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Neural Networks Approach 

3.1 Introduction 

Neural networks are massively parallel, distributed processing systems 
representing a new computational technology built on the analogy to the human 
information processing system. That is how we know the neural networks today, 
but the evolution of artificial neural networks, from the early idea of neuro-
physiologist Heb (1949) about the structure and the behaviour of a biological 
neural system up to the recent model of artificial neural system, was very long. The 
first cornerstones here were laid down by the neurologists McCulloch and Pitts 
(1943) who, using formal logic, modelled neural networks using the neurons as 
binary devices with fixed thresholds interconnected by synapses. Nevertheless, the 
list of pioneer contributors in this field of work is long. It certainly includes the 
names of distinguished researchers like Rosenblatt (1958), who extended the idea 
of the computing neuron to the perceptron as an element of a self-organizing 
computational network capable of learning by feedback and by structural 
adaptation. Further pioneer work was also done by Widrow and Hoff (1960), who 
created and implemented the analogue electronic devices known as ADALINE 
(Adaptive Linear Element) and MADALINE (Multiple ADALINE) to mimic the 
neurons, or perceptrons. They used the least mean squares algorithm, simply called 
the delta rule, to train the devices to learn the pattern vectors presented to their 
inputs. In 1969, Minsky and Papert (1969) portrayed perceptron history in an 
excellent way but their view, that the multilayer perceptron (MLP) systems had 
limited learning capabilities similar to the one-layer perceptron system, was later 
disproved by Rumelhart and McClelland (1986). Rumelhart and McClelland in fact 
showed that multilayer neural networks have outstanding nonlinear discriminating 
capabilities and are capable of learning more complex patterns by 
backpropagation learning. This essentially terminates the most fundamental 
development phase of perceptron-based neural networks.  

After a period of stagnation, the research interest was turned to the possible 
alternative network variants that have been found in self-organizing networks 
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(Amari and Maginu,1988), resonating neural networks (Grossberg, 1988), 
feedforward networks (Werbos, 1974), associative memory networks (Kohonen, 
1989), counterpropagation networks (Hecht-Nielsen, 1987a), recurrent networks 
(Elman, 1990), radial basis function networks (Broomhead and Lowe, 1988), 
probabilistic networks (Specht, 1988), etc. Nevertheless, up to now, the most 
comprehensively studied and, in engineering practice, most frequently used neural 
networks are the multilayer perceptron networks (MLPN) and radial basis function 
networks (RBFN), which are frequently the subject of further research and 
applications.  

Neural networks have, since the very beginning of their practical application, 
proven to be a powerful tool for signal analysis, features extraction, data 
classification, pattern recognition, etc. Owing to their capabilities of learning and 
generalization from observation data, the networks have been widely accepted by 
engineers and researchers as a tool for processing of experimental data. This is 
mainly because neural networks reduce enormously the computational efforts 
needed for problem solving and, owing to their massive parallelity, considerably 
accelerate the computational process. This was reason enough for intelligent 
network technology to leave soon the research laboratories and to migrate to 
industry, business, financial engineering, etc. For instance, the neural-network-
based approaches developed and the methodologies used have efficiently solved 
the fundamental problems of time series analysis, forecasting, and prediction using 
collected observation data and the problems of on-line modelling and control of 
dynamic systems using sensor data.  

Generally speaking, the practical use of neural networks has been recognized 
mainly because of such distinguished features as  

general nonlinear mapping between a subset of the past time series values 
and the future time series values  
the capability of capturing essential functional relationships among the 
data, which is valuable when such relationships are not a priori known or 
are very difficult to describe mathematically and/or when the collected 
observation data are corrupted by noise  
universal function approximation capability that enables modelling of 
arbitrary nonlinear continuous functions to any degree of accuracy  
capability of learning and generalization from examples using the data-
driven self-adaptive approach. 

3.2 Basic Network Architectures 

The model of the basic element of a neural network i.e. the neuron, as still used 
today was originally worked out by Widrow and Hoff (1960). They considered the 
perceptron as an adaptive element bearing a resemblance to the neuron (Figure 
3.1). A neuron, as the fundamental building block of a neural information 
processing system, is made up of (see Figure 3.1) 

a cell body with an inherent nucleus
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This configuration was translated in terms of analogue computational technology 
as shown in Figure 3.1, where  

the core part of the element, called a perceptron, contains a summing 
element  and a nonlinear element NL 
the multiple signal inputs ix  are connected via adjustable weighting 

elements iw  with the core part of the element  

the signal output(s) dy

An additional perceptron input 0,w  called the bias, is understood as a threshold 

(switching) element. 

Figure 3.1. Symbolic representation of neuron and perceptron 

The output signal is defined as 

0 0
1

n

i i
i

y f w x w

and the bias follows the relationship  

T
0 0w x w

meaning that the perceptron fires, i.e. it is activated and produces an output signal 
when this condition is met, otherwise not. 

Our attention should now be shifted to the question of what nonlinear function 
should be implemented in the core part of the perceptron as its activation function.
The early attempt of Block (1962) to select the binary step function for this 
purpose was later modified in favour of a sigmoid activation function (Figure 3.2). 

1
( )

1 exp( )
f x

x
.
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Figure 3.2. Sigmoid activation function 

The perceptron basically learns through a training process, based on a set of 
collected data. During the training, the perceptron adjusts its interconnection 
weights according to the data presented at its input. For adjusting the perceptron 
weights, Widrow and Hoff (1960) originally proposed using the delta rule, i.e. the 
recursive gradient-type of learning algorithm (the so-called -LMC Algorithm)
that adds to the current weight value w(k) a compensation term (k)x(k), to build 
the next weight value 

w(k + 1) = w(k) + (k)x(k),

where is a proportionality term, (k) is the error at the adjusting step k, and x(k)
the value of the input signal at the current step k.

Although rather simple, the delta learning rule has, in the majority of cases, 
demonstrated a high efficiency and a high convergence speed in perceptron 
training. Even so, a single perceptron alone cannot learn enough to be capable of 
solving more complex problems because it’s radius of computational action is 
rather restricted by the simplicity of it’s structure. This was demonstrated in an 
example of a perceptron as a pattern classifier. Owing to it’s restricted structural 
capabilities the perceptron can only solve the linearly separable problems. It is 
thus far away from being a general-purpose processing device. But, the 
fundamental erroneous belief of Minsky was that even multiple perceptron layer 
devices cannot build a universal general-purpose processing machine. This was 
disproved by building the multilayer perceptrons (MLPs) that, in addition to the 
perceptron input layer and output layer, also include so-called hidden layers
inserted between the input and the output layer to form a cascaded network 
structure with extended connectionist capabilities (see Section 3.3.1). The term 
hidden layer was selected for the intermediate layer because this layer is only 
accessible through the input and/or the output layer but not directly. In practice, 
one hidden layer is usually sufficient to build the network with the extended 
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computational capabilities for solving the majority of practical problems. Only in 
some rare cases some additional hidden layers could be needed. This also holds in 
time series analysis and forecasting applications.  

Accidentally, the concept of the perceptron emerged at that time when the 
difficulties in solving complex intelligent problems using classical computing 
automata of John von Neumann had grown to be insurmountable. It was realized 
that, for solving such problems, massive, highly parallel, distributed data 
processing systems are required. Building of such highly sophisticated 
computational systems was already put on the agenda of some leading research 
institutions. However, discovery of the perceptron as a simple computing element 
that can easily be mutually interconnected with other perceptrons to build huge 
computing networks was viewed as a more promising way for development of the 
massive parallel computational systems needed at that time. Minsky and Papert 
(1969) expected that the use of more complex, MLP configurations could help in 
building the future intelligent, general-purpose computers with learning and 
cognition capability. This was very soon proven using perceptrons as the basic 
elements of ADALINE (A) in single-layer perceptrons to build a multi-layer 
MADALINE architecture (see Figure 3.3). 

Figure 3.3. ADALINE-based MADALINE 

In 1950, Rosenblatt used a single perceptron layer for optical character 
recognition. It was a multiple input structure fully connected to the perceptron 

layer with adjustable multiplicative constants iw  called weights. The input signals, 

before being forwarded to the processing elements (i.e. perceptrons) of the single 
network layer, are multiplied by the corresponding values of the weighting 
elements. The outputs of the processing units build a set of signals that determine 
the number of pattern classes that can be distinguished in the input data sets by the 
linear separation capability of perceptron layer. For weight adjustment Rosenblatt 
used the delta rule.  
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3.3 Networks Used for Forecasting  

Hu (1964) was the first to demonstrate - on a practical weather forecasting example 
- the general forecasting capability of neural networks. Werbos (1974) later 
experimented with the neural networks as tools for time series forecasting, based 
on observational data. However, apart from some isolated attempts to solve the 
forecasting problems using the then still poorly developed neural networks 
technology, the research work in practical application of neural networks had 
generally undergone a long period of stagnation. The stagnation was broken and 
the work on neural network applications enthusiastically resumed after the 
backpropagation training algorithm was formulated by Rumelhart et al. (1986). 
Experimenting with the backpropagation-trained neural networks, Werbos (1989, 
1990) also concluded that the networks even outperform the statistical forecasting 
methods, such as regression analysis and the Box-Jenkins forecasting approach.
Lapedes and Farber (1988) also successfully used neural networks for modelling 
and prediction of nonlinear time series.  

In the following, typical neural networks used for forecasting and prediction 
purposes will be described.  

3.3.1 Multilayer Perceptron Networks 

Although in the meantime the variety of proposed neural network structures has 
grown, the multilayered perceptron has remained the prevailing one and also the 
most widespread network structure. This particularly holds for the three-layer 
network structure in which the input layer and the output layer are directly 
interconnected with the intermediate single hidden layer. The inherent capability 
of the three-layer network structure to carry out any arbitrary input-output mapping 
highly qualifies the multilayer perceptron networks for efficient time series 
forecasting. When trained on examples of observation data, the networks can learn 
the characteristic features “hidden” in the examples of the collected data and even 
generalize the knowledge learnt, which will be discussed later in detail.  

The multilayer perceptron, because of its cascaded structure, performs the 
input-output mapping of nonlinearities. For instance, the input-output mapping of a 
one hidden layer perceptron network can generally be written as 

0 .T
ih h iy f w f f xw

Relying on the Stone-Weierstrass theorem, which states that any arbitrary function 
can be approximated with a given accuracy by a sufficiently large-order 
polynomial, Cybenko (1989) and Hornik et al. (1989) proved that a single hidden 
layer neural network is a universal approximator because it can approximate an 
arbitrary continuous function with the desired accuracy provided that the number 
of perceptrons in it is high enough. This network capability is general, i.e. it does 
not depend on the shape of the perceptron activation function if it is nonlinear. 
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Figure 3.4 Multilayer perceptron architecture 

Rumelhart and McClelland (1986, MIT book) suggested for multilayer neural 
networks the backpropagation learning rule. This has also widely been accepted. 
Later, various accelerated versions of the rule have been elaborated that speed up 
the learning process. In the meantime, the multilayer perceptron networks trained 
to learn using backpropagation algorithm are simply called backpropagation 
networks.

The learning capability of backpropagation networks is mainly due to the 
internal mapping of the characteristic signal features in the process of network 
training onto the hidden layer. The mappings stored in this layer during the training 
phase of the network can be automatically retrieved during it’s application phase 
for further processing. Although the features-capturing capability of the network 
can be extended enormously when a second hidden layer is added, the additional 
training and computational time required in this case, however, advises the 
network user not to do this, if it is not absolutely required by the complexity of the 
problem to be solved.  

Training of backpropagation networks (without internal feedback) is a process 
of supervised learning, relying on the error-correction learning method in which 
the desired, i.e. a given, output pattern is expected to be matched by the final 
output pattern of the network within a specified accuracy. This is to be achieved by 
adjusting the network weights according to a parameter tuning algorithm, 
traditionally performed by a backpropagation algorithm that is considered as a 
generalization of the delta rule. 

3.3.2 Radial Basis Function Networks 

The idea of function approximation using localized basis functions is the result of 
the research work done by Bashkirov et al. (1964) and by Aizerman, Braverman 
and Rozenoer (1964) on the potential function approach to pattern recognition. 
Moody and Darken (1989) used this idea to implement a fast learning neural 
network structure with locally tuned processing units. Similarly, Broomhead and 
Lowe (1988) have described an approach to local functional approximation based 
on adaptive function interpolation. This has found a remarkable resonance within 
the researchers working on function approximation using radial basis functions,
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that is considered to be the birth of a new category of neural networks, named 
radial basis function networks.

