Chapter 2

Requirements Engineering
and Storyboarding

Good system engineering practice is vital to the successful development of
VR systems, more so than ordinary software systems because VR systems
have multifaceted requirements (not just to make correct computations). In
fact, a typical development process for VR systems will go through many
cycles of revisions, as there is a lack of design guidelines on how to effect-
ively integrate various resource-consuming computations and interactive
techniques.

Thus, in building a VR system, we must start with identifying and de-
scribing its requirements. Requirements [I[EE94] are statements identifying a
capability, physical characteristic, or quality factor that bounds a product or
process need for which a solution will be pursued. Requirements refer to the
desired properties of the system and the constraints under which it operates
and is developed. Requirements should be documented and specified as
clearly as possible, for ease of revision and later maintenance. Although
requirements engineering is a difficult and cumbersome process, it should be
done at least for the important core part of the system. These descriptions
are best captured and maintained using computational support tools and
formalisms, but in actuality, even hand-drawn sketches and documents
(such as the storyboards) would be useful [Cim04].

Requirements may be functional or nonfunctional. Functional require-
ments describe system services or functions. Nonfunctional requirements are
constraints on the system or on the development process. There are many
ways to go about doing requirements engineering for a VR system. For
instance, we start with the functional requirements such as those about the
scenes, virtual objects comprising the scene, behaviors, and the style of
interaction.

Storyboarding is one way to start off the requirements engineering process.
A storyboard is a visual script designed to make it easier for the director and
cameraman to “‘see” the shots before executing them [Cri04]. It saves time
and money for the producer and is used for making movies, commercials, and
animation. There are structured ways to make storyboards, but for now,
informal sketches and annotations suffice for our purpose (See Figure 2.1).

14



Requirements Engineering and Storyboarding 15

“Stes
clude <Pe

ringStand b
erformer/pfdu.h>

gStand:classType = NULL;

setType(classType); /iset the type of this

initSteeringStand()

Requirements,Story boards, Class Diagram, Skeleton Codes, Program Implementation

Message Diagrams Interobject Relationship, ...
Form Function/Behavior
(geometries, physical (methods, specifications)

properties, structure)

SteeringStand:SteeringStand() { }

void SteeringStand: nit { }

void SteeringStand: initSteeringStand() { }
@ void SteeringStand: rotateLeftSteerng() { }
void SteeringStand: rotateRightSteering() { )
Static “Dead” Dynamic Purely
Virtual objects Virtual objects Computational objects
(e.g., rock) (e.g., car) (e.g., collision handling)

FIGURE 2.1. Modeling and implementing virtual objects in an object-oriented fashion.

The overall scenario, as represented in the simple form of sequences of
“cuts” (or static scenes) in the storyboard, can be further refined and include
some dynamics. One useful method is to use the Message Sequence Dia-
grams (MSD) [DeM79], or use cases [Car98]. The MSD depicts typical
scenarios of internal and external behaviors of a VR world in terms of
sequences of data or control signals exchanged among objects in the system
(See Figure 2.4). Using the MSDs, one can test the system for later model
validation, but more importantly, it enables the developer to identify im-
portant objects in the system. Constructing MSDs also aids in identifying the
sequences of the messages among various objects and picturing how they
interact with one another. In particular, external devices can be treated as an
object for human—computer interaction. Object classes are then constructed
by examining the identified objects and grouping them according to the
commonality in their attributes.

Objects, better referred to as “virtual objects,” are the constituents of a
virtual environment through which the user will obtain the virtual experi-
ence. Although there is a natural mapping from virtual objects to the
“objects” in the object-oriented programming paradigm, virtual objects are
rather just a modeling concept at least at this stage. As these virtual objects
are later implemented as “objects” in an object-oriented computational
platform (which would be a natural thing to do), they are interchangeably



16 2. Requirements Engineering and Storyboarding

referred to as both a modeling concept and a specific computational imple-
mentation. Virtual objects, for their physical connotation, indeed lend them-
selves naturally to the object-oriented system development methodology,
and this book chooses to illustrate the implementation details using the
object-oriented platform. Note that the object-oriented approach can
be used to model the concrete virtual objects and scenes they compose in
the VE, and to abstract various functional services required to execute and
manage them, for instance, device management, rendering control, object
and scene creation/consolidation/importing, event management and
communication, process management, and so forth. We use the Open-
SceneGraph [Ope04] and the SGI Performer! to illustrate many of the
concepts explained in this book (actual code samples may be found on the
companion CD). OpenSceneGraph is an open-source high-performance 3D
graphics toolkit written entirely in standard C++ and OpenGL. SGI Per-
former is a popular commercial package for developing virtual reality
applications.

