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Integration of Transcendental Functions

Having developped the required machinery in the previous chapters, we can
now describe the integration algorithm. In this chapter, we define formally
the integration problem in an algebraic setting, prove the main theorem of
symbolic integration (Liouville’s Theorem), and describe the main part of the
integration algorithm.

From now on, and without further mention, all the fields in this book are
of characteristic 0. We also use the convention throughout that deg(0) = −∞.

5.1 Elementary and Liouvillian Extensions

We give in this section precise definitions of elementary functions, and of the
problem of integrating functions in finite terms. Throughout this section, let
k be a differential field and K a differential extension of k.

Definition 5.1.1. t ∈ K is a primitive over k if Dt ∈ k. t ∈ K∗ is an
hyperexponential over k if Dt/t ∈ k. t ∈ K is Liouvillian over k if t is either
algebraic, or a primitive or an hyperexponential over k. K is a Liouvillian
extension of k if there are t1, . . . , tn in K such that K = k(t1, . . . , tn) and ti
is Liouvillian over k(t1, . . . , ti−1) for i in {1, . . . , n}.

We write t =
∫

a when t is a primitive over k such that Dt = a, and
t = e

∫
a when t is an hyperexponential over k such that Dt/t = a. Given that

t is Liouvillian over k, we need to know whether t is algebraic or transcendental
over k. We show that there are simple necessary and sufficient conditions that
guarantee that a primitive or hyperexponential is in fact a monomial over k.

Lemma 5.1.1. If t is a primitive over k and Dt is not the derivative of an
element of k, then Dt is not the derivative of an element of any algebraic
extension of k.
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Proof. Let t be a primitive over k, a = Dt, and suppose that a is not the
derivative of an element of k. Let E be any algebraic extension of k, and
suppose that Dα = a for some α ∈ E. Let Tr be the trace map from k(α) to
k, n = [k(α) : k], and b = Tr(α)/n ∈ k. By Theorem 3.2.4,

Db =
1
n

D(Tr(α)) =
1
n

Tr(Dα) =
1
n

Tr(a) = a

in contradiction with Du 6= a for any u ∈ k. ut

Theorem 5.1.1. If t is a primitive over k and Dt is not the derivative of an
element of k, then t is a monomial over k, Const(k(t)) = Const(k), and S = k
(i.e. S irr = S irr

1 = ∅). Conversely, if t is transcendental and primitive over k,
and Const(k(t)) = Const(k), then Dt is not the derivative of an element of k.

Proof. Let t be a primitive over k, a = Dt, k be the algebraic closure of k,
and suppose that a is not the derivative of an element of k. Then, Dα 6= a
for any α ∈ k by Lemma 5.1.1, so t must be transcendental over k, hence it
is a monomial over k. Suppose that p ∈ S \ k. Let then β ∈ k be a root of
p. Then, Dβ = Dt = a by Theorem 3.4.3, in contradiction with Dα 6= a for
any α ∈ k, so p ∈ k. Conversely, k ⊆ S by definition. Let c ∈ Const(k(t)).
By Lemma 3.4.5, both the numerator and denominator of c must be special,
hence in k, so c ∈ k, which implies that Const(k(t)) ⊆ Const(k). The reverse
inclusion is given by Lemma 3.3.1, so Const(k(t)) = Const(k).

Conversely, let t be a transcendental primitive over k and suppose that
Const(k(t)) = Const(k). If there exists b ∈ k such that Dt = Db, then c =
t − b ∈ Const(k(t)), so c ∈ k in contradiction with t transcendental over k.
Hence Dt is not the derivative of an element in k. ut

Theorem 5.1.2. If t is an hyperexponential over k and Dt/t is not a loga-
rithmic derivative of a k-radical, then t is a monomial over k, Const(k(t)) =
Const(k), and S irr = S irr

1 = {t}. Conversely, if t is transcendental and hyper-
exponential over k, and Const(k(t)) = Const(k), then Dt/t is not a logarith-
mic derivative of a k-radical.

Proof. Let t be an hyperexponential over k, a = Dt/t, k be the algebraic
closure of k, and suppose that a is not a logarithmic derivative of a k-radical.
We have Dt/t = a and a is not a logarithmic derivative of a k-radical by
Lemma 3.4.8, so t must be transcendental over k, hence it is a monomial over
k since Dt = at.

Let p = btm for b ∈ k and m ≥ 0. Then, Dp = (Db + mab)tm, so p | Dp,
which means that p ∈ S. Let now p ∈ S irr and suppose that p has a nonzero
root β ∈ k

∗
. Then, Dβ/β = Dt/t = a by Theorem 3.4.3, in contradiction with

Dα/α 6= a for any α ∈ k
∗
. Hence the only root of p in k is 0, so p = t.

We have S irr
1 ⊆ S irr by definition. Conversely, let p ∈ S irr. Then p = t,

so the only root of p in k is β = 0. We have pβ = p0 = Dt/t = a, which
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is not a logarithmic derivative of a k-radical, so p ∈ S irr
1 , which implies that

S irr
1 = S irr.

