights.

Another way was followed by Jollife (1986). To improve the network
generalization capability, he used the method of principal component analysis.
This is a valuable mathematical tool for reducing a system’s dimensionality by
eliminating it’s redundant variables. This method transforms the variables to a
basis in which the system covariance is diagonal and the projection is in the low
variance directions. To detect the variables that have a low significant influence on
the error function, a salience measure is used, which demonstrates the
relationships between the proposed methods and the optimal damage and optimal
surgeon procedures of network pruning. The pruning consists in removing the
eigen-nodes with low saliency to reduce the effective number of network
parameters. In contrast to the optimal brain damage and optimal brain surgeon
procedures, which reduce the rank by eliminating actual weights, the proposed
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method reduces the rank of weights in each layer by deletion of the smallest salient
eigen-nodes. Finally, the proposed method does not require network training.

A network pruning approach is preferably used in designing networks with a
high generalization capability, i.e. networks that are not only good enough to solve
the prediction or classification problems present in the training set, but also some
similar problems using some fresh, never seen and not previously known training
sets of data. This is achieved through a trade-off between the intention that the
trained network should be capable of learning a broad spectrum of similar problem
categories, which would require a large-sized network, and the requirement that the
network should be as simple as possible, in order to avoid the overtraining.

In practical application of a trained network, there is a fundamental
recommendation, i.e. where several trained networks have approximately the same
final performances, the structurally simplest network should be selected as the best
generalized one. This recommendation reflects Occam’s razor philosophy, which
recommends that a scientific model should favour simplicity.

Many training strategies have been interrogated for network simplification at
lower training cost. Such strategies have been discovered within the framework of
minimization of the error function extended by a penalty term. To this category of
strategies belong:

e the weight decay approach (Hinton, 1989), a subset of regularization
approaches based on minimization of the weight tuning rule augmented by
a complexity penalty term

Awl.j (t+) = ﬂ&ixj — lwif

that penalizes the large weight values.

o the weight elimination approach (Weigend et al, 1991), based on
minimization of network training cost function to which a term is added
that accounts for the number of parameters:

w, (1)

Aw.(t+1)=né6x -1 ———,
s =10 = A A OF

where 4 represents the weight decay constant, 6, is the local error, X is

the local activation, and # is the learning rate.

In contrast to weight decay, which shrinks large values of weights more than small
ones, the weight elimination shrinks predominantly the small weight values and is
to a certain degree similar to the pruning process. Hansen and Rasmussen (1994)
have demonstrated that network pruning may result when the weight decay
parameter is determined by data. The added term punishes the large weight values
and forces them to obtain small absolute values and simultaneously retains the
other values unchanged. This, however, is favourable in preventing worsening of
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the network generalization capability. Therefore, care should be taken in selecting
the decay constant A, because an inappropriate value can deteriorate the
generalization capability of the weight decay process. As a remedy, Weigend ef al.
(1991) recommend updating the 4 value on-line during the network training in
iterative steps.

Adding the penalty function in the weight decay and optimizing the augmented
performance index corresponds to the regularization method in which the penalty
term is added to the cost function to act as a restriction to the subsequent
optimization problem. In approximation theory, the added term penalizes the
curvature of the original solution, seeking for a smoother solution of the
optimization problem.

The regularization method is generally used to solve ill-posed problems. In the
theory of learning, the problems of learning smooth mappings from examples are
mostly ill-posed problems. For their solution Tikhonov (1963) proposed
optimization of the cost function / extended by a term J, which also represents a
cost function. Thus, the resulting cost function to be optimized becomes

[res:I+Ua

where A represents the regularization parameter, which determines the degree of
regularization in the sense of balancing the degree of smoothness of the solution
and its closeness to the training data. The regularization helps in stabilizing the
solution of the ill-posed problem because the added term, representing the penalty
to the original optimization problem, smoothens the cost function (Morozov,
1984).

The regularization approach determines the so-called Tikhonov functional

1. ()= 20, =) + 2P

the first term of which represents the closeness to the data, and in the second term f
is the input-output function, P is a linear differential constraint operator, and ||*||2 is
a norm on the function space to which Pf'belongs. This operator also embodies the
a priori knowledge about the problem solution.

To solve the regularization problem we proceed with the minimization of
extended cost function /., using the resulting partial derivatives with respect to f'in
order to build the Euler-Lagrange equation

PPf(x) = % £, - S NSr-x,),

in which the operator P and its adjoint operator P build the differential operator

PP. Therefore, the above Euler-Lagrange equation is a partial difference equation.
Its solution can, therefore, be expressed as the integral transformation of the right-
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hand side of the equation, with the kernel defined by Green’s function of the
differential operator PP

PPG(x,x,)=6(x—x,).

Bearing in mind the definition of Green’s function and taking into account the
presence of the delta function on the right-hand side of the equation, the integral
transformation will generate a discrete sum of terms, so that the function f'can be
defined as

ﬂﬂ=%é@rfmnﬂ%&ﬁ

where G(x,x;) is Green’s function centred at x;. The last equation represents the
solution of the regularization problem as a linear combination of n Green’s
functions with the expansion centre x; and expansion coefficients (yi—f(x;)).
Consequently, the solution of the regularization problem lies in the n-dimensional
subspace of the space of smooth functions, with the » Green’s functions as its basis
(Poggio and Girosi, 1990). Furthermore, the basis function depends on stabilizer P,
that represents the a priori knowledge of the problem domain as a kind of
constraint.
Introducing the definition of the expansion weights as

Vi _.f(xi)

! A

the above solution equation becomes
f(x)= ;WiG(xaxi) .