The new category of networks was enthusiastically welcomed by the neural 
network society because the new networks have demonstrated the improved 
capability of solving pattern separation and classification problems. 
Backpropagation networks, in spite of their universal approximation capability, fail 
to be reliable pattern classifiers. This is because during the training phase 
multilayer perceptron networks build strictly separating hyperplanes that exactly 
classify the given examples, so that the new, unknown examples are randomly 
classified. This is a consequence of using the sigmoidal function as the network 
activation function with its resemblance to the unit step function, which is a global 
function. Also, the sigmoidal function, since it belongs to the set of monotonic
basis functions, has a slowly decaying behaviour in a large area of it’s arguments. 
Therefore, the networks using this kind of activation function can reach a very 
good overall approximation quality in the large area of arguments; however, they 
cannot exactly reproduce the function values at the given points. For this one needs 
locally restricted basis functions, such as a Gaussian function, bell-shaped 
function, wavelets or the B-spline functions.

The locally restricted functions can be centred with the exact values at some 
selected argument values. The function values around these selected argument 
positions can decay relatively fast, controlled by the approximation algorithm. 
Powel (1988) suggested that the locally restricted basis functions should generally 
have the form 

1
( )

n

i i
i

F x w x x ,

where ix x is a set of nonlinear functions relying on the Euclidean distance 

ix x . Moody and Darken (1989) selected for their radial basis function networks 

the exponential activation function  

2

2
expi

i

i ix c
F ,

which is similar to the Gaussian density function centred at .ic  The function spread 

i  around the centre determines the ratio of the function decay with its distance 

from the centre. 
The common configuration of an RBF network firmly consists of three layers 

(Figure 3.5): the input layer, the hidden layer, and the output layer. In the neurons 
of hidden layer the activation functions are placed. The input layer of the network 
is directly connected with the hidden layer of the network, so that only the 
connections between the hidden layer and the output layer are weighted. As a 
consequence, the training procedure here is entirely different from that in the 
backpropagation networks. The most important issue here is the selection for each 
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neuron in the hidden layer the centre ic  and the spread around the centre i ; this is 

mostly done using the k-means clustering algorithm, which is capable of 
determining the optimal position of centres. In addition, the value of the spread 
parameter i should be selected small enough in order to restrict the basis 

function spreading, but also large enough to enable a smooth network output 
through the joint effect with the neighbouring functions.  

The network training process mainly includes two training phases: 

initialization of RBF centres, for instance using unsupervised clustering 
methods (Moody and Darken, 1989), linear vector quantization
(Schwenker et al, 1994), or decision trees (Kubat, 1998) 
output weight training of the RBF using an adaptive algorithm to estimate 
its appropriate values. 

Figure 3.5. Configuration of an RBF network 

In some cases, it is recommended to add a third training phase (Schwenker et al.
2001) in which the entire network architecture is adjusted using an optimization 
method. 

3.3.3 Recurrent Networks 

Research in the area of sequential and time-varying patterns recognition has 
created the need for time-dependent nonlinear input-output mapping using neural 
networks. To achieve this extended network capability, the time dimension has to 
be introduced into the network topology, for instance by introducing short-term 
memory features, that would enable network to perform time-dependent mappings. 
Elman (1990) proposed a kind of globally feedforward, locally recurrent network 
using the context nodes as the principal processing elements of the network. Such 
nodes have also been the principal processing elements of the network proposed by 
Jordan (1986) for providing the networks with the dynamic memory. Both Jordan 
and Elman networks belong to the category of simple recurrent networks.
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An Elman network (Figure 3.6) is a four-layer network made out of input 
layer, hidden layer, output layer and the context layer, the nodes of which are the 
one-step delay elements embedded into the local feedback paths. In the network, 
the neighbouring layers are interconnected by adjustable weights.  

Originally, Elman proposed his simple recurrent network for speech processing. 
Nevertheless, owing to its eminent dynamic characteristics the network was widely 
accepted for systems identification and control (Sastry et al., 1994). This was 
followed by applications in function approximation and in time series prediction. 

Figure 3.6. Configuration of the Elman network 

Independently, Hopfield (1982) reported to the US National Academy of 
Sciences about neural networks with emergent collective computational abilities. 
In his report, Hopfield (1984) presented the neurons with graded response and their 
collective computational properties. He also presented some applications in 
neurobiology and described an electric circuit that closely reflected the dynamic 
behaviour of neurons, which is known as the Hopfield network (see Figure 3.7).  

The Hopfield network is a single-layer fully interconnected recurrent network 

with a symmetric weight matrix having the elements jiij ww  and zero diagonal 

elements. As shown in Figure 3.7, the output of each neuron is fed back via a delay 
unit to the inputs of all neurons of the layer, except to its own input. This provides 
the network with some auto-associative capabilities: the network can store by 
learning, following the Hebbian law or the delta rule, a number of prototype 
patterns called fixed-point attractors in the locations determined by the weight 
matrix. The patterns stored can then be retrieved by associative recalls. On request 
to recall any of patterns stored, the network repeatedly feeds the output signals 
back to the neuron inputs until it reaches its stable state.

The recall capability of recurrent networks of retaining the past events and of 
using them in further computations is the advantage that the feedforward networks 
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do not have. This capability enables the networks to generate time-variable outputs 
in response to the static inputs.  

Because of incorporating internal feedback loops, the critical issue of recurrent 
networks is their stability, determined by the time behaviour of the network energy 
function. For a binary Hopfield net with a symmetric weights matrix this function 
is defined as 

1 12

n n

ij i j
i j

i
E w x x .

Figure 3.7. Configuration of a Hopfield network 

In the case of a stable network this function must decrease with time and ultimately 
reach its minimum, or it’s value remains constant. The minima reached are usually 
local minima because there are a number of states corresponding to fixed-point 
actuators or stored patterns to which the network must converge. Each finally 
reached state of the network has its associated energy defined above.  

For the generalized form of binary Hopfield network, in which the sigmoid 
function  

1
( )

1 x
f x

e

is used, the changes in time are continuously described following the equation 

j j
ji i j

i j

du u
w y U

dt D
,
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where  is a constant positive value, iy  is the output value of the unit i, jD  is the 

factor controlling the sigmoid decay resistance, and jU  is the external input to the 

unit j. The resulting energy function in this case is defined by 

1

2 ij i j i i
i j i

E w u u u U

Network stability, as proven by Hopfield (1982), is generally guaranteed by the 
symmetric network structure. 

For the training of recurrent networks, Rumelhart et al. (1986) proposed a 
general framework similar to that used for training feedforward networks, called 
backpropagation through time. The algorithm is obtained by unfolding the 
temporal operation of the network into a layered feedforward growing with each 
time step. This, however, is not always satisfactory. Williams and Zipser (1988) 
presented a learning algorithm for continuously running fully connected recurrent 
neural networks (Figure 3.9) that adjusts the network weights in real time, i.e.
during the operational phase of the network. The proposed learning algorithm is 
known as a real-time recurrent learning algorithm.

There are two basic learning paradigms for recurrent networks: 

fixed-point learning, through which the network reaches the prescribed 
steady state in which a static input pattern should be stored 
trajectory learning, through which a network learns to follow a trajectory 
or a sequence of samples over time, which is valuable for temporal pattern 
recognition, multistep prediction, and systems control.

For trajectory learning, both the backpropagation through time and the real-
time recurrent learning are appropriate. From the mathematical point of view, 
using the backpropagation through time we turn the recurrent network - by 
unfolding the temporal operation - into a layered feedforward network, the 
structure of which at every time step grows by one layer.  

Almeida (1987) and Pineda (1987) have presented a method to train the 
recurrent networks of any architecture by backpropagation. Under the assumption 
that the network outputs strictly depend only on present and not on the past input 
values, Almeida derived the generalized backpropagation rule for this type of 
network, and addressed the problem of network stability using the energy function 
formulated by Hopfield (1982). Pineda (1987), however, directly addressed the 
problem of generalization of the backpropagation training algorithm and it’s 
extension to recurrent neural networks. Hertz et al. (1991), based on the results of 
this work, have worked out a backpropagation algorithm for networks, the 
activation function of which obeys the evolutionary law

( )i
i ij j i

j

dv
v g w v x

dt
,
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that was formulated by Cohen and Grossberg (1983). In the above equation, is the 

time constant and ix  is the external input to the unit i. Solving this equation and 

defining the network equilibrium state for the unit k of the network 

k kj j k
j

h w v x ,

the network should relax and ultimately reach the value .ky  Thereafter, the weights 

are updated using the gradient descent method by 

 ( )lk l k kw v g h y ,

where  and l kv h  are the equilibrium values of unit l and the equilibrium net input 

to the unit k respectively, and ky  is the equilibrium value of the matrix inverse 

unit.

Figure 3.8. Fully connected recurrent neural network 

A particular type of recurrent networks that do not obey the restrictions of the 
Hopfield networks are the dynamic recurrent networks, proposed for
representation of systems whose internal state changes with time. They are 
particularly appropriate for modelling of nonlinear dynamic systems, generally 
defined by the state-space equations

X(k+1) = f(x(k), u(k))
Y(k) = Cx(k).
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3.3.4 Counterpropagation Networks 

A counterpropagation network, as proposed by Hecht-Nielsen (1987a, 1988), is a 
combination of a Kohonen’s self-organizing map of Grossberg’s learning. The 
combination of two neuro-concepts provides the new network with properties that 
are not available in either one of them. For instance, the network can for a given set 
of input-output vector pairs 1 1 2 2( , ),( , ),..., ( , )n nx y x y x y  learn the functional 

relationship y = f(x) between the input vector x = 1 2( , ,..., )nx x x  and the output vector 

y = 1 2( , ,..., ).ny y y  If the inverse of the function f(x) exists, then the network can also 

generate the inverse functional relationship 

x = 1( )f y .

When adequately trained, the counterpropagation network can serve as a bi-
directional associative memory, useful for pattern mapping and classification, 
analysis of statistical data, data compression and, above all, for function 
approximation. 

Figure 3.9. Configuration of a counterpropagation network

The overall configuration of a counterpropagation network is presented in 
Figure 3.9. It is a three-layer network configuration that includes the input layer, 
the Kohonen competitive layer as hidden layer, and the Grossberg output layer.
The hidden layer performs the key mapping operations in a competitive winner-
takes-all fashion. As a consequence, each given particular input vector 

1 2( , ,..., )p p npx x x  activates only a single neuron in the Kohonen layer, leaving all 

other neurons of the layer inactive (see Figure 3.10). Once the competition process 
is terminated, a set of weights connecting the activated neuron with the neurons of 
the output layer defines the output of the activated neuron (say p) as the sum of 
products 
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where n is the number of input layer neurons connected with the activated neuron. 
Using the set of weights learnt and stored, the network is capable of recognizing 
the pattern once learnt and the patterns in its neighbourhoods because similar 
inputs will activate the same Kohonen neuron. 

After locating the Kohonen neuron, we turn to the Grossberg layer, i.e. the 
output layer of the network, and train it. To produce the desired mapping of the 
pattern at the network output using the output of the activated Kohonen neuron, all 
we need is to connect this neuron with each neuron in the Grossberg layer using 
the corresponding weights. As a result, a star connection between the Kohonen 
neuron and the network output, known as Grossberg’s outstar, builds the output 
vector 1 2( , ,..., ),p p mpy y y  as shown in Figure 3.10. 

Figure 3.10. Outstar of counterpropagation network 

The input vectors of a counterpropagation network should generally be 
normalized, i.e. they should satisfy the relation  

1x .

The normalization can be carried out by decreasing or increasing the vector length 
to be on the unit sphere using the relation 

x
x

x
.

The question that remains is how to initialize the weight vectors before the network 
training starts. The preference of taking the randomized weight vectors has not 
always given reliable learning results. It has in some cases even created serious 
solution problems. The way out was found in using the convex combination 
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method by taking for all the weight vectors the same value 1/ n , where n is the 
dimension of weight vectors. 

3.3.5 Probabilistic Neural Networks 

The idea of probabilistic neural networks was born in the late 1980s at Lockheed 
Palo Alto Research Centre, where the problem of special patterns classification 
into submarine/non-submarine classes was to be solved. Specht (1988) suggested 
using a newly elaborated special kind of neural network, the probabilistic neural 
networks. To solve the classification problem, the new type of network had to 
operate in parallel with a polynomial ADALINE (Specht, 1990). 

Figure 3.11. Architecture of a probability network 

Supposing that 1 2, ,..., mP P P are the a priori probabilities for the vector x to belong to 

a corresponding category, and denoting by iL  the merit of classification loss for the 

category i, the Bayesian decision rules ,i i iPL p  for i = 1, 2,…, m, can help determine 

the largest product value. In case that, say, i i iPL p j j jP L p holds, the input vector x

is assigned to the category i. In this case the decision boundary for the above 
decision, that can be a nonlinear decision surface of arbitrary complexity, is 
defined by 

j j j
i

i i

P L p
p

L P
.