For a large-scale virtual environment with many sorts of objects, sketch-
ing a rough object class diagram can be useful. A class diagram shows the
existence of classes and their relationships in the logical and brief
view format. The standard class diagram notation such as that of the
Unified Modeling Language (UML) [Fow97] can be used. The diagram
includes association, aggregation, composition, and inheritance relation-
ships. Relationships provide a path for communication between objects. It
is important to begin the overall modeling process with a consistent view of
the object-orientation. With a clear picture of a system configuration
in terms of constituent objects and information flows between them,
the detailed specification behavior, function, and form for each object can
begin.

Virtual objects, just like physical objects, can be characterized by three
main aspects: the form, function and behavior. Form refers to the
outer appearance of virtual objects, and their physical properties and struc-
ture.” We usually associate “appearance” with the visual sense (how it
looks), however, a form or appearance must be judged with respect to
ways it can stimulate humans through the display devices. Thus, form may
include appearances also in terms of audition, haptics (force feedback), and
other modalities that humans possess. For simplicity, we concentrate on the
visual part for now, but later in the book, we will talk about modeling and
simulation of nonvisual appearances. Other physical properties (which may
be required for physical simulation) such as mass, material property, vel-
ocity, and acceleration may be included as part of form information.

! Performer is a registered trademark of Silicon Graphics, Inc. A free month-long
evaluation version of Performer is available at www.sgi.com.

2 Structure refers to the spatial/logical relationship among component objects in
the case where the given object is a composite one.



Requirements Engineering and Storyboarding 17

Function refers to encoding what virtual objects do (i.e., primitive tasks) to
accomplish their behavior (defined below), whether autonomously or in
response to some external stimuli or event, and behavior refers to how
individual virtual objects dynamically change and carry out different func-
tions over a (relatively long) period of time, usually expressed through states,
exchange of data/events, and interobject constraints. It is somewhat difficult
to clearly draw the line between function and behavior. Functions may be
viewed as primitive behaviors that are mostly atomic and taking a relatively
short amount of time. Separating them, nevertheless, is useful for modular
design of object dynamics. The description of objects, as part of a formal or
informal specification of the overall application or system, must address
these aspects. Note that there may be objects without form (purely compu-
tational objects such as device interfaces) or without function or dynamic
behavior (e.g., static nonmoving objects such as virtual rocks).

So, for instance, the form specification/description would start by captur-
ing the initial approximate shape/volume as well as the physical configur-
ation of those objects (e.g., a simple hand-drawn sketch will do). As the
description gets more mature and goes through a number of refinement
iterations, the objects could decompose into smaller components (e.g., by
breaking a car into its components, such as body, wheels, doors, etc.). Values
of important attributes (e.g., size, color, mass, object type, etc.) may be
added to this description as well. These descriptions are best captured and
maintained using computational support tools and formalisms, but in actu-
ality, hand-drawn sketches and documents (such as the storyboards) would
still prove useful. More detailed explanations of the modeling and initial
implementation process are given in Chapters 3 and 4.

Construction of virtual objects and their world often requires many
revisions, and changing one aspect of the world will undoubtedly affect
other aspects of it. For instance, different shapes and configurations (posi-
tions and orientations in space) can result in different dynamic behaviors.
A jet fighter has different aerodynamic characteristics from that of a passen-
ger airplane. Form can also affect functionality. For instance, two different
robots differing in size may have different work volumes and capabilities.
Such a development cycle is difficult to handle when working in a single level
of abstraction and considering these design spaces in isolation.

Object functions and behaviors can equally be described using tools as
primitive as plain text to more structured and diagrammatic representations
such as procedural scripts, state transition diagrams, data flow diagrams,
constraint languages, and the like. The choice of representation should be
based on the complexity and nature of the object behavior and also on
the type of behavior model supported by the VR development platform
(so that the description can be easily mapped to and implemented at a
later time). For instance, some game engines support state-based automata
to express and implement intelligence into objects. Less fancy VR develop-
ment platforms only support procedural programming for object behavior



18 2. Requirements Engineering and Storyboarding

implementations. See Chapter 4 for more details. Figure 2.1 illustrates this
initial modeling process as demonstrated in this book.

Another equally important functional requirement concerns user inter-
action. The storyboard and the MSD identify the important junctions and
events at which user input is required. The task required to be carried out by the
user should be refined to some degree and matched with the capabilities of the
hardware devices and computational power of the computing hardware. The
method of interaction modeling and interface design is treated in Chapter 5.