Now, to determine the expansion weights W, , the last two equations have to be

written in matrix form as
W=t (v f)
7 y

and
f=Gw

which result in
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(G+ADw=y.

Here, I represents the n-dimensional identity matrix and G is the corresponding
Green’s matrix

G(x,,x) G(x,x,) ... G(x,x,)
| Gax) Gx,x) . Glxx,)
G(x,,x) G(x,,x,)...G(x,,x,)
which is a symmetric matrix with the property

G(x;,x;)=G(x,,x,)

because the identity matrix / is also symmetric.
From the solution equation

f(3)=EwG(x.x)

the corresponding regularization network (Figure 3.18) can be structured. The
input layer of the network has an equivalent number of units to the dimension of
the input vector, i.e. to the number of independent variables of the problem to be
solved. The subsequent hidden layer, fully connected with the input layer with the
fixed value weights, has the same number of nonlinear units as the number of data
points and the activation function in the form of a Green’s function with the output
G(x,x;). It does not participate in the training process. Finally, the output layer,

also fully connected to the hidden layer, contains one or more linear units with the
weights W, that correspond to the unknown coefficients of the above solution

equation.

Figure 3.18. Regularization network
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Obviously, the structure of the regularization network is mainly determined by the
problem to be solved, with the exception of the weights between the input layer
and the hidden layer, which are fixed. The main attributes of the network are:

e the regularization network is an optimal network because it minimizes the
performance index that defines the proximity of the elaborated solution to
the real solution defined by the training data

e the regularization network represents the best approximator (Girosi and
Poggio, 1990) in the sense that for a given function there always exists a
number of coefficients that approximate the given function better than any
other set of coefficients and — by properly defining the stabilizer —
guarantee that the regularization network has the desirable degree of
smoothness

e the regularization network is a wumiversal approximator that, given a
sufficiently large number of hidden neurons, can approximate any
continuous multivariate function arbitrarily well on a compact domain, a
property that is based on the classical Weierstrass theorem.

e when it is used for simplification of linear networks, particularly of basis
function networks, this corresponds to the ridge regression method.

The above objectives can, at least in principle, be reached by “extensive”
network training. Although this might lead to network overfitting, this can be
prevented by training stopping with cross-validation and by network structure
reduction, for which various approaches have been suggested.

3.6 Forecasting Using Neural Networks

Unlike the traditional approaches to time series analysis and forecasting, neural
networks need a reduced quantity of information to forecast the future time series
data. Based on the available time series data, network internal parameters are tuned
using an appropriate tuning algorithm. This can, if necessary, also include the
modification of the initially chosen network architecture to better match the
architecture required by the problem at hand. The related issues have been
discussed extensively in this chapter, so that our attention will be focused on the
comparison of the traditional approach to time series forecasting and on the
approach using neural networks. This will be followed by pointing out the benefits
of forecasting by merging both kinds of approaches and by building a nonlinear
combination of forecasts. Finally, some issues related to the forecasting of
multivariable time series using neural networks will be presented.

3.6.1 Neural Networks versus Traditional Forecasting

Comparison of forecasting performance of traditional statistical methods and of
neuro forecasters has, since the early 1990s, attracted the attention of many
researchers. Their reports have, however, been inconsistent because they were
based on experimental investigations using various network configurations with
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various performance quality. Added to this came that the experiments used
different time series data. For instance, forecasting collected linear data using
nonlinear mapping of neural networks cannot give better results than the
forecasting using linear statistical algorithms. In the reverse case, when dealing
with considerably nonlinear time series data, forecasting using nonlinear neural
networks could definitely deliver better results than the traditional algorithms.
Consequently, when dealing with mixed linear/nonlinear time series data a
combination of the traditional and the neural approach could be optimal.

Lapedes and Farber (1988) were the first to report that simple neural networks
can outperform traditional methods by up to many orders of magnitude. This was
radically investigated by Sharda and Patil (1990) on a set of 75 different time series
with the objective to compare the forecasting accuracy of the Box-Jenkins method
and of a neuro forecaster. Using a subset of 14 time series of Sharda and Patil,
Tang ef al. (1991) extended the comparative analysis to some additional aspects
and identified a number of facts that make neural networks or traditional
approaches deliver better forecasting results. They found by experiments that,
generally:

e for time series with long memory, both approaches deliver similar results

e for time series with short memory, neural networks outperform the
traditional Box-Jenkins approach in some experiments by more than 100%

e for time series of various complexity, the optimally tuned neural network
topologies are of higher efficiency than the corresponding traditional
algorithms.

As typical examples for experimental study

e international airline passenger data
e domestic car sales data in the US and
e foreign car sales data in the US

were used.
For experiments, the most typical traditional forecasting approach, the ARMA
model of Box-Jenkins approach

4,(B)¢,(B")(1-B")"(1-B)"y, = 0,(B)0y(B")a, +&

was used with the autoregressive operator ¢, moving-average operator 6, and the

back shift operator B. In the model equation, a,, y, and O represent the white
noise, the time series data, and a constant value respectively.

To simplify matters, in all experiments with neuro forecasters, one-hidden-layer
networks and networks without a hidden layer were used alternatively. The
experimental results showed that hidden-layer networks have a better forecasting
performance.