The structure of probabilistic networks is similar to that of backpropagation 
networks, but the two types of network have different activation functions. In 
probabilistic networks the sigmoid function is replaced by a class of exponential 
functions (Specht, 1988). Also, the probabilistic networks require only a single 
training pass, in order that - with the growing number of training examples - the 
decision surfaces finally reach the Bayes-optimal decision boundaries (Specht, 
1990). This is achieved by modelling the well-known Bayesian classifier that 
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follows the strategy of minimization of the expected classification risk. The 
strategy can be explained in terms of an n-dimensional input vector x belonging to 
one of m possible classes with the probability density functions  

1 2( ), ( ),..., ( )mp x p x p x .

The architecture of a probabilistic network, shown in Figure 3.11, consists of an 
input layer followed by three computational layers. It has a striking similarity with 
a multilayer perceptron network. The network is capable of discriminating two 
pattern categories represented through the positive and negative output signals. To 
extend the network capability of multiplying discrimination, additional network 
outputs and the corresponding number of summation units are required.  

The input layer of a probabilistic network is simply a distribution layer that 
provides the normalized input signal values to all classifying networks that make 
up a multiple classes classifier. The subsequent layer consists of a number of 
pattern units, fully connected to the input layer through adjustable weights that 
correspond to the number of categories to be classified. Each pattern unit forms the 
product of the input vector x with the weight vector w. The product value, before 
being led to the corresponding summation unit, undergoes the initial nonlinear 
operation 

2

( 1)

( )
ixw

iF xw e .

However, since both the input pattern and the weighting vectors are normalized 
to the unit length, the last relation is to be rewritten as  

2

1

2

( )

2( )

n

j ij
j

x w

iF xw e .

The summation units finally add the signals coming from the pattern units 
corresponding to the category selected for the current training pattern.  

3.4 Network Training Methods 

We now turn our attention to some training aspects of neural networks, particularly 
to the aspects of training process acceleration and training process results. Our 
primary interests are the supervised learning algorithms, the most frequently used 
in real applications, such as the backpropagation training algorithm, also known 
as the generalized delta rule.

The backpropagation algorithm was initially developed by Paul Werbos in 
1971 but it remained almost unknown until it was “rediscovered” by Parker in 
1982. The algorithm, however, became widely popular after being clearly 
formulated by Rumelhart et al. (1986), which was a triggering moment for 
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intensive use of multilayer perceptron networks in many simulated engineering 
applications. The real-life application had at that time to be “postponed” due to the 
lack of a suitable neuro-technology. In the 1990s Rumelhart put much effort into 
popularizing the training algorithm among the neural network scientific 
community. Presently, the backpropagation algorithm is also used (in slightly 
modified form) for training of other categories of neural networks.  

In the following, we will confine our discussion mainly to multilayer 
perceptron networks. As mentioned earlier, this kind of networks, based on given 
training samples or input-output patterns, implements nonlinear mapping of 
functions that is applicable to function approximation, pattern classification, signal 
analysis, etc. In the process of training, the network learns through adaptation of 
synaptic weights in such a way that the discrepancy between the given pattern and 
the corresponding actual pattern at network output is minimized. Because the 
synaptic adaptation mostly follows the gradient descent law of parameter tuning, 
the backpropagation training algorithm is considered as the search algorithm of 
unconstrained minimization of a suitably constructed error function at network 
output. 

In order to illustrate the basic concept of the backpropagation algorithm, let us 
consider its application to the training of a single neuron located in the output layer 
of a multilayer perceptron (see Figure 3.12). In addition, let us suppose that as the 
nonlinear activation function the hyperbolic tangent function  

1 exp
tanh( )

1 exp

j

j j

j

u
y f u u

u
  (3.1) 

is chosen, where 

1

n

j i i j
i

u w x , 0.  (3.2) 

Furthermore, xi is the ith input with corresponding interconnecting weight wi to the 
neuron and j is the bias input to the same neuron. Typically, all neurons in a 
particular layer of the multilayer perceptron have the same activation function. The 
aim of the learning algorithm is to minimize the instantaneous squared error 
function of the network output 

2 2
0.5 0.5j j j jS d y e , (3.3) 

defined as the square of the difference ( )j jd y  between the desired output signal 

and the actual output signal of the network, by modifying the synaptic weights .iw

The minimization process in parameter tuning steps iw  is based on the steepest 

descent gradient rule  
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where  is a positive learning parameter determining the speed of convergence to 

the minimum. 

Figure 3.12. Backpropagation training implementation for a single neuron 

Now, taking into account that from (3.3) follows: 

,j j j j je d y d f u  (3.5) 

where 

0

n

j i i
i

u w x .

By applying the chain rule

j j
i

j i

S e
w

e w
 (3.6) 

to Equation (3.5) we get 

j j j
i j j

i j i

e e u
w e e

w u w
 (3.7) 

This can further be transformed to  
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j i j j i j i
j

f u
w e x e f u x x

u

where j can be expressed as 

.j
j j j

j

S
e f u

u
 (3.8) 

The derivation jf u  of the selected activation function (3.1) is  

221 tanh 1
j

j j j
j

f u
f u u y

u
, (3.9) 

and the corresponding weight updates (3.7)  

21i j j iw e y x , (3.10) 

with 0 .

Note that the weight update stabilizes if jy  approaches –1 or +1, since the 

partial derivative j jy u , equal to 21 jy , reaches its maximum for 0jy

and its minima for 1 . However, if the sigmoidal activation function is used and if 
it is unipolar, described by 

1
,

1 exp
j j

j

y f u
y

 (3.11) 

then 

1 .
j

j j j
j

f u
f u y y

u
 (3.12) 

Therefore, the weight increment takes the form 

1i j j j iw e y y x . (3.13) 
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It should also be noted that in this case the partial derivative j jy u  reaches its 

maximum for 0.5jy  and, since 0 1,jy  it approaches its minimum as the 

output jy  approaches the value zero or the value one. 

The synaptic weights are usually changed incrementally and the neuron 
gradually converges to a set of weights which solve the specific problem. 
Therefore, the implementation of the backpropagation algorithm requires an 
accurate realization of the sigmoid activation function and of its derivative.  

The backpropagation algorithm described can also be extended to train 
multilayer perceptron networks. 

3.4.1 Accelerated Backpropagation Algorithm 

The backpropagation algorithm generally suffers from a relatively slow 
convergence and with the possibility of being trapped at a local minimum. Also, it 
can be accompanied by possible oscillation around the located minimum value. 
This may restrict its practical application in many cases. Therefore, such unwanted 
drawbacks of the algorithm have to be removed, or at least reduced. For instance, 
the speed of algorithm convergence can be accelerated: 

by selection of the best initial weights instead of taking the ones that are 
generated at random  
through adequate preprocessing of training data, e.g. by employing the 
feature extraction algorithms or some data projection methods 
by improving the optimization algorithm to be used. 

Numerous heuristic optimization algorithms have been proposed for speed 
acceleration; unfortunately, they are generally computationally involved and time 
exhausting. In the following, only two of the most efficient are briefly reviewed: 

adaptation of learning rate 
using a momentum term. 

It is usually assumed that the learning rate of the algorithm is fixed and uniform for 
all weights during the training iterations. In order to prevent parasitic oscillations 
and to ensure the convergence to the global minimum, the learning rate must be 
kept as small as possible. However, a very small value of learning rate slows down 
the convergence speed of algorithm considerably. On the other hand, a large value 
of the learning rate results in an unstable learning process. Therefore, the learning 
rate has to be optimally set between the two extreme values of learning rate, e.g. by 
using the adaptive learning rate, and in this way the training time can be 
considerably reduced. Similarly, the speed up of convergence can be achieved by 
extending the training algorithm by a momentum term (Kröse and Smagt, 1996). 
In this case the learning rate can be kept at each iteration step as large as possible 
within the admitted values, while maintaining the learning process stable. 

One of the simplest heuristic approaches of learning rate tuning is to increase 
the learning rate slightly (typically by 5%) in an iteration step if the new value of 
the output error (sum squared error) function S is smaller than the previous 
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iteration step. On the other hand, if the new value of the error function exceeds the 
value of the previous one, then the learning rate should be decreased by 
approximately 30%, and in the latter case the new weight updates and the error 
function are discarded, i.e. in this case we set weight update as 

1 0,ijw k

and that leads to weights in (k + 1)th iteration as identical as (k - 1)th, i.e.

1 1 )ij ijw k w k .

After starting with a small learning rate, the approach will behave as follows: 

1

1
0

1

, 1 ,

, 1 ,

, otherwise

k k

k k

k k

a for S w k S w k

b for S w k k S w k  (3.14) 

with a = 1.05, b = 0.7 and k0 = 1.04 being typical values (Vogl et al. 1988; 
Cichocki and Unbehauen, 1993). 

In some training applications not all the training patterns are available before 
the learning starts. In such situations an on-line approach has to be used. 
Schmidhuber (1989) proposed the simple global updates of the learning rate for 
each training pattern as  

,pk
ij

ij

S
w k

w
 (3.15) 

with  

max

0

2

2

min , ,pk

p

S S

S
 (3.16) 

where the index max  indicates the maximum learning rate (typically max = 20) 

and 0S  is a small offset error function (typically 00.01 0.1S ).

Various suggestions have been made for practical use of both adaptable 
learning rate and the momentum term, with the best known being the conjugate 
gradient algorithm (Johansson et al., 1992). Alternatively, the second-order 
derivative-based Levenberg-Marquardt algorithm (Hagan and Menhaj, 1994), 
proposed for accelerated minimization of the cost function, is preferably used for 
accelerated neural networks training. The key idea of the algorithm is to use a 
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search vector Pk to calculate the parameter value 1,kW  based on a current value 

kW as

1k k k kpW W , (3.17) 

where k is a scalar value. The search vector Pk is to be chosen so that the relation 

1k kV VW W holds, where V W  is the performance index of the network, 

generally a sum square error function. 
Now, considering the Taylor series expansion of 1kV W  at point kW

1 .k kk k

T
k k k kPV V VWW W V PW  (3.18) 

it is obvious that, in order for the cost function V to decrease and for a positive 
value of ,k  the second term of (3.18) must be negative. This will be the case if 

the steepest descent condition 

1k k k kW W W  (3.19) 

is met. However, the steepest descent method, as discussed earlier, when used in its 
original form, exhibits some drawbacks that need to be eliminated for its practical 
use. To overcome this, the approximation of the objective function in the 
immediate neighbourhood of a strong minimum by a quadratic function with 
positive definite Hessian matrix or by using Newton’s method for pursuing the 
minimization problem is preferred.  

Let us now consider the Taylor series expansion  

1
21

2
T

k k k
k k

T T
k kV VW W WV W V WW W  (3.20) 

where 2
kV W  is the Hessian matrix and .kk kW P  If the gradient of the 

truncated Taylor series expansion (3.20) is taken with respect to kW  and set to 
zero (since we are looking for the minimum of the cost function), it follows that  

12
k k kV VW W W . (3.21) 

This reduces the Newton method to  

12
1k k k kV W V WW W . (3.22) 



102 Computational Intelligence in Time Series Forecasting 

Direct practical use of this method, however, is hampered by the need for 
Hessian matrix calculation, whose elements are the second derivatives of the 
performance index with respect to the parameter vector. To overcome this obstacle, 
the first and the second derivatives of the performance index  

2

1
( )

N
T

i k kk k
i

V W w ee e w w  (3.23) 

are built and expressed as 

T
k k kV w w e wJ  (3.24) 

and

2 2

1

N
T

ik k k k i k
i

V w J w J w w e we , (3.25) 

where J(wk) is the Jacobian matrix and 

k ke w T Y w , (3.26) 

with the target vector T and the actual output of the neural network Y(wk).  
The Gauss-Newton modification of the method assumes that the second term in 

the right-hand side expression of (3.25) is zero. Therefore, applying the former 
assumption (3.22) yields the Gauss-Newton method as 

1

1
T T

k k k k k kJ eW W J w w J w w , (3.27) 

An additional difficulty appears here with when the Hessian matrix is not 
positive definite, i.e. its inverse does not exist. In this case the modification of the 
Hessian matrix  

2
kG V Iw  (3.28) 

should be considered. Suppose that the eigen-values and the eigen-vectors of 
2

kV W  are the sets i  and iz  respectively. Multiplying both sides of 

(3.28) by zi we have  

2
i i i i ik iG V Iwz z z z z  (3.29) 

i iiGz z  (3.30) 
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Therefore, the eigen-values and eigen-vectors of G are i  and iz

respectively. G can be made positive definite by increasing  until 0i  for 
all i.