Let c ∈ Const(k(t)). By Lemma 3.4.5, both the numerator and denomina-
tor of c must be special, hence c = btq for b ∈ k and q ∈ Z. Suppose that b 6= 0
and q 6= 0. Then, 0 = Dc = (Db + qab)tq, so Db/b = qa, which implies that a
is a logarithmic derivative of a k-radical, in contradiction with our hypothesis.
Hence, b = 0 or q = 0, so c ∈ k, which implies that Const(k(t)) ⊆ Const(k).
The reverse inclusion is given by Lemma 3.3.1, so Const(k(t)) = Const(k).

Conversely, let t be a transcendental hyperexponential over k and suppose
that Const(k(t)) = Const(k). If there exist b ∈ k∗ and an integer n 6= 0 such
that nDt/t = Db/b, then c = tn/b ∈ Const(k(t)), so c ∈ k in contradiction
with t transcendental over k. Hence Dt/t is not a logarithmic derivative of a
k-radical. ut

In practice, we only consider primitives and hyperexponentials that sat-
isfy the hypotheses of Theorems 5.1.1 or 5.1.2. As we have seen, such prim-
itives and hyperexponentials are monomials that satisfy the extra condition
Const(k(t)) = Const(k). Those monomials are traditionally called Liouvillian
monomials in the literature.

Definition 5.1.2. t ∈ K is a Liouvillian monomial over k if t is transcenden-
tal and Liouvillian over k and Const(k(t)) = Const(k).

One should be careful that our definition of monomial in Chap. 3 does not
require Const(k(t)) = Const(k), so it is possible for a monomial in the sense
of Chap. 3 to be Liouvillian over k and yet not a Liouvillian monomial in
the sense of Definition 5.1.2 (for example log(2) over Q). Theorems 5.1.1
and 5.1.2 can be seen as necessary and sufficient conditions for a primitive or
hyperexponential to be a Liouvillian monomial. Furthermore, those theorems
describe all the special polynomials in such extensions, and they are all of the
first kind. We also have:

k〈t〉 =
{

k[t], if Dt ∈ k,
k[t, t−1], if Dt/t ∈ k.

(5.1)

The fact that k and k(t) have the same field of constants allows us to refine
the relationship between the degree of a polynomial and its derivative in a
Liouvillian monomial extension, and to strenghten Theorem 4.4.4.

Lemma 5.1.2. Let t be a Liouvillian monomial over k, f ∈ k(t) be such that
Df 6= 0, and write f = p/q where p, q ∈ k[t] and q is monic. If ν∞(f) = 0,
then ν∞(Df) ≥ 0. Otherwise, ν∞(f) 6= 0 and

ν∞(Df) =
{

ν∞(f), if Dt/t ∈ k or D(lc(p)) 6= 0 ,
ν∞(f) + 1, if Dt ∈ k and D(lc(p)) = 0 .

Proof. If ν∞(f) = 0, then ν∞(Df) ≥ 0 by Theorem 4.4.4, so suppose from
now on that ν∞(f) 6= 0. Then, n−m 6= 0 where n = deg(p) and m = deg(q).
We have
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Df =
qDp− pDq

q2

hence ν∞(Df) = 2m − deg(qDp − pDq), so we need to compute deg(qDp −
pDq). Write p = btn + r and q = tm + s where b ∈ k∗ and r, s ∈ k[t] satisfy
deg(r) < n and deg(s) < m. We treat the primitive and hyperexponential
cases separately.
Primitive case: Suppose that Dt = a ∈ k. Then,

Dp = (Db)tn + nabtn−1 + Dr (5.2)

and
Dq = matm−1 + Ds

so deg(Dq) < m since deg(Ds) < m by Lemma 3.4.2.
Suppose first that Db 6= 0. Then, deg(Dp) = n since deg(Dr) < n by
Lemma 3.4.2, so deg(qDp) = m + n and deg(pDq) < m + n, which implies
that deg(qDp− pDq) = m + n, hence that

ν∞(Df) = 2m− (m + n) = m− n = ν∞(f) .

Suppose now that Db = 0, and write r = ctn−1 + u and s = dtm−1 + v, where
c, d ∈ k and u, v ∈ k[t] satisfy deg(u) < n− 1 and deg(v) < m− 1. We have

qDp− pDq = (Dc + nab)tn+m−1 + (n− 1)actn+m−2 + tmDu

+(dtm−1 + v)Dp− b(Dd + ma)tn+m−1

−(m− 1)abdtn+m−2 − btnDv − (ctn−1 + u)Dq

= (Dc− bDd + (n−m)ab) tn+m−1

+((n− 1)c− (m− 1)bd) atn+m−2

+(dtm−1 + v)Dp + tmDu− btnDv − (ctn−1 + u)Dq .