A related problem to interaction is the designation of the proper display
devices. Different display systems are suited for different tasks and situ-
ations. For instance, HMDs are more suited for close-range manipulation
tasks, whereas large projection displays are suited for navigation and walk-
through application. Whether to employ head-tracking, haptics, 3D sound,
and so on is an important interaction-related decision to make. Generally,
sensors and displays cannot be changed during their use. They are also
generally expensive, and one might not have the luxury of choosing the
best possible displays and sensors. A clever design of the contents can
overcome some of the limits introduced by low-end displays and sensors.
Thus, at an early stage, having a rough idea of the nature of the user tasks
and interactions (e.g., style of input and response to input) is helpful in
determining the right displays and sensors and in recognizing the limits and
bounds introduced by the hardware for providing a suitable level of presence
and usability. Also note that there may be interaction objects (those that are
purely functional such as device polling, or those also with form such as
menus) to consider as well. Putting the user in the center of the system design
process is very important as many VR systems fail simply because they are
not user friendly.

The important nonfunctional requirements to consider at this stage are
requirements for the overall system performance and device constraints. The
performance requirement is rather simple. A virtual reality system is a real-
time system, and must make computations for simulations, synchronize its
output with various input devices, and maintain display updates at a rate at
which human users will feel comfortable. For instance, for smooth computer
graphic animations, the simulation for updates should be made at about at
least 15 ~ 20 times per second. Other input or display devices may require
different timing requirements (for instance, haptic equipments ideally re-
quire an update rate of up to 1000 Hz for delivery of smooth force feed-
back). Note that 1/15th second is an amount relative to the capability of the
computational and graphics hardware. Thus, if the functional requirement
cannot be accommodated by the nonfunctional constraints such as the
performance bounds or the devices, they have to be addressed in some
way, either by making a business decision to purchase the appropriate
equipment or later by designing to overcome the resulting distraction factors
through clever content psychology. The important thing is that this be
known in the early design stage.



Example: Ship Simulator Design 19

Finally, a developer needs to understand, once again, that making these
requirements and implementing them is an iterative process, starting from a
rough picture and being refined stage by stage. To what degree should the
requirements and implementation be done? That depends on the discretion
of the developer.

Example: Ship Simulator Design

We illustrate this initial modeling process more concretely by illustrating
the design of a simple virtual ship simulator. The objective of the example
application is to assist trainees to navigate in and out of the pier and anchor
without colliding with other vessels or the coast. Figure 2.2 lists the initial
requirements for the simulator. Given these high-level goals and informal
requirements of the system, we start with sketches of the storyboards as
shown in Figure 2.3.

Requirements (Level 1)

e The virtual ship simulator (named Ship Simulator) helps users (named User)
operate a vessel (named My Ship) and practice docking without colliding with
other vessels (named Other Ship) or the coast.

e Initial View

—  The default view (named Camera) is the scene as seen from the control
bridge where the User controls its ship (MyShip). The User can see the
outside environment through the windows in the bridge.

e Interaction

— The control bridge includes a steering wheel (named Steering Wheel) and
an engine lever (named EngineTelegraph) for the User to steer and control
the velocity of the My Ship.

— The User can look around the interior of the bridge and change its view
named Camera).

— The basic mode of control via keyboard (named Keyboard) and mouse
(named Mouse) must be supported. Ship Simulator shall accept input from
the Keyboard to control My Ship.

* Models

— The bridge includes a steering wheel (named Steering Wheel) and an engine
lever (named Engine Telegraph).

— The scene must also include object models for sky, sea, other ship, terrain,
and pier.
e Simulation

—  Ship Simulator controls several automatically navigated vessels
(Other Ship).

—  Othership’s initial positions and moving directions are chosen randomly.
—  Otherships change their speed and directions every 10 seconds.

FIGURE 2.2. The initial requirements for the virtual ship simulator.



20 2. Requirements Engineering and Storyboarding

i _ ._f—-' Helpful Info. in text

|t R T

F—_ .

Windowto . -
. i
outside scene

Velocity Control

Direction Handle

FIGURE 2.3(a). The default starting view of the ShipSimulator. The interior of the

control bridge is seen with the steering wheel, engine lever, outside view, and gauges.
The User can look around the control bridge.

FIGURE 2.3(b). The external view of Figure 2.3a. A number of ships (including

MyShip) move around the sea. This view can be selected by separate keyboard/
mouse control.



Example: Ship Simulator Design 21

FIGURE 2.3(c). As the User steers the ship using the handle (named Steering Wheel),
the scene through the window is changed accordingly.

FIGURE 2.3(d). The external view of Figure 2.3c.



22 2. Requirements Engineering and Storyboarding

FIGURE 2.3(e). As the User manipulates the engine lever (named EngineTelegraph) and
controls the velocity of MyShip, the scene through the window changes accordingly.

FI1GURE 2.3(f). The external view of Figure 2.3e.



