1

Introduction

A Need for Security

Modern society and modern economies rely on infrastructures for communi-
cation, finance, energy distribution, and transportation. These infrastructures
depend increasingly on networked information systems. Attacks against these
systems can threaten the economical or even physical well-being of people
and organizations. There is widespread interconnection of information sys-
tems via the Internet, which is becoming the world’s largest public electronic
marketplace, while being accessible to untrusted users. Attacks can be waged
anonymously and from a safe distance. If the Internet is to provide the plat-
form for commercial transactions, it is vital that sensitive information (like
credit card numbers or cryptographic keys) is stored and transmitted securely.

Problems

Developing secure software systems correctly is difficult and error-prone. Many
flaws and possible sources of misunderstanding have been found in protocol or
system specifications, sometimes years after their publication or use. For ex-
ample, the observations in [Low95] were made 17 years after the well-known
Needham—Schroeder authentication protocol had been published in [NS78].
Many vulnerabilities in deployed security-critical systems have been exploited,
sometimes leading to spectacular attacks. For example, as part of a 1997 ex-
ercise, an NSA hacker team demonstrated how to break into US Department
of Defense computers and the US electric power grid system, among other
things simulating a series of rolling power outages and 911 emergency tele-
phone overloads in Washington, DC, and other cities [Sch99a]. While there
are of course many more recent examples of security breaches, this particular
example also shows that there is more to be concerned about than website
defacements and creditcard misuse.

Computer breaches do significant damage, as a study by the Computer
Security Institute shows: Ninety percent of the respondents detected com-

4 1 Introduction

puter security breaches within the last 12 months. Forty-four percent of them
were willing and able to quantify the damage. These 223 firms reported
$455,848,000 in financial losses [Ric03].

Causes

Firstly, enforcing security requirements is intrinsically subtle, because one has
to take into account the interaction of the system with motivated adversaries
that act independently. Thus security mechanisms, such as security protocols,
are notoriously hard to design correctly, even for experts. Also, a system is
only as secure as its weakest part or aspect.

Secondly, risks are very hard to calculate: security-critical systems are
characterized by the fact that the occurrence of a successful attack at one
point in time on a given system dramatically increases the likelihood that the
attack will be launched subsequently at another system. This problem is made
worse by the existence of the Internet as a mass communication medium that
is currently largely uncontrolled and enables fast and anonymous distribution
of information on successful exploits.

Thirdly, many problems with security-critical systems arise from the fact
that their developers, who employ security mechanisms, do not always have
a strong background in computer security. This is problematic since, in prac-
tice, security is compromised most often not by breaking dedicated mecha-
nisms such as encryption or security protocols, but by exploiting weaknesses
in the way they are being used [And01]: According to A. Shamir, the Israeli
state security apparatus is not hampered in its investigations by the fact that
suspects may use encryption technology that may be virtually impossible to
break. Instead, other weaknesses in overall computer security can be exploited
[Sha99]. As another example, the security of Common Electronic Purse Spec-
ifications (CEPS) [CEPO01] transactions depends on the assumption that it is
not feasible for the attacker to act as a relay between an attacked card and
an attacked terminal. However, this is not explicitly stated, and it is further-
more planned to use the CEPS over the Internet, where an attacker could
easily act as such a relay. This is investigated in Sect. 5.3. As a last example,
[Wal00] attributes the failures in the security of the mobile phone protocol
GSM among other reasons to the failure to acknowledge limitations of the
underlying physical security, such as misplaced trust in terminal identity and
the possibility to create false base stations.

Thus it is not enough to ensure correct functioning of security mechanisms
used. They cannot be “blindly” inserted into a security-critical system, but
the overall system development must take security aspects into account in
a coherent way [SS75]. More specifically, one can say that “those who think
that their problem can be solved by simply applying cryptography don’t un-
derstand cryptography and don’t understand their problem” (R. Needham).
In fact, according to [Sch99a], 85% of Computer Emergency Response Team

1 Introduction 5

(CERT) security advisories [CER] could not have been prevented just by mak-
ing use of cryptography. Thus, given the current state of software security, just
using encryption to protect communication still leaves most weaknesses unre-
solved, and has been compared to using an armored car to deliver credit card
information “from someone living in a cardboard box to someone living on a
park bench” [VM02]. Building trustworthy components does not suffice, since
the interconnections and interactions of components play a significant role in
trustworthiness [Sch99a].