Therefore, the Levenberg-Marquardt modification to Gauss-Newton method is 

1

1
T T

k k k k k kJ I eW W J w w J w w  (3.31) 

whereby the parameter µ is multiplied by some factor  whenever a step would 
result in an increased value of ( )kV w . When a step reduces this value, µ is divided 

by . Notice that when µ is large the algorithm becomes steepest descent with the 
step size approximately 1/ .  On the other hand, for small µ the algorithm becomes 

Gauss-Newtonian. 
Obviously, the calculation of the Jacobian matrix is the key step in applying 

this algorithm. At first, all the adjustable parameters of the network should be 
arranged in one column vector .kw  For a neural network mapping problem the 

terms in the Jacobian matrix can be computed by simple modification to the 
backpropagation algorithm (Hagan and Menhaj, 1994). In the standard 
backpropagation version, partial derivatives of the performance function with 
respect to the adjustable parameters are needed, while in Levenberg-Marquardt 
algorithm the derivative of the error is needed for the Jacobian matrix. This means 
that the Jacobian matrix can be calculated using the sensitivity term of the 
performance index derived in the standard backpropagation algorithm with one 
modification at the final layer, i.e. by dropping the error term (Hagan and Menhaj, 
1994). The Jacobian matrix computation for a neuro-fuzzy network is described in 
Chapter 6.  

The algorithm described above can easily be extended to train the multilayer 
perceptron networks.  

3.5 Forecasting Methodology  

Forecasting methodology is generally understood as a collection of approaches, 
methods, and tools for collection of time series data to be used for forecast or 
prediction of future values of the time series, based on past values. The forecasting 
methodology includes the following operational steps:  

data preparation for forecasting, i.e. acquisition, preprocessing, 
normalization, and structuring of data, determination of training and test 
data sets, and the like 
network architecture determination, i.e. selection of the type of network to 
be used for forecasting, determination of number of network input and 
output nodes, number of layers, the number of neurons within the layers, 
determination of interconnections between the neurons, selection of neuron 
activation functions, etc.



104 Computational Intelligence in Time Series Forecasting 

design of network training strategy, i.e. selection of training algorithm, 
performance index, and the training monitoring approach 
overall evaluation of forecasting results using fresh observation data sets. 

3.5.1 Data Preparation for Forecasting 

Data used for analysis and forecasting of time series are generally collected by 
observations or by measurements. In engineering, of major interest is the analysis 
of data obtained by sampling of corresponding sensor signals and forecasting their 
future behaviour. Therefore, our attention will be primarily focused on forecasting 
of experimental data taken from sensing elements placed within the experimental 
setups or within the plant automation devices. Here, depending on the nature of 
signals provided by sensors, two main critical issues are: 

the number of data needed for representative characterization of the 
observed signal in view of its linearity, stationarity, drift, etc.
the sampling period required for recording the entire frequency spectrum of 
the sampled signal, but that will still considerably limit the noise frequency 
spectrum. 

In practice, the preprocessing of acquired data, because of the presence of noise, 
drift, and sensor inaccuracy, represents a trial-and-error procedure. In the 
preprocessing phase it should also be made clear whether data filtering, smoothing, 
etc. are needed, or whether mathematical transformation of data will facilitate the 
learning process of the network within its training and/or reduce the network 
training time. 

Data normalization is a process of final data preparation for their direct use for 
network training. It includes the normalization of preprocessed data from their 
natural range to the network’s operating range, so that the normalized data are 
strictly shaped to meet the requirements of the network input layer and are adapted 
to the nonlinearities of the neurons, so that their outputs should not cross the 
saturation limits.  

In practice, the simplest normalization 

max

i
ni

x
x

x

and the linear normalization 

min

max min

i
ni

x x
x

x x

are most frequently used. Moreover, instead of linear normalization, nonlinear 
scaling or logarithmic scaling of input signals is used to moderate the possible 
nonlinearity problems during the network training. For instance, logarithmic 
transformation can squeeze the scale in the region of large data values, and 
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exponential scaling can expand the scale in the region of small data values, etc. But 
by far the most critical data preparation issue here is the risk of possible loss of 
critical information present within the acquired data.  

Structuring of data is needed when preparing the mutually related input and 
output data pairs to be used in supervised learning and/or when preparing 
multivariate data in general. In the case of training the networks for forecasting 

purposes, the next value 1tx  of the univariate time series is related to the past 

values of the time series up to the present value .tx In the next training step the 

value 2tx  is related to the past values of the time series up to the value 1,tx etc.

Before structuring the data of a multivariate time series for training of a 
network forecaster, the fact should be recalled that this kind of time series is a set 
of simultaneously built multiple time series with the values of each individual time 
series being related to the corresponding values of other time series. This is 
because the multivariate time series are built by simultaneous observation of two or 
more processes, so that the resulting observation across all the individual 
samplings at a certain time builds an observation vector 

1 2[ ...... ]i i i inx x x x .

Thus, the resulting multiple time series in fact represents a set of observation 

vectors ix , i = 1, 2, …, m, building up the observation matrix 

11 12 1

21 22 2

1 2

.....

.....

... ... ... ...

....

n

n

m m mn

x x x

x x x
X

x x x

,

in which the time series of individual processes are represented through the 
corresponding matrix columns. 

A training set is used to teach the network to behave as a forecaster and the test
set is used, after the training, to test its forecasting capability. Both data sets are to 
be built from the entire collected data set. Unfortunately, no selection guide is 
available for splitting the prepared data set into two subsets. The recommendations 
range from a 90% to 10% ratio, up to a 50% to 50% ratio. Haykin (1995) 
advocated that the numbers of patterns N in the training set required to classify the 
test examples with an error of  should approximately be 

W
N ,

where W is the number of weights in the network.  
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Yet, whatever ratio is selected, attention should be paid to ensuring that the 
training data set is large enough to cover all the dominant characteristic features 
required for reliable network training as a forecaster. The remaining data set can 
then be used for testing the trained network on the data samples never used in the 
training. For this reason, it is recommended that the non-training data set should be 
large enough to enable building of not only the test data set but also the validation 
data set to be used in the overall network evaluation.  

3.5.2 Determination of Network Architecture  

This is the core task in building the neural network structure optimally adapted to 
the specific problem the network should optimally solve. In our case it would be 
the optimal predictor or the optimal forecaster. This task, although being very 
challenging, is also the most difficult to execute because it requires from the 
designer much skill and practical experience. Since being a nontrivial task with a 
multiplicity of possible solutions, there are opinions that this work is more a kind 
of art than an expert’s routine. The issues addressed in the following present the 
activities to be carried out when developing the network architecture. They include 
the  

determination of input nodes required 
determination of output nodes 
selection of number of hidden layers 
selection of hidden neurons 
determination of node interconnection pattern 
selection of activity function of neurons. 

Determination of the required number of input nodes is a relatively easy task, 
because it depends predominantly on the number of independent variables 
presented in the data set prepared. As a rule, each independent variable should be 
represented by its own input node. In the case of input data prepared for 
forecasting, the number of input nodes is directly determined by the number of 
lagged values to be used for forecasting of the next value  

x(t+1) = f [x(t), x(t-1), x(t-2), … , x(t-n)], 

as represented in Figure 3.13. 
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Figure 3.13. Number of input neurons for one-step-ahead forecasting

In practice, the single-step-ahead forecaster is most frequently selected because 
it is relatively simple and guarantees the most accurate forecasting results. 
Otherwise, when building a multistep predictor, the determination of the required 
number of input nodes is a trade-off process in the sense that (following the general 
inclination) this number should be selected as small as possible but so that it still 
guarantees good forecasting results, and as large as needed for the extraction of all 
relevant characteristic features and the autocorrelation structure embedded in the 
training data. To solve this problem optimally, some experimental runs could be of 
considerable use. 

The number of output nodes, again, is also a problem-oriented task. In the one-
step-ahead forecasting it is apparent that only one output node is sufficient as the 
forecasting node. Correspondingly, in the case of multistep-ahead forecasting, the 
number of output nodes should correspond to the forecasting horizon, i.e. to the 
number of forecasts to be simultaneously presented at the network output. 
Alternatively, a single output node can be used and all the future forecasts required 
determined in the iterative steps.  

In most forecasting applications, only one hidden layer is used, although some 
aberrations are exceptionally needed. The sufficiency of a single layer is covered 
by the Kolmogorov’s superposition theorem, which states that any continuous 
function f(x) – which can also be an n-dimensional vector function 1 2( , ,..., )nf x x x  – 

defined on a closed n-dimensional cube, say [0,1]n , can be represented as 

1 2( , ,..., )nf x x x =
2 1

1 1
( ( ))

n n

i ji j
i j

x ,

where i  and ji  are continuous, single-variable functions. The functions i

depend on the function to be approximated f and the functions ji  are 

monotonously increasing functions fixed for a given n.
The theorem, as originally formulated by Kolmogorov, is an existence theorem 

that does not suggest any particular function to be used for approximation of a 
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given mapping, so that its relevancy to neural networks was not directly evident. 
There were even opposite views to the relevance: one opposing the relevancy 
(Girosi and Poggio.1989) and another in favour of it. However, it was the 
refinement of the theorem by Sprecher (1965) that motivated Hecht-Nielsen 
(1987b) to point out this reliance. He also proposed that the kth processing 
elements of the hidden layer should have the activation function  

1
( )

n
k

k i
i

z x k k ,

where the real constant and the monotonously increasing real continuous function 
depend on n, but are independent of f. Furthermore, the rational constant  should 

satisfy the conditions of the Sprecher theorem 0 <  < , > 0. The activation 
function of the output layer units should be 

2 1

1
( )

n

j j k
k

y g z ,

where jg  are the real and continuous functions depending on and .

Consequently, as it was shown (Hecht-Nielsen, 1987b), the Kolmogorov’s theorem 
can be implemented exactly by a three-layer feedforward neural network having n
input elements in the input layer, (2n+1) processing elements in the hidden layer, 
and m processing elements in the output layer. This confirms the statement that 
even a single hidden-layer network is sufficient to reveal all the characteristic 
features present on the input nodes of the network. Introducing additional hidden 
layers increases the feature extraction capability of the network at the cost of the 
significantly extended training and operational time of the forecaster.  

Lippmann (1987), in his celebrated paper on neurocomputing, stated clearly 
that a three-layer perceptron can form arbitrarily complex decision regions and can 
separate meshed classes, which means that no more than three network layers are 
needed in perceptron-like feedforward nets. This particularly holds for the 
networks with one output, as required for one-step-ahead forecasting. Cybenko 
(1989), finally underlined that the networks never need more than two hidden 
layers to solve most complex problems. Also, the investigation of neural network 
capabilities related to their internal structure has proven that two-hidden-layer 
networks are more prone to fall into bad local minima. DeVilliers and Barnard 
(1992) even pointed out that both the one- and two-hidden-layer networks perform 
similarly in all other respects. This can be understood from the comparison of 
complexity degree of two investigated networks measured by the Vapmik-
Chervonenkis dimension, as was done by Baum and Hausler (1989). 

We now turn to the problem of the number of hidden neurons placed within 
the hidden layer. To determine the optimal number of hidden neurons there is no 
straight-forward methodology, but some rules of thumb and some suggestions how 
to do this have been proposed. For instance, in single-hidden-layer networks, it is 
recommended to take the number of hidden-layer neurons in the neighbourhood of 
75% of the number of network inputs, or say between 0.5 and 3 times the number 
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of network inputs. The geometric pyramid rule, on the other hand, suggests 
assigning  

h i oN N N ,

hidden neurons to a single hidden layer, where iN  is the number of network 

inputs, oN  the number of its outputs, and  is multiplication factor the value of 

which, depending on the complexity of the problem to be solved, should be 
selected in the range 0.5 <  <2. Baum and Haussler (1989) suggested the number 
of neurons in the hidden layer be determined as 

tr tol
h

dp o

N E
N

N N
,

where trN  is the number of training examples, tolE  is the error tolerance, dpN  is the 

number of data points per training example, and oN  is the number of output 

neurons. 
Anyhow, the determination of the optimal number of hidden neurons involves 

trial-and-error experimentation: starting with a number of neurons within the layer 
to be decided – based on final accuracy of each learning process – to increase or 
decrease the number of hidden neurons and to start a new learning process. In this 
way the redundant hidden neurons can be deleted and the neurons needed for 
optimal performance of the layer added. Here, both starting with a relatively large 
or small number of neurons is possible, but starting with a large number of neurons 
bears the risk of long-time computation and of getting trapped in local minima.  