Hill et al. (1996) compared six traditional methods with the neuro forecaster on
111 different time series and found that neuro forecasters are significantly better
than the statistical methods taken into consideration. However, Foster et al. (1992)
came to the opposite conclusion. After extensive analysis of forecasting accuracy
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of neuro and traditional forecasters, they concluded that linear regression and the
simple average of the exponential smoothing method are superior to a neuro
forecaster. Denton (1995), again, demonstrated that, under standard statistical
conditions, there is only a slight difference in prediction accuracy between the
regression models and neural models. Some additional results of comparative
analysis have been communicated by Nelson ef al. (1994), Gorr et al. (1994),
Srinivasan et al. (1994), and Hann and Streurer (1996).

3.6.2. Combining Neural Networks and Traditional Approaches

Application of hybrid, i.e. combined neural networks and traditional approaches, to
time series forecasting was a challenging attempt to increase forecasting accuracy
beyond the limits that either one of the two approaches used alone would be able to
reach. In the following, we will consider the advantages of combining the neural
and ARIMA model approach in time series forecasting. Voort ef al. (1996) used
for this combination the Kohonen self-organizing map as the neural network part
for short-term traffic-flow forecasting. Sue et al. (1997) used this type of hybrid
combination to forecast a time series of reliability data and showed that the hybrid
model produced better forecasts than either the ARIMA model or the neural
network by itself could produce. Tseng ef al. (2002) investigated the combination
of a seasonal time series model SARIMA and a backpropagation network, resulting
in a SARIMABP hybrid combination. They found that the combination
outperforms the SARIMA model used alone and the backpropagation model with
the de-seasonalized or differentiated data.

For experimental purposes, the time series z,,i=1,2,3,...,k, is generated by a

SARIMA (p, d, q)(P, D, Q) process with mean ¢ and modeled by
P(BYD(B*)(1-B)'(1-B*)"(z, — ) = 0(B)O(B" )a, ,

where S is the periodicity, d and D are the number of regular and seasonal
differences respectively, B is the polynomial degree, and a, is the estimated
residual at time 7. The experimental results show that the SARIMABP method
benefits from the forecasting capability of the SARIMA and from the capability of
backpropagation to reduce the residuals further, which guarantees a lower
forecasting error. As forecasting accuracy evaluation criteria, the mean square error
(MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE)
have been used.

For a real-life application example, time series data of the total production
revenues of the Taiwanese machinery industry were taken for various periods of
time. For instance, a five-year data set has been used as the input of the ARIMA

(0,1,1)(1,1,1),, model
(1+0.309B%)(1- B)(1-B")z, = (1-0.7159B")a,

and for a three-year data set as the input of the ARIMA (0,1,1)(0,1,0),, model
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(1-B)(1-B")z, = (1-0.88126B)a, .

In both cases the experiments were carried out with two, three, and seven neurons
in the network hidden layer.

Hybrid ARIMA-neural network methodology was also the subject of an
experimental study by Zhang (2003), whose objective was to identify whether the
given time series data were generated by a linear or a nonlinear process. This is
essential for making a decision on whether, in a given case, the use of a linear (i.e.
the traditional) or a nonlinear (i.e. a neural network) approach will be more
appropriate. Here, the combined approach could ease the problem solution. After
all, because real-world time series are seldom purely linear or nonlinear, it is
favourable to use a hybrid approach.

In experimental practice, the assumption is made that a time series to be
processed is composed of a linear autocorrelation structure L, and a nonlinear

component N, :
z, =L +N,.

The linear component of the time series can be processed using an ARIMA model,
and the residuals

containing only the nonlinear relationships, can be processed by neural networks.
This can be done using a residual model, e.g.

€ = f(et—l’et—Z’ ey e[—n)+gt >

which corresponds to a neural network with » input nodes and the nonlinearity
function f(.). In the above residual model, & represents the random error. The

benefits of the proposed hybrid methodology approach have been confirmed on
three real-life examples from different application areas.

A remarkable contribution was reported by Wedding and Chios (1996), who
combined the Box-Jenkins model and an RBF network.

3.6.3 Nonlinear Combination of Forecasts Using Neural Networks

Because a large number of time series forecasting methods are available, it makes
sense for the application expert to select the best one among them in each
particular case. Thus, it becomes interesting to combine a group of forecast
methods and to examine the forecasting accuracy of the combination. The issue
was discussed in Section 2.8.6 from the traditional point of view. It was shown that
the best forecasting results are achievable when the combination of traditional
forecasting methods is nonlinear. In the meantime, various combination techniques
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have been suggested and examined using different intelligent technologies,
primarily with neural networks.

In engineering practice, choosing the “best” forecasting method means
choosing a method that is the best in the given circumstances. For instance
(McNees, 1985), experience has shown that no forecasting model retains its
accuracy for all values of variables all the time. Also, it has been experimentally
proven that if for a forecasting method the short run is good, then there is no
guarantee that the long run will also be good. Therefore, it is worthwhile seeking
for an adequate combination for each application situation. This is because the
combination of methods incorporates different cognition capabilities and can, in a
specific case, produce better forecasts than either of methods within the
combination itself. Moreover, experimental investigations confirm (Winkler and
Markridakis, 1983) that the resulting accuracy of combined forecasts increases
with the increase in the number of forecasting methods involved. Mahmoud (1984)
also came to a similar conclusion, that the accuracy of the combined forecast
improves as more methods are included in the combination.