Since n−m 6= 0 and b 6= 0, c−bd+(n−m)bt /∈ k, so D (c− bd + (n−m)bt) 6= 0
since Const(k(t)) = Const(k). But

D (c− bd + (n−m)bt) = Dc− bDd + (n−m)ab

since b ∈ Const(k), hence Dc − bDd + (n −m)ab 6= 0. In addition, (5.2) and
Db = 0 imply that deg(Dp) < n, and Lemma 3.4.2 imply that deg(Du) < n−1
and deg(Dv) < m−1. Hence, (dtm−1+v)Dp, tmDu, btnDv and (ctn−1+u)Dq
all have degrees strictly smaller than n+m−1, which implies that deg(qDp−
pDq) = n + m − 1, hence that ν∞(Df) = 2m − (n + m − 1) = m − n + 1 =
ν∞(f) + 1.
Hyperexponential case: Suppose that Dt/t = a ∈ k. Then,

qDp− pDq =(Db + nab)tn+m + tmDr + sDp− bmatn+m − btnDs− rDq

= (Db + (n−m)ab) tn+m + (sDp− rDq + tmDr − btnDs) .
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Since n−m 6= 0 and b 6= 0, btn−m /∈ k, so D (btn−m) 6= 0 since Const(k(t)) =
Const(k). But D (btn−m) = (Db + (n−m)ab) tn−m, so Db + (n −m)ab 6= 0.
In addition, deg(Dp) ≤ n, deg(Dq) ≤ m, deg(Dr) < n and deg(Ds) < m
by Lemma 3.4.2, so sDp, rDq, tmDr and btnDs all have degrees strictly
smaller than n + m, which implies that deg(qDp− pDq) = n + m, hence that
ν∞(Df) = 2m− (n + m) = m− n = ν∞(f). ut

Note that when applied to polynomials p ∈ k[t] when t is a Liouvillian
monomial over k, Lemma 5.1.2 implies that

deg(Dp) =
{

deg(p), if Dt/t ∈ k or D(lc(p)) 6= 0 ,
deg(p)− 1, if Dt ∈ k and D(lc(p)) = 0

whenever Dp 6= 0, and we often use it in this context in the sequel.

We now introduce the particular Liouvillian extensions that define the
integration in finite terms problem, namely the elementary extensions.

Definition 5.1.3. t ∈ K is a logarithm over k if Dt = Db/b for some b ∈ k∗.
t ∈ K∗ is an exponential over k if Dt/t = Db for some b ∈ k. t ∈ K is
elementary over k if t is either algebraic, or a logarithm or an exponential
over k. t ∈ K is an elementary monomial over k if t is transcendental and
elementary over k, and Const(k(t)) = Const(k).

We write t = log(b) when t is a logarithm over k such that Dt = Db/b, and
t = eb when t is an exponential over k such that Dt/t = b. Since logarithms
are primitives and exponentials are hyperexponentials, elementary monomials
are Liouvillian monomials and all the results of this section apply to them.

Definition 5.1.4. K is an elementary extension of k if there are t1, . . . , tn in
K such that K = k(t1, . . . , tn) and ti is elementary over k(t1, . . . , ti−1) for i in
{1, . . . , n}. We say that f ∈ k has an elementary integral over k if there exists
an elementary extension E of k and g ∈ E such that Dg = f . An elementary
function is any element of any elementary extension of (C(x), d/dx).

We can now define precisely the problem of integration in closed form: given
a differential field k and an integrand f ∈ k, to decide in a finite number of
steps whether f has an elementary integral over k, and to compute one if it
has any. Note that there is a difference between having an elementary integral
over k and having an elementary antiderivative: consider k = C(x, t1, t2) where
x, t1, t2 are indeterminates over C, with the derivation D given by Dx = 1,
Dt1 = t1 and Dt2 = t1/x (i.e. t1 = ex and t2 = Ei(x)). Then,∫

exEi(x)
x

dx =
Ei(x)2

2
∈ k

so exEi(x)/x has an elementary integral over k even though its integral is not
an elementary function. The two notions coincide only when k itself is a field
of elementary functions.
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Remark that the elementary functions of Definition 5.1.4 include all the
usual elementary functions of analysis, since the trigonometric functions
and their inverses can be rewritten in terms of complex exponential and
logarithms by the usual formulas derived from Euler’s formula ef

√
−1 =

cos(f) + sin(f)
√
−1. Those transformations have the computational incon-

venience that they introduce
√
−1, and it turns out that they can be avoided

when integrating real trigonometric functions (Sections 5.8 and 5.10).