Khorasani and Weng (1994) have presented an approach to structural 
adaptation of feedforward neural networks by neuron pruning, i.e. by addition and 
deletion of hidden neurons based on the activity status of individual neurons during 
the learning, measured by the variance of the neuron output signal and by the 
strength of the backpropagated error. This is a proper indication of neuron activity 
that helps decide which low-activity redundant neurons are to be deleted.  

There is also a reliable way to determine the number of hidden neurons using 
the Akaike’s information criterion (AIC), originally defined as 

 AIC = (-2) ln(Maximum likelihood) + 2(number of adjusted parameters). 

The criterion statistically evaluates the goodness of a model by combining the 
evaluated mean squares error for training data and the number of parameters to be 
estimated. Seen otherwise, AIC combines a measure of fit and the penalty term to 
account for model complexity. Its potential application suitability for neural 
networks model building was recognized by Kurita (1990) and Fogel (1991), who 
reformulated the original form of the criterion (for statistically independent, 
normally distributed output errors with zero mean and with constant variance) as 



110 Computational Intelligence in Time Series Forecasting 

2AIC ln( ) 2Nk K ,

where N is the number of training data, k is the number of output units of the 
network, 2  is the maximum likelihood estimate of the mean square error for 
training data and K is the number of model parameters.  

The application principle of the AIC is that, if two models have the same mean 
square error for a training data set, then the smaller sized model should be selected. 
Alternatively, from a set of possible models, the model with the smallest value of 
AIC is to be selected (Ishikawa and Moriyama, 1996; Anders and Korn, 1999). 
This, however, requests a set of models to be built and their parameter estimated 
before this application principle is used.  

Unfortunately, direct application of the AIC to neural networks is rather 
circumstantial. It is, however, facilitated when using the network information 
criterion (NIC) of Stone (1977) 

11 tr[ ]
NIC ln ( )

BA
L w

T T
,

which is a generalization of the AIC. The first term in the above expression 
represents the estimated maximum logarithmic likelihood. The matrices A and B
are defined as 

2[ ln ]

[ ln ln ].
t

t t

A E L

B E L L

If the classes of models investigated include the true model, then it holds 
asymptotically that A = B and  

1[ ] [ ] ,tr BA tr I K

where K is, again, the number of model parameters. In this case the NIC takes the 
form 

1
NIC ln ( )

K
L w

T T
.

This is similar to the AIC, which in this transcription becomes 

2 2
AIC ln ( )

K
L w

T T
.
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Murata et al. (1994) used this generalization to determine the number of hidden 
units required to mimic the system based on input-output examples only. Attention 
was paid to avoiding possible network overfitting by taking a small number of 
redundant hidden neurons. A large number of hidden layer neurons could, for the 
given training example, deliver better learning results but, due to the increased 
network complexity, for some fresh examples could deliver worse results.  

What the interconnections of network nodes concerns, full interconnection is
recommended for initial network configuration, in which the output of each neuron 
of a layer is connected with the input of each neuron of the subsequent layer. 
However, in some applications, deviations from full interconnection have also been 
successful. 

For activation function selection, there is generally no rich choice left. For 
backpropagation networks, mostly the 

sigmoid function  

1

1 e x
y

is selected as an activation function in numerous applications, including 
time series forecasting. But in some applications the  

hyperbolic tangent function 

e e

e e

x x

x x
y ,

has also been used successfully, for instance when solving the problems 
that rely on learning of deviations from average behaviour (Klimasauskas, 
1991) 

step and ramp function are some additional alternatives favourable for 
processing binary variables.

In any case, to avoid functional destruction of the neuron, the function selected 
should be limited at its output, usually between the values –1 and +1. Although 
there are no guidelines for selecting the activation functions in individual network 
layers and for distributing them within the layers, it is still best to build 
homogeneous individual layers and for the hidden neurons possibly to use the 
sigmoid activation function. But still, some researchers have successfully used the 
hyperbolic tangent as an activation function of hidden-layer neurons. Very seldom 
heterogeneous network layers have been used. For time series forecasting, the 
general experience has shown that for output neurons the linear activation function 
delivers the best results. Some theoretical evidence for this has also been given 
(Rumelhart et al., 1986). It was shown that only for forecasting of time series with 
trend, output neurons with a nonlinear activation function are required. 
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3.5.3 Network Training Strategy 

Network training is a process in which the network learns to recognize the patterns 
inherent to the training signals. In network training for time series forecasting all 
relevant characteristic features embedded in the training data that reflect the 
autocorrelation structure of the time series should be revealed and learnt. The 
training is usually carried out in off-line mode using an unconstrained nonlinear 
minimization algorithm, most frequently a gradient descent method, for tuning the 
interconnection weights of the network. The objective is to achieve the optimal 
network behaviour across the training set.  

Network learning can generally be executed in supervised mode (Hopfield 
model) or in unsupervised mode (Kohonen model). For supervised learning the 
network is provided by data examples that include the desired output. For 
unsupervised learning the desired output values are not required because the 
network finds the adequate output values itself.  

The objective of training is to find the set of most suitable values of 
interconnecting weights through their tuning during the network training. By doing 
so, the network should still attain the highest generalization attribute. This, 
however, can be aggravated if, instead of the global minimum, only a local 
minimum has been found. So, particular precautions should be provided to avoid 
pitting into one of the local minima. Such and similar issues seriously affect the 
training success, so that some careful considerations are required when preparing 
the experiment design for network training. This includes some decisions to be 
made concerning the network initialization for training, selection of the appropriate 
training algorithm, monitoring the training process using an appropriate 
performance index, formulation of training stopping criteria, etc.

Network initialization is a decision that is to be made before the weights tuning 
process starts. This is a difficult decision, because the training speed and the total 
training time required are strongly influenced by this decision. To circumvent this, 
various suggestions have been made, the most popular being that, in order to 
prevent neuron saturation and other unpleasant phenomena, some small, randomly 
distributed parameter values should initially be taken. However, setting all weights 
initially at the same small value should be avoided because it could possibly 
hamper the tuning process to start and/or to learn. This definitely does not hold for 
unsupervised training, like it holds for training of a Kohonen layer of a 
counterpropagation network, where the competition process take place. Here, the 
unique value 1/ N  is initially taken for all weights, N being the number of 
network inputs. This is required because by starting the competition process it is 
advantageous that all competitors have the same initial parameter values for every 
training run. 

Hebb (1949) has proposed the simplest training algorithm for neural networks, 
known as the Hebb learning rule. A neurophysiologist himself, he enunciated the 
learning principle of natural neurons: if two interconnected neurons at the same 
time fire, then the strength (weight) of the synapse connecting them increases. 
Extended to artificial neural networks, this principle states that the common weight 
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ijw  connecting the output of the perceptron i and the input of the perceptron j will 

increase by an amount 

ij j iw x y ,

where jx  is the output of the perceptron j, iy the output of the perceptron i, and  is 

a measure controlling the learning step size (Figure 3.14). Accordingly, the 
Hebbian learning updating the weights, or the Hebbian learning rule, can be 
expressed as 

 ( 1) ( ) ( ) ( )ij ij j iw t w t x t y t .

Figure 3.14. Interconnected perceptrons 

Figure 3.15. Multiple interconnected perceptron 

The rule can be generalized and applied to a multiple-input perceptron as  

( 1) ( ) Tw t w t x wx ,

where the relation 

1

n
T T

j j
j

y w x w x x w

is taken into account (Figure 3.15). 
Nevertheless, the direct application of the Hebbian rule bears the risk of an 

endless increase of weight values, which could saturate the output neurons. As a 
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remedy, an increase in the normalization of weights at every iteration step is 
necessary. Oja (1982) proposed using for this the normalization relationship 

2

( ) ( ) ( )
( 1)

[ ( ) ( ) ( )]

i
i

i i
i

w t x t y t
w t

w t x t y t
,

derived through modification of the Hebbian rule itself. The modification 
normalizes the weight vector size to the value 1 by decreasing the values of all 
other weight vectors if one of its components increases, in this way keeping the 
total length of the vector constant. 

The above rule modification can, for a small value of and after power 
expansion, be approximated as 

 ( 1) ( ) ( )[ ( ) ( )]i i i iw t w t y t x y t w t ,

which is known as Oja’s rule.  
Yet, the fact that the application of the Hebbian rule is considerably limited to 

single-layer neural networks, the original version of the backpropagation 
algorithm is favoured for training of multilayer networks. The training is 
performed off-line in a supervisory learning mode, which is convenient because, in 
practice, a large number of data are available that have to be processed prior to 
their application for training. Besides, for forecasting purposes the pairs of related 
input and output data also have to be built and processed. Finally, the supervisory 
mode of learning facilitates the implementation of monitoring of training 
performance and the determination of the training stopping point.  

When applying the backpropagation algorithm, which is a typical gradient 
steepest descent method, decisions have to be made concerning the  

learning rate, i.e. the step size or the magnitude of weight updating  
momentum, which is required for escaping the trapping in local minima.

An appropriate selection of learning rate is particularly important because the 
steepest descent method suffers from slow convergence and weak robustness. 
Convergence acceleration by taking a larger learning rate bears the danger of 
network oscillatory behaviour around the minimum. To avoid this, and still to take 
a larger learning rate, addition of a momentum parameter was recommended 
(Rumelhart et al., 1986). By doing this, the original learning step according to the 
delta rule 

 ( 1) ( ) ( ) ( )p pw t w t t x t

is extended by the momentum term to result in 

 ( 1) ( ) ( ) ( ) [ ( ) ( 1)]ij ij i j ij ijw t w t t x t w t w t ,



 Neural Networks Approach 115 

where  is the momentum constant, with the value 0.5 <  < 0.9. The added term 
represents the memorized value of the last increment so that the next weight 
change keeps approximately the same direction as the last one. This stabilizes the 
learning convergence. 

An alternative way for speeding up and stabilizing the convergence was found 
in adaptive step size implementation. Silva and Almeida (1990) recommend the 
following weight update strategy 

( ) ( 1) ( ) ( )ij ij ij ijw t w t t C t ,

where ( ) ( )ij t C t  are the gradient components of individual iteration steps 

1

( )
( )

N

ij
ij

J
C t

w
,

with N as the number of training set samples. In the above updating relation, ( )ij t

is taken as 

1( ) ( 1)ij ijt c t     if       ( ) ( 1) 0ij ijC t C t

1

1
( 1)ij ij t

c
       if      ( ) ( 1) 0ij ijC t C t ,

where 1c  is a positive constant. 

To circumvent the problem of avoiding the numerous flat and steep regions of 
the error surface Yu et al. (1995) advocated the dynamic learning rate to be 
imbedded into the backpropagation algorithm, based on information delivered by 
the first and the second derivatives of the objective function with respect to the 
learning rate. The clue to the proposed strategy is that it avoids the calculation of 
the values of the second derivative in weight space, using the information collected 
from the training instead. To bypass the calculation of the pseudo-inverse Hessian 
matrix that is inherent in second-order optimization methods, the conjugate 
gradient method is used. 

The overwhelming number of upgraded learning algorithms are mainly focused 
on learning velocity increase and search stability improvement by adding a term 
containing the derivatives in weight space. But, some improvements of both 
objectives, namely of learning velocity and of convergence stabilization, are also 
achievable by manipulating the parameters of the neuron transfer function. Such an 
updating proposal was made for supervised pattern learning that adaptively 
manipulates the learning rate by updating neuron internal nonlinearity (Zhou et al.,
1991). Using some simulated data sets, it was shown that the updating law 
proposed increases the learning speed and is very suitable for identification of 
nonlinear dynamic systems. 
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3.5.4 Training, Stopping and Evaluation  

Originally, the simple principle was accepted that the network should be trained 
until it has learnt it’s task. This is certainly difficult to find out, because there is no 
direct approach how to do this. The general statement that a high enough number 
of iterations, or training steps, is good enough, in the sense that the network has 
learnt well enough to be a qualified expert in a specific domain, say in forecasting, 
does not hold. Thus far, at least theoretically, reaching the global minimum of the 
objective function is accepted as the training efficiency merit, so that by 
approaching this minimum the error function will steadily decrease until the 
minimum has been reached. Finding out that there is no further decrease of the 
error function would then be an indication to stop the training process.  

In practice, to find the global minimum, network training can require a number 
of repeated training trials with various initial weight values. After each training run 
the training results have to be evaluated and compared with the results achieved in 
the previous runs, this in order to select the best run. Some researchers have here 
centred their attention on the problem of a priori determination of a maximum 
number of training runs required for the training. Iyer and Rhinehart (2000) have 
developed an analytical procedure for determining the desirable lower number of 
training runs, sufficient - within a certain level of confidence - that the best one is 
within them. The procedure is based on the weakest-link-in-the-chain analysis 
described by Bethea and Rhinehart (1991).  