Lastly, while functional requirements are generally analyzed carefully in
systems development, security considerations often arise after the fact. Adding
security as an afterthought, however, often leads to problems [Gas88, And01].
Also, security engineers get little feedback about the secure functioning of
their products in practice, since security violations are often kept secret for
fear of harming a company’s reputation.

It has remained true over the last 30 years since the seminal paper [SS75]
that no coherent and complete methodology to ensure security in the con-
struction of large general-purpose systems exists yet, in spite of very active
research and many useful results addressing particular subgoals [Sch99a], as
well as a large body of security engineering knowledge accumulated [And01].
Such a methodology would allow the computer security engineer to construct
a system in a way similar to how a civil engineer would build a bridge. In
contrast, today ad hoc development leads to many deployed systems that
do not satisfy important security requirements. Thus a sound methodology
supporting secure systems development is needed.

Traditional Approaches

In practice, the traditional strategy for security assurance has been “pene-
trate and patch”: It has been accepted that deployed systems contain vulner-
abilities. Whenever a penetration of the system is noticed and the exploited
weakness can be identified, the vulnerability is removed. Sometimes this is
supported by employing friendly teams trained in penetrating computer sys-
tems, the so-called “tiger teams” [Wei95, McG98].

For many systems, this approach is not ideal: Each penetration using a
new vulnerability may already have caused significant damage, before the
vulnerability can be removed. For systems that offer strong incentives for
attack, such as financial applications, the prospect of being able to exploit a
discovered weakness only once may already be enough motivation to search for
such a weakness. System administrators are often hesitant to apply patches,
especially in critical systems, since applying the patch may disrupt the service
[AndO1]. Having to create and distribute patches costs money and leads to
loss of customer confidence. Patches may contain security threats themselves,
such as the FunLove virus in a Microsoft hotfix distributed in April 2001
[Mic01, The01].

6 1 Introduction

It would thus be preferable to consider security aspects more seriously in
earlier phases of the system life-cycle, before a system is deployed, or even
implemented, because late correction of requirements errors costs up to 200
times as much as early correction [Boe81].

The difficulty of designing security mechanisms correctly has motivated
quite successful research using mathematical concepts and tools to ensure
correct design of small security-critical components such as security proto-
cols, including [MCF87, BAN89, Mea91, Low96, Pau98b, AG99]. The goal is
to establish crucial requirements on the specification level through formaliza-
tion and proof, which may be mechanically assisted or even automated. Note
that it is not possible to actually prove a system secure in an absolute sense:
Proofs can only be performed with respect to models which are necessarily
abstractions from reality. Attackers can always try to go beyond the limita-
tions of a given model to still attempt an attack. Nevertheless, a model-based
security analysis is useful, because certain attacks can be prevented and the
required effort for successful attacks increased. Also, often problems with a
specification are detected just by trying to make it sufficiently precise for
formal analysis [Gol03a].

Unfortunately, due to a perceived high cost in personnel training and use,
formal methods have not yet been employed very widely in industrial develop-
ment [Hoa96, Hei99, KK04]. To increase industry acceptance in the context of
security-critical systems, it would be beneficial to integrate security require-
ments analysis with a standard development method, which should be easy
to learn and to use [CW96]. Also, security concerns must inform every phase
of software development, from requirements engineering to design, implemen-
tation, testing, and deployment [DS00b].

Some other challenges for using sound engineering methods for secure sys-
tems development exist. Currently a large part of effort both in analyzing and
implementing specifications is wasted since these are often formulated impre-
cisely and unintelligibly, if they exist at all [Pau98a]. If increased precision by
use of a particular notation brings an additional advantage, such as automated
tool support for security analysis, this may however be sufficient incentive for
providing it. Since software developers cannot expect to learn a particular for-
mal method to do this, because of limited resources in time and training, one
needs to instead use the artifacts that are at any rate constructed in industrial
software development. Examples include specification models in the Unified
Modeling Language (UML). Also, the boundaries of the specified components
with the rest of the system need to be carefully examined, for example with
respect to implicit assumptions on the system context [Gol00, Aba00]. Lastly,
a more technical issue is that formalized security properties are not always
preserved by refinement, which is the so-called refinement problem [RSGT01].
Since an implementation is necessarily a refinement of its specification, an im-
plementation of a secure specification may, in such a situation, not be secure,
which is clearly undesirable. Also, it hinders the use of stepwise development,
where one starts with an abstract specification and refines it in several steps

1 Introduction 7

to a concrete specification which is implemented, allowing mistakes to be de-
tected early in the development cycle, and thus leading to considerable savings:
Without preservation of security by refinement, developing secure systems in
a stepwise manner requires one to redo the security analysis after each refine-
ment step. Hence, we need formalizations of security requirements that are
indeed preserved under refinement.