5.2 Outline and Scope of the Integration Algorithm

We outline in this section the integration algorithm so that the structure of the
remaining sections and chapters will be easier to follow. Given an integrand
f(x)dx, we first need to construct a differential field containing f , and the
integration algorithm we describe requires that f be contained in a differential
field of the form K = C(t1, t2, . . . , tn) where C = Const(K), Dt1 = 1 (i.e. t1 =
x is the integration variable), and each ti is a monomial over C(t1, . . . , ti−1).
If the formula for f(x) contains only Liouvillian operations, this requirement
can be checked by integrating recursively the argument of each primitive or
hyperexponential before adjoining it1, and verifying using Theorem 5.1.1 or
Theorem 5.1.2 that it is a Liouvillian monomial. Another alternative, which
is in general more efficient, is to apply the algorithms that are derived from
the various structure theorems, whenever they are applicable (Chap. 9).

Example 5.2.1. Consider∫
log(x) log(x + 1) log(2x2 + 2x)dx .

We construct the differential field K = Q(x, t1, t2, t3) with

Dx = 1, Dt1 =
1
x

, Dt2 =
1

x + 1
and Dt3 =

2x + 1
x2 + x

.

As we construct K, we integrate at each step and make the following verifi-
cations:

•
∫

dx /∈ Q, so x is a Liouvillian monomial over Q;
•
∫

dx/x /∈ Q(x), so t1 is a Liouvillian monomial over Q(x);
•
∫

dx/(x + 1) /∈ Q(x, t1) so t2 is a Liouvillian monomial over Q(x, t1);
• ∫

2x + 1
x2 + x

dx = t1 + t2 ∈ Q(x, t1, t2)

so t3 is not a Liouvillian monomial over Q(x, t1, t2), and K is isomorphic
as a differential field to Q(c)(x, t1, t2) where c = t3 − t1 − t2 ∈ Const(K).
1A simpler version of the integration algorithm can be used for those verifications,

see Sect. 5.12
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• Alternatively, applying the Risch structure Theorem (Corollary 9.3.1), we
find that the linear equation (9.8) for a = 2x2 + 2x becomes

r1

x
+

r + 2
x + 1

=
2x + 1
x2 + x

which has the rational solution r1 = r2 = 1. This implies that Dt3 is the
derivative of an element of K and that c = t3 − t1 − t2 ∈ Const(K).

Example 5.2.2. Consider ∫ (
e2x + ex+log(x)/2

)
dx .

We construct the differential field K = Q(x, t1, t2, t3) with

Dx = 1, Dt1 = 2t1, Dt2 =
1
x

and Dt3 =
(

1 +
1
2x

)
t3 .

As we construct K we integrate at each step and make the following verifica-
tions:

•
∫

dx /∈ Q, so x is a Liouvillian monomial over Q;
•
∫

2dx 6= log(v)/n for any v ∈ Q(x) and n ∈ Z, so 2 is not the logarithmic
derivative of a Q(x)-radical, which implies that t1 is a Liouvillian monomial
over Q(x);

•
∫

dx/x /∈ Q(x, t1), so t2 is a Liouvillian monomial over Q(x, t1);
• ∫ (

1 +
1
2x

)
dx =

1
2

log(xt1)

so 1 + 1/(2x) is the logarithmic derivative of a Q(x, t1, t2)-radical, so t3
is not a Liouvillian monomial over Q(x, t1, t2), and K is isomorphic as a
differential field to Q

(
x, t1, t2,

√
xt1
)
.

• Alternatively, applying the Risch structure Theorem (Corollary 9.3.1), we
find that the linear equation (9.9) for b = x + t2/2 becomes

r2

x
+ 2r1 = 1 +

1
2x

which has the rational solution r1 = r2 = 1/2. This implies that Dt3/t3
is the logarithmic derivative of a K-radical, and that c = t23/(xt1) ∈
Const(K).

Note that the requirement that each ti be a monomial eliminates expres-
sions containing algebraic functions from the algorithm presented here. Al-
though the problem of integrating elementary functions containing algebraic
functions is also decidable, the algorithms used in the algebraic function case
are beyond the scope of this book [8, 9, 11, 14, 29, 73, 74, 76, 91].
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Once we have a tower of monomials K = C(t1, . . . , tn), the algorithms of
this chapter reduce the problem of integrating an element of K to various
integration-related problems involving elements of C(t1, . . . , tn−1), thereby
eliminating the monomial tn. Since the reduced problems involve integrands
in a tower of smaller transcendence degree over C, we can use the algorithm
recursively on them, and termination is ensured. In order to avoid writing
the full tower of extensions throughout this book, we write K = k(t) where
k = C(t1, . . . , tn−1) and t = tn is a monomial over k, and the task of the
algorithms of this chapter is to reduce integrating a given element of k(t) to
integration-related problems over k. If t is elementary over k, then having an
elementary integral over k(t) is equivalent to having an elementary integral
over k, so the algorithms we present in this book provide a complete decision
procedure for the problem of deciding whether an element of a purely tran-
scendental elementary extension of (C(x), d/dx) has an elementary integral
over C(x). For more general functions, when t is not elementary over k, it
can be proven that if t is either an hyperexponential monomial or nonlin-
ear monomial over k with S irr