In forecasting non-stationary, non-seasonal time series one can evaluate the
forecast values subsequently generated by a Box-Jenkins ARMA or ARIMA
model, Holt-Winter’s exponential smoothing, extrapolation of trend curve, Kalman
filtering, efc. and mutually compare the results achieved. Out of the possible
forecasting methods the analyst may prefer to use his own favourite methods that
will produce different forecasts of a given time series. Moreover, using a particular
method (say, ARMA/ARIMA) different analysts may come up with a different
order of the models required for forecasting and, again, with different forecast
results. Therefore, forecast models developed using different methods and by
different analysts will rarely be identical. This may be very confusing to someone
who wants to take a decision on the basis of various forecasts suggested by various
analysts.

From the above, it follows that it is inadvisable to prefer one particular
forecasting method over another, because no single forecasting method will in
every situation produce forecasts of the same accuracy. Rather, it is more advisable
to take a combination of a few forecasts generated by different methods. This was
even clearly formulated by Bates and Granger (1969).

A number of advanced approaches have been suggested for nonlinear
combination of forecasts using neural networks (Shi and Liu, 1993; Harald and
Kamastra, 1997). The problem is defined here starting with the availability of &
different forecasts fi, f5, f3, ..., fi, of some random variable z, that should be
combined into a single forecast ;. The straight away step would be to form a linear
combination of forecasts

f.(2)=Zw, f(2)

where w; is the assigned weight of ith forecast f..

The simplest approach to determine the weights w; of the combination would be
to take equal weights for each term. This has proven to be relatively robust and
accurate. But still, in practice, the linear combination of forecasts is not likely to be
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the optimal combination like the nonlinear combinations are. This can be
demonstrated on the following example.

Suppose that k£ different forecast models are available and the ith individual
forecast has an information set {/; : I, I;}, where I. is the common part of
information used by all £ models and /; is the specific information for the ith
forecast only. Denoting the ith forecast by f; = Fi(l;), we can express the linear
combination of forecasts as

Fo=ZwiF(l),

where w; is the weight of the ith forecast. On the other hand, every individual
forecasting model can also be regarded as a subsystem for information processing,
while the combination model f, = F.(I;, I, ..., I;) is regarded as such a system. It
follows that the integration of forecasts is more than their sum, i.e. the performance
of the integrated system is more than the sum of its subsystems. So, the
trustworthiness of the linear forecast combination is quite questionable. More trust
should be paid to a nonlinear interrelation between the individual forecasts, such as

Je= viF (1Y), Fy(D), F3(13), ..., FlIp)],

where is a nonlinear function. While the given information is processed by
individual forecasting models, it is likely that parts of the entire information can be
lost, which means that, say, the information set /; is not being used efficiently.
Furthermore, different forecasts may have different parts of information lost. This
is why it is preferable that as many different forecasts as possible should be present
in the combination, even when the individual forecasts depend on the same set of
information.

As a forecasting example (Palit and Popovic, 2000), a 2-6-6-1 feedforward
network, i.e. a network with two inputs, and two hidden layers with each layer
containing six neurons and one output, is used, as shown in Figure 3.19b. The
network is trained using the Levenberg-Marquardt algorithm, which guarantees
much faster learning speed than the standard backpropagation method, and hence
requires less training time. The algorithm also uses the gradient descent method,
based on Jacobian matrix, according to which the update is

sw=— T I Ooyul | 7 (we(x)

or
wik +1) = wk) + Aw(k)

w(k +1) = w(k)—[JT (W)J (W) + ﬂlrﬂ(w)e(w)

where J(w) is the Jacobian matrix with respect to network-adjustable parameters w
(all weights and the biases) of dimension (gxN,), and g being the number of
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training sets, N, being the number of adjustable parameters in the network, and / is
the identity matrix of dimension (N, xN,).

Table 3.1. Nonlinear combination of two forecasts of a temperature series using an artificial
neural network (ANN: Neural networks combined forecast; BJ: Box-Jenkins forecast, HW:
Holt-Winters exponential smoothing)

Serial | Forecast Data sets from HBXIO [ SSE RMSE
No. matrix

1. BJ 151 to 224 (column-1) | 0.4516 |[0.112
2 HW 151 to 224 (column-2) | 0.3174 | 0.0933
3 ANN (2-6-6-1) 1 to 150 (training)

4 ANN (2-6-6-1) 151 to 224 0.1306 | 0.0594
5 ANN (2-2-6-1) 151 to 224 0.2425 ]0.0810

The parameter g is multiplied by some factor z;,. whenever an iteration step
increases the network performance index (i.e. sum squared error) and it is divided
by .. whenever a step reduces the network performance index. Usually the factor
Hine= Ugec and in our case it is selected as 10.
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Figure 3.19(a). The combination of forecasts using a 2-2-6-1 artificial neural network
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Figure 3.19(b). The combination of forecasts using a 2-6-6-1 artificial neural network

In our practical example, the first 150 input-output samples were used to train
the network. Thereafter, the values of the interconnecting weights and biases are
saved for network performance testing using the remaining 151 to 224 samples of
data. From the experimental results shown in Figure 3.19(a) and Figure 3.19(b) and
Table 3.1, it is obvious that the network output very closely matches the actual
time series, indicating that a nonlinear combination of the forecasts is better than
the individual forecasts.