Model-Based Security Engineering with UML

Towards a solution of the problems mentioned in the previous sections, we pro-
pose an approach for model-based security engineering using the Unified Mod-
eling Language (UML) [RJB99, UMLO03]. We explain our motivation firstly
for choosing this kind of approach and secondly for using the UML notation.

Generally, in model-based development, as represented in Fig. 1.1, the idea
is to first construct a model of a system, which should be as close to human
intuition as possible and is typically relatively abstract. In a second step, the
implementation is derived from the model: either automatically using code
generation, or manually, in which case one can still generate test sequences
from the model to establish conformance of the code regarding the model.
The goal is to increase the quality of the implemented code while keeping the
implementation cost and the time-to-market bounded.

Requirements

Verify -

Models

Codegeneration - Testgeneration

Code

Fig. 1.1. Model-based development

For security-critical systems, this approach allows one to consider secu-
rity requirements from early of in the development process, within the de-
velopment context, and in a seamless way throught the development cycle.
Using the model-based approach, one can, firstly, establish that the system
fulfills the relevant security requirements on the design level, by analyzing the
model. Secondly, one can check that the code is also secure by generating test
sequences from the model.

8 1 Introduction

UML now offers an, as such probably unprecedented, opportunity as a no-
tation for a high-quality model-based development of security-critical systems
that is feasible in an industrial context:

e As the de facto standard in industrial modeling notations, a large number
of developers are trained in UML, and this number is still growing because
UML is widely taught at universities. Thus, a UML specification may
already be available for security analysis, or less difficult to obtain than
other notations.

e UML provides graphical, intuitive description techniques with multiple
views of a system through different kinds of diagrams. It offers standard
extension mechanisms (such as stereotypes, tags, constraints, and profiles)
which one can use to tailor the notation to a specific application domain.

e Compared to previous notations with a user community of comparable
size, UML is relatively precisely defined, since [UMLO3] defines syntax
and semantics of the UML notation in a relatively high degree of detail,
although not entirely formal.

e A variety of tools exist that provide the basic functionality required to use
UML, such as the drawing of UML diagrams.

Note that although UML was developed to model object-oriented systems,
one may use it just as well to analyze systems that are not object-oriented,
by thinking of objects as components and not making use of object-oriented
features, such as inheritance.

To exploit this opportunity, however, some challenges remain: One needs
to adapt the UML to the application domain of security-critical systems and
advance its correct use in this application domain. One has to develope ad-
vanced tool support for secure systems development with UML, such as au-
tomatic analysis of UML specifications with respect to security requirements.
This requires dealing with conflicts between flexibility and unambiguity in the
meaning of UML models.

This book aims to contribute to overcoming these challenges. More specifi-
cally, it presents the UML extension UMLsec for secure systems development.
The UMLsec extension:

e allows one to evaluate UML specifications for security weaknesses on the
design level,

e encapsulates established rules of prudent security engineering in the con-
text of a widely known notation, and thus makes them available to devel-
opers who may not be security experts,

e allows the developer to consider security requirements from early on in the
system development process, and

e involves little additional overhead, since the UML diagrams can serve as
system documentation, which is always desirable to have, and sometimes
required (for example, for security certifications).

1.1 Overview 9
1.1 Overview

The UMLsec extension

We present an extension of the UML [UMLO03] for secure systems development,
called UMLsec. Recurring security requirements (such as secrecy, integrity,
and authenticity) are offered as specification elements by the UMLsec exten-
sion. The properties are used to evaluate diagrams of various kinds and to
indicate possible vulnerabilities. One can thus verify that the stated security
requirements, if fulfilled, enforce a given security policy. One can also ensure
that the requirements are actually met by the given UML specification of the
system. UMLsec encapsulates knowledge on prudent security engineering and
thereby makes it available to developers who may not be experts in security.

