
CHAPTER 14

Take the Rough with the Smooth

Given that digital microcontrollers are in the business of monitoring and
controlling the real environment—which is commonly analog in nature—
we need to consider the interaction between the analog and the digital
worlds. In some cases all that is required is a comparison of two analog
voltage levels. However, for more sophisticated situations, analog input
signals need conversion to a digital equivalent; that is, analog-to-digital
conversion (ADC). Thereafter the digital patterns can be processed in
the normal way. Conversely, if the outcome is to be in the form of an
analog signal, then a digital-to-analog conversion (DAC) stage will be
necessary.
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Fig. 14.1 Analog world—digital processing.

Of these various processes, illustrated in Fig. 14.1, A/D conversion
is by far the more complex. Many PIC microcontrollers feature integral
multi-channel A/D facilities. However, analog outputs frequently require
external circuitry to implement the D/A process.

In this chapter we will look at the properties of analog and digital
signals and the conversion between them as relevant to the PIC MCU.
After completion you will:

• Understand the quantization relationship between analog and digital
signals.

• Be aware of the need to sample an analog signal at least twice the high-
est frequency component.

• Appreciate how the successive approximation technique can convert
an analog voltage to a binary equivalent.
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• Understand the operation and be able to configure the Analog Com-
parator, Voltage Reference and ADC modules.

• Know how to configure I/O pins as either analog or digital.
• Be able to write assembly-level programs to acquire analog data using

polling, interrupt-driven, and Sleep techniques, and to interrogate the
state of the analog comparators.

• Be able to code high-level C programs to set-up and interact with the
various analog modules.

• Know how to parallel interface to a proprietary DAC.

The information content of an analog signal lies in the continuously
changeable worth of some constituent parameters, such as amplitude,
frequency, or phase. Although this definition implies that an analog vari-
able is a continuum in the range ±∞, in practice its range is restrained
to an upper and lower limit. Thus a mercury thermometer may have a
continuous range between, say, −10◦C and +180◦C. Below the bottom
number mercury disappears into the bulb. Above the highest number
and the top of the tube is blown off!

Theoretically the quantum nature of matter sets a lower bound to the
smooth continuous nature of things. However, in practice noise levels
and the limited accuracy of the device generating the signal sets an upper
limit to the resolution that processing needs to take account of.

Digital signals represent their information content in the form of
arrangements of discrete characters. Depending on the number and type
of symbols making up the patterns, only a finite totality of value portray-
als are possible. Thus in a binary system, an n-digit pattern can at the
most represent 2n levels. Although this rough grainy view of the world
seems inferior to the infinity of levels that can be smoothly represented
by an analog equivalent, the quantizing grid can be tailored to fit the
accuracy of the task to be undertaken. For instance, a telephone speech
circuit will tolerate a resolution of around 1%. This can use an 8-bit depic-
tion, which gives up to 256 discrete values with a corresponding ≈ 0.5%
resolution. A music compact disk uses a 16-bit scheme, giving a one part
in 65,636 grid—around 0.0015% resolution.

From this discussion it can be seen that any process involving inter-
conversion between the analog and digital domains will involve transition
through the quantization state. Therefore we need to look at how this
affects the information content of the associated signals.

As an example, consider the situation shown in Fig. 14.2, where an
input range is represented as a 3-bit code. In essence the process of
quantizing a signal is the comparison of the analog value with a fixed
number of levels—eight in this case. The nearest level is then taken as
expressing the original as its digital equivalent. Thus in Fig. 14.2 an in-
put voltage of 0.4285 of full scale is 0.0536 above quantum level 3. Its
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quantized value will then be taken as level 3 and coded as b’011’ in our
3-bit scheme of things.
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Fig. 14.2 The quantizing process.

The residual error of−0.0536 will remain as quantizing noise, and can
never be eradicated; see also Fig. 14.3(d). The distribution of quantization
error is given at the bottom of Fig. 14.2, and is affected only by the number
of levels. This can simply be calculated by evaluating the average of the
error function squared. The square root of this is then the root mean
square (rms) of the noise.

F(x) = − L
X
x + L

2



438 The Quintessential PIC® Microcontroller
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3 , where L is the quantum level.
A fundamental measure of a system’s merit is the signal-to-noise ratio.

Taking the signal to be a sinusoidal wave of peak to peak amplitude 2nL,
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In decibels we have:

S/N = 20 log 1.22× 2n = (6.02n+ 1.77)dB

The dynamic range of a quantized system is given by the ratio of its full
scale (2nL) to its resolution, L. This is just 2n, or in dB, 20 log 2n =
20n log 2 = 6.02n. The percentage resolution given in Table 14.1 is of
course just another way of expressing the same thing.

Table 14.1: Quantization parameters.

Binary bits Quantum levels % resolution Resolution S/N ratio (dB)
n (2n) dynamic range
4 16 16.25 24.1 dB 26.9 dB
8 256 0.391 48.2 dB 49.9 dB

10 1024 0.097 60.2 dB 61.9 dB
12 4096 0.024 72.2 dB 74.0 dB
16 65,536 0.0015 96.3 dB 98.1 dB
20 1,048,576 0.00009 120.4 dB 122.2 dB

The exponential nature of these quality parameters with respect to
the number of binary-word bits is clearly seen in Table 14.1. However,
the implementation complexity and thus price also follows this relation-
ship. For example, a 20-bit conversion of 1 V full scale would have to deal
with quantum levels less than 1μV apart. Pulse-code modulated tele-
phonic links use eight bits, but the quantum levels are unequally spaced,
being closer at the lower amplitude levels. This reduces quantization
hiss where conversations are held in hushed tones! Linear 8-bit conver-
sions are suitable for most general purposes, having a resolution of better
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than±1
4%. Actually video looks quite acceptable at a 4-bit resolution, and

music can just about be heard using a single bit—i.e., positive or negative!
S/N ratios presented in Table 14.1 are theoretical upper limits, as

errors in the electronic circuitry converting between representations and
aliasing (discussed below) will add distortion to the transformation.

The analog world treats time as a continuum, whereas digital sys-
tems sample signals at discrete intervals. Shannon’s sampling theorem1

states that provided this interval does not exceed half that of the highest
signal frequency, then no information is lost. The reason for this theoret-
ical twice highest frequency sampling limit, called the Nyquist rate, can
be seen by examining the spectrum of a train of amplitude modulated
pulses. Ideal impulses (pulses with zero width and unit area) are charac-
terized in the frequency domain as a series of equal-amplitude harmon-
ics at the repetition rate, extending to infinity. Real pulses have a similar
spectrum but the harmonic amplitudes fall with increasing frequency.

If we modulate this pulse train by a baseband signal A sinωft, then
in the frequency domain this is equivalent to multiplying the harmonic
spectrum (the pulse) by A sinωft, giving sum and different components
thus:

A sinωft × B sinωht = AB2 (sin(ωh +ωf)t + sin(ωh −ωf)t)

for each of the harmonic frequencies ωh.
More complex baseband signals can be considered to be a band-limited

(fm) collection of individual sinusoids, and on the basis of this analysis,
each of these pulse harmonics will sport an upper (sum) and lower (dif-
ference) sideband. We can see from the geometry of Fig. 14.3(b) that the
harmonics (multiples of the sampling rate) must be spaced at least 2×fm
apart, if the sidebands are not to overlap.

A low-pass filter can be used, as shown in Fig. 14.3(d), to recover the
baseband from the pulse train. Realizable filters will pass some of the
harmonic bands, albeit in an attenuated form. A close examination of
the frequency domain of Fig. 14.3(d) shows a vestige of the first lower
sideband appearing in the pass band. However, most of the distortion in
the reconstituted analog signal is due to the quantizing error resulting
from the crude 3-bit digitization. Such a system will have a S/N ratio of
around 20 dB.

In order to reduce the demands of the recovery filter, a sampling fre-
quency somewhat above the Nyquist limit is normally used. This intro-
duces a guard band between sidebands. For instance, the pulse code
telephone network has an analog input band limited to 3.4 kHz, but is
sampled at 8 kHz. Similarly the audio compact disk uses a sampling rate
of 44.1 kHz, for an upper music frequency of 20 kHz.

1Shannon, C.E.; Communication in the Presence of Noise, Proc. IRE, vol. 37, Jan. 1949,
pp. 10–21.
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A more graphic illustration of the effects of sampling at below the
Nyquist rate is shown in Fig. 14.4. Here the sampling rate is only 0.75 of
the baseband frequency. When the samples are reconstituted by filtering,
the resulting pulse train, the outcome—shown in Fig. 14.4(b)—bears no
simple relationship to the original. This spurious signal is known as an
alias. Where an input analog signal has frequency components above half
the sampling rate, maybe due to noise, then this will appear as distortion
in the reconstituted signal. For this reason analog signals are usually
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(a) Sampling  below  the  Nyquist  rate

(b) Resulting  filtered  signal

Fig. 14.4 Illustrating aliasing.

low-pass filtered at the input of an A/D converter. This process is known
as anti-aliasing filtering.

In dealing with analog inputs many situations simply need to make
a true:false decision on whether a voltage is above or below a reference
value Vref. For instance, the signal shown in Fig. 14.5 (see also Fig. 14.20)
represents the current during the discharge of an EKG diphasic defibril-
lator, as generated using a Hall effect current to voltage sensor. When
nothing is happening the baseline voltage is 2.6 V. When the defibrilla-
tor begins its discharge, this voltage rapidly rises to a peak of 3.6 V over
a few tens of microseconds. If the MCU is to sample the voltage over
the next several tens of milliseconds, say, to calculate the total shock
energy, then to begin this process it needs to know when this voltage
rises above a threshold. In the diagram this is shown as 3.4 V. It could
of course rapidly sample the analog signal using its integral Analog-to-
Digital module (if it has one), as described later on page 454, but this
continuous sample-and-check routine would use most of the processing
capability of the processor. It would be much more software efficient to
be able to automatically generate an interrupt in hardware when the in-
put voltage Vdefb rises above this threshold. The resulting ISR could then
begin sampling the signal and performing the real-time analysis.

In Fig. 14.5 the analog signal Vdefb is used as the input to the non-
inverting (+) terminal of an analog comparator. The inverting termi-
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Fig. 14.5 Using an analog comparator to determine the start of the EKG defibril-
lator discharge.

nal (−) is connected to a fixed reference Vref of 3.4 V. Whenever Vdefib
rises above Vref, the comparator’s output voltage changes from logic 0 to
logic 1, and conversely when Vdefb < Vref the output goes back to logic 0.

An analog comparator is basically a high-gain analog differential am-
plifier with no negative feedback. With a very large open-loop gain the
amplifier will saturate at either near its positive or negative power supply
if the difference between inputs is more than an exceedingly small value.
An ordinary operational amplifier can act as an analog comparator, but
circuits specifically designed for this purpose give standard logic levels
at their output and have a snap action whenever slowly changing noisy
inputs cross the differential threshold.