3.6.4 Forecasting of Multivariate Time Series

Chakraborty ef al. (1992) conducted experimental investigations on forecasting of
multivariate time series using neural networks. They focused their attention on the
statement that, in the case of substantial cross-correlation of individual variables of
multivariable time series data, the forecasting accuracy of each variable can be
improved when simultaneously changing the values of other variables within the
time series is taken into account. This has been observed in multivariate statistical
analysis when, based on observation data, identifying the interdependencies of
variables involved in a multivariate system. To prove this, Chakraborty et al.
(1992) analyzed the one-step and multistep prediction behaviour of a frivariate
time series x, =(x,,x,,,x,] in the interval of # = 1-100 samplings using

e separate modelling of each component of the multivariable time series,
interpreted as mutually independent univariate time series
e combined modelling, by simultaneous consideration of all three variables

o statistical modelling, using the statistical model developed by Tiao and
Tsay (1989).
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The analysis of separate modelling was carried out using alternatively 2-2-1, 4-4-1,
6-6-1, and 8-8-1 networks and by evaluating the results for each time series
component using the mean square error as the performance indicator. The analysis
has shown that a combined modelling approach is superior to separate modelling,
and that both of them are superior to statistical modelling. In addition, the
experiments with the 2-2-1 backpropagation networks have delivered, in one-step
and multistep cases, the best forecasting accuracy, which shows that the 4-4-1 and
6-6-1 networks are oversized for this purpose.

The experimental investigations presented above deliver forecasting results that
depend considerably on the art of experiment design used for this purpose. For this
reason the results are not coherent and are sensitive to the application field. We are
still short of a general theoretical formulation of this phenomenon, but some
encouraging trials have been made in this direction (reported by Yang, 2000),
related to methods of combining forecasting procedures for forecasting continuous
random univariate time series.

References

[1]  Aizerman MA, Braverman EM, and Rozenoer LI (1964) Theoretical foundation of
potential function method in pattern recognition. Automation and Remote Control 25:
917-936.

[2] Akaike H (1970) Statistical predictor identification, Annals of the Institute of
Statistical Maths., 22: 202-217.

[3] Almeida LB (1987) A learning rule for asynchronous perceptrons with feedback in a
combinatorial Environment. IEEE 1st International Conf. on Neural Networks, San
Diego, CA 11:609-618.

[4] Amari S and Maginu K (1988) Statistical neurodynamics of associative memory,
Neural Networks 1: 63-73.

[5] Anders U and Korn O (1999) Model selection in neural networks. Neural Networks
12: 309-323.

[6] Bashkirov OA, Braverman EM, and Muchnik IB (1964) Potential function algorithms
for pattern recognition learning machines. Automation and Remote Control 25:692—
695.

[7] Bates JM and Granger CWJ (1969) The combination of forecasts, Operation Research
Quart. 20: 451-461.

[8] Baum EB and Haussler D (1989) What Size Net Gives Valid Generalisation? Neural
Computation 1:151-160.

[9] Bethea RM and Rhinehard RR (1991) Applied Engineering Statistics. Marcel Dekker,
New York.

[10] Block HD (1962) The Perceptron: a model of brain functioning. Review of Modern
Physics, 34:123-135.

[11] Broomhead DS and Lowe D (1988) Multivariable functional interpolation and
adaptive networks. Complex Systems 2: 321-355.

[12] Butine WL and Weigend AS (1994) Computing Second Derivatives in Feedforward
Networks: A Review. IEEE Trans. on Neural Networks 3: 480—488.

[13] Chakraborty K, Mehrotra K, Mohan ChK, Ranka S (1992) Forecasting the behavior of
Multivariate Time Series Using Neural Networks. Neural Networks 5: 961-970.

[14] Cichocki A and Unbehauen R (1993) Neural Networks for Optimization and Signal
Processing. Wiley, Chichester, West Sussex, UK.



138

[21]

[25]

(28]

Computational Intelligence in Time Series Forecasting

Cohen MA and Grossberg S (1983) Absolute Stability of global pattern formation and
parallel memory storage by competitive neural networks. IEEE Trans. on Systems,
Man, and Cybernetics 13: 815-826.

Cybenko G (1989) Approximation by superpositions of a sigmoidal function.
Mathematical Control Signals Systems 2:303-314.

Denton JW (1995) How good are neural networks for causal forecasting? J. of
Business Forecasting 14(2):17-20.

Elman JL (1990) Finding structure in time. Cognitive Science 14: 179-211.

Fogel DB (1991) An Information Criterion for Optimal Neural Network Selection.
IEEE Trans. On Neural Networks 2: 490-497.

Forster WR, Collopy F, Ungar LH (1992) Neural network forecasting of short, noisy
time series. Computers and Chemical Engineering 16(2): 293-297.

German SE, Bienenstock, and Doursat R (1992) Neural networks and the
bias/variance dilemma. Neural Computation 1: 1-58.

Girosi F and Poggio T (1989) Representation Properties of Networks: Kolmogorov’s
Theorem is Irrelevant. Neural Computation 1: 465—469.

Girosi F and Poggio T (1990) Networks and the best approximation properties.
Biological Cybernetics:169-176.

Gorr WL, Nagin D, Szczypula J (1994) Comparative study of artificial neural network
and statistical models predicting student grade point averages. Intl. J. of Forecasting
10: 17-34.

Grossberg S (1988) Competitive Learning: From interactive activation to adaptive
resonance, Neural Networks and Neural Intelligence, Grossberg S. (Eds.), MIT Press,
Cambridge, MA.