The extension is given in form of a UML profile using the standard UML
extension mechanisms. Stereotypes are used together with tags to formulate se-
curity requirements and assumptions on the system environment. Constraints
give criteria that determine whether the requirements are met by the system
design, by referring to a precise semantics mentioned below.

The extension has been developed based on experiences on the model-
based development of security-critical systems in industrial projects involving
German government agencies and major banks, insurance companies, smart
card and car manufacturers, and other companies. Note that an extension of
UML to an application domain such as security-critical systems that aims to
include requirements from that application domain as stereotypes, as opposed
to just adding specific architectural primitives, can probably never be fully
complete: It would then have to incorporate all existing design knowledge
on security-critical computing systems, which fills countless books. Therefore,
here we focus on providing a core profile that includes the main security
requirements. We expect this to be extended with additional, more specific
concepts (for example, from more specialized application domains such as
mobile security).

We list the requirements on a UML extension for secure systems develop-
ment and discuss how far our extension meets these requirements. We explain
the details of the extension by means of examples, demonstrate how to em-
ploy the extension for enforcing established rules of secure systems design and
show how to use UMLsec to apply security patterns.

Applications

To validate our approach using UMLsec for secure systems development, we
investigate the degree to which it is suitable for enforcing established rules of
prudent security engineering. We consider several case studies:

e We demonstrate stepwise development of a security-critical system with
UMLsec as the example of a secure channel design, together with a math-
ematically precise verification.

10 1 Introduction

e We uncover a flaw in a variant of the handshake protocol of the Internet
protocol TLS proposed in [APS99], suggest a correction, and verify the
corrected protocol.

e We apply UMLsec to a security analysis of CEPS, a candidate for a glob-
ally interoperable electronic purse standard. We discover flaws in the two
central parts of the specifications (the purchase and the load protocol),
propose corrections, and give a verification of the corrected versions.

e We show how to use UMLsec to correctly employ advanced Java 2 security
concepts such as guarding objects in a way that allows formal verification
of the specifications.

e We also report on a project with a major German bank, where we applied
our ideas about model-based development of security-critical systems to a
web-based banking application.

There are further applications in industrial development projects which be-
cause of space limitations can only shortly be mentioned.

Tool Support

For the ideas that we present in this book to be of benefit in practice, it is
important to have advanced tool support to assist in using them. We present
the necessary background to construct such tool support, as well as the tool
suite that has been developed [JSAT04]. The developed tools can be used to
check the constraints associated with UMLsec stereotypes mechanically, based
on XMI output of the diagrams from the UML drawing tool in use, and using
sophisticated analysis engines that as model-checkers and automated theorem
provers. For this, the developer creates a model using a UML drawing tool
capable of XMI export and stores it as an XMI file. The file is imported by the
UMLsec analysis tool (for example, through its web interface) which analyses
the UMLsec model with respect to the security requirements that are included.
The results of the analysis are given back to the developer, together with a
modified UML model, where the weaknesses that were found are highlighted.

We also explain a framework for implementing verification routines for the
constraints associated with the UMLsec stereotypes. The goal is that advanced
users of the UMLsec approach should be able to use this framework to im-
plement verification routines for the constraints of self-defined stereotypes. In
particular, the framework includes the UMLsec tool web interface, so that new
routines are also accessible over this interface. The idea behind the framework
is to provide a common programming framework for the developers of differ-
ent verification modules. A tool developer should be able to concentrate on
the implementation of the verification logic and not be required to implement
the user interface.

Furthermore, we present research on linking the UMLsec approach with
the automated analysis of security-critical data arising at runtime. Specifically,
we present research on the construction of a tool which automatically checks

1.1 Overview 11

the SAP R/3 configuration for security policy rules, such as separation of duty.
The permissions are given as input in an XML format through an interface
from the SAP R/3 system, the rules are formulated as UML specifications
in a standard UML CASE tool and output as XMI, as part of the UMLsec
framework mentioned above. The tool then checks the permissions against the
rules using an analyzer written in Prolog. Because of its modular architecture
and its standardized interfaces, the tool can be adapted to check security
constraints in other kinds of application software, such as firewalls or other
access control configurations.

As noted, for example, in [Fow04], the ultimate benefit in software devel-
opment is not “pretty pictures”, but the running implementation of a system.
We present some approaches for linking UML models to implementations,
such as model-based testing. The aim is to ensure that the benefits gained
from the model-based approach on the level of the system model, such as in-
creased confidence in satisfaction of critical requirements, actually carry over
to the implemented systerm.