1 = S irr, then having an elementary integral
over k(t) is equivalent to having an elementary integral over k (Exercise 5.5),
so the algorithm is complete for integrands built from transcendental loga-
rithms, arc-tangents, hyperexponentials and tangents. The only obstruction
to a complete algorithm for Liouvillian integrands is the case where t is a
nonelementary primitive over k: even though we can reduce the problem to
an integrand in k, the problem becomes however to determine whether f ∈ k
has an elementary integral over k(t), and although there are algorithms for
special types of primitive monomials [6, 21, 22, 52, 53, 94], this problem has
not been solved for general monomials (Exercise 5.5f)). As will be seen from
numerous examples in this book, the algorithm can still be used successfully
on many integrands involving nonelementary monomials. It cannot however
always provide a proof on nonexistence of an elementary integral over k(t)
when t is a nonelementary primitive over k. The reduction from k(t) to t is
also incomplete for general nonlinear monomials, but is complete for tangents
and hyperbolic tangents.

The general line of the integration algorithm is to perform successive re-
ductions, which all transform the integrand to a “simpler” one, until the re-
maining integrand is in k (Fig. 5.1):

• The Hermite reduction (Sect. 5.3), which can be applied to arbitrary mono-
mials, transforms a general integrand to the sum of a simple and a reduced
integrand;

• The polynomial reduction (section 5.4), which can be applied to nonlinear
monomials, reduces the degree of the polynomial part of an integrand;

• The residue criterion (Sect. 5.6), which can be applied to arbitrary mono-
mials, either proves that an integrand does not have an elementary integral
over k(t), or transforms it to a reduced integrand (i.e. an integrand in k〈t〉);
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• Reduced integrands are integrated by specific algorithms for each case of
Liouvillian or hypertangent monomial (Sect. 5.8, 5.9 and 5.10). Those algo-
rithms either prove that there is no elementary integral over k(t), or reduce
the problem to various integration-related problems over k. Algorithms for
solving those related problems are described in Chap. 6, 7 and 8.

Except for the last part, the various reductions are applicable to arbitrary
monomial extensions.

No elementary
integral

No elementary
integral

f ∈ k〈t〉

f = g + h, g simple, h ∈ k〈t〉

f ∈ k(t)

f = g + h, g simple, h ∈ k〈t〉

f ∈ k

Residue Criterion

Tangent CaseExponential CasePrimitive Case

Limited Integration Risch D.E. Coupled D.E. System

Polynomial Reduction

Hermite Reduction

Fig. 5.1. General outline of the integration algorithm
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5.3 The Hermite Reduction

We have seen in Sect. 2.2 that the Hermite reduction rewrites any rational
function as the sum of a derivative and a rational function with a squarefree
denominator. In this section, we show that the Hermite reduction can be
applied to the normal part of any element of a monomial extension. Let (k,D)
be a differential field and t a monomial over k for the next two sections.

Definition 5.3.1. For f ∈ k(t), we define the polar multiplicity of f to be

µ(f) = − min
p∈k[t]\k

(νp(f)).

Note that µ(0) = −∞ and that µ(f) ≥ 0 for any f 6= 0, since in that case there
is always some polynomial p ∈ k[t] for which νp(f) = 0. Also, the minimum in
the above definition can be taken over all the irreducible or squarefree factors
of the denominator of f . It is easy to see that for f 6= 0, µ(f) is exactly the
highest power appearing in any squarefree factorization of the denominator
of f (Exercise 5.1).

Theorem 5.3.1. Let f ∈ k(t). Using only the extended Euclidean algorithm
in k[t], one can find g, h, r ∈ k(t) such that h is simple, r is reduced, and
f = Dg + h + r. Furthermore, the denominators of g, h and r divide the
denominator of f , and either g = 0 or µ(g) < µ(f).

Proof. Let f = fp + fs + fn be the canonical representation of f , and write
fn = a/d with a, d ∈ k[t] and gcd(a, d) = 1. We proceed by induction on
m = µ(fn). Let d = d1d

2
2 · · · dm

m be a squarefree factorization of d. If m ≤ 1,
then either fn = 0 or d is normal. In both cases, fn is simple, so g = 0, h = fn

and r = fp + fs ∈ k〈t〉 satisfy the theorem.
Otherwise, m > 1, so assume that the theorem holds for any nonzero

g = gp + gn + gs with µ(gn) < m, and let v = dm and u = d/vm. Since
every squarefree factor of d is normal by the definition of the canonical rep-
resentation, v is normal, so gcd(Dv, v) = 1. In addition, gcd(u, v) = 1 by the
definition of a squarefree factorization, so gcd(uDv, v) = 1. Hence, we can use
the extended Euclidean algorithm to find b, c ∈ k[t] such that

a

1−m
= b u Dv + c v.