Hagan MT and Menhaj MB (1994) Training feedforward networks with the
Marquardt algorithm, IEEE Trans. on Neural Networks, vol. 5(6): 989-993.

Hann TH and Steurer E. (1996) Much ado about nothing? Exchange rate forecasting:
Neural networks vs. linear using monthly and weekly data. Neurocomputing 10: 323—
339.

Hansen IK and Rasmussen CE (1994) Pruning from adaptive regularization. Neural
Computation 6: 1223—-1232.

Harald PG and Kamastra M (1997) Evolving artificial neural networks to combine the
financial forecasts, IEEE Trans. on Evolutionary Computation, vol. 1(1): 40-51.
Hassibi B, Stork DG, and Wolff GJ (1992) Optimal brain surgeon and general
network pruning. IEEE Intl Conf on Neural Networks, San Francisco 1:293-299.
Haykin S (1994) Neural Networks: a comprehensive foundation. McMillan, USA
Hebb DO (1949) The organisation of behaviour. Wiley, New York.

Hecht-Nielsen R (1987a) Counterpropagation Networks. Applied Optics 26(23):
4979-4984.

Hecht-Nielsen R (1987b) Kolmogorov’s Mapping Neural Network Existence
Theorem, IEEE Conf. On Neural Networks; San Diego, CA. III: 11-14.
Hecht-Nielsen R (1988) Application of counterpropagation networks, Neural
Networks 1: 131-139.

Hertz J, Krogh A, and Palmer RG (1991) Introduction to theory of neural
computation, Addison-Wesley, Reading, MA.

Hill T, O’Connor M, Remus W. (1996) Neural network models for time series Models
forecasts. Management Sciences 42(7): 1082-1092.

Hinton GE (1989) Connectionist learning procedures, Artificial Intelligence, 40: 185—
243.

Hopfield JJ (1982) Neural Networks and physical systems with emergent collective
computational abilities. Proc. of the Nat. Acad. of Sciences, USA, 79: 2554-2558.



[57]

Neural Networks Approach 139

Hopfield JJ (1984) Neurons with graded response have collective computational
properties like those of two-state neurons. Proc. of the Nat. Acad. of Sciences, USA
81:3088-3092.

Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are
Universal approximators. Neural Networks 2(5): 359-366.

Hu MIJC (1964) Application of the ADALINE system to weather forecasting. Master
Thesis, Technical Report 6775—1, Stanford El. Lab., Stanford, CA.

Ishikawa M. and Moriyama T (1996) Prediction of time series by a structural learning
of neural networks. Fuzzy Sets and Systems 82: 167-176.

Iyer MS and Rhinehart RR (2000) A novel method

Iyer MS and Rhinehart RR (2000) A Novel Method To Stop Neural Network
Training. 2000 American Control Conference, paper WM17-3

Johanson EM, Dowla EU, and Goodman DM (1990) Backpropagation learning for
multi-layer feedforward neural networks using the conjugate gradient method, Report
UCRL-JC-104850, Lawrence Livermore National Laboratory, CA.

Jollife IT (1986) Principal Components Analysis. Springer-Verlag.

Jordan M (1986) Attractor dynamics and parallelism in a connectionist sequential
machine. Proc. of the Eight Annual Conference on Cognitive Science Society :532—
546.

Karnin ED (1990) A simple procedure for Pruning back-propagation trained neural
networks. IEEE Trans on Neural Networks 2: 188-197.

Khorasani K and Weng W (1994) Structure Adaptation in Feedforward Neural
Networks. Proc. IEEE Internat. Conf. on Neural Networks, I11: 1403—-1408.
Klimasauskas CC (1991) Applying Neural Networks. Part 3: Training a Neural
Network. PC-AI, May/June: 20-24. B,

Kohonen T (1989) Self-Organisation and Associative Memory. 3" Edition, Springer,
Berlin, NY.

Krose B and Smagt P (1996) An introduction to neural networks, The University of
Amsterdam, Eighth edition, November, http://www.fwi.uva.nl/research/neuro.

Kubat M (1998) Decision trees can initialise radial-basis-function networks. IEEE
Trans. on Neural Networks. 9: 813-821.

Kurita T (1990) A method to determine the number of hidden units of three-layered
neural networks by information criteria, Trans. of Inst. of Electronics, Information and
Commun. Engineers, J73-D-1I-11: 1872—1878 (in Japanese).

Lapedes A and Farber R (1988) Nonlinear signal processing using neural networks:
Prediction and system modelling. Technical Report LA-UR-87-2662, Los Alamos
National Laboratory, Los Alamos, NM.

Le Cun Y, Denker JS, and Solla SA (1990) Optimal Brain Damage. In: Touretzky S
(Ed.). Advances in Neural Information Processing Systems 2, San Mateo, CA,
Morgan Kaufman.

Levin AU, Leen TK, and Moody JE (1994) Fast pruning using principle components,
In: Advances in Neural Information Processing Systems 6, Covan JD, Tesauro G and
Alspector J, Editors: 35-42, Morgan Kaufman Publi. Inc., San Mateo, CA.

Lippmann RP (1987) An introduction to computing with neural nets. IEEE ASSP
Magazine (April): 4-22

Mahmoud E (1984) Accuracy in forecasting: A survey. J. of Forecasting 3:139-159.
McClelland JL and Rumelhart DE (1988) Exploration in Parallel Distributed
Processing. Cambridge, MA, MIT Press.