To provide tool support for analyzing UMLsec models with respect to the
security properties included as predefined constraints, tool developers need to
formulate the properties in a mathematically precise way. This is only possi-
ble if the UML specification they refer to also has a mathematically precise
meaning. In particular, this concerns the behavioral aspects, since many se-
curity requirements refer to the system behavior. For this goal, we provide a
precise execution semantics for a simplified part of UML using so-called UML
Machines. These are based on Abstract State Machines which give a mathe-
matically rigorous yet rather flexible framework for modeling computing sys-
tems [Gur95]. UML Machine Systems allow us then to build up UML Machine
specifications in a modular way and to treat external influences on the system
beyond the planned interaction, such as attacks on insecure communication
links. This allows a rather natural modeling of potential adversary behavior
and to define different kinds of adversary strengths. On this basis, important
security requirements such as secrecy, integrity, authenticity, and secure infor-
mation flow are defined. To support stepwise development, we show secrecy,
integrity, authenticity, and secure information flow to be preserved under re-
finement. Because of the modular way UML Machines are defined, they give
a formal framework for formally analyzing security-critical systems in their
own right, independently of the UML notation.

Based on this, we provide a precise semantics for a simplified core of UML
that allows one to use a more focussed kind of UML subsystems to group
together several diagrams. The precise semantics for a restricted version of
subsystems incorporates the precise semantics of the diagrams contained in
a subsystem in a way that allows them to interact by exchanging messages.
The statechart semantics which is part of it is based on part of the state-
chart semantics from [BCR00]. The motivation is to concentrate on a core of
UML for which it is feasible to construct and use advanced tool support. The
UMLsec case studies mentioned above demonstrate that our choice of a subset

12 1 Introduction

of UML is useful. We also consider some helpful concepts, such as consistency
between diagrams, different kinds of refinement of and equivalence between
UML specifications, and the use of rely-guarantee specifications.

Via UML Machines and UML Machine Systems we make use of the pre-
sented treatment of security-critical systems. In particular, UML specifications
can be evaluated using the attacker model, which incorporates the possible
attacker behaviors, to find vulnerabilities.

1.2 Outline

Here is an outline of the following chapters:

Chapter 2: For a short “walk-through” to highlight the UMLsec approach,
we consider a simplified model of an Internet-based business application
as a running example.

Chapter 3: Some background information is recalled that is needed in the
remainder of the book.

Chapter 4: After discussing requirements on a UML extension for secure sys-
tems development, we present the UMLsec profile. We show how to for-
mulate security requirements on a system and security assumptions on the
underlying layer in UMLsec. It is explained how to evaluate the system
specification against the security requirements, by referring to the precise
semantics sketched in Chap. 3. We demonstrate how to employ the exten-
sion for enforcing established rules of secure systems design and how to
use UMLsec in order to apply security patterns.

Chapter 5: At the example of a secure channel design, we demonstrate step-
wise development of a security-critical system with UMLsec. We uncover
a flaw in a variant of the handshake protocol of the Internet protocol
TLS proposed in [APS99], suggest a correction, and verify the corrected
protocol. Furthermore, we use UMLsec for a security analysis of CEPS, a
candidate for a globally interoperable electronic purse standard. We dis-
cover three flaws in the two central parts of the specifications, propose
corrections, and give a verification. We show how to use UMLsec to cor-
rectly employ advanced Java 2 security concepts such as guarded objects.

Chapter 6: The necessary background for developing tool support for UMLsec
is explained. We present a tool which automatically checks a UMLsec
model with respect to the security requirements associated with the
UMLsec stereotypes, based on XML output of industrial UML draw-
ing tools. A framework is presented which allows advanced users to con-
veniently include verification routines for the constraints of self-defined
stereotypes. As an instance of this framework, we present a tool which
links the UMLsec approach with the automated analysis of security-
critical data arising at runtime, such as permissions in SAP R/3 systems.
We explain approaches for linking UML models to implementations, such
as model-based testing.

1.3 How to Use this Book 13

Chapter 7: We introduce UML Machines and UML Machine Systems and
define notions of refinement and rely-guarantee specifications. We explain
how we use UML Machines to specify security-critical systems. In par-
ticular, we give definitions for secrecy, integrity, authenticity, and secure
information flow, and give equivalent internal characterizations to simplify
verification. We show secrecy, integrity, authenticity, and secure informa-
tion flow to be preserved under refinement.