All three of our exemplar PIC microcontrollers feature a Comparator
module. The PIC12F675 8-pin device has one analog Comparator. How-
ever, the dual configuration available in the PIC16F87XA group, shown in
Fig. 14.6, is more typical for larger footprint devices.

The COMparator CONtrol CMCON register, usually at File h’9C’, is
used to set-up one of the eight configurations listed in the diagram, as
commanded by the three CM[2:0] Comparator Mode bits in CMCON[2:0].
In the specific case of the PIC16F87XA devices these bits reset to mode
b’111’, which effectively completely removes the Comparator module
from view. Most other devices reset to mode b’000’ which, while also
disabling the Comparators, rather subtly configures the associated pins
as analog inputs.

It is a universal rule in PIC microcontrollers with analog modules, that
all potential analog inputs pins (usually Port A, E or GP) always come out
of a Power-up reset as analog inputs. This Power-on reset requirement is
to prevent physical damage to the input digital buffers (see Fig. 11.7 on
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Fig. 14.6 The Comparator module as implemented for the PIC16F87X device
group.

page 306) if an analog input voltage, say 2.6 V, were present at a pin on
powering up. If that pin was set to be a digital input, expecting a voltage
around 0 V or VDD, then an intermediate voltage could cause several tran-
sistors to conduct at the same time, possibly causing thermal damage.
As analog voltages are not well defined, even where a pin is configured
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as analog, an external resistor is often used to limit current flow if the
analog voltage exceeds VDD or goes negative, as shown in Fig. 14.20.

In the specific case of the PIC16F87XA group, to preserve compati-
bility with the slightly older PIC16F87X which didn’t have a Comparator
module, the default is to completely remove this facility. However, all
devices in this group have an Analog-to-Digital module, which on reset
configures all associated pins as analog and so complies with this rule.
Mode b’111’ has the lowest power consumption, so it should be chosen
if there are no analog input signals and the module is not to be used,
especially when in the Sleep state.

The six active modes basically allow either completely independent
operation for one or two Comparators, or both non-inverting inputs can
be combined to be used as a common reference input. Outputs of any
active Comparator may be read at any time from bit 6 C1OUT and bit 7
C2OUT of CMCON. Each output has an associated programmable in-
vertor control in CMCON[4] and CMCON[5], respectively, labeled C1INV
and C2INV. When Vin+ > Vin− and the associated INVersion bit is 0 then
the Comparator output will read as 1, otherwise as 0.2 As described
on page 415, in some versions of Timer 1 the output of Comparator 2
may be used to gate the counting pulse train and thus measure the du-
ration of time an analog signal is above a threshold voltage. In modes
b’011’ and b’101’ the Comparator outputs can also be read externally
via pinsRA4/C1OUT and RA5/C2OUT—or equivalent shared pins in other
devices. In this case pinsRA4 and RA5 should be set-up as outputs using
TRISA[5:4] in the usual way. Any parallel port pins to be used as ana-
log inputs should similarly be set-up via the appropriate TRIS resister as
inputs.

When there is a change in an active Comparator output, the CoM-
parator Interrupt Flag CMIF (in PIR2[6] for the PIC16F87XA) will be set
and will generate an interrupt if the associated CoMparator Interrupt
Enable mask CMIE (in PIE2[6] for the PIC16F87XA) and global mask bits
GIE and PEIE have been set to 1. As each Comparator does not have its
own interrupt flag, the software needs to maintain information regard-
ing the status of the output bits C1OUT and C2OUT to determine which
Comparator actually changed. This can be updated as part of the ISR.
The act of reading CMCON will end the Change mismatch—in the same
manner as the Port B Change interrupt described on page 313. Only then
can the CMIF flag can be cleared, in the normal manner. If the Compara-
tor mode is to be changed “on the fly” then interrupts should be disabled
beforehand. After a delay of not less than 10μs after the mode change,
to allow voltage levels to stabilize, CMCON should be read again to clear

2There is a small uncertainty range in this difference signal of ±10 mV maximum
(±5 mV typical) due to Comparator offset voltages.
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any Change mismatch and CMIF cleared afterwards before re-enabling
the interrupt system.

As the Comparator module does not depend on the system oscillator,
an active Comparator can be used to waken a sleeping PIC MCU when an
external voltage crosses a Vref threshold and sets CMIF. After wakening,
the PIC MCU should cancel the Change mismatch and clear CMIF following
the sleep instruction or in the ISR if the Comparator interrupt is enabled.

It should be noted that an active Comparator uses considerably more
current than the base Sleep value. For instance, the PIC12F629/75 group
has a typical quiescent current at 5 V of 2.9 nA (995 nA maximum). The
Comparator module uses a current of typically 11.5μA (16μA maximum).
Thus if Comparators are not being used during the Sleep duration, they
should then be disabled.

Mode b’110’ allows one of two voltages to be sampled for each of the
comparators individually, as switched via the Comparator Input Switch
CIS bit in CMCON[3]—which is zeroed on a Power-on reset. In addition,
both non-inverting inputs are commoned to an internal voltage reference
source, generated from the Comparator Voltage Reference module.

All family members with a Comparator module have a separate but
related Comparator Voltage Reference CVR module. As can be seen
from Fig. 14.7, this is essentially a resistor chain with an analog multi-
plexer gating through one of 16 different voltages, as selected with the
Comparator Voltage Reference bits CVR[3:0] in the Comparator Voltage
Reference CONtrol register CVRCON[3:0]. The CVR module is enabled
when the Comparator Voltage ENable CVREN in CVRCON[7] is set to 1.
This also connects the chain of typically 2 kΩ resistors to the VDD supply
voltage.

Two voltage ranges are available, as set with the Comparator Voltage
Reference Range CVRR bit in CVRCON[5], which switches in or out an
extra 8R resistor at the bottom of the chain. Denoting the 4-bit value of
CVR[3:0] as n, these are:

CVRR Value Minimum in 16 steps of Maximum

0 (reset) VDD× (0.25+n/32) 0.25× VDD VDD/32 0.71875× VDD
1 VDD×n/24 0 V VDD/24 0.625 × VDD

where n ranges from 0 through 15.
The accuracy of this module is given as 1

2 of a single step, but in reality
the absolute value is directly proportional to the supply voltage; a quan-
tity that is not normally tightly regulated. In addition, VDD can change as
the power supply or battery drifts with temperature or load current. Any
noise on this line will also be coupled into this reference voltage, although
this can be reduced somewhat by capacitive decoupling at the VDD pin and
judicious routing of the power supply lines. With these points in mind,
where an accurate voltage level is required, an external precision voltage
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Fig. 14.7 The Comparator Voltage Reference module.

reference device is often used; for instance, with Comparator module
mode b’100’ connected to pinRA3; see Fig. 14.20.

As our example, assume that VDD is 5 V and we are going to generate
our threshold voltage of 3.4 V for Fig. 14.5. We will need to use the high
range; that is, CVRR = 0, and calculate a value for CVR[3:0]:

5× (0.25+n/32) = 3.4
0.25+n/32 = 3.4/5

n = (3.4/5− 0.25)× 32 = 13.76

giving n = 14 as our closest approximation. Making CVR[3:0] = b’1110’
gives an actual Vref of 3.4375 V.

Some family members have an additional control bit to switch the ref-
erence voltage to a port pin, so that it can be accessed externally. When
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the CVR Output Enable bit CVROE in CVRCON[6] is set to 1, the analog
voltage Vref is gated through to the appropriate pin. Due to the rela-
tively high value of resistance, which also depends on the selected tap,
Microchip recommend that this external reference voltage be buffered—
typically with an operational amplifier. If necessary, the amplifier gain
can be altered to give finer control over the Vref value and filtering can be
added to reduce high-frequency noise. Used in this way, the Voltage Ref-
erence module can be used as a simple 4-bit digital-to-analog converter.

The code to set-up the Comparator and CVREF modules for our de-
fibrillator example using Comparator 1 with RA3 as the analog input is
then:

include "p16f877a.inc"
bsf STATUS,RP0 ; Change to Bank 1
movlw b’00001110’ ; Comparator mode 110
movwf CMCON ; Switch to RA3 (CIS = 1)

movlw b’10001110’ ; CVREF module on (1), not external (0)
movwf CVRCON ; Hi range (0), CVR[3:0] = 1110

bsf PIE2,CMIE ; Enable Comparator interrupts

call DELAY_10US ; Allow 10us for voltages to settle
movf CMCON,f ; Read CMCON to clear any Change state

bcf STATUS,RP0 ; Back to Bank 0
bcf PIR2,CMIF ; Zero the Comparator interrupt flag
bsf INTCON,PEIE ; Enable Peripheral interrupt group
bsf INTCON,GIE ; & Globally enable interrupt system

Notice especially that before enabling the interrupt system a delay of
10μs is executed to allow internal analog voltages to attain equilibrium.
Reading the CMCON register then clears any Change situation, after which
the Comparator Interrupt Flag CMIF is cleared. The general interrupt
system can then be enabled by setting the PEIE and GIE mask bits in the
usual way in the INTCON register.

Some device data sheets, for instance, the PIC12F675, label this mod-
ule the Voltage Reference module. Here the associated Control register
is labeled VRCON and the various Control bits similarly have their C pre-
fix removed; e.g., VREN instead of CVREN.

In many situations more information on the analog signal is needed
than a bang-bang comparison with a reference voltage. For instance, in
the waveform shown in Fig. 14.5 the deviation of the voltage squared from
the baseline, integrated with time, would be required to measure power.
In such a situation the incoming signal would have to be sampled and
converted from an analog amplitude to a digitized equivalent.
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The mapping function from an analog input quantity to its digital
equivalent can be expressed as:

Vin � Vref

n∑
i=1

ki × 2−i

where ki is the ith binary coefficient having a Boolean value of 0 or 1
and Vin ≤ Vref, where Vref is a fixed analog reference voltage. Thus Vin is
expressed as a binary fraction of Vref and the Boolean coefficients k−i are
the required binary digits.

To see how we might implement this in practice, consider the follow-
ing mechanical successive approximation analogy. Suppose we have an
unknown weight W (analogous to Vin), a balance scale (equivalent to an
analog comparator) and a set of precision known weights 1, 2, 4, and
8 gm (analogous to a Vref of 15 gm). A systematic technique based on the
task list might be:

1. Place the 8 g weight on the pan. IF too heavy THEN remove (k1 = 0) ELSE
leave (k1 = 1).

2. Place the 4 g weight on the pan. IF too heavy THEN remove (k2 = 0) ELSE
leave (k2 = 1).

3. Place the 2 g weight on the pan. IF too heavy THEN remove (k3 = 0) ELSE
leave (k3 = 1).

4. Place the 1 g weight on the pan. IF too heavy THEN remove (k4 = 0) ELSE
leave (k4 = 1).

This technique will yield the nearest lower value as the sum of the weights
left on the pan. For instance, ifW were 6.2 g then we would have a weight
assemblage of 4+ 2 g or b’0110’ for a 4-bit system.