McCulloch WS, Pitts W, (1943) A logical Calculus of the ideas Immanent in nervous
activity. Bulletin of Mathematical Biophysics 5:115-133.

McNees SK (1985) Which forecast should you use. New England Economic Review,
July/August: 36-42.



[70]

Computational Intelligence in Time Series Forecasting

Minsky ML and Papert S, (1969) Perceptrons. MIT Press, Cambridge MA.

Moody JE (1991) Note on Generalization, Regularization and Architecture Selection
in Nonlinear Systems, Proc. of the IEEE-SP Workshop : 1-10.

Moody JE and Darken CJ (1989) Fast learning in networks of locally-tuned
processing units. Neural Computation 1: 281-294.

Morozov VA (1984) Methods for Solving Incorrectly Posed Problems. Springer-
Verlag, Berlin.

Mozer MC and Smolensky P (1990) Skeletonization: A technique for trimming the fat
from a network via relevance assessment. In: Advances in Neural Information
Processing 1, Touretzky DS (Ed.) : 107-115.

Murata N, Yoshizawa S, and Amari S (1994) Network Information criterion —
Determining the number of Hidden Units for an Artificial Neural model. IEEE Trans.
On Neural Networks 6: 865-871.

Natarajan S and Rhinehart RR (1997) Automated Stopping Criteria For Neural
Network Training. Proc. of the 1997 American Control Conf., paper #TP09—4.

Nelson M, Hill T, O’Connor M (1994) Can a neural network be applied to time series
forecasting and learn seasonal patterns: An empirical investigation. Proc. of the 20™
Annual Hawaii Intl. Conf on System Sciences: 649—655.

Oja E (1982) A simplified neuron model as a principal component analyzer. Journal
of Mathematical Biology 15: 267-273.

Palit AK and Popovic D (2000) Nonlinear combination of forecasts using artificial
neural network, fuzzy logic and neuro-fuzzy approaches, FUZZ-IEEE, 2: 566-571.
Pineda FJ (1987) Generalisation of back-propagation to recurrent neural networks.
Physical Review Letters 59: 2229-2232.

Poggio T and Girosi F (1990) Networks for Approximation and Learning. Proc. IEEE
78:1481-1497.

Powel MID (1988) Radial basis function approximation to polynomials, Numerical
Analysis Proceedings, Dundee, U.K.: 223-241.

Prechelt L (1998) Early Stopping — but when? In: Orr GB and Moeller K-R (Eds.),
Neural Networks: Tricks of the Trade. Springer, Berlin: 55-69.

Reed R (1993) Pruning Algorithms — A Survey. IEEE Trans. on Neural Networks 4:
740-747.

Rosenblatt F, (1958) The Perceptron: A probabilistic model for information storage
and organisation of the brain. Psych. Review 65: 386—408.

Rumelhart DE and McClelland (1986) Parallel Distributed Processing: Explorations
in the Microstructure of Cognition MIT Press, Cambridge, MA.

Rumelhart DE, Hinton GE, and Williams RJ (1986) Learning internal representation
by back-propagation errors. In: Rumelhart DE, McClelland JL, the PDP Research
Group(Eds.), Parallel Distributed Processing: Explorations in the Microstructure of
Cognition. MIT Press, MA.

Sastry PS, Santharam G, and Unikrishnan KP (1994) Memory neuron networks for
identification and control of dynamic systems. IEEE Trans. on Neural

Schmidhuber J (1989) Accelerated learning in backpropagation net, In:
Connectionism in Perspective, Elsevier, North Holland, Amsterdam, pp. 439—445.
Sharda R and Patil RB (1990) Neural Networks as Forecasting Experts: An Empirical
Test, Proc. of the IICNN Meeting, Washington: 491-494.

Shi S and Liu B (1993) Nonlinear combination of forecasts with neural networks.
Proc. of Intl. Joint Conf. on Neural Networks *93 (IJCNN ’93), Nagoya, Japan, 952—
962.

Silva FM and Almeida LB (1990) Speeding-up backpropagation, In: Advances of
Neural Computers, Eds. Eckmiller R, Elsevier Science Publish. BV., North Holland,
pp. 151-158.



Neural Networks Approach 141

[87] Specht DF (1988) Probabilistic neural networks for classification, or associative
memory, Proc. of IEEE Intern. Conf. on Neural Networks, San Diego, 1: 525-532.

[88] Specht DF (1990) Probabilistic neural networks and the polynomial ADALINE as
complementary techniques for classifications. IEEE Trans. on Neural Networks, 1:
111-121.

[89] Sprecher DA (1965) On the Structure of Continuous Functions of Several Variables.
Trans. Amer. Math. Soc. 115:340-355.

[90] Srinivasan D, Liew AC, Chang CS (1994) A neural network short-term load
forecaster. Electric Power Systems Research 28: 227-234.

[91] Stahlberger A and Riedmuller M (1996) Fast network pruning and feature extraction
using the Unit-OBS algorithm. Advances in Neural Information Processing systems
(NIPS’96), Denver.

[92] Stone M (1977) An asymptotic equivalence of choice of model by cross-validation
and Akaike’s criterion cross validation. J. of the Royal Statistical Soc. B36:44—47.

[93] Sue CT, Tong LI, and Leou CM (1997) Combination of time series and neural
network for reliability forecasting modelling. J. Chin. Inst. Ind. Eng. 14(4): 419-429.

[94] Tang Z, Almeida de Ch, and Fishwick, PA (1991) Time series forecasting using
neural networks vs. Box-Jenkins methodology. Simulation 57(5): 303-310.