Multiplying both sides by (1−m)/(uvm) gives

fn =
a

uvm
=

(1−m)bDv

vm
+

(1−m)c
uvm−1

so, adding and subtracting Db/vm−1 to the right hand side, we get

fn =
(

Db

vm−1
− (m− 1)bDv

vm

)
+

(1−m)c− uDb

uvm−1
= Dg0 + w
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where g0 = b/vm−1 and w = ((1−m)c−uDb)/(uvm−1). Since the denominator
of w divides uvm−1, w has no special part, so let w = wp+wn be the canonical
representation of w. Since µ(w) ≤ m − 1, we have µ(wn) ≤ m − 1, so by
induction we can find g1, h1 and r1 in k(t) such that wn = Dg1 + h + r1, h
is simple, r1 is reduced, the denominators of g1, h and r1 divide uvm−1, and
µ(g1) < µ(w) if g1 6= 0. Let then g = g0+g1 and r = fp+wp+fs+r1, and write
e for the denominator of f . Note that d | e by the definition of the canonical
representation. The denominator of g1 divides uvm−1 and g0 = b/vm−1, so
the denominator of g divides d hence e. The denominator of h divides uvm−1,
so it divides d hence e. The denominator of w divides d and the denominator
of r1 divides uvm−1, so the denominator of r divides e. In addition, fp, wp, fs

and r1 are in k〈t〉, which is a subring of k(t) by Corollary 4.4.1, so r ∈ k〈t〉.
Finally, we have

f = fp + fs + fn = fp + fs + Dg0 + w

= fp + fs + Dg0 + wp + Dg1 + h + r1 = Dg + h + r

which proves the theorem. ut

Although we have used the quadratic version of the Hermite reduction
in the above proof, the other versions are also valid in monomial extensions
(Exercise 5.2). Instead of splitting a rational function into a derivative and a
simple rational function, the Hermite reduction splits any element of k(t) into
a derivative, a simple and a reduced element. Thus, it reduces any integration
problem to integrands that are the sum of a simple and a reduced element.

HermiteReduce(f, D) (* Hermite Reduction – quadratic version *)

(* Given a derivation D on k(t) and f ∈ k(t), return g, h, r ∈ k(t) such
that f = Dg + h + r, h is simple and r is reduced. *)

(fp, fs, fn)← CanonicalRepresentation(f, D)

(a, d)← (numerator(fn), denominator(fn)) (* d is monic *)

(d1, . . . , dm)← SquareFree(d)

g ← 0

for i← 2 to m such that deg(di) > 0 do
v ← di

u← d/vi

for j ← i− 1 to 1 step −1 do
(b, c)← ExtendedEuclidean(u Dv, v,−a/j)
g ← g + b/vj

a← −jc− u Db
d← uv

(q, r)← PolyDivide(a, uv)

return(g, r/(uv), q + fp + fs)
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Example 5.3.1. Let k = Q(x) with D = d/dx, and let t be a monomial over k
satisfying Dt = 1 + t2, i.e. t = tan(x), and consider

f =
x− tan(x)

tan(x)2
=

x− t

t2
∈ k(t).

Since f has no polynomial part and t is normal in k[t], the canonical repre-
sentation of f is (fp, fs, fn) = (0, 0, f) so we get a = x − t and d = t2 = d2

2

where d2 = t. We then have:

i v u j b c a

2 t 1 1 −x xt + 1 −xt

and a/uv = −xt/t = −x, so the Hermite reduction returns (−x/t, 0,−x),
which means that ∫

x− tan(x)
tan(x)2

dx = − x

tan(x)
−
∫

x dx

and the remaining integrand is in k〈t〉.

The Hermite reduction can also be iterated, yielding a decomposition of f
into a sum of higher-order derivatives of reduced and simple elements of k(t)
(Exercise 5.3).

5.4 The Polynomial Reduction

In the case of nonlinear monomials, another reduction allows us to rewrite
any polynomial in k[t] as the sum of a derivative and a polynomial of degree
less than δ(t).

Theorem 5.4.1. If t is a nonlinear monomial, then for any p ∈ k[t], we can
find q, r ∈ k[t] such that p = Dq + r and deg(r) < δ(t).

Proof. We proceed by induction on n = deg(p). If n < δ(t), then q = 0 and
r = p satisfy the theorem. Otherwise n ≥ δ(t) so assume that the theorem
holds for any a ∈ k[t] with deg(a) < n. Let

c =
lc(p)

(n− δ(t) + 1)λ(t)
∈ k,

q0 = ctn−δ(t)+1, and r0 = p − Dq0. Since t is nonlinear and deg(q0) > 0,
Lemma 3.4.2 implies that deg(Dq0) = deg(q0) + δ(t) − 1 = n, and that the
leading coefficient of Dq0 is (n−δ(t)+1) c λ(t) = lc(p). Hence, deg(r0) < n, so
by induction we can find q1, r ∈ k[t] such that r0 = Dq1 +r and deg(r) < δ(t).
Therefore,

p = Dq0 + r0 = Dq0 + Dq1 + r = Dq + r

where q = q0 + q1 ∈ k[t]. ut
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PolynomialReduce(p, D) (* Polynomial Reduction *)

(* Given a derivation D on k(t) and p ∈ k[t] where t is a nonlinear
monomial over k, return q, r ∈ k[t] such that p = Dq + r, and deg(r) <
δ(t). *)

if deg(p) < δ(t) then return(0, p)

m← deg(p)− δ(t) + 1

q0 ← (lc(p)/(mλ(t))) tm

(q, r)← PolynomialReduce(p−Dq0, D)

return(q0 + q, r)

Example 5.4.1. Let k = Q(x) with D = d/dx, and let t be a monomial over k
satisfying Dt = 1 + t2, i.e. t = tan(x), and consider

p = 1 + x tan(x) + tan(x)2 = 1 + xt + t2 ∈ k[t].