Chapter 8: We use UML Machines and UML Machine Systems to give a pre-
cise semantics for a simplified part of UML. This semantics is used to give
consistency conditions for different diagrams in a UML specification. Also,
we define notions of refinement and behavioral equivalence, and investigate
structural properties, such as substitutivity. We consider rely-guarantee
properties for UML specifications and their structural properties.

Chapter 9: An account of other approaches to security engineering with a
similarly sound basis is given.

Chapter 10: We conclude with a critical evaluation of the approach we pre-
sented and an outlook on future developments.

Appendices: We explain how to adjust our approach to the upcoming version
UML 2.0, give the formal definition of UML Machine rules and the proofs
for the statements from Chaps. 5, 7, and 8.

1.3 How to Use this Book

Being the first book on the topic of secure systems development with UML,
this book was written with two audiences in mind:

e researchers and graduate students interested in UML, computer-aided soft-
ware engineering or formal methods, and IT security, who may use the
book as background reading for their own research in using UML for crit-
ical systems development, or in building advanced tool support for UML

e advanced software developing professionals as the intended users of the
approach proposed in this book.

Some basic knowledge in computer security and UML would be helpful. This
knowledge is recalled in Sections 3.1 and 3.2, and pointers to background
reading are given.

For the benefit of the second group, we deferred the material on the se-
mantics of UML to the end of the book in Chaps. 7 and 8. These can then
be left out by people who are not interested in constructing advanced tool
support for UML by themselves. The information in Sect. 3.3 about the used
semantics of UML is sufficient to understand the remaining chapters.

Note that the UML extension proposed in this book aims to offer assistance
also to developers who are not security experts, for example, by enabling them
to use security mechanisms in a secure way. Nevertheless, parts of the book

14 1 Introduction

are concerned with advanced applications, such as cryptoprotocol analysis,
for which some background knowledge in security would be helpful.

The material in this book has been used extensively for teaching students,
as well as researchers and software developers. For example, full-day tutorials
for practitioners have been delivered based on the material in Chaps. 3 and 4
and Sects. 6.2 and 6.4. For a two-day course, one can also include Chap. 5. A
Masters-level student course could also cover Chaps. 7 and 8.

Additional material is given on a website [Jiir04] associated with this book
which is continuously being updated. It includes the following material:

e Slides and audio recordings from the tutorials and courses based on this
book.

o Other learning and teaching material, including exercises and answers.

e A web interface for a tool which analyzes UMLsec models for security
requirements. These models can be written using an industrial UML mod-
eling tool and uploaded over the Internet.

2

Walk-through: Using UML for Security

For a quick impression of what this book is about, we give a short “walk-
through” through a small part of the UMLsec notation to highlight the
UMLsec approach, considering a simplified model of an Internet-based busi-
ness application as a running example. For readers who find themselves lack-
ing background on computer security and on the Unified Modeling Language
(UML), it is briefly recalled in Chap. 3. The UMLsec extension is then defined
and explained in more detail in Chap. 4, as well as the examples shown in this
chapter.

A central idea of the UMLsec extension is to define labels for UML
model elements, the so-called stereotypes, which, when attached, add security-
relevant information to these model elements. This security-relevant informa-
tion can be of the following kinds:

e Security assumptions on the physical level of the system, such as the
«Internet » stereotype shown below.

e Security requirements on the logical structure of the system (such as the
«secrecy » stereotype) or on specific data values (such as the «critical»
stereotype).

e Security policies that system parts are supposed to obey, such as the
«fair exchange», «secure links», « data security », or « no down — flow » ste-
reotypes.

In the first two cases, the stereotypes simply add some additional information
to a model. They can be attached to any diagram of the relevant kind. In
the third case, there are constraints associated with a stereotype that have
to be fulfilled by a diagram so that it can justifiably carry the stereotype.
If such a stereotype is attached to a diagram which does not meet this con-
straints, this results in an incorrect model, as in the case of the « secure links »,
« data security », and « no down — flow» stereotypes below. This prompts the
tool support available for UMLsec [JSAT04], described in Chap. 6, to au-
tomatically point out the mistake, which should then be corrected by the
developer.