[95] Tiao GC and Tsay RS (1989) Model specification in multivariate time series. J. of the
Royal Statistical Society B 51: 157-213.

[96] Tikhonov AN (1963) On solving incorrectly posed problems and methods of
regularisation. Docklady Akademii Nauk USSR 151: 501-504.

[97] Tseng F-M, Yu H-Ch, and Tzeng G-H (2002) Combining neural network model with
seasonal time series ARIMA model. Technological Forecasting.

[98] Vapnik V (1995) The Nature of Statistical Learning Theory, Springer-Verlag, NY.

[99] Villiers de J and Bernard E (1992) Backpropagation Neural Nets with one and Two
Hidden Layers. IEEE Trans. On Neural Networks : 136—-141.

[100] Vogl TP, Mangis JK, Rigler AK, Zink WT and Allcon DL (1988) Accelerating the
convergence of backpropagation method, Biological Cybernetics, vol. 59: 257-263.

[101] Voort VD, Dougherty M, and Watson M. (1996) Combining Kohonen Maps with
ARIMA time series models to forecast traffic flow. Transp. Res. Circ. (Emerg.
Technol.) 4C(5): 307-318.

[102] Wedding IT DK and Cios KJ (1996) Time series forecasting by combining RBF
networks certainty factors, and the Box-Jenkins model. Neurocomputing 10: 149—-168.

[103] Weigend AS, Rumelhart DE, and Huberman BA (1991) Generalisation by weight-
elimination with application to forecasting. Adv. In Neural Information Processing
Systems, Morgan Kaufmann, San Mateo, CA 3: 8§75-882.

[104] Werbos P (1990) Backpropagation through time what it does and how to do it, Proc.
of IEEE, 78(10):1550-1560.

[105] Werbos PJ (1974) Beyond Regression: New Tool for Prediction and analysis in the
Behavioural sciences. Ph.D. Thesis, Harvard University, Cambridge, MA.

[106] Werbos PJ (1989) Backpropagation and neural control: A review and prospectus.
Internat. Joint Conf. of Neural Networks, Washington, 1: 209-216.

[107] Widrow B and Hoff ME (1960) Adaptive Switching Circuits. In: Anderson J and
Rosenfeld E. (eds.) Neurocomputing. MIT Press, Cambridge, MA, 126—134.

[108] Williams RJ and Zipser D (1989) A learning algorithm for continually running fully
recurrent neural networks. Neural Computation 1: 270-280.

[109] Winkler R and Makridakis S (1983) The combination of forecasts, Journal of the
Royal Statistical Society, Series A: 150—157.

[110] Yang Y (2000) Combining different procedures for adaptive regression, J. of
Multivar. Analysis, 74: 135-161.



142 Computational Intelligence in Time Series Forecasting

[111] Yu X-H, Chen G-A, and Cheng S-X (1995) Dynamic Learning Rate Optimization of
the Backpropagation Algorithm. IEEE Trans. on Neural Networks 3: 669— 677.

[112] Zhang PG (2003) Time series forecasting using a hybrid ARIMA and neural network
models. Neurocomputing 50:159-175.

[113] Zhou S, Popovic D, and Schulz-Ekloff G (1991) An Improved Learning Law for
Backpropagation Networks. IEEE Int. Conf. on Neural Networks, San Francisco:
573-579.

Selected Reading

[114] Anderson JA (1972) A Simple Neural Network Generating an Interactive Memory,
Mathematical Biosciences 14: 197-220.

[115] Cybenko G (1988) Continuous valued neural networks with two hidden layers are
sufficient. Technical Report, Taft University.

[116] Kohonen T (1972) Correlation Matrix Memories. IEEE Transactions on Computers
21:353-359.

[117] Kolmogorov Al (1957) On Representation of Continuous Function of Many Variables
by Superposition of Continuous Functions of One Variable and Addition. Dokl. Akad.
Nauk USSR 114:953-956.

[118] Kurkova V (1991) Kolmogorov’s Theorem is Relevant, Neural Computation, 3: 617—
622.

[119] Kurkova V (1992) Kolmogorov’s Theorem and Multilayer Neural Networks, Neural
Networks 5: 501-506.

[120] Moody JE (1992) The Effective Number of Parameters: An Analysis of
Generalization and Regularisation in Nonlinear learning Systems. In: Advances in
Neural Information Processing 4 (Moody JE, Hanson SJ, and Lippmann RP (Eds.),
Morgan Kaufman Publ., San Mateo, CA.

[121] Schwenkler F, Kestler H, Palm G (2001) Three learning phases for radial-basis-
function networks. Neural Networks 14: 439-458.

[122] Schwenkler F, Kestler H, Palm G, and Héher M (1994) Similarities of LVQ and RBF
learning, Proc. IEEE International Conference SMC: 646-651.

[123] Xiaosong D, Popovic D, and Schulz-Ekloff G (1995) Oscillation-Resisting in the
Learning of Backpropagation Neural Networks. 3rd IFAC/IFIP Workshop on
Algorithms and Architectures for Real-Time Control, 31 May — 2 June, Ostend,
Belgium.



2 Springer
http://www.springer.com/978-1-85233-948-7

Computational Intelligence in Time Series Forecasting
Theory and Engineering Applications

Palit, A.K.; Popovic, D.

2005, XXIl, 372 p., Hardcowver

ISBN: 978-1-85233-948-7