The electronic equivalent to this successive approximation technique
uses a network of precision resistors or capacitors configured to allow
consecutive halving of a fixed voltage Vref to be switched in to an analog
comparator, which acts as the balance scale.

Most MCUs use a network of capacitors valued in powers of two to
subdivide the analog reference voltage, such as shown in Fig. 14.8. Small
capacitance values are easily fabricated on a silicon integrated circuit and
although the exact value will vary somewhat between different batches
of ICs, within the one device all capacitor values will closely match and
track with changes in temperature and supply voltage. Multiples of this
base value can be fabricated by paralleling unit devices—typically FET
gate-source capacitance.

Before the conversion process gets underway, the network has to be
primed with the unknown analog input voltage Vin, as shown in Fig. 14.8(a).
The dynamics of this sampling acquisition process involves charging up
this capacitance network through both internal and external resistance
allowing for the settling time of the internal analog switches. If we take
the 10-bit ADC module of Fig. 14.11 as an example, then the parallel ca-
pacitor network with nominal unit value of 0.12 pF appears at the AN pin
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Fig. 14.8 Initializing the 8-4-2-1 capacitor network for a 4-bit convertor.

as a 120 pF (120× 2−12F) capacitor. Internal resistance is of the order of
7.5 kΩ, but is rather temperature and supply voltage dependent. Exter-
nally the maximum recommended value is 2.5 kΩ in order to keep any
ohmic voltage offset due to the pin leakage current of ±1

2 μA less than
one quantum level (least-significant bit).

The time constant τ (CR) with the values given here is 120× 10−12 ×
×104 = 1.2τs for a total resistance of 7.5+ 2.5 = 10 kΩ. In order to get
within 0.05% of the final voltage; that is, 1

2 of a 10-bit quantum level, takes
approximately 8× τ ≈ 10μs. The data sheet gives the maximum switch
settling time of 10μs, although examples use a value of 2μs. Taking
a worse-case scenario, a sampling time of 20μs should ensure stability
before the conversion.

Our analysis assumed that the input voltage on the capacitor network
needed to be changed by the full range since the last sample. This is
likely to be the case if sampling one of several different analog channels
or a long time has elapsed since the last sample, allowing charge to leak
away. A smaller external source resistance will reduce the time constant.
Of course, to evaluate the maximum rate of samples that can be taken,
the actual conversion time must be added to this acquisition time.

During the sample (S) period the top capacitor electrodes are held to
0 V and bottom electrodes are charged to Vin. The change-over to the
hold (H) position, shown in Fig. 14.8(b), grounds the bottom electrodes
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and allows the top electrodes to float. The voltage across a capacitor can
only change if charge is transferred across electrodes, ΔQ = CΔV. Thus
the change in voltage ΔV = −Vin at the bottom electrodes is matched at
the top floating electrodes, which now become 0− Vin, as charge cannot
flow in or out of the floating top electrodes. Thus at the start of the
conversion process the inverting input of the analog comparator is −Vin.

A 4-bit version of the successive approximation network at the heart
of the ADC module is shown in a simplified form in Fig. 14.9. The step-
by-step process is sequenced by a shift register (SRG, see Fig. 2.22 on
page 37) when the programmer sets the GO/DONE bit in the ADC Control
register. As the Control shift register is clocked, a single 1 moves down
to activate each step in the sequence:
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Fig. 14.9 Simplified view of a 4-bit successive approximation A/D converter.
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Hold bit 3 bit 2 bit 1 bit 0 Complete/Sample

The capacitor network is switched to Hold and each capacitor, begin-
ning with the largest value, is switched to Vref in turn. The outcome of
the comparator then determines the state of the corresponding bit in
the Successive Approximation Register (SAR). The process is detailed in
Fig. 14.10. After four set–try–reset actions, the outcome in the SAR is
transferred to the Analog-to-Digital RESult register. The GO/DONE flag
is now cleared to indicate the End Of Conversion and the Analog/Digital
Interrupt Flag ADIF set. Finally, the analog input is again switched back
into the capacitor network (Sample) which then charges up ready for the
next conversion after a suitable period.

The total conversion time is approximately six times the clock period
tAD of the sequencer shift register—one period for each bit plus one each
for the Hold and Ready/sample slots. In the case of a 10-bit module,
this will be approximately 12 times the clock period. For the PIC MCU
modules, the minimum clocking period is 1.6μs (≈ 600 kHz) for all but
the older 2μs PIC16C71/711 devices. There is no specified lower clocking
frequency, but as charge slowly leaks away from the network capacitors,
a tAD of more than nominally 20μs (50 kHz) should be avoided. From
Fig. 14.11 we see that the ADC clock can be derived from one of four
sources. The first three of these are fractions of the system clock rate
and the fourth is a stand-alone CR oscillator with a nominal tAD of 4μs.

The conversion process, where each successive half-fraction of Vref is
added to and conditionally taken away from the initial value is illustrated
in Fig. 14.10. As we have seen in Fig. 14.8, at the end of the acquisition
period the top plates of the capacitor array are at −Vin. As an example,
let us assume that Vin is 0.4285Vref.

1. The process begins by switching in Vref into the lower plate of the
largest capacitor, as controlled by the SAR8 latch in Fig. 14.9. This
causes an injection of charge ΔQ = CtotalVref, which is identical across
both the 8-unit capacitor C1 and the rest of the capacitors which also
have a parallel value of 8 units in Fig. 14.10. Thus the voltage at
node N rises by Vref/2 to −0.485 + 0.5 = +0.07125Vref. In general
ΔVN = Vref Ck/Ctotal. The comparator output is now logic 0 and thus
the SAQ8 latch is consequently cleared, reversing the Vref/2 step.

2. SAQ4 switches Vref into the next highest capacitor giving a Vref/4 step
at N ( 4

16 ). The resulting voltage of −0.485+ 0.25 = −0.178Vref giving
a comparator output of logic 1 and SAR4 remains set with the node
voltage staying at −0.1785Vref.

3. SAQ2 switches Vref into the second lowest capacitor giving a Vref/8
step at N ( 2

16 ). The resulting voltage of−0.1785+0.125 = −0.0535Vref
giving a comparator output of logic 1 and SAR2 remains set with the
node voltage staying at −0.0535Vref.
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Fig. 14.10 The successive approximation process.
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4. SAQ1 switches Vref into the lowest capacitor giving a Vref/16 step at N
( 1
16 ). The resulting voltage of −0.0535+0.0625 = +0.009Vref giving a

comparator output of logic 0 and SAR1 is cleared reversing the Vref/16
step.

The state of the SAR of b’0110’ or 0.375Vref, represents the best 4-bit
fit to Vin = 0.4285Vref. The residue 0.0535Vref is the quantizing error.

Most MCUs use an 8- or 10-bit capacitor array. In principle the tech-
nique can readily be extended to higher resolutions, but in practice the
difficulty in matching ever greater capacitors and internal logic noise
means the majority of processors are limited to 12-bit resolution. Ex-
ternal high-speed successive-approximation devices with 12+ bit resolu-
tion, usually using a resistor ladder network, are readily available, but
are relatively expensive.

Matching of the array capacitors, offsets, and resistance of internal
switches, leakage currents, and analog comparator non-linearities all con-
tribute to errors in the conversion process. It is beyond the scope of this
text to analyze the various measures of error but the device data sheet
lists sources and values of these component errors in terms of the least
significant bit. For instance, in the PIC12F675 data sheet the 10-bit ADC
module is listed as having a total absolute error of ±1 LSB. This guar-
antees that the transfer is monotonic; that is, the binary code will never
move in the reverse direction for any change ΔVin of input voltage. This
error figure is for Vref = VDD; if Vref is lower than VDD then accuracy dete-
riorates, although values down to 2 V will give acceptable results in many
cases.

Both the PIC12F675 and the PIC16F87X exemplar group have an in-
tegral 10-bit ADC module. Earlier devices, such as the PIC16F73, use an
8-bit version of this module, which is very similar in architecture and op-
erating process to the 10-bit module shown in Fig. 14.11 and so will not
be discussed here. All PIC MCU ADC modules use a capacitor network
with characteristics previously described. From the user’s perspective
the details of the conversion process are less important than the system
aspects in integrating this module into software.

In all relevant family members the single analog-to-digital converter
is fronted with an analog multiplexer. This allows the software to select
up to eight separate analog voltages one at a time. Two Control registers
allow the program to select any one channel for sampling and to deter-
mine the source of the sequence clock. In addition the appropriate pins
may be set-up as either analog (by default on a Power-on reset) or digital,
with some control over the source of reference voltage. The conversion
is initiated via the GO/DONE bit, which also indicates when the process
is complete and the 10-bit outcome can then be read from the two Result
registers.3

38-bit modules only require one AD Result register.



454 The Quintessential PIC® Microcontroller

to  MCU

ADCON1

PCFG2

3 2

PCFG1 PCFG0

1 0

File h’9F’

AN3

A/D  CONtrol  register 1 VEE

AN2

DDV

4

PCFG3

7

ADFM

A/D result ForMat select
1: Right justified, 6 MSBs of ADRESH are 0
0: Left justified,   6 LSBs  of ADRESL  are 0

PCFG  AN7 AN6 AN5 AN4 AN3 AN2 AN1 AN0 Vref- Vref+ ch/
[3:0] RE2 RE1 RE0 RA5 RA3 RA2 RA1 RA0             Refs

0000   A   A   A   A   A   A   A   A  VDD   VSS   8/0

0001   A   A   A   A Vref+ A   A   A  RA3   VSS   7/1

0010   D   D   D   A   A   A   A   A  VDD   VSS   5/0

0011   D   D   D   A Vref+ A   A   A  RA3   VSS   4/1

0100   D   D   D   D   A   D   A   A  VDD   VSS   3/0

0101   D   D   D   D Vref+ D   A   A  RA3   VSS   2/1

011X   D   D   D   D   D   D   D   D  VDD   VSS   0/0

1000   A   A   A   A Vref+Vref- A  A  RA3   RA2   6/2

1001   D   D   A   A   A   A   A   A  VDD   VSS   6/0

1010   D   D   A   A Vref+ A   A   A  RA3   VSS   5/1

1011   D   D   A   A Vref+Vref- A  A  RA3   RA2   4/2

1100   D   D   D   A Vref+Vref- A  A  RA3   RA2   3/2

1101   D   D   D   D Vref+Vref- A  A  RA3   RA2   2/2

1110   D   D   D   D   D   D   D   A  VDD   VSS   1/0

1111   D   D   D   D Vref+Vref- D  A  RA3   RA2   1/2

switch
Sample

Conversion  complete

ADON

File h’1F’

AN0/RA0

ss

A/D  CONtrol  register  0

F/2

CR

F/8

F/32

V

ADCS0 CHS2 CHS1 CHS0 GO/DONE 0ADCS1

Analog  channel  address

10
11

01

00 B

MUX

ADt

A

MUX address

B

ADCON0
7 6 5

Each  channel

5p

5
0

0
n

C

DDV
1K 0

4 3 2 1

A

AN2/RA2

AN1/RA1

AN4/RA5

AN3/RA3

AN6/RE1

AN5/RE0

AN7/RE2

2

1

3

4

5

6

7

120p

6.5K

1D

File h’9E’
File h’1E’

Internal  Data  bus

ADRESL

C1

C1

A/D  RESult  register Low byte

0

CLK

1D

R
ea

d
  
A

D
R

ES
L

E

E

R
ea

d
  
A

D
R

ES
H

ADRESH

A/D  RESult  register High byte

POWER ON

Vin

1
0

-b
it  A

/D
  co

n
verter

ref+V ref-V

6

ADIF

S

PIR1
File h’0C’

Fig. 14.11 The PIC16F87X 10-bit 8-channel analog-to-digital conversion module.