16 2 Walk-through: Using UML for Security

2.1 Security Requirements Capture with Use Case
Diagrams

Use case diagrams are commonly used to describe typical interactions between
a user and a computer system in requirements elicitation. They may also be
used to capture security requirements.

To start with our example, Fig. 2.1 shows a use case diagram describing the
following situation: a customer buys a good from a business. The trade should
be performed in a way that prevents both parties from cheating. We include
this requirement in the diagram by adding a stereotype «fair exchange» to
the subsystem containing the use case diagram. A more detailed explanation
of what the requirement represented by this stereotype means in this specific
situation, and of the activities associated with the use cases, is given in the
following subsection.

«fair exchange» 1

Sales application

buys good
sells good

Customer Business

Fig. 2.1. Use case diagram for business application

2.2 Secure Business Processes with Activity Diagrams

Activity diagrams can be used to model workflow and to explain use cases in
more detail. Similarly, they can be used to make security requirements more
precise.

Following our example, Fig. 2.2 explains the use case in more detail by
giving the business process realizing the above two use cases. The requirement
«fair exchange » is now formulated by referring to the activities in the diagram.
Intuitively, the actions listed in the tags {start} and {stop} should be linked
in the sense that if one of the former is executed then eventually one of the
latter will be. This property can be checked automatically.

This would entail that, once the customer has paid, either the order is
delivered to the customer by the due date, or the customer is able to reclaim
the payment on that date.

2.3 Physical Security Using Deployment Diagrams

2.3 Physical Security Using Deployment Diagrams

Purchase

«fair exchange» FL\
{start={Pay}} {stop={Reclaim,Pick up}}

Customer

Request good

Wait until
delivery due

O

)
Reclaim

undelivered delivered

Business

Deliver

\

O

Fig. 2.2. Purchase activity diagram

17

Deployment diagrams are used to describe the physical layer of a system. We
use them to check whether the security requirements on the logical level of
the system are enforced by the level of physical security, or whether additional
security mechanisms (such as encryption) have to be employed.

Continuing with our example, the business application is part of an e-
commerce system, which is supposed to be realized as a web application. The
payment transaction involves transmission of data to be kept secret (such as
credit card numbers) over Internet links. This information on the physical
layer and the security requirement is reflected in the UML model in Fig. 2.3.

remote access

«secure links»
{adversary=default}

client machine

browser

.l «secrecy»
get_password
client apps «call» e
«Internet»

server machine

web server

access control

Fig. 2.3. Example secure links usage

18 2 Walk-through: Using UML for Security

We then use the stereotype «secure links» to express the demand that secu-
rity requirements on the communication are met by the physical layer. More
precisely, for each dependency stereotyped « secrecy » between subsystems or
classes on different nodes n,m, and any communication link between n and
m with some stereotype s, the threat scenario arising from the stereotype s
with regard to an adversary of a given strength should not violate the secrecy
requirement on the communicated data. This constraint will be defined more
precisely and explained in detail in Chap. 4. For now we only note that in the
given diagram, this constraint associated with the stereotype «secure links»
is already violated when considering standard adversaries, because plain In-
ternet connections can be eavesdropped easily, and thus the data that is com-
municated does not remain secret. For this adversary type, the stereotype
«secure links» is thus applied wrongly to the subsystem, which is pointed out
automatically by the UMLsec tool presented in Chap. 6.

2.4 Security-Critical Interaction with Sequence
Diagrams

Sequence diagrams are used to specify interaction between different parts of
a system. Using UMLsec stereotypes, we can extend them with information
giving the security requirements relevant to that interaction. For example,
this enables one to see whether cryptographic session keys exchanged in a key
exchange protocol remain confidential from possible adversaries.

With regard to our example, based on the security analysis in the previous
subsection we decide to create a secure channel for the sensitive data that
has to be sent over the untrusted networks, by making use of encryption. As
usual, we first exchange symmetric session keys for this purpose. Let us assume
that, for technical reasons, we decide not to use a standard and well-examined
protocol such as SSL but instead a customized key exchange protocol such as
the simplified one in Fig. 2.4. The goal is to exchange a secret session key K,
using public keys K¢ and Ks, which is then used to encrypt the secret data s
before transmission. Here {M} is the encryption of the message M with the
key K, Signg(M) is the signature of the message M with K, and :: denotes
concatenation. A detailed explanation of the figure and the protocol can be
found in Sect. 5.2.