We have δ(t) = 2, λ(t) = 1, and applying PolynomialReduce, we get m =
deg(p) − 1 = 1, q0 = t, Dq0 = 1 + t2, so p − Dq0 = xt, which has degree 1.
Thus, ∫

(1 + x tan(x) + tan(x)2) dx = tan(x) +
∫

x tan(x)dx

and it will be proven later that the remaining integral is not an elementary
function.

If S 6= k, i.e. S irr 6= ∅, then any nontrivial element of S can be used to
eliminate the term of degree δ(t)− 1 from a polynomial.

Theorem 5.4.2. Suppose that t is a nonlinear monomial. Let p ∈ k[t] with
deg(p) < δ(t), a ∈ k be the coefficient of tδ(t)−1 in p, and c = a/λ(t). Then,

deg
(

p− c

deg(q)
Dq

q

)
< δ(t)− 1

for any q ∈ S \ k.

Proof. Let q ∈ S \ k, then Dq/q ∈ k[t] and by Lemma 3.4.2, deg(Dq/q) =
deg(Dq)−deg(q) = δ(t)−1, and the leading coefficient of Dq is deg(q)lc(q)λ(t).
Hence,

lc
(

c

deg(q)
Dq

q

)
=

c

deg(q)
deg(q)lc(q)λ(t)

lc(q)
= cλ(t) = a

which implies that the degree of p− c/deg(q) Dq/q is at most δ(t)− 2. ut
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5.5 Liouville’s Theorem

Given a differential field K and an integrand f ∈ K, if an elementary inte-
gral is found, it can be easily proven correct by differentiation. Furthermore,
there are usually several ways to find elementary integrals when they exist.
Proving that f has no elementary integral is however quite a different prob-
lem, since we need results that connect the existence of an elementary integral
to a special form of the integrand. The first such result is Laplace’s princi-
ple [55], which states roughly that we can simplify the integration problem by
allowing only new logarithms to appear linearly in the integral, all the other
functions must be in the integrand already2. Liouville was the first to state
and prove a precise theorem from this observation, first in the case of alge-
braic integrands [57, 58], then for more general integrands [59]. See Chap. IX
of [61] for the fascinating history of Liouville’s Theorem in the 19th century.
This theorem has become the main tool used in proving that no elementary
integral exists for a given function. Furthermore, since it provides an explicit
class of elementary extensions to search for an integral, it forms the basis
of the integration algorithm. While Liouville used analytic arguments, it is
now possible to prove it algebraically in the context of differential fields. Al-
gebraic techiques were first used by Ostrowski [69], who presented a modern
proof of Liouville’s Theorem, together with an algorithm that reduces inte-
grating in k(t) to integrating in k when t is a primitive monomial over k. The
first complete algebraic proof of Liouville’s Theorem was then published by
Rosenlicht [79] and the first proof of the strong version of Liouville’s Theorem
by Risch, who published it together with a complete integration algorithm for
purely transcendental elementary functions [75]. We follow both of them here,
first presenting essentially Rosenlicht’s proof of the weak Liouville Theorem,
and then progressively removing the restrictions on the constant fields, obtain-
ing Risch’s proof of the strong Liouville Theorem. We remark that Liouville’s
Theorem has been extended in various directions [17, 71, 81, 86], but those
extensions go beyond the scope of this book. Integration algorithms that yield
nonelementary integrals [21, 22, 52, 53] are based on such extensions [86].

Theorem 5.5.1 (Liouville’s Theorem). Let K be a differential field and
f ∈ K. If there exist an elementary extension E of K with Const(E) =
Const(K) and g ∈ E such that Dg = f , then there are v ∈ K, u1, . . . , un ∈ K∗

and c1, . . . , cn ∈ Const(K) such that

f = Dv +
n∑

i=1

ci
Dui

ui
. (5.3)