The authors use the cumulative distribution function for the weakest link in a 
set of N training, with runs starting with the random initial weight values 

 ( ) 1 [1 ( )]N
w xF a F a .

This, rearranged as  

1

( ) 1 [1 ( )]N
x wF a F a ,

represents the probability that any single optimization has an error value .x a
The two relations, simultaneously taken, define the required number of random 
starts as 

ln[1 ( )]

ln[1 ( )]
w

x

F a
N

F a
.

For example, if, at the confidence of 99% level, the best of random starts should 
result in one of the best 20% values for the sum of squared errors, then the required 
number of random starts will be 

ln(1 0.99)
20

ln(1 20)
N .
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A more recent approach to solving the problems of appropriate training termination 
departs from some stopping criteria. For instance, based on the automated stopping 
criterion of Natarajan and Rhinehart (1997), Iyer and Rhinehart (2000) take as the 
stopping criterion the performance-to-cost ratio of the network. Assuming that the 
entire cost of a validation set consisting of N  data points is C CN , where C is 

the cost of single data points, and assuming that the cost of training and test data 
sets are CNt and cCN  respectively, then the corresponding performance-to-cost 

ratio is 

1

( )ce t cE C N N N
,

where ceE  is the cumulative error on the test set for a trained network. Setting this 

result in relation to the total costs for training termination has reached the 
minimum RMS error without the validation cost will become 

1

( )T CC N N
,

so their ratio  

T C

t c

N N

N N N
,

with 

ceE
.

However, even when using the predetermined number of training steps, there will 
generally be no guarantee that the network parameters will be adequately tuned. 
The optimal stopping strategy is to stop training after the network has learnt all 
about the problem class it has to solve. This happens when the training stopping is 
effected at the point where the network has reached the maximal generalization.
For the practising expert, this means that the stopping should be triggered exactly 
at the point where the network output error has reached its minimal value, This is 
known as early stopping. If the training is continued beyond this point, then the 
result could be the network overtraining or network overfitting.
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Figure 3.16. Early stopping of training 

But still, the dilemma remains: in order to stop the training process, how do we 
realize that the network has learnt all the required knowledge from the training data 
and has reached its maximum generalization? Then, from learning theory we know 
that after reaching the point of maximum generalization, the network – although 
learning more and more from the training set - will start impairing the related test 
set performance (Figure 3.16) due to its overtraining (Vapnik, 1995). To prevent 
this, the method of early stopping with cross-validation has been suggested by 
Prechelt (1998).  

Cross-validation is a traditional statistical procedure for random partitioning of 
collected data into a training set and a test set, and for further partitioning of the 
training set into the estimation set and the validation set. It is obvious that, if only 
a restricted data set is available, the partition of the entire set reduces the size of the 
training set. This, again, makes the location of the early stopping point difficult. 
For managing this problem, a predicate or a stopping criterion should be found 
that can indicate when to stop the training.  

Prechelt (1998), using the error function (or the objective function) E, training 
error Etr (as the average error per example across the training set), and the test and 
validation errors Et and Ev respectively, has defined three possible stopping 
criteria:

Stop as soon as the generalization loss exceeds a threshold value , i.e.
when ( )lossg t , where the error function ( )lossg t  is based on the lowest 

validation set error optE  and the validation error vE .

Stop as soon as the quotient  

( )

( )
loss

tr

g t

P t
,

where )(tPtr is the training progress defined by  
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tr
tr

tr

( )
( ) 1000

min ( )

t
t

t
t

E t
P t

k E t
,

with 1,t t k  and the training strip length k.

Stop when the generalization error increased in  successive strips. 

Prechelt (1998), in order to interrogate the validity of the criteria, conducted 1296 
training runs, producing 18144 stopping criteria. In the experiments, 270 of the 
records from 125 different runs reached automatically the 3000 epoch limit without 
using stopping criteria.  

We will now consider the problem of network overtraining or network 
overfitting in more detail. Both the problem of overfitting and the opposite 
problem of underfitting arise as a consequence of improper training stopping. 
Therefore, both of them should be prevented because each of them lowers the 
generalization capability of the trained network. For example, if a network to be 
trained is less complex than the task to be learnt, then the network - after being 
trained - can suffer from underfitting and can, therefore, poorly identify the 
features within a large training data set. On the contrary, a too complex network 
can, after being trained, suffer from overfitting and can, therefore, extract the 
features within the training set along with the superposed noise. As a consequence, 
a complex network can produce predictions that are not acceptable.  

Network complexity is primarily related to the number of weights. The term is 
used in connection with the model selection for prediction in the sense that the 
prediction accuracy of a network determines its complexity. This is the starting 
point of network model selection: how many and of what size of weights (and how 
many hidden units) should the model have in order to implement the wanted 
prediction accuracy without (or at least with a low) overfitting?  

From the statistical point of view, the underfitting and overfitting are related to 
the statistical bias and the statistical variance they produce. They strongly 
influence the generalization capability of the trained network as follows:  

the statistical bias is related to the degree of target function fitting and 
restricts the network complexity, but does not care about the trained 
network generalization 
statistical variance, which is the deviation of network learning efficiency 
within the set of training data, cares about the generalisation of the trained 
network. 

For instance, underfitting produces a very high bias at network outputs, whereas 
overfitting produces a large variance. The difficulty of their simultaneous reduction 
or their balancing in the process of learning, which is essential for achieving the 
highest possible degree of generalization, is known as the bias-variance dilemma.
The dilemma is to be understood as follows: the bias of a neural network with a 
high fitting performance across the given training set of data is very low, but its 
variance is very high. By reducing the variance the network data fitting 
performance of the network will decrease. As a consequence, a trade-off between 
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the low bias and the low variance is necessary, as demonstrated in Figure 3.17 on 
the example of polynomial curve fitting of a set of given data points. 

Figure 3.17. Polynomial curve fitting of data 

A polynomial of degree n can exactly fit a set of (n + 1) data points, say 
training samples. If the degree of the polynomial is lower, then the fitting will not 
be exact because the polynomial (as a regression curve A) cannot pass through all 
data points (Figure 3.17). The fitting will be erroneous and will suffer from bias 
error, formulated as the minimized value of the mean square error. In the opposite 
case, if the degree of the polynomial is higher than the degree required for exact 
fitting of the given training data set, the excess number of it’s degrees will lead to 
oscillations because of missing constraints (curve B in Figure 3.17). The 
polynomial approximation will, therefore, suffer from variance error.
Consequently, a polynomial of the optimal degree should be chosen for data fitting 
that will provide a low bias error as well as a low variance error, in order to resolve 
the bias-variance dilemma.

Translated in terms of neural network training, polynomial fitting is seen as an 
optimal nonlinear regression problem (German et al., 1992). This means that, in 
order to fit a given data set optimally using neural network, we need a 
corresponding model implemented as a structured neural network with a number of 
interconnected neurons in hidden layer. If the size of the selected network (or the 
order of its model) is too low, then the network will not be able to fit the data 
optimally and the data fitting will be accompanied by a bias error that will 
gradually decrease with increasing network size until it reaches its minimal value. 
Increasing the network size beyond this point, the network will also start learning 
the noise present in the training data, because there will be more internal 
parameters than are required to fit the given data. With this, also the variance error 
of the network will increase. The cross-point of the bias and the variance error 
curve will guarantee the lowest bias error and the lowest variance error for fitting 
the given data set. The corresponding network size (i.e. the corresponding number 
of neurons) will solve the given data fitting problem optimally. At this point the 
network training should be stopped, which is known as early stopping or stopping 
with cross-validation. The network trained in this way will guarantee the best 
generalization.

For probabilistic consideration of polynomial fitting, the expected value of the 
minimum square error across the set of training data  
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2{[ ( ) ( )] }D DMSE E p x f x

is taken, where the training points are represented by the function f(x) and the 
fitting polynomial or the actual network output by p(x). Expanding the DMSE

formally as  

2{[ ( ) { ( )} { ( )} ( )] }D D D DMSE E p x E p x E p x f x

and rearranging its expansion as 

2 2{[ ( ) { ( )}] } { { ( )} ( )] }D D D D DMSE E p x E p x E E p x f x ,

one gets the sum of the statistical variance 

2{[ ( ) { ( )}] }D D DVAR E p x E p x

and the statistical bias 

2{ { ( )} ( )] }D D DBIAS E E p x f x .

In summary, the optimal network size is essential for optimal problem solving 
because a relatively small network will not be able to fit the given data accurately 
and thus will not be able to learn the most important features incorporated in the 
data. For this reason, the network size should be increased. On the other hand, 
because a large-sized network tends to learn not only the characteristic features of 
the given data, but also the accompanying noise and other non-relevant 
components’ idiosyncrasies hidden in the data, its size should be reduced. In both 
cases, a network size reduction and/or an increase in optimal network size should 
be found that ensures the optimal network performance. In practice, this is usually 
achieved by balanced network growing and/or by network pruning.

Network growing is a process of successive addition of new neurons and their 
related interconnections to the initial small-sized network until the optimal network 
performance is reached. This is a common way of designing optimal-sized radial 
basis function networks.  

Network pruning, again, is a process of successive elimination of less relevant 
interconnections between the neurons within the large-sized network until the 
further elimination essentially worsens the network performance. A survey of 
algorithms to be used for network pruning was given by Reed (1993), who 
distinguished two major pruning methods: 

sensitivity calculation methods, based on the sensitivity of the error 
function of the trained network with respect to the removal of individual 
weight connections as the indication of their pruning  
penalty term methods, based on modification of the error function of a 
trained network by a penalty term. 
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Mozer and Smolensky (1988) used  as a measure of relevancy, defined as the 
difference between the error after removing a unit and the error before removing a 
unit. Karinin (1990), however, considers the error sensitivity with respect to 
removal of individual connections and removes the low-sensitivity connections. Le 
Cun et al. (1990), again, proposed the optimal brain damage procedure under the 
condition that the Hessian matrix H is diagonal and estimated the saliency of the 
weights and the second derivative of the error with respect to the weights. Hassibi 
et al. (1992) removed the diagonallity restriction of the Hessian matrix and 
considered the general case of an arbitrary form of Hessian matrix, which they 
termed the optimal brain surgeon. Both approaches are based on consideration of 
sensitivity of weights perturbation on the error function E using the Taylor series 
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is the corresponding Hessian matrix.  
Now, knowing that for a network trained to the local minimum in error, the 

partial derivative  

0
E

w

holds. Neglecting all higher order terms in the corresponding Taylor series and 
eliminating a specific weight, say ,ijw  measures should be undertaken to minimize 

the increase in error ,E  taking into account the condition of weight elimination 
as given by 

 0ij ijw w .

The condition of weight elimination in vectorial form is given by 

0T
ij ije w w ,
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where T
ije  is the unit vector in the weight space and ijw  is the weight connecting 

the ith input of the jth hidden unit. 
To solve the minimization problem, we form the corresponding Lagrangian 

1
( )

2
T T

ij ijL w H w e w w ,

where  is the Lagrange multiplier. The derivative of the Lagrangian with respect 
to w  and the equation  

 0T
ij ije w w ,

define the optimal weight change  

1
1[ ]
ij

ij
ij

w
w H e

H
.

Correspondingly, the related optimal value of Lagrangian L for the weight ijw  is 

2

1

1

2 [ ]
ij

ij
ij

w
L

H
,

where 1[ ]ijH  is the ith element of the inverse Hessian matrix H. The ijL  value of 

the Lagrangian determined in this way represents the increase of mean square error 

caused by the removal of the weight ijw , known as saliency of the weight ijw . It 

is obvious that, because the saliency depends on the square value of ,ijw  the small 

values of weights have a low influence on the mean square error. However, 
because the saliency is inversely proportional to 1[ ]ijH , small values of 1[ ]ijH

can also have a strong influence on the mean square error.  
Although pruning methods, such as optimal brain damage, and optimal brain 

surgeon, rely on the weight ranking with respect to saliency, i.e. on changes in 
training error caused by pruning an individual weight, there is still an essential 
difference between them: the optimal brain damage procedure does not require 
retraining of the network after removing a weight element, whereas the optimal 
brain surgeon procedure requires this. 