Note that the UMLsec model of the protocol given in Fig. 2.4 is similar
to the traditional informal notation, for example, used in [NS78]. In that
notation, the protocol would be written as follows:

C — SN, KC;Sigan—l(C = Kc)
S—C: {SignKs—l(kj o Ni)}Kc,Sigan—;(S b Ks)
C—>S: {Si}kj-

2.4 Security-Critical Interaction with Sequence Diagrams 19

Secure channe| ~ «datasecurity» L

C:Client «critical» S:Server «critical»
{ﬁeCfec}’:{syKEI}} {f"leSh:{_N}} {secrecy={Ks ' K}} {fresh={K}}
{integrity={s,N,Kc,Kc " Kca,i}} oo | {integrity={Ks,Ks " Kca,K,j}}
{authenticity=(k,S)} «send»

j:Data; K ,Kil,K ,K:Keys
S,S,N,i:Data;Kc,KEl,KCA:Keys J Syfvg INCA Yy

<. «send>» init(n:Data,k:Key,cert:Exp)

resp(shrd:Exp,cert:Exp) | xchd(mstr-Exp)

C:Client S:Server

init(N, Kc, Sign,—1(C :: Kc))
C

resp({Siganl(K =N Ke) bke,
SignKC_Al(S i Ks))

xchd({s}k)

Fig. 2.4. Key exchange protocol

We argue in Sect. 5.2 that the traditional notation needs to be interpreted
with care and that the UMLsec notation can be seen to be more precise and
to lead over more easily to an implementation.

One can now again use stereotypes to include important security require-
ments on the data that is involved. Here, the stereotype « critical » labels classes
containing sensitive data and has the associated tags {secrecy}, {integrity},
{authenticity}, and {fresh} to denote the respective security requirements on
the data. The constraint associated with « data security » then requires that
these requirements are met with respect to the given adversary model. We
assume that the standard adversary is not able to break the encryption used
in the protocol, but can exploit any design flaws that may exist in the pro-
tocol, for example by attempting so-called “man-in-the-middle” attacks. This
is made precise for a generic adversary model in Sect. 3.3.4. Technically, the
constraint then enforces that there are no successful attacks of that kind. Note
that it is highly non-trivial to see whether the constraint holds for a given pro-
tocol. However, using well-established concepts from formal methods applied
to computer security in the context of UMLsec, it is possible to verify this
automatically.

20 2 Walk-through: Using UML for Security

2.5 Secure States Using Statechart Diagrams

Statechart diagrams, showing the changes in state throughout an object’s
life, can be used to specify security requirements on the resulting sequences
of states and the interaction with the object’s environment.

As the last station in our quick walk-through, we now assume that for
privacy reasons, it should remain secret how much money a customer spends
at the website. We thus consider the simplified specification of the customer
account object in Fig. 2.5. The object has a secret attribute money containing
the amount of money spent so far by a given customer. It can be read using
the operation rm() whose return value is also secret, and increased by placing
an order using the operation wm(x). If the object is in the state ExtraService
since the amount of money spent already is over 1000, there is special func-
tionality offered at the website providing the customer with complimentary
extra services. There is an associated operation rx() to check whether this
functionality should be provided. In the specification shown in Fig. 2.5, this
operation is not assumed to be secret.

Now we use the stereotype «no down-flow» to indicate that the object
should not leak out any information about secret data, such as the money at-
tribute. Unfortunately, the given specification violates this requirement, since
partial information about the input of the secret operation wm() is leaked out
via the return value of the non-secret operation rx(). Thus the model carries
the stereotype illegitimately. Again this can be detected automatically, and it
is another example for a constraint which is infeasible to verify without tool
support, for specifications of the size arising in practice.

Customer account ~ «Nno down—flow» L,

rm(): Data rm()/return(money) rm()/return(money)
wm(x: Data)
rx(): Boolean

rx()/return(false)
Account «critical» R wm(x)

[money>=1000]

{high={wm,rm,money}}

NoExtraService

[money<1000]
wm(x)

-—@

/money:=
/money:=0

money: Integer money+x

rm(): Data
wm(x: Data)
rx(): Boolean

/money:=
money+x

Fig. 2.5. Customer account data object

2 Springer
http://www.springer.com/978-3-540-00701-2
Secure Systems Development with LIML
Jurjens, J.

2005, XX, 316 p. 79 illus., Hardcover
ISBEN: 278-3-540-00701-2