Our description of the ADC module can be split into the initial set-up
and the conversion process.

Initialization
In setting up your module you need to consider the following points:
1. How do I enable the module?
2. How am I going to clock the module?
3. Which channels am I going to use?
4. Do I only need an 8-bit outcome?
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All these options are set up using AD Control register 0, ADCON0 and
AD CONtrol register 1, ADCON1.4

ADON
On a Power-on reset the ADC module is disabled. Setting ADCON[0]
to 1 turns the module on. An enabled module typically uses 220μA
(PIC16F87X) even when idling, so it should be disabled when not in
use where power consumption is a consideration. The GO/DONE
switch bit should not be set to 1 in the same instruction as the module
is enabled to avoid starting a conversion at the same time as the
module is being started up.

ADCS[1:0] A/D Clock Select
The module needs a clock signal in order to time the set and test
sequence of Fig. 14.10. If the clock rate is too fast, changes in switch-
ing voltages will not have time to settle. The data sheet specifies the
upper frequency in terms of the A/D clock period tAD, as 1.6μs (3μs
for low-voltage situations) or approximately 600 kHz. For instance,
a 5 MHz crystal with ADCS[1:0] = 01 gives a tAD of 1.6μs (5

8 MHz) us-
ing a ÷8 ratio. Table 14.2 shows suggested settings for five typical
crystal values.

Table 14.2: ADC clocking frequency versus device crystal frequency.

ADC clock source tAD PIC MCU crystal frequency

ADSC1:0 20 MHz 8 MHz 4 MHz 1 MHz 333 kHz

fOSC/2 00 — — — 2μs 6μs
fOSC/8 01 — — 2μs 8μs —
fOSC/32 10 1.6μs 4μs 8μs — —
CR1 11 2–6μs 2–6μs 2–6μs 2–6μs 2–6μs
CR2 11 3–9μs 3–9μs 3–9μs 3–9μs 3–9μs

Note 1: Standard devices; average 4μs.
Note 2: Extended-range and low-voltage devices; average 6μs.

To allow operation in a low-speed system clock environment; for
instance, when a 32.768 kHz watch crystal is used, a separate inter-
nal Capacitor-Resistor (CR) oscillator is provided. As this stand-alone
oscillator is separate from the system clock, a conversion can be com-
pleted while the PIC MCU is in its Sleep state. In this situation, the
End Of Conversion interrupt can be used to waken the processor.
Doing a conversion with the system clock turned off makes sense,

4The PIC12F675 has a slightly different arrangement of Control registers with an ANSEL
register replacing ADCON1 and a different distribution of Control bits, but the principles
are the same.
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as this gives a quiet environment with little digital noise. If the sep-
arate CR clock is used with a system clock of greater than 1 MHz,
then Microchip recommends using a Sleep conversion, as the lack of
synchronization between the two clock rates increases noise induced
into the analog circuitry.

Unusually, the PIC12F675 has three AD Clock Select bits, giving
a frequency division option of ÷64. This is useful to cope with
a 20 MHz system clock to give the 3μs minimum specified for the
larger voltage range for this device.

CHS[2:0] CHannel Select
Devices with ADC modules can select to digitize the voltage in one of
several possible analog input pins. This ranges from four channels
shared with Port GP for the diminutive 8-pin PIC12F675 through to
eight shared with Port A and E for the 40-pin PIC16F874/7.

On a Power-on reset, all such shared port pins default to analog
inputs; see page 442. As can be seen from Fig. 14.12, an I/O pin con-
figured as an analog input simply disables the digital input buffer—
compare with Fig. 11.3 on page 300. No other circuitry is affected.
From this we can make the following deductions.

• A port pin configured as analog will read as logic 0 due to the dis-
abled digital input buffer.
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TRIS  flip flop

Data  store  bus

Write  to  Port

Write  to  TRIS

I/O  pin

Digital
input  buffer
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To  input
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V   to  analog modulein

Fig. 14.12 Configuring the analog inputs for Port A and Port E.
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• The TRIS buffer is not affected and thus the appropriate TRIS bits
should be 1; that is, the direction of the port pins configured as
analog should be set to input to prevent contention between the
analog Vin and the digital state of the Data flip flop.

• The ADC can read an analog voltage at the pin even if that pin
has not been configured as analog. However, the still active digi-
tal input buffer may consume an excessive current outside of the
device’s specification.

PCFG[3:0] Port ConFiGuration
If the number of analog channels required for a particular applica-
tion is less than the maximum available, some unused channels can
be reclaimed for use by the associated parallel port. This is accom-
plished using the appropriate bit pattern in ADCON1[3:0]. The ac-
tual choices, number, and location of these bits are device specific,
but those patterns applicable to the PIC16F87X group are shown in
Fig. 14.11. For instance, if you only require a single analog channel
for your project, the pattern b’1110’ will leave pinRA0/AN0 as analog
and pinsRA5, RA[3:1] and RE[2:0] are available for other purposes.

In the situation where no analog activity is required, the ADCON1
register still needs to be set-up; this time to pattern b’0110’ or b’0111’
to configure all pins as digital.5 Failure to do this is one of the more
common errors, as most newer devices have analog module(s) and,
as described on page 442, all relevant pins always default to analog
on a Power-on reset. Port pins set-up as analog always read through
a parallel port as 0. As observed, any pins used for analog purposes
should have their associated TRIS bits set to 1; that is, set-up as in-
puts.

As we have seen in Fig. 14.10, the successive approximation pro-
cess essentially comprises a series of tries of ever-halving fractions
of a fixed reference voltage. The precision of this process depends
on the quality of this reference. One measure of this is the worth
of the least significant bit (LSB); that is, the quatization increment.
In the case of a 10-bit module this value is Vref/1024, or better than
0.1% of this reference.

This reference voltage can be set-up to be internal, using the power
supply voltage, say 5 V. For instance, the pattern b’1110’ sets pinRA0
to be an analog input and VDD will be the reference used. In this sit-
uation the digitization will essentially give the fraction of the supply
this analog voltage is.

Using the supply voltage is rather noise prone and its value can
vary somewhat. Where more precision or different voltages are re-
quired, analog pins can be used as the source of external reference

5In some devices (not the PIC16F87XA) the Analog Comparator module’s Control reg-
ister also needs to be changed from its default value.
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voltages. All ADC modules will allow for at least one external volt-
age. In the case of the PIC16F87X, one or two external references may
be used. For instance, pattern b’0101’ would set-up pinsRA[1:0]
as two analog channels and use RA3 for an external precision volt-
age reference Vref+; see Fig. 14.20.6 Vref+ can be anywhere between
VDD−−2.5 V and VDD+ 0.3 V, with a 2 V minimum.

In some cases it can be an advantage to use a different lower bound
than VSS (0 V or ground). Some ADC modules, e.g., the PIC16F87X, al-
low for a separate lower reference voltage Vref−. For our example, pat-
tern b’1101’ also specifies two analog channels with Vref+ on pinRA3.
However, this time pinRA2 is used for Vref−. This should not be higher
than 2 V nor below −0.3 V. Overall, the full range Vref+−Vref− should
never be less than 2 V.

ADFM A/D ForMat
Our example ADC module needs two Files to hold the 10-bit outcome.
As the total capacity of ADRESH:ADRESL is 16 bits, there are two ways
of aligning these ten bits.

ADRESH ADRESL

(b) Right alignment

b70

b7

(a) Left alignment (reset default)

0
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0 0
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b3 b2

b0

0

ADRESL
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b1 b0

b5 b4

0 0

b2b3

0 0

b1

0

ADFM = 1

ADFM = 0

Fig. 14.13 Aligning the 10-bit digital outcome in a 16-bit field.

Many applications only require 8-bit resolution and processing.
Where this is the case, the bottom two bits of the outcome word can
be thrown away. From Fig. 14.13(a) we see that this is facilitated by
left alignment. The content of ADRESL is simply ignored.

Where a full 10-bit word is necessary, setting ADCON1[7] to 1 will
right align the datum. As can be seen from Fig. 14.13(b) the outcome
is a 10-bit datum extended to a 16-bit format by padding with leading
zeros. Normal 16-bit arithmetic and other processing algorithms can
then be used.

6This could be derived from the Voltage Reference module if implemented (see
Fig. 14.7) although this has many of the disadvantages of using the raw supply voltage.
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Conversion Process
After the module has been configured, from the user’s perspective dig-
itizing a selected analog channel is relatively straightforward. Assum-
ing first that interrupts are not being used, the following steps can be
identified (including, for completeness, the initialization process) and is
visualized with the timeline in Fig. 14.14.

1. Configure ADC module.

• Set up port pins as analog/voltage reference (ADCON1).

• Select ADC conversion clock source (ADCON0).

• Select ADC input channel (ADCON0).

• Turn on ADC module (ADCON0).

2. Wait for the required acquisition time, typically 20μs.

3. Start conversion by setting the GO/DONE bit.

4. Wait for ADC conversion to complete by polling the GO/DONE bit for logic 0.

5. Read the ADRES registers.

6. For next conversion go to step 1 or step 2 as required.

Acquisition time

A/D conversion is initiated
by setting the       bitGO

starts to charge up (Sample),
A/D capacitor network

after A/D conversion, 
or when new A/D channel is selected

Capacitor network disconnected
from analog input (Hold)

Conversion starts

tAD1 tAD2 tAD3 tAD4 tAD5 tAD6 tAD7 tAD8 tAD9tAD10tAD11

registers loaded
    bit is cleared

       bit is set

ADRES
GO

ADIF
New acquisition is started

b9 b7b8 b6 b4b5 b3 b1b2 b0

A/D Digitization Time

Fig. 14.14 Timeline for the conversion process.

As an example, consider that we wish to continually read each of the
eight analog channels of a PIC16F874/7 in turn while outputting the most
significant eight digitized bits to Port B and the channel number to the
lower three bits of Port D. The main crystal is 20 MHz and the power
supply is to be used as the reference voltage.