Example: Ship Simulator Design 23

As shown in this simple storyboard, the three major objects are identified
first: the trainee vessel (called MyShip), other automatically controlled
vessels (called OtherShip), and the central simulation control module (called
ShipSimulator). MyShip is composed of, among other things, Steering Wheel
and EngineTelegraph (the user interface for vessel control). We also identify
an interface object: the Keyboard (for various ship and training control
functions) and an object representing the camera position, Camera.

The specification starts by creating simple scenarios using the MSD as
depicted in Figure 2.4. Figure 2.4a is the first simple example of the MSD, a
trainee interaction scenario for “looking around” on the control bridge.
When the User enters a key, it is stored by the interface object Keyboard,
and the User checks what kind of keys were pressed (e.g., “z” for looking to
the left), and the Camera is updated accordingly. A similar interaction
scenario is given in Figures 2.4b and ¢ where the User communicates to
the Keyboard (pressing the up/down/left/right arrow keys) to control the
speed and the course of MyShip. In Figure 2.4d, the OtherShip sets its own
initial position and direction in a random fashion and changes its speed and
direction periodically every 10 second.

An initial class definition (with major functionalities specified based on
the content of the messages exchanged) and the class diagram is designed
as depicted in Figure 2.5. Figure 2.5 shows the simplified class diagram
created by constructing various MSDs. Notice that the interaction object

% :Keyboard :Camera
user

press a key

e

store

the key value

iterate when
the user presses a key

user pressed the"z" key?

update view

]

i
|
|
I same process
: for the "c" and "x" keys
|
|
|
I

iterate until
the simulation ends

(@)

FIGURE 2.4(a). MSD for simple keyboard-based view control.



24 2. Requirements Engineering and Storyboarding

% :Keyboard :Myship
| ]

press a key : store

|
|
i the key value
|
|
|

iterate when
the user presses a key

1 I

user pressed
the "up arrow" key?
_______ yes_______,

same process
: for the "down arrow" key

update velocity

! iterate until

| the simulation ends

|

I

(b)
Gser :Keyboard :Myship

!

|

press a key | store

|
|

|

: the key value
| —L‘

|

|

|

iterate when
the user presses a key

|._ ——— e

user pressed

the "left arrow" key?
yes
update course

I
I

| ]
! same process

: for the "right arrow" key

! iterate until
| the simulation ends

(©

FIGURE 2.4(b),(c). MSD for controlling MyShip’s velocity and direction using the
arrow keys.



Example: Ship Simulator Design

aship:othership

determine the initial
position and orientation

]

determine the new
speed and course

]

iterate every 10 seconds

|
|
1
: until the simulation ends
I

FIGURE 2.4(d). MSD for initializing and updating an instance of an OtherShip.

25

Keyboard and the ShipSimulator are purely “functional” without any form.
As noted, the relations between classes are clarified at this stage of the
modeling. A trainee can operate MyShip through Keyboard, then MyShip
changes Camera. He or she can also change the orientation of Camera
through Keyboard but the change in Camera does not affect MyShip. This
initial class diagram will be subject to revision during the next phases of

development.

Steering Wheel

Ship Simulator

Engine Telegraph
1 1 ]

Keyboard [———

Camera

OtherShip

FIGURE 2.5. An initial class definition for the ship simulator.




26 2. Requirements Engineering and Storyboarding

Summary

VR system design starts with listing the requirements and carefully analyzing
them as to whether virtual reality is even needed in the first place. The
requirements must be centered around the user’s expectation and capabil-
ities. For instance, an experience-oriented requirements will result in a
system with emphasis on presence, whereas a task-oriented requirements
will place emphasis on efficient interaction. Based on the requirements, the
overall scenario can be constructed using storyboards. “Virtual” objects that
make up the scene are identified and the basic specifications for their form,
function, and behavior should be made. Other aspects of the system such as
device constraints, interaction, major special effects, and presence cues are
also noted in this early stage of system development. Major interobject
relationships are made more explicit by drawing class diagrams and message
sequence diagrams.

Pondering Points

e Characterize the form, function, and behavior for a virtual human, virtual
rock, virtual airplane, and virtual wind.

e What are possible barriers to making a VR system run in real-time?

e Make a case for, and against, carrying out requirements engineering
at all.

e Make a case for, and against, using abstract formalism, support tools,
or even documentation for requirements and system specifications.

e Is the object-oriented paradigm most fitting for implementing VR
systems?

e Can having too many interaction points in the VR content be detrimental
to inducing a good convincing virtual experience?

e In achieving the intended level of virtual experience, how can one make a
good decision, for instance, between purchasing a special device for the
increased effect, and staying with the less capable one and overcoming its
shortcoming using other tricks?



2 Springer
http://www.springer.com/978-1-85233-958-6

Designing Virtual Reality Systems

The Structured Approach

Kim, G.

2005, X, 233 p. 191 illus. With online filesjupdate.,
Softcover

ISBN: 978-1-85233-958-6