The disadvantage of both methods is that, if no stopping criterion is built, the 
removal of the least significant weights can lead to network overfitting. As an 
efficient stopping criterion, the calculation of the test error using Akaike’s (1970) 
final prediction error (FPE) estimation and its modification is used to cover the 
estimation of average generalization error in regularized networks (Moody, 1991). 
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In practice, to apply the above procedures, the second derivative (Buntine and 
Weigend, 1994) of the inverse of Hessian matrix (Hassibi et al.,1992) has to be 
calculated anew for every weight to be eliminated. Stahlberger and Riedmiller 
(1996) proposed a fast network pruning method, called Uni-OBS, that still relies on 
the optimal brain surgeon procedure but it requires only a single calculation of the 
inverse Hessian matrix to eliminate a group of weights. This certainly simplifies 
the calculation of net pruning. For accelerated calculations of matrix 
multiplication, some fast computational algorithms are required or some algebraic 
transformations that also accelerate the calculation process. An amendment of the 
Uni-OBS method, called G-OBS (generalised optimal brain surgeon), can 
simultaneously eliminate, say m, weights in one step with slight increase in error 
given as 

1

2
TE w H w ,

The related elimination condition is given by 

( )T
mw w S ,

mS  being the selection matrix that determines the m weights to be removed 

simultaneously. Using the above weights elimination conditions and the 
corresponding Lagrange method, we get for the resulting error the relation 

1 1( )T Tw H S S HS S w

and

11
( )

2
T T TE w S S HS S w .

For acceleration of the pruning process, Levin et al. (1994) proposed a method for 
elimination of excess weights. 

Another way was followed by Jollife (1986). To improve the network 
generalization capability, he used the method of principal component analysis.
This is a valuable mathematical tool for reducing a system’s dimensionality by 
eliminating it’s redundant variables. This method transforms the variables to a 
basis in which the system covariance is diagonal and the projection is in the low 
variance directions. To detect the variables that have a low significant influence on 
the error function, a salience measure is used, which demonstrates the 
relationships between the proposed methods and the optimal damage and optimal 
surgeon procedures of network pruning. The pruning consists in removing the
eigen-nodes with low saliency to reduce the effective number of network 
parameters. In contrast to the optimal brain damage and optimal brain surgeon 
procedures, which reduce the rank by eliminating actual weights, the proposed 
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method reduces the rank of weights in each layer by deletion of the smallest salient 
eigen-nodes. Finally, the proposed method does not require network training.  

A network pruning approach is preferably used in designing networks with a 
high generalization capability, i.e. networks that are not only good enough to solve 
the prediction or classification problems present in the training set, but also some 
similar problems using some fresh, never seen and not previously known training 
sets of data. This is achieved through a trade-off between the intention that the 
trained network should be capable of learning a broad spectrum of similar problem 
categories, which would require a large-sized network, and the requirement that the 
network should be as simple as possible, in order to avoid the overtraining.

In practical application of a trained network, there is a fundamental 
recommendation, i.e. where several trained networks have approximately the same 
final performances, the structurally simplest network should be selected as the best 
generalized one. This recommendation reflects Occam’s razor philosophy, which 
recommends that a scientific model should favour simplicity.  

Many training strategies have been interrogated for network simplification at 
lower training cost. Such strategies have been discovered within the framework of 
minimization of the error function extended by a penalty term. To this category of 
strategies belong:  

the weight decay approach (Hinton, 1989), a subset of regularization 
approaches based on minimization of the weight tuning rule augmented by 
a complexity penalty term 

  ( 1)ij i j ijw t x w

that penalizes the large weight values. 

the weight elimination approach (Weigend et al., 1991), based on 
minimization of network training cost function to which a term is added 
that accounts for the number of parameters: 

2 2

( )
( 1)

[1 ( )]
ij

ij i i
ij

w t
w t x

w t
,

where  represents the weight decay constant, i  is the local error, jx  is 

the local activation, and  is the learning rate.  

In contrast to weight decay, which shrinks large values of weights more than small 
ones, the weight elimination shrinks predominantly the small weight values and is 
to a certain degree similar to the pruning process. Hansen and Rasmussen (1994) 
have demonstrated that network pruning may result when the weight decay 
parameter is determined by data. The added term punishes the large weight values 
and forces them to obtain small absolute values and simultaneously retains the 
other values unchanged. This, however, is favourable in preventing worsening of 
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the network generalization capability. Therefore, care should be taken in selecting 
the decay constant , because an inappropriate value can deteriorate the 
generalization capability of the weight decay process. As a remedy, Weigend et al.
(1991) recommend updating the  value on-line during the network training in 
iterative steps.  

Adding the penalty function in the weight decay and optimizing the augmented 
performance index corresponds to the regularization method in which the penalty 
term is added to the cost function to act as a restriction to the subsequent 
optimization problem. In approximation theory, the added term penalizes the 
curvature of the original solution, seeking for a smoother solution of the 
optimization problem.  

The regularization method is generally used to solve ill-posed problems. In the 
theory of learning, the problems of learning smooth mappings from examples are 
mostly ill-posed problems. For their solution Tikhonov (1963) proposed 
optimization of the cost function I extended by a term J, which also represents a 
cost function. Thus, the resulting cost function to be optimized becomes 

Ires = I + J,

where represents the regularization parameter, which determines the degree of 
regularization in the sense of balancing the degree of smoothness of the solution 
and its closeness to the training data. The regularization helps in stabilizing the 
solution of the ill-posed problem because the added term, representing the penalty 
to the original optimization problem, smoothens the cost function (Morozov, 
1984). 

The regularization approach determines the so-called Tikhonov functional  

22

1
( ) ( ( ))

n

res i i
i

I f y f x Pf ,

the first term of which represents the closeness to the data, and in the second term f

is the input-output function, P is a linear differential constraint operator, and 
2
 is 

a norm on the function space to which Pf belongs. This operator also embodies the 

a priori knowledge about the problem solution.  

To solve the regularization problem we proceed with the minimization of 
extended cost function Ires, using the resulting partial derivatives with respect to f in 
order to build the Euler-Lagrange equation 

1

1ˆ ( ) ( ( )) ( ),
n

i i
i

PPf x y f x x x

in which the operator P and its adjoint operator P̂  build the differential operator 
ˆ .PP  Therefore, the above Euler-Lagrange equation is a partial difference equation. 

Its solution can, therefore, be expressed as the integral transformation of the right-
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hand side of the equation, with the kernel defined by Green’s function of the 

differential operator P̂P

ˆ ( , ) ( )i iPPG x x x x .

Bearing in mind the definition of Green’s function and taking into account the 
presence of the delta function on the right-hand side of the equation, the integral 
transformation will generate a discrete sum of terms, so that the function f can be 
defined as 

1

1
( ) ( ( )) ( , )

n

i i i
i

f x y f x G x x ,

where G(x,xi) is Green’s function centred at xi. The last equation represents the 
solution of the regularization problem as a linear combination of n Green’s 
functions with the expansion centre xi and expansion coefficients (yi f(xi)). 
Consequently, the solution of the regularization problem lies in the n-dimensional 
subspace of the space of smooth functions, with the n Green’s functions as its basis 
(Poggio and Girosi, 1990). Furthermore, the basis function depends on stabilizer P,
that represents the a priori knowledge of the problem domain as a kind of 
constraint.

Introducing the definition of the expansion weights as 

( )i i
i

y f x
w ,

the above solution equation becomes 

1
( ) ( , )

n

i i
i

f x w G x x .

Now, to determine the expansion weights iw , the last two equations have to be 

written in matrix form as 

1
( )w y f

and

f Gw

which result in  
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w1

f(x)

x1

x2

xn

w2

wn

:
:

:
:

:
:

G
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G

:
:

 ( ) .G I w y

Here, I represents the n-dimensional identity matrix and G is the corresponding 
Green’s matrix

1 1 1 2 1

2 1 2 1 2
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,

which is a symmetric matrix with the property 

 ( , ) ( , )i j j iG x x G x x

because the identity matrix I is also symmetric. 
From the solution equation  

1
( ) ( , )

n

i i
i

f x w G x x

the corresponding regularization network (Figure 3.18) can be structured. The 
input layer of the network has an equivalent number of units to the dimension of 
the input vector, i.e. to the number of independent variables of the problem to be 
solved. The subsequent hidden layer, fully connected with the input layer with the 
fixed value weights, has the same number of nonlinear units as the number of data 
points and the activation function in the form of a Green’s function with the output 

( , ).iG x x  It does not participate in the training process. Finally, the output layer, 

also fully connected to the hidden layer, contains one or more linear units with the 

weights iw that correspond to the unknown coefficients of the above solution 

equation. 

Figure 3.18. Regularization network 
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Obviously, the structure of the regularization network is mainly determined by the 
problem to be solved, with the exception of the weights between the input layer 
and the hidden layer, which are fixed. The main attributes of the network are: 

the regularization network is an optimal network because it minimizes the 
performance index that defines the proximity of the elaborated solution to 
the real solution defined by the training data 
the regularization network represents the best approximator (Girosi and 
Poggio, 1990) in the sense that for a given function there always exists a 
number of coefficients that approximate the given function better than any 
other set of coefficients and – by properly defining the stabilizer – 
guarantee that the regularization network has the desirable degree of 
smoothness 
the regularization network is a universal approximator that, given a 
sufficiently large number of hidden neurons, can approximate any 
continuous multivariate function arbitrarily well on a compact domain, a 
property that is based on the classical Weierstrass theorem.
when it is used for simplification of linear networks, particularly of basis 
function networks, this corresponds to the ridge regression method.

The above objectives can, at least in principle, be reached by “extensive” 
network training. Although this might lead to network overfitting, this can be 
prevented by training stopping with cross-validation and by network structure 
reduction, for which various approaches have been suggested. 

3.6 Forecasting Using Neural Networks

Unlike the traditional approaches to time series analysis and forecasting, neural 
networks need a reduced quantity of information to forecast the future time series 
data. Based on the available time series data, network internal parameters are tuned 
using an appropriate tuning algorithm. This can, if necessary, also include the 
modification of the initially chosen network architecture to better match the 
architecture required by the problem at hand. The related issues have been 
discussed extensively in this chapter, so that our attention will be focused on the 
comparison of the traditional approach to time series forecasting and on the 
approach using neural networks. This will be followed by pointing out the benefits 
of forecasting by merging both kinds of approaches and by building a nonlinear 
combination of forecasts. Finally, some issues related to the forecasting of 
multivariable time series using neural networks will be presented. 

3.6.1 Neural Networks versus Traditional Forecasting 

Comparison of forecasting performance of traditional statistical methods and of 
neuro forecasters has, since the early 1990s, attracted the attention of many 
researchers. Their reports have, however, been inconsistent because they were 
based on experimental investigations using various network configurations with 
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various performance quality. Added to this came that the experiments used 
different time series data. For instance, forecasting collected linear data using 
nonlinear mapping of neural networks cannot give better results than the 
forecasting using linear statistical algorithms. In the reverse case, when dealing 
with considerably nonlinear time series data, forecasting using nonlinear neural 
networks could definitely deliver better results than the traditional algorithms. 
Consequently, when dealing with mixed linear/nonlinear time series data a 
combination of the traditional and the neural approach could be optimal.  

Lapedes and Farber (1988) were the first to report that simple neural networks 
can outperform traditional methods by up to many orders of magnitude. This was 
radically investigated by Sharda and Patil (1990) on a set of 75 different time series 
with the objective to compare the forecasting accuracy of the Box-Jenkins method 
and of a neuro forecaster. Using a subset of 14 time series of Sharda and Patil, 
Tang et al. (1991) extended the comparative analysis to some additional aspects 
and identified a number of facts that make neural networks or traditional 
approaches deliver better forecasting results. They found by experiments that, 
generally: 

for time series with long memory, both approaches deliver similar results 
for time series with short memory, neural networks outperform the 
traditional Box-Jenkins approach in some experiments by more than 100%  
for time series of various complexity, the optimally tuned neural network 
topologies are of higher efficiency than the corresponding traditional 
algorithms.  

As typical examples for experimental study  

international airline passenger data  
domestic car sales data in the US and  
foreign car sales data in the US 

were used.  
For experiments, the most typical traditional forecasting approach, the ARMA 

model of Box-Jenkins approach  

 ( ) ( )(1 ) (1 ) ( ) ( )L L D d L
p p t q Q tB B B B y B B a

was used with the autoregressive operator ,  moving-average operator ,  and the 

back shift operator B. In the model equation, at, yt, and  represent the white 
noise, the time series data, and a constant value respectively.  

To simplify matters, in all experiments with neuro forecasters, one-hidden-layer 
networks and networks without a hidden layer were used alternatively. The 
experimental results showed that hidden-layer networks have a better forecasting 
performance. 