The listing of Program 14.1 assumes that the ADC module has been
initialized at reset with start-up code of the form:



460 The Quintessential PIC® Microcontroller

include "p16f877.inc"

bsf STATUS,RP0 ; Change over to Bank 1

clrf ADCON1 ; Shared port inputs are all analog
; left aligned for 8-bit resolution

clrf TRISB ; Port B is all output
movlw b’11111000’; Low 3 bits of Port D are Output
movwf TRISD

bcf STATUS,RP0 ; Back to Bank 0

movlw b’10000001’; AD clock/32 (10), Ch0 (000)
movwf ADCON0 ; No conversion (0), ADC turned on (1)

which configures the module to enable all eight analog channels with
internal reference voltages and for a left-aligned outcome. ADCON1 is
initialized to 10 000 0 0 1 to select the ADC module clock source as

fOSC/32 (b’10’); i.e., 20
32 = 625 kHz or 1.6μs, channel zero (the initial value

is irrelevant) and with the module turned on. With an initial zero value
of GO/DONE no conversion is actioned.

With the module initialized, the main software of Program 14.1 spends
all its time in a loop reading the digitized equivalent of each channel in
turn from ADRESH and copying it in turn to Port B. Before the digitization,
the Channel counter is sent to Port D as a modulo-3 number.

The acquisition itself is implemented using the GET_ANALOG subrou-
tine, to which is passed the desired channel number in the rightmost
three bits of the Working register. This is copied into a temporary lo-
cation TEMP, where it is logic shifted three places to the left to align
the channel number with the CHSn bits in ADCON0[5:3]. After clear-
ing the CHS[2:0] bits, the shifted Channel number can then be added into
ADCON0 to set CHS[2:0] to the appropriate channel.

After the channel number has been set up, a delay subroutine is called
to allow for switch delay and stabilization. As we require 8-bit resolution,
only a 6τ ≈ 7μs delay is needed to charge up to within 0.25% of the
final value, on top of the worst-case switch time of 10μs; see page 449.
Then the GO/DONE bit in ADCON0 is set to initiate a conversion.7 The
completion of the process can then be monitored by polling GO/DONE
until this goes to 0. At this point the contents of ADRESH are the 8-bit
outcome of the conversion.

Each actual conversion takes around 13 × 1.6 ≈ 21μs, giving a total
channel time of 17 + 21 = 38μs. Thus a 8-channel scan takes around
38× 8 ≈ 300μs to complete. That is, around 3300 scans per second.

Rather than polling for completion, the end of conversion can be used
to generate an interrupt. In particular if a conversion is to be done in the

7A conversion may be aborted at any time by clearing GO/DONE.



14. Take the Rough with the Smooth 461

Program 14.1 Scanning an 8-channel data acquisition system.

MAIN clrf CHANNEL ; Use a GPF to hold the Channel count
MAIN_LOOP

movf CHANNEL,w ; Get the Channel number
andlw b’00000111’ ; Zero the top five bits
movwf PORTD ; Copy to Port D

call GET_ANALOG ; Digitize it; returned in W
movwf PORTB ; and copy to Port B

incf CHANNEL,f ; Advance to next channel
goto MAIN_LOOP ; and DO forever

; *************************************************************
; * FUNCTION: Analog/digital conversion at channel n *
; * RESOURCE: Subroutine DELAY_17US, byte TEMP *
; * ENTRY : Channel number in W *
; * EXIT : Digitized analog value in W *
; *************************************************************
GET_ANALOG

movwf TEMP ; Copy of Channel number in TEMP
bcf STATUS,C ; Shift channel number left 3 places
rlf TEMP,f ; to align with ADCON0[5:3]
rlf TEMP,f ; that is, the CHS[2:0] bits
rlf TEMP,w ; and copy into W
bcf ADCON0,CHS0 ; Zero channel bits
bcf ADCON0,CHS1
bcf ADCON0,CHS2
addwf ADCON0,f ; Moves Channel number to ADCON0[5:3]
call DELAY_17US ; Wait 17us to stabilize
bsf ADCON0,GO ; Start conversion

GET_ANALOG_LOOP ; Takes around 20us to finish
btfsc ADCON0,GO ; Check for End Of Conversion
goto GET_ANALOG_LOOP

movf ADRESH,w ; Fetch byte when GO/NOT_DONE zero
return

; ***********************************************************
; * FUNCTION: Delays 17us at 20MHz (85 cycles) *
; * ENTRY : None *
; * RESOURCE: None *
; * EXIT : W is zero *
; ***********************************************************
DELAY_17US

movlw d’20’ ; Delay constant
DELAY_17US_LOOP

addlw -1 ; Decrement
btfss STATUS,Z ; Until zero
goto DELAY_17US_LOOP
return
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Sleep mode then this interrupt can be used to waken the device. The ADC
module can operate when the PIC MCU is in its Sleep state as it has the
option of its own private oscillator to sequence the conversion even if the
system oscillator is disabled. The main advantage of a conversion while
asleep is the electrically quiet environment when the system oscillator is
off. Against this is the considerably longer conversion time, as when the
PIC MCU is wakened, there will be the normal 1024-cycle delay to restart
the system oscillator; see page 277.

This personal oscillator may be used even where the PIC MCU is not
put to sleep. However, as there is no synchronization between the sys-
tem and local oscillators, clock feedthrough noise becomes a problem,
especially with system clock rates above 1 MHz.

The following task list outlines the Sleep state conversion process.

• The ADC clock source must be set to CR, ADCS1:0 = 11.
• The ADIF flag must be cleared to prevent an immediate interrupt.
• The ADIE and PEIE mask bits must be set to enable the ADC interrupt to awaken

the processor.
• The GIE mask bit must be 0 unless the programmer wishes the processor to

jump to an ISR when it awakens.
• The GO/DONE bit in the ADCON0 register must be cleared to initialize the

conversion, followed immediately by the sleep instruction.
• On wakening, the ADRESH:L registers hold the digitized value.

For instance, consider a Sleep state version of the GET_ANALOG sub-
routine of Program 14.1. This time the initialization code must set up the
interrupt system as specified in the task list, to ensure that when the AD
Interrupt Flag ADIF is set at the end of the conversion (at the same time
as the GO/DONE flag goes to 0) the PIC MCU is woken up.

include "p16f877.inc"

bsf STATUS,RP0 ; Change over to Bank 1
clrf ADCON1 ; Shared port inputs are analog, 8-bit res

clrf TRISB ; Port B is all output
movlw b’11111000’; Low 3 bits of Port D are Output
movwf TRISD

bsf PIE1,ADIE ; Enable AD interrupts
bcf STATUS,RP0 ; Back to Bank 0

movlw b’11000001’; CR AD clock (11), Ch0 (000)
movwf ADCON0 ; No conversion (0), ADC turned on (1)

bcf PIR1,ADIF ; Zero the AD interrupt flag
bsf INTCON,PEIE; & enable the Peripheral interrupt group

Apart from the initialization of the interrupt system, the only change is
to the setting of ADCON0[7:6], which is made b’11’ to select the internal
ADC oscillator as the clock.
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Program 14.2 Scanning an 8-channel data acquisition system.
; *************************************************************
; * FUNCTION: A/D conversion at channel n while asleep *
; * RESOURCE: Subroutine DELAY_17US, byte TEMP *
; * ENTRY : Channel number in W *
; * EXIT : Digitized 8-bit analog value in W *
; *************************************************************
GET_ANALOG

movwf TEMP ; Copy of Channel number in TEMP
bcf STATUS,C ; Shift channel number left 3 places
rlf TEMP,f
rlf TEMP,f
rlf TEMP,w ; and copy into W
bcf ADCON0,CHS0 ; Zero channel bits
bcf ADCON0,CHS1
bcf ADCON0,CHS2
addwf ADCON0,f ; Moves Channel number to ADCON0[5:3]
call DELAY_17US ; Wait 17us to stabilize

bcf INTCON,GIE ; Disable all interrupts
bcf PIR1,ADIF ; Ensure the AD Int flag is 0 before
bsf ADCON0,GO ; starting the conversion

sleep ; Doze in quiet while converting

bsf INTCON,GIE ; Re-enable interrupts (optional)
movf ADRESH,w ; Fetch byte when awake
return

The Sleep version of GET_ANALOG shown in Program 14.2 is virtually
identical to the original version, with a the following changes.

1. GIE may need to be cleared if other devices can request an interrupt.
2. Before the conversion is started, the ADIF flag is cleared to ensure

that the Sleep state is not prematurely terminated.
3. A sleep instruction follows the setting of the GO/DONE switch. Where

the local clock option is selected, an extra tAD period is automatically
inserted to ensure that conversion only begins after the sleep in-
struction has been executed.

4. There is no need to poll the GO/DONE status flag, as the PIC MCU will
only restart after the conversion has completed and will then execute
the following instruction. In our example the GIE mask bit has been
cleared, and it should then be set again to 1 if there is to be interrupt
activity from other sources. If GIE is permanently left at 1 then the
processor will automatically jump to an ISR after it awakens.

For our final example we are going to code a 20 MHz PIC16F874 in CCS
C to act as a magnitude comparator in the manner of Example 11.2 on
page 319. Here we want to measure up the parallel-input 8-bit word N at
Port B against an analog input at Channel 1. Outputs at RC[2:0] are to
represent Analog Lower Than N (b’001’), Equivalent (b’010’) and Higher
Than N (b’100’) respectively. The comparator is to have a hysteresis of
Δ = ±1 bit; called delta in our program. That is, if a previous compari-
son showed Analog < N then the new trigger level is N +1. Similarly, on
a downward trajectory the trigger level is decreased to N − 1.
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The function compare() of Program 14.3 assumes that initialization
code of the form:

#include <16f874.h>
#byte PORT_B = 0x06
#byte PORT_C = 0x07
#device ADC=8 /* Configure for an 8-bit outcome */
/* Declare function to which is send delta (+1 or -1)
and which returns updated value +1 or -1 */
unsigned int compare(unsigned int delta);

int main()
{
unsigned int hysteresis = 0;
set_tris_c(0xF8);
setup_adc(ADC_CLOCK_DIV_32);
setup_adc_ports(RA0_RA1_RA3_ANALOG);
set_adc_channel(1);

has already been executed.
The key internal functions used here are:

setup_adc(ADC_CLOCK_DIV_32);
This function configures bits ADCS[1:0] in ADCON0[7:6] to select the
module’s clock source; here the processor oscillator/32. The script
ADC_CLOCK_INTERNAL may be used to select the internal CR oscillator.

setup_adc_ports(RA0_RA1_RA3_ANALOG);
This configures bits PCFG[3:0] in ADCON1[3:0] to select which port pins
are analog, which are digital, and if external reference voltages are to be
used. The script RA0_RA1_RA3_ANALOG indicates that port lines RA3 and
RA[1:0] are to be analog with internal reference voltages, with the rest
being digital — PCFG[3:0] = b’0100’; see Fig. 14.11. The equivalent script
using an external Vref+ at RA3 is RA0_RA1_ANALOG_RA3_REF. Scripts ap-
propriate to any particular device are stored in the corresponding header
file; in this case 16f874.h. All devices with an ADC module have scripts
ALL_ANALOG and NO_ANALOGS.

set_adc_channel(n);
This is used to set up the channel number bits CHS[2:0] in ADCON0[5:3].

read_adc();
This activates GO/DONE in ADCON0[2] and returns with the digitized
value from ADRESH:L when GO/DONE goes to 0.

#device ADC=8
This directive configures the ADC module to left align the 10-bit outcome
(see Fig. 14.13) and is used by the function read_adc() to return an 8-bit
int, which it gets from ADRESH. The directive device ADC=10 returns a
long int from ADRESH:L.
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Program 14.3 A digital/analog comparator with hysteresis.

unsigned int compare(unsigned int delta)
{
unsigned int analog;
analog = read_adc();
if(analog > PORT_B + delta) {PORT_C = 0x04; delta = 0xff;}
if(analog == PORT_B) {PORT_C = 0x02;}
else {PORT_C = 0x01; delta = 1;}
return delta;
}

The function compare() in Program 14.3 expects the value of the
hysteresis, called delta, which here is either +1 or −1 (h’FF’). After the
ADC module is read, the digitized value analog is compared with the
contents of Port B plus delta and the three Port C bits (RC[2:0]) set to
their appropriate state.

At the same time as the comparison is resolved, delta will be up-
dated to reflect the outcome (i.e., +1 if analog < (PORT_B+ delta), −1
if analog > (PORT_B+ delta)). The value delta is returned by the
function to allow the caller function to update its variable; called, say,
hysteresis. Thus to activate the comparator outputs and also update
hysteresis at the same time, the caller might have a statement such
as hysteresis = compare(hysteresis);. An alternative would be to
define the variable hysteresis before the main function main() making
it global; that is, known to all functions. In this situation its value need
not be passed by the caller back and forth to any appropriate function.

Conversion from a digital quantity to an analog equivalent is some-
what simpler than the converse and not so commonly required. Perhaps
for these reasons digital-to-analog converters (DACs) are not often found
as an integral function in most MCU families.

We have already seen that one way of providing this mapping is to
vary the mark:space ratio of a pulse train of constant repetitive duration,
as shown in Fig. 13.9 on page 424. Here a small digital number gives a
skinny pulse, which when smoothed out by a low-pass filter (which gives
the average or d.c. value) translates to a low voltage. Conversely, a large
digital number leads to a correspondingly large mark:space ratio, which
in turn, after smoothing, yields a higher voltage.

PWM conversion can be very accurate and is simple to implement.
However, extensive filtering is required to remove harmonics of the pulse
rate and this makes the conversion slow to respond to changes in the dig-
ital input. Normally PWM is used to control heavy loads, such as motors
or heaters, where the inertia of these devices inherently provides the
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smoothing action. Furthermore, the pulsed nature of the signal is ideally
suited to power control, activating thyristor firing circuits.

Another way is to switch in a tapping on a chain of resistors, each
adding one least significant bit increment to the grand total. This is the
principle used in the Comparator Voltage Reference module of Fig. 14.7.
However, rather a lot of resistors are needed; e.g., 1024 for 10-bit reso-
lution.

Many commercial DAC devices are available which can be controlled
externally. Two examples were given in Figs. 12.3 and 12.5 on pages 336
and 340, where the MCU transferred digital data in series. Here for com-
pleteness, we will look at an example where parallel data transfer is used.

The majority of proprietary devices are based on an R-2R ladder net-
work, such as that shown in Fig. 14.15(a). Voltage appearing at any bit
switch node emerges at the output node in an attenuated form. As our
analysis will show, each move to the left attenuates this voltage bi by 50%,
which is the binary weighting relationship:

V =
N+1∑
i=0

bi× 2i

for an N-bit word.
In Fig. 14.15(b), at node A looking to the left we see a resistance of R

(2R//2R) and the voltage is attenuated by two. As we move to the right
the process is repeated with each voltage divided by two. Thus, at node B
the voltage b0/2 is further divided by two as is voltage b1, giving VB= b0/4
+ b1/2. As the network is symmetrical the resistance looking right at any
mode is also 2R. This means that as seen from any digital switch, the total
resistance is 2R + 2R//2R = 3R. This is important as the characteristics
of a transistor switch, such as resistance, are dependent on current, and
keeping this the same reduces error.

For clarity our analysis has been for three bits. This can be extended
by simply moving the leftmost terminating resistor over and inserting the
requisite number of sections. This does not affect the resistance as seen
left of the mode, and therefore does not change the conditions of the
rightmost sections. An inspection of our analysis shows that nowhere
does the absolute value of resistance appear. In fact the accuracy of
the analysis depends only on the R:2R ratio. While it is relatively easy
to fabricate accurate ratioed resistors on a silicon die, this is certainly
not the case for absolute values. For this reason R:2R networks are the
standard technique used for most integrated circuit DACs.

The Maxim MAX506 of Fig. 14.16 is an example of a commercial D/A
converter (DAC). This 20-pin footprint device contains four separate
DACs sharing a common external Vref. Digital data is presented to the
D[7:0] pins and one of four latch registers selected with the A[1:0] ad-
dress inputs. Once this is done, the datum byte is loaded into the selected
register n and appears at the corresponding output VOUTn.
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This output analog voltage ranges from zero (Analog GrouND) for a
digital input of h’00’ through to Vref for a digital input of h’FF’. Where
VSS is connected to ground, then Vref can be anything between 0 V and
VDD (+5 V). However, VSS can be as low as −5 V and in this situation Vref

can be anywhere in the range ±5 V. If Vref is negative for dual supplies
then the output voltage will also be negative. In either case, effectively
the output can be treated as the product D × Vref where D is the digital
input byte scaled to the range 0–1 (h’00–FF’).

The MAX505 is a 24-pin variant which permits separate reference volt-
ages to be used for each of the four DAC channels. In addition, the
MAX505’s DAC latches are isolated from the converter ladder circuits
by a further layer of latches all clocked at the same time with a LDAC
(Load DAC) control signal. This double buffering permits the program-
mer to update all four DACs simultaneously after their individual latches
have been set up.

As an example, consider that a MAX506 quad DAC has its Address se-
lected via RA[1:0] and RA2 drives the WR input to latch in the addressed
data from Port B. We need to generate the continuous staircase sawtooth
waveform shown in Fig. 14.17 from DACD. A suitable software routine
would be something like the following listing:

1 V/div

TIME BASE  0.1 ms/div

Fig. 14.17 Generating a continuous sawtooth using a MAX506 DAC.
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movlw b’0111’ ; DACD is channel 3 (b’11’), WR = 1
movwf PORTA ; To MAX506 WR, A1:0

LOOP movwf PORTB ; Datum to MAX506’s D7:0
bcf PORTA,2 ; WR = 0; Latch datum in
bsf PORTA,2 ; WR = 1; by pulsing WR
addlw 1 ; Increment staircase count
goto LOOP ; and repeat forever

where we are assuming that Port B and Port A[2:0] have been set up as
outputs.

The typical DAC staircase output waveform shown in the oscillogram
in Fig. 14.17 is based on a 12 MHz crystal clocked PIC MCU. With a loop
cycle count of six cycles gives a sawtooth duration of (256 × 6)/3 ≈
0.5 ms, at 2μs per step.

Examples

Example 14.1
The analog input channel voltage range for most ADC modules8 is lim-
ited to the positive range 0 – Vref+, where Vref+ can either be the internal
VDD voltage or an external voltage at RA3 in the range 3 – VDD. Many situ-
ations require a digitized mapping from bipolar analog signals. Design a
simple resistive network to translate a bipolar voltage range of ±10 V to
a unipolar range of 0 – 5 V, assuming Vref+ is +5 V. Extend the design to
give an anti-aliasing filter, assuming a sampling rate of 5000 per second.

Solution
One possibility is shown in Fig. 14.18. The value of the three resistors

must be such that the input voltage Vin range of ±10 V will be shifted
so that the midpoint of 0 V gives half-scale (Vref+/2 = 2.5 V) at the input
pin AN. The range at this pin must also be attenuated by a factor of 4.
A more general way of expressing this is given by the relationship Vin =
±G × Vref+.
1. When Vin is zero, the voltage at the summing node is half-scale, which

maps to b’10000000’. To do this, R1 paralleled with R2 must have
the same resistance as R3, i.e.,

R3 = R1//R2
2. The attenuation of the network is a function of the potential divider

between R1 and R2//R3. This gives us the value of G as:
2G = (R1+ (R2//R3))/(R2//R3)

Where in our instance G = 2.
After some manipulation we have:

R1 = (G − 1)× R2
R2 = G × R3

8The PIC16C77X devices can be configured to accept bipolar input analog voltages.
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Fig. 14.18 A level-shifting resistor network.

Of course we have three unknowns and only two equations, so we have
to start off by choosing a value for one of them. If we pick a value of 5 kΩ
for R3, then we have R2 = 2× 5 = 10 kΩ and R1 = 10 kΩ.

The resistance looking out from the pin is all three resistors in parallel;
which in our case is 2.4 kΩ. This meets the maximum to keep within a
LSB leakage error for a 10-bit conversion. For 8-bit resolution, the resistor
values could be increased by a factor of four.

A small capacitor at the summing node can be used to implement a
simple first-order low-pass filter to attenuate high frequencies from ex-
ternal sources, such as the MCU’s system clock, and act as an anti-aliasing
filter, as described in Fig. 14.4. With a sampling rate of 5000 per second,
then ideally the filter break frequency should be no more than 2.5 kHz—
half the sampling frequency. As this filter has an attenuation of only
6 dB per octave, choosing a break frequency 1

2πCR of 1 kHz provides a
generous margin. We then have:

1
2πCR

= 1000

C = 10−6

4.8×π
C ≈ 66 nF

To further reduce noise, the filter capacitor should have good high-
frequency characteristics, e.g., polyester (capacitors become inductors at
high frequencies) and together with the resistors, be physically as close as
possible to the pin and not adjacent to any digital lines. It is always good
practice to decouple the reference voltage and power supply with a low-
value Tantalum electrolytical capacitor or/and a 0.1μF ceramic capacitor
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to reduce switching noise from the MCU and other devices taking power
from the same source. Using a separate supply and ground connection
to the power supply to the PIC MCU should also reduce noise from this
source.

Example 14.2
As part of a smart biomedical monitor, the peak analog value of an elec-
trocardiogram (EKG) signal is to be determined anew for each cycle. This
R-point (see Fig. 7.1 on page 186) maximum value is to be output from
Port B and RA5 is to be pulsed High whenever this value is being updated.
Assuming that a PIC16F87X is used to implement the intelligence, and
the EKG signal (conditioned as shown in Fig. 14.18) is connected to Chan-
nel 1 RA1, devise a possible strategy. Timer 0 is being used to interrupt
the processor at nominally 2000 times per second; see Program 13.2 on
page 411. Design a suitable ISR to implement your strategy.