Hill et al. (1996) compared six traditional methods with the neuro forecaster on 
111 different time series and found that neuro forecasters are significantly better 
than the statistical methods taken into consideration. However, Foster et al. (1992) 
came to the opposite conclusion. After extensive analysis of forecasting accuracy 
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of neuro and traditional forecasters, they concluded that linear regression and the 
simple average of the exponential smoothing method are superior to a neuro
forecaster. Denton (1995), again, demonstrated that, under standard statistical 
conditions, there is only a slight difference in prediction accuracy between the 
regression models and neural models. Some additional results of comparative 
analysis have been communicated by Nelson et al. (1994), Gorr et al. (1994), 
Srinivasan et al. (1994), and Hann and Streurer (1996). 

3.6.2. Combining Neural Networks and Traditional Approaches 

Application of hybrid, i.e. combined neural networks and traditional approaches, to 
time series forecasting was a challenging attempt to increase forecasting accuracy 
beyond the limits that either one of the two approaches used alone would be able to 
reach. In the following, we will consider the advantages of combining the neural 
and ARIMA model approach in time series forecasting. Voort et al. (1996) used 
for this combination the Kohonen self-organizing map as the neural network part 
for short-term traffic-flow forecasting. Sue et al. (1997) used this type of hybrid 
combination to forecast a time series of reliability data and showed that the hybrid 
model produced better forecasts than either the ARIMA model or the neural 
network by itself could produce. Tseng et al. (2002) investigated the combination 
of a seasonal time series model SARIMA and a backpropagation network, resulting 
in a SARIMABP hybrid combination. They found that the combination 
outperforms the SARIMA model used alone and the backpropagation model with 
the de-seasonalized or differentiated data.  

For experimental purposes, the time series , 1, 2,3,..., ,iz i k  is generated by a 

SARIMA (p, d, q)(P, D, Q) process with mean µ and modeled by  

 ( ) ( )(1 ) (1 ) ( ) ( ) ( )S d S D S
t tB B B B z B B a ,

where S is the periodicity, d and D are the number of regular and seasonal 
differences respectively, B is the polynomial degree, and at is the estimated 
residual at time t. The experimental results show that the SARIMABP method 
benefits from the forecasting capability of the SARIMA and from the capability of 
backpropagation to reduce the residuals further, which guarantees a lower 
forecasting error. As forecasting accuracy evaluation criteria, the mean square error 
(MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) 
have been used.  

For a real-life application example, time series data of the total production 
revenues of the Taiwanese machinery industry were taken for various periods of 
time. For instance, a five-year data set has been used as the input of the ARIMA 

12(0,1,1)(1,1,1)  model  

12 12 12(1 0.309 )(1 )(1 ) (1 0.7159 )t tB B B z B a

and for a three-year data set as the input of the ARIMA 12(0,1,1)(0,1,0)  model 
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12(1 )(1 ) (1 0.88126 )t tB B z B a .

In both cases the experiments were carried out with two, three, and seven neurons 
in the network hidden layer. 

Hybrid ARIMA-neural network methodology was also the subject of an 
experimental study by Zhang (2003), whose objective was to identify whether the 
given time series data were generated by a linear or a nonlinear process. This is 
essential for making a decision on whether, in a given case, the use of a linear (i.e.
the traditional) or a nonlinear (i.e. a neural network) approach will be more 
appropriate. Here, the combined approach could ease the problem solution. After 
all, because real-world time series are seldom purely linear or nonlinear, it is 
favourable to use a hybrid approach. 

In experimental practice, the assumption is made that a time series to be 
processed is composed of a linear autocorrelation structure tL  and a nonlinear 

component tN :

t t tz L N .

The linear component of the time series can be processed using an ARIMA model, 
and the residuals  

t t te z L ,

containing only the nonlinear relationships, can be processed by neural networks. 
This can be done using a residual model, e.g.

1 2( , , ..., )t t t t n te f e e e ,

which corresponds to a neural network with n input nodes and the nonlinearity 
function (.).f  In the above residual model, t  represents the random error. The 

benefits of the proposed hybrid methodology approach have been confirmed on 
three real-life examples from different application areas. 

A remarkable contribution was reported by Wedding and Chios (1996), who 
combined the Box-Jenkins model and an RBF network.  

3.6.3 Nonlinear Combination of Forecasts Using Neural Networks 

Because a large number of time series forecasting methods are available, it makes 
sense for the application expert to select the best one among them in each 
particular case. Thus, it becomes interesting to combine a group of forecast 
methods and to examine the forecasting accuracy of the combination. The issue 
was discussed in Section 2.8.6 from the traditional point of view. It was shown that 
the best forecasting results are achievable when the combination of traditional 
forecasting methods is nonlinear. In the meantime, various combination techniques 
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have been suggested and examined using different intelligent technologies, 
primarily with neural networks. 

In engineering practice, choosing the “best” forecasting method means 
choosing a method that is the best in the given circumstances. For instance 
(McNees, 1985), experience has shown that no forecasting model retains its 
accuracy for all values of variables all the time. Also, it has been experimentally 
proven that if for a forecasting method the short run is good, then there is no 
guarantee that the long run will also be good. Therefore, it is worthwhile seeking 
for an adequate combination for each application situation. This is because the 
combination of methods incorporates different cognition capabilities and can, in a 
specific case, produce better forecasts than either of methods within the 
combination itself. Moreover, experimental investigations confirm (Winkler and 
Markridakis, 1983) that the resulting accuracy of combined forecasts increases 
with the increase in the number of forecasting methods involved. Mahmoud (1984) 
also came to a similar conclusion, that the accuracy of the combined forecast 
improves as more methods are included in the combination.  

In forecasting non-stationary, non-seasonal time series one can evaluate the 
forecast values subsequently generated by a Box-Jenkins ARMA or ARIMA 
model, Holt-Winter’s exponential smoothing, extrapolation of trend curve, Kalman 
filtering, etc. and mutually compare the results achieved. Out of the possible 
forecasting methods the analyst may prefer to use his own favourite methods that 
will produce different forecasts of a given time series. Moreover, using a particular 
method (say, ARMA/ARIMA) different analysts may come up with a different 
order of the models required for forecasting and, again, with different forecast 
results. Therefore, forecast models developed using different methods and by 
different analysts will rarely be identical. This may be very confusing to someone 
who wants to take a decision on the basis of various forecasts suggested by various 
analysts.

From the above, it follows that it is inadvisable to prefer one particular 
forecasting method over another, because no single forecasting method will in 
every situation produce forecasts of the same accuracy. Rather, it is more advisable 
to take a combination of a few forecasts generated by different methods. This was 
even clearly formulated by Bates and Granger (1969). 

A number of advanced approaches have been suggested for nonlinear 
combination of forecasts using neural networks (Shi and Liu, 1993; Harald and 
Kamastra, 1997). The problem is defined here starting with the availability of k
different forecasts f1, f2, f3, ..., fk, of some random variable z, that should be 
combined into a single forecast fc. The straight away step would be to form a linear 
combination of forecasts  

( ) ( )c i if z w f z

where wi is the assigned weight of ith forecast fi.
The simplest approach to determine the weights wi of the combination would be 

to take equal weights for each term. This has proven to be relatively robust and 
accurate. But still, in practice, the linear combination of forecasts is not likely to be 
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the optimal combination like the nonlinear combinations are. This can be 
demonstrated on the following example. 

Suppose that k different forecast models are available and the ith individual 
forecast has an information set {Ii : Ic, Ii}, where Ic is the common part of 
information used by all k models and Ii is the specific information for the ith 
forecast only. Denoting the ith forecast by fi = Fi(Ii), we can express the linear 
combination of forecasts as  

Fc = wiFi(Ii),

where wi is the weight of the ith forecast. On the other hand, every individual 
forecasting model can also be regarded as a subsystem for information processing, 
while the combination model fc = Fc(I1, I2, ..., Ik) is regarded as such a system. It 
follows that the integration of forecasts is more than their sum, i.e. the performance 
of the integrated system is more than the sum of its subsystems. So, the 
trustworthiness of the linear forecast combination is quite questionable. More trust 
should be paid to a nonlinear interrelation between the individual forecasts, such as 

fc = F1(I1), F2(I2), F3(I3), ..., Fk(Ik)

where is a nonlinear function. While the given information is processed by 
individual forecasting models, it is likely that parts of the entire information can be 
lost, which means that, say, the information set Ii is not being used efficiently. 
Furthermore, different forecasts may have different parts of information lost. This 
is why it is preferable that as many different forecasts as possible should be present 
in the combination, even when the individual forecasts depend on the same set of 
information. 

As a forecasting example (Palit and Popovic, 2000), a 2-6-6-1 feedforward 
network, i.e. a network with two inputs, and two hidden layers with each layer 
containing six neurons and one output, is used, as shown in Figure 3.19b. The 
network is trained using the Levenberg-Marquardt algorithm, which guarantees 
much faster learning speed than the standard backpropagation method, and hence 
requires less training time. The algorithm also uses the gradient descent method, 
based on Jacobian matrix, according to which the update is  

1

( ) ( ) ( ) ( )TTw w J w I w e xJ J

or

1

( 1) ( ) ( )

( 1) ( ) ( ) ( ) ( ) ( )TT

w k w k w k

w k w k w J w I w e wJ J

where J(w) is the Jacobian matrix with respect to network-adjustable parameters w
(all weights and the biases) of dimension (q×Np), and q being the number of 
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training sets, Np being the number of adjustable parameters in the network, and I is 
the identity matrix of dimension ( )p pN N .

Table 3.1. Nonlinear combination of two forecasts of a temperature series using an artificial 
neural network (ANN: Neural networks combined forecast; BJ: Box-Jenkins forecast, HW: 
Holt-Winters exponential smoothing)

The parameter is multiplied by some factor inc whenever an iteration step 
increases the network performance index (i.e. sum squared error) and it is divided 
by dec whenever a step reduces the network performance index. Usually the factor 

inc = dec and in our case it is selected as 10. 

Figure 3.19(a). The combination of forecasts using a 2-2-6-1 artificial neural network 

Serial

No.

Forecast Data sets from HBXIO 

matrix

SSE RMSE 

1. BJ 151 to 224 (column-1) 0.4516 0.112 

2 HW 151 to 224 (column-2) 0.3174 0.0933 

3 ANN (2-6-6-1) 1 to 150 (training)    

4 ANN (2-6-6-1) 151 to 224 0.1306 0.0594 

5 ANN (2-2-6-1) 151 to 224 0.2425 0.0810 
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Figure 3.19(b). The combination of forecasts using a 2-6-6-1 artificial neural network 

In our practical example, the first 150 input-output samples were used to train 
the network. Thereafter, the values of the interconnecting weights and biases are 
saved for network performance testing using the remaining 151 to 224 samples of 
data. From the experimental results shown in Figure 3.19(a) and Figure 3.19(b) and 
Table 3.1, it is obvious that the network output very closely matches the actual 
time series, indicating that a nonlinear combination of the forecasts is better than 
the individual forecasts. 

3.6.4 Forecasting of Multivariate Time Series  

Chakraborty et al. (1992) conducted experimental investigations on forecasting of 
multivariate time series using neural networks. They focused their attention on the 
statement that, in the case of substantial cross-correlation of individual variables of 
multivariable time series data, the forecasting accuracy of each variable can be 
improved when simultaneously changing the values of other variables within the 
time series is taken into account. This has been observed in multivariate statistical 
analysis when, based on observation data, identifying the interdependencies of 
variables involved in a multivariate system. To prove this, Chakraborty et al.
(1992) analyzed the one-step and multistep prediction behaviour of a trivariate 
time series 1 2 3[ , , ]t t t tx x x x  in the interval of t = 1–100 samplings using  

separate modelling of each component of the multivariable time series, 
interpreted as mutually independent univariate time series  
combined modelling, by simultaneous consideration of all three variables  
statistical modelling, using the statistical model developed by Tiao and 
Tsay (1989). 
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The analysis of separate modelling was carried out using alternatively 2-2-1, 4-4-1, 
6-6-1, and 8-8-1 networks and by evaluating the results for each time series 
component using the mean square error as the performance indicator. The analysis 
has shown that a combined modelling approach is superior to separate modelling, 
and that both of them are superior to statistical modelling. In addition, the 
experiments with the 2-2-1 backpropagation networks have delivered, in one-step 
and multistep cases, the best forecasting accuracy, which shows that the 4-4-1 and 
6-6-1 networks are oversized for this purpose. 

The experimental investigations presented above deliver forecasting results that 
depend considerably on the art of experiment design used for this purpose. For this 
reason the results are not coherent and are sensitive to the application field. We are 
still short of a general theoretical formulation of this phenomenon, but some 
encouraging trials have been made in this direction (reported by Yang, 2000), 
related to methods of combining forecasting procedures for forecasting continuous 
random univariate time series.  
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