Solution

As in any biomedical parameter the EKG signal will vary from cycle to
cycle in gain, shape, and period. Even if this were not so, imperfections
in the data acquisition system, notably the skin electrodes, can cause
slow baseline (d.c.) drift. Thus the threshold at which the signal is to be
tracked to its peak R-value must be reset at some sensible fraction of its
previous peak during the period following the last update.

0V

MAXIMUM1

THRESHOLD+1 THRESHOLD

Integer Fraction

MAXIMUM2

Fig. 14.19 EKG detection strategy.

One possibility is shown in Fig. 14.19. Here the threshold is slowly
decremented after the peak to ensure that a following peak of lower
amplitude is not missed. On the basis of a lowest EKG rate of 40 beats
per minute (period 1.5 s), if we reduce the threshold by 1

64 of a bit every
sample then the maximum reduction would be a count of ≈ 47 at a sam-
ple rate of 2000 per second. To do this the threshold value THRESHOLD in
Program 14.4 is stored as a double-byte number of form integer:fraction
and 1

64 of an integer (i.e., fraction = b’00000100’) subtracted in each sam-



14. Take the Rough with the Smooth 473

ple where the peak value MAXIMUM is not updated. This droop rate can
be altered by changing the subtracted fraction.

The task list implemented by this listing is:
1. DO a conversion to get ANALOG.
2. IF (ANALOG > THRESHOLD)
• MAXIMUM = ANALOG.
• THRESHOLD = ANALOG.
• PORTB = ANALOG.
• RA5 = 1.

3. ELSE
• Reduce THRESHOLD by 1

64 .
• RA5 = 0.

In updating THRESHOLD (where ANALOG > THRESHOLD) the integer byte
takes the new value of MAXIMUMwhilst the fractional byte is zeroed. Treat-
ing this byte pair as a 16-bit word, this effectively equates the threshold as
MAXIMUM× 256 or THRESHOLD = MAXIMUM << 8, where MAXIMUM has been
shifted left eight places. We are assuming that THRESHOLD has been ze-
roed in the background program during the initialization phase and that
we are doing an 8-bit conversion.

If the digitized analog sample is less than the threshold trip value then
h′04′ = b′00000100′ is subtracted from the lower byte at THRESHOLD+1
and if this produces a borrow, then the upper byte at THRESHOLD is decre-
mented. This subtract 1

64 routine is skipped if the threshold has reached
zero, thus preventing underflow.

Program 14.4 uses the subroutine GET_ANALOG of Program 14.1 and its
associated 17μs delay subroutine. However, as there is a considerable
period between calls, the 17μs delay can be reduced to 10μs if required.

Program 14.5 gives the C coded version implementing our task list.
The #int_rtcc directive tells the compiler to treat the following func-
tion as a Real-Time Counter Clock (Timer 0) ISR. In function ecg_isr(),
the variables threshold and maximum are declared static. This means
that their value will be retained after the function has exited and will
be available next time on entry. The default way of treating C function
variables is to hold their value only for the duration of the function. An
alternative way of dealing with this problem is to declare such variables
outside any function, in which case they will be global and retain their
value indefinitely.

The threshold variable is defined as a long int and the CCS com-
piler will then treat this datum as a 16-bit variable as required. The defi-
nition in equating threshold to zero will only initialize it once when the
program begins its run, as the variable is static. Again this is not the
normal behavior of the default auto variable.

In equating threshold to the new maximum value, the latter is multi-
plied by 256 by shifting left eight times. A good compiler will automati-
cally change a N*256 to N<<8; or even better just take the upper byte of
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Program 14.4 EKG peak picking.
; *************************************************************
; * FUNCTION: ISR to update the EKG parameters *
; * ENTRY : On a Timer0 interrupt *
; * EXIT : Update MAXIMUM and THRESHOLD:THRESHOLD+1 *
; * RESOURCE: GET_ANALOG subroutine gets 8-bit digitized data *
; **************************************************************
; First save context
EKG_ISR movwf _work ; Put away W

swapf STATUS,w ; and the Status register
movwf _status

; ==============================================================
btfss INTCON,T0IF ; Was this a Timer0 interrupt?
goto EKG_EXIT ; IF not THEN exit

bcf INTCON,T0IF ; ELSE clear flag
movlw 1 ; Initiate a conversion of
call GET_ANALOG ; Channel 1

movwf TEMP ; Save digitized byte
subwf THRESHOLD,w ; THRESHOLD - ANALOG
btfsc STATUS,C ; IF no Borrow THEN
goto BELOW ; don’t update MAXIMUM

movf TEMP,w ; ELSE get digitized value
movwf MAXIMUM ; which is the new MAXIMUM
movwf PORTB ; made visible to outside
bsf PORTA,5 ; which is signaled
movwf THRESHOLD ; Now update double-byte
clrf THRESHOLD+1 ; threshold
goto EKG_EXIT ; and finish

; Land here if the input is below the threshold
BELOW bcf PORTA,5 ; Signal no update
; Now reduce the threshold by 0.5 unless it is zero

movf THRESHOLD,f ; Is integer threshold zero?
btfsc STATUS,Z ; Skip if not
goto EKG_EXIT ; IF it is THEN leave alone

movlw h’04’ ; 1/64 = b’00000100’
subwf THRESHOLD+1,f ; Take away from fraction byte
btfss STATUS,C ; Skip if no borrow
decf THRESHOLD,f ; ELSE decrement integer thresh

; ==============================================================

EKG_EXIT swapf _status,w ; Untwist the original Status reg
movwf STATUS
swapf _work,f ; Get the original W reg back
swapf _work,w ; leaving STATUS unchanged
retfie ; and return from interrupt
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Program 14.5 An implementation of the EKG peak picker in C.

#bit RA5 = 5.5 /* Pin RA5 is bit 5 of Port A */
#byte PORT_B = 6 /* Port B is File 6 */

#int_rtcc
ecg_isr()
{
unsigned int analog;
static unsigned long int threshold = 0;
static unsigned int maximum;
analog = read_adc();

if(analog > (threshold>>8))
{
maximum = analog; /* New maximum value */
PORT_B = analog; /* Show the outside world */
threshold = maximum << 8; /* New 2-byte threshold */
RA5 = 1; /* Tell outside world */
}

else
{
threshold = threshold - 0x0004; /* Reduce by 1/64 */
RA5 = 0; /* Signal no update */
}

}

the pair as the outcome. This double-byte form allows for the reduction
by 1

64 of a bit h’0004’ to give the specified falling trip level.

Example 14.3
A microcontroller is to be used to calculate a measure of power dis-
charged by the diphasic defibrillator of Fig. 14.5. When the MCU detects
the beginning of the discharge, 256 samples are to be taken at a nominal
rate of 20,000 per second, with the sum of the squares of the devia-
tion from the baseline voltage being an analog measure of the power—
assuming that the resistance of the patient’s chest/electrodes remaining
constant whilst all this is going on!

A 4.096 V voltage reference device is to act as an external reference
voltage for a ADC module, giving a 16 mV resolution for an 8-bit con-
version. After the process begins, pinRA4 is to be pulsed as a trigger
for a storage oscilloscope, which allows the waveform to be captured for
archiving purposes. When the process has been completed, the top byte
of the power summation is to be output via Port B for display.

Show how you might use a 20 MHz PIC16F87XA device to implement
the logic of the measurement system. You can assume that the voltage
reference device can be biased as for a Zener diode. In practice an op-
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tional potentiometer can be used to trim the voltage slightly for more
accurate results.

Solution
Figure 14.20 shows a suitable hardware configuration, from which we can
estimate the peripheral budget. The signal itself ranging between +1.8
and +3.6 V (see Fig. 14.5) is connected to Analog channel 0 at pinRA0/AN0.
The 10 kΩ resistor protects the analog input against overvoltage as well
as implementing an anti-aliasing filter, with the 3.3 nF capacitor giving a
450 kHz nominal breakpoint. As the actual defibrillator uses very large
voltages (of the order of 25 kV) the two 1N4004 diodes act as additional
protection against high-voltage spikes, supplementing the internal diodes
shown in Fig. 14.12.

The external 4.096 V reference voltage is directly connected to pinRA3,
which for the ADC module configuration mode b’0101’ is used as the

+VDD

10K

3n3 1N4004

RA0/AN0

DD+V

RA3/AN3

++ 4.096V1μ 1μ

330R

RA4To oscilloscope trigger

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0

Power output

ZA4040

1N4004

Fig. 14.20 Measuring the discharge power for an EKG defibrillator.
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external reference. Both the VDD and Vref+ voltages are decoupled with
1μF tantalum capacitors to reduce noise at this point.

An internal analog comparator is used to detect the initial rise of the
discharge voltage as described in Fig. 14.5. If Comparator module mode
b’1110’ is used then the CVREF module can be used to generate an inter-
nal reference voltage as described on page 447. With the CIS bit cleared
(see Fig. 14.6) Comparator 1 can share Analog channel 0 with the ADC
module.

Finally, both RA4 and all of Port B must be configured as digital outputs.
The former is going to be used to generate a synchronization pulse, and
the latter to output the end result of the analysis.

include "p16f877a.inc"

org 0 ; Reset vector
goto SET_UP ; On reset go to background routine
org 4 ; Interrupt vector
goto EKG_ISR ; On Comparator change go to ISR

SET_UP bsf STATUS,RP0 ; Change to Bank 1
movlw b’00000110’ ; Comparator mode 110 CIS = 0
movwf CMCON
call DELAY_17US ; Allow 17us for voltages to settle
movf CMCON,f ; Read CMCON to clear Change state
bsf PIE2,CMIE ; Enable Comparator interrupts

movlw b’10001110’ ; CVREF module on (1), not extern (0)
movwf CVRCON ; Hi range (0), CVR[3:0] = 1110

movlw b’00000101’ ; RA0/1 analog inputs
movwf ADCON1 ; RA3 is Vref+ input

movlw b’101111’ ; Make RA4 an output
movwf TRISA
clrf TRISB ; PortB is all output

bcf STATUS,RP0 ; Back to Bank 0

movlw b’10000001’ ; Clock /32 turn on ADC module
movwf ADCON0

bcf PIR2,CMIF ; Zero the Comparator interrupt flag
bsf INTCON,PEIE ; Enable Peripheral interrupt group
bsf INTCON,GIE ; & Globally enable interrupt system

Based on our analysis, the initialization code is shown above. The
modules are set-up as follows:
1. The Analog comparator module is turned on in Mode b’110’ with

CIS = 0. For convenience, the 17μs delay subroutine DELAY_17US
used by GET_ANALOG is also employed to allow the module to settle,
rather than a separate 10μs delay. After this, the CMCON register is
read to clear any Change condition. This allows the CMIF flag to be
subsequently zeroed and interrupts enabled.
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2. The CVREF module is enabled and set to tapping b’1110’ in the high
range to give a 3.4375 V reference.

3. The ADC module is enabled and set to mode b’0101’ to configure
pinRA0 as an analog channel (and also RA1) and use RA3 for the ex-
ternal Vref+. Alignment is set-up to facilitate an 8-bit outcome. The
ADC clock is sourced as the system 20 MHz frequency divided by 32.
This gives a 625 kHz rate, as shown in Table 14.2.

4. PORTA[4] is set-up as an output. Other Port A pins are left as inputs,
as required for AN0, AN1 and AN3. All of Port B is configured as output.

The actual software itself is shown in Program 14.6. The Main routine
itself simply sleeps until the Comparator module changes state and gen-
erates an interrupt. When control returns to the background routine, the
top byte of the triple-byte Power accumulator is copied to Port B and the
process repeated for the next run.

After saving the context in the normal way, the foreground routine
first confirms the source of the interrupt and then clears a loop counter
and the three bytes used to store the grand sum of the 256 squares of
the sampled voltage. PinRA4 is then pulsed to tell the outside world that
the discharge is beginning.

The GET_ANALOG subroutine listed in Program 14.1 is used to acquire
an 8-bit digitized sample. The difference between the baseline voltage
of 2.6 V (see Fig. 14.5) is then determined. If this is negative; that is, a
Borrow is generated after the subtraction showing that the input volt-
age is below 2.6 V, then the difference byte is 2’s complement inverted
(see page 9) to switch from negative to positive. This modulus voltage
is then squared using the SQR routine of Program 8.3 on page 232. The
two global return bytes SUM:SUM+1 are then added to the triple-byte total
POWER:POWER+1:POWER+2 array.

This is repeated 256 times with an extra loop delay of 470μs to give an
approximate 500μs total delay necessary to give the specified 2 kHz sam-
pling rate. When this has been completed, taking a total time of around
128 ms, the Comparator module is read to clear the difference condition.
This is done at the end of the process, rather than at the beginning, as the
input voltage will fall back through the 3.4375 V Comparator threshold
part way through the process and trigger another change! The CMIF flag
is then cleared and the context, restored.

Of course this is rather rudimentary. For instance, the baseline voltage
may vary with time, so a learning run prior to an analysis may be neces-
sary. If fairly stable, this value can be burnt into non-volatile memory as
described in the next chapter. The use of a fixed number of samples can
be restrictive, and additional loops can be implemented until the voltage
difference drops below a certain threshold.
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Program 14.6 Gauging the defibrillator discharge power.
MAIN sleep ; Idle

nop
movf POWER,w ; Get top byte of power
movwf PORTB ; and output
goto MAIN

; *************************************************************
; * FUNCTION: ISR to begin the defibrillator analysis *
; * ENTRY : On a Comparator module interrupt *
; * EXIT : Update POWER:3 *
; * RESOURCE: GET_ANALOG subroutine gets 8-bit digitized data *
; * RESOURCE: SQUARE subroutine does 8x8 multiplication *
; *************************************************************
; First save context
EKG_ISR movwf _work ; Put away W

swapf STATUS,w ; and the Status register
movwf _status

; =============================================================
btfss PIR2,CMIF ; Was this a Comparator interrupt?
goto EKG_EXIT ; IF not THEN exit

bcf PIR2,CMIF ; ELSE clear the interrupt
clrf POWER ; Zero the 3-byte grand total
clrf POWER+1
clrf POWER+2 ; LSB
clrf COUNT ; Prepare to do loop 256 times
bcf PORTA,4 ; Pulse pin RA4
bsf PORTA,4 ; to generate a synch pulse
bcf PORTA,4

ACQUIRE clrw ; Analog channel 0 (W is h’00’)
call GET_ANALOG ; Do a conversion
addlw -BASELINE ; Difference from baseline voltage
btfsc STATUS,C ; IF Borrow (C==0) THEN skip
goto EKG_CONT ; as difference is positive

xorlw b’11111111’ ; ELSE invert
addlw 1 ; plus one makes -ve diff positive

EKG_CONT call SQR ; Square it
movf SUM+1,w ; Get LSB of squared voltage
addwf POWER+2,f ; Add it to the low byte of Power
btfss STATUS,C ; Check for a Carry
goto NEXT_BYTE ; IF not THEN add next byte

movlw 1 ; Increment the high byte of Power
addwf POWER+1,f
btfsc STATUS,C ; Check; did this generate a Carry?
incf POWER,f ; IF yes THEN increment upper byte

NEXT_BYTE movf SUM,w ; Get MSB of squared voltage
addwf POWER+1,f ; Add it to the high byte of Power
btfsc STATUS,C ; Check for a Carry; IF yes
incf POWER,f ; THEN increment the Upper byte

call DELAY_470US ; Hang around until the next sample
incfsz COUNT,f ; Increment the loop count and do
goto ACQUIRE ; another acquisition if not zero

; =============================================================
EKG_EXIT bsf STATUS,RP0 ; First clear the Comparator

movf CMCON,f ; Change situation
bcf STATUS,RP0 ; by reading it in Bank 1
bcf PIR2,CMIF ; and clear the interrupt flag
swapf _status,w ; Untwist the original Status reg
movwf STATUS
swapf _work,f ; Get the original W reg back
swapf _work,w ; leaving STATUS unchanged
retfie ; and return from interrupt
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Example 14.4
Using C coding show how a 10-bit digitized reading from Channel 3 of a
PIC16F874 can be acquired with the processor in its Sleep state.

Solution

The CCS compiler uses the sleep() function to put the MCU to sleep;
this simply translates to the sleep instruction. A Sleep conversion can-
not be implemented using the read_adc() function of Program 14.3 as
no processing is done in the Sleep state. Instead we need to set and
clear individual interrupt related bits before going to sleep in the man-
ner outlined in the assembly-level Program 14.2. On wakening the state
of ADRESH:L registers can then be read “manually” and combined to give
the 10-bit outcome.

Coding for this specification is shown in Program 14.7. Here the PEIE ,
ADIF and GO/DONE bits are defined using the #bit directive. This time
the script ADC_CLOCK_INTERNAL is used with the setup_adc() internal
function to select the internal CR clock for the DAC module, as necessary
for the Sleep conversion.

Program 14.7 Sleep conversion in C.

#include <16f874.h>
#device ADC=10 /* Configure for a 10-bit outcome */
#use delay(clock=8000000) /* Tell compiler it’s an 8MHz clock */
#bit ADIF = 0x0C.6 /* The A/D interrupt flag in PIR1[6] */
#bit PEIE = 0x0B.6 /* The group interrupt flag in INTCON[6] */
#bit GO = 0x1F.2 /* The Go/NOT_DONE bit in ADCON0[2] */

#byte ADRESH = 0x1e /* The Result registers */
#byte ADRESL = 0x9E

int main()
{
unsigned long int result; /* 16-bit digitized outcome */
set_tris_a(0x0E);
setup_adc(ADC_CLOCK_INTERNAL);
setup_adc_ports(RA0_RA1_RA3_ANALOG);
set_adc_channel(3);
delay_us(17); /* Allow voltages to stabilize */
disable_interrupts(GLOBAL);/* Disable all ints (GIE & PEIE=1) */
ADIF = 0;
enable_interrupts(INT_AD);
PEIE = 1; /* Enable the auxiliary group interrupts */
/* Code */
GO = 1;
sleep();
/* When awake read each byte with high byte x 256 */
result = (long int)ADRESH * 256 + ADRESL;
}



14. Take the Rough with the Smooth 481

The internal function disable_interrupts(GLOBAL) clears both GIE
and PEIE mask bits. The complementary enable_interrupts(GLOBAL)
sets both bits, but we need to enable the PEIE only and leave GIE cleared.
This is implemented by the “bit-twiddling” statement PEIE=1;. Simi-
larly, clearing the ADIF flag is directly actioned by ADIF=0;. Before call-
ing sleep() the statement GO=1;manually starts the conversion. After
sleep() the ADRESH register is read and cast to a long int to ensure
that the compiler treats it as a 16-bit object. Multiplying by 256 tells an
intelligent compiler to treats it as the top byte of a 16-bit object. Adding
ADRESL puts this in the low byte of the 2-byte outcome.

Self-Assessment Questions

14.1 In Example 14.2 the decay of the threshold level was linear. Although
this is fairly effective for situations where the nominal period is known
a priori and does not vary greatly, an exponential decay would be
better suited where this is not the case. To generate this type of rela-
tionship a fixed percentage of the value at each sample point should
be subtracted to give the new outcome rather than a constant. Show
how you could modify Programs 14.4 and 14.5 to decrement at a rate
of approximately 0.025% (≈ 1

4096 ) on each sample and determine the
time constant in terms of the number of samples.

14.2 Real-world analog signals are noisy. In practice this means that some
form of filtering or smoothing is frequently required. In any circum-
stance, noise coming in from outside should not have any apprecia-
ble frequency components above half the sampling rate since such
noise will be frequency shifted back into the baseband, as shown in
Fig. 14.4. Such low-pass filtering must be applied to the signal before
the A/D conversion, as shown in Fig. 14.20.

Although this external anti-alias filter must by definition be imple-
mented using hardware circuitry (such as a CR network), noise within
the passband can be smoothed out using software filtering routines.
One simple approach to digital filtering is to take multiple readings
and average them to give a composite outcome. For example, 16
readings summed and shifted right four times (÷16) would reduce
random noise by a factor of

√
16 = 4.

Another approach well known to statisticians, is to take a mov-
ing average; for example, of a stock price over a month interval. A
comparatively efficient algorithm of this type is a 3-point average:

Array[i] = Sn
4
+ Sn−1

2
+ Sn−2

4

where Sn is the nth sample from the analog module.
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Show how you could modify the GET_ANALOG subroutine to re-
member the last samples from the two previous calls and return the
smoothed value.

14.3 It has been proposed that as part of the EKG monitor of Example 14.2
that a MAX506 DAC be used to introduce an automatic gain control
(AVC) function preceding the PIC MCU’s analog input. The aim of the
AVC is to keep the peak of the analog input between 3

4 and 7
8 full

scale. How might you go about implementing this subsystem? Hint :
Recall that each channel of a MAX506 is the product of its digital
input and Vref and that the latter can vary between 0 V and VDD.

14.4 An input analog sinusoid signal, conditioned as shown in Fig. 14.18,
is to be full-wave rectified; that is, voltages that were originally neg-
ative are to have their sign changed. Design a routine to do this
assuming that the 8-bit digitized input voltage is available at ADRESH
and the processed output is to be presented via Port B to a DAC.

14.5 Figure 14.21 is based on Fig. 10 of Microchip’s application note AN546
Using the Analog-to-Digital (A/D) Converter as a means of provid-
ing an external voltage reference source for power-sensitive applica-
tions. How do you think the circuit works and what factors govern
the choice of current limiting resistor?

D

R

Z C

RB1

VREF/RA3

C = 10  to  100 nF

Fig. 14.21 A controllable external voltage circuit.
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