2“. . . la différentiation laissant subsister les quantités exponentielles et radi-
cales, et ne faisant disparaitre les quantités logarithmiques qu’autant qu’elles ont
multipliées par des constantes, on doit en conclure que l’intégrale d’une fonction
différentielle ne peut contenir d’autres quantités exponentielles et radicales que celles
qui sont contenues dans cette fonction. . . ”
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Proof. Write C = Const(K) and let E be an elementary extension of K with
Const(E) = C and g ∈ E be such that Dg = f . Then, there are t1, . . . , tm ∈ E
such that E = K(t1, . . . , tm) and each ti is elementary over K(t1, . . . , ti−1).
We proceed by induction on m. For m = 0, we have E = K, so letting
v = g ∈ K, we get f = Dv, which is of the form (5.3) with n = 0. Suppose
now that m > 0 and that the theorem holds for any elementary extension
generated by m − 1 elements. Let t = t1 and F = K(t). Since K ⊆ F ⊆ E,
then C ⊆ Const(F ) ⊆ Const(E) = C, so Const(F ) = C. In addition, f ∈ F ,
and E = F (t2, . . . , tm) is an elementary extension of F generated by m − 1
elements, so by induction there are v ∈ F , u1, . . . , un ∈ F ∗ and c1, . . . , cn ∈ C
such that

f = Dv +
n∑

i=1

ci
Dui

ui
. (5.4)

Case 1: t transcendental over K. Then, since Const(F ) = C, t is Liouvil-
lian monomial over K by Theorems 5.1.1 and 5.1.2. Let p ∈ K[t] be nor-
mal and irreducible. We have νp(Dui/ui) ≥ −1 by Corollary 4.4.2, hence
νp(
∑n

i=1 ciDui/ui) ≥ −1 by Theorem 4.1.1. Suppose that νp(v) < 0. Then,
νp(Dv) = νp(v)−1 < −1 by Theorem 4.4.2, so νp(f) = min(νp(Dv),−1) < −1
by Theorem 4.1.1, in contradiction with f ∈ K. Hence νp(v) ≥ 0, so, since
this holds for any normal irreducible p, v ∈ K〈t〉. Hence, Dv ∈ K〈t〉 by
Corollary 4.4.1. Write now ui = wi

∏ni

j=1 p
eij

ij where wi ∈ K∗, each pij ∈ K[t]
is monic irreducible, and the eij ’s are integers. Then, using the logarithmic
derivative identity and grouping together all the terms involving the same pij ,
we get

f = Dv +
n∑

i=1

ci
Dwi

wi
+

N∑
j=1

dj
Dqj

qj
(5.5)

where the qj ’s are in K[t], monic, irreducible and coprime. Write

g =
n∑

i=1

ci
Dwi

wi
∈ K, h =

N∑
j=1

dj
Dqj

qj
,

and suppose that one of the qj ’s, say qk, is normal. We have νqk
(qk) = 1

and νqk
(qj) = 0 for j 6= k, so νqk

(dkDqk/qk) = −1 and νqk
(djDqj/qj) = 0

by Corollary 4.4.2. This implies that νqk
(
∑

j 6=k djDqj/qj) ≥ 0, hence that
νqk

(h) = −1. But qk is normal and Dv ∈ K〈t〉, hence νqk
(Dv) ≥ 0, so νqk

(f) =
−1, in contradiction with f ∈ K. Hence all the qj ’s in equation (5.5) are
special.
Case 1a: t is a logarithm over K. Then, Dt = Da/a for some a ∈ K∗, and every
irreducible p ∈ K[t] is normal by Theorem 5.1.1, so N = 0 in equation (5.5)
and v,Dv ∈ K[t]. From (5.5) we get Dv = f − g ∈ K. By Lemma 5.1.2, this
implies that or v = ct+b where b, c ∈ K and Dc = 0 (otherwise deg(Dv) ≥ 1).
Hence,
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f = Db + c
Da

a
+

n∑
i=1

ci
Dwi

wi

which is of the form (5.3).
Case 1b: t is an exponential over K. Then, Dt/t = Da for some a ∈ K, and
the only special monic irreducible p ∈ K[t] is p = t by Theorem 5.1.2, so
N = 1 in equation (5.5) and q1 = t (with d1 possibly 0). Hence, d1Dq1/q1 =
d1Dt/t = d1Da, so f = Dw + g where w = v + d1a ∈ K〈t〉. Suppose that
νt(w) < 0, then νt(Dw) = νt(w) < 0 by Theorem 4.4.2 since t ∈ S irr, so
νt(f) < 0 in contradiction with f ∈ K. Hence, νt(w) ≥ 0 so w ∈ K[t]. By
Lemma 5.1.2, ν∞(Dw) = ν∞(w), so deg(Dw) = deg(w), which implies that
deg(w) = 0 since f = Dw + g ∈ K. Hence w ∈ K and

f = Dw +
n∑

i=1

ci
Dwi

wi

which is of the form (5.3).
Case 2: t algebraic over K. Let Tr : F → K and N : F → K be the trace
and norm maps from F to K and d = [F : K]. Applying Tr to both sides of
equation (5.4) we get:

Tr(f) = Tr(Dv +
n∑

i=1

ci
Dui

ui
) = Tr(Dv) +

n∑
i=1

ci Tr(
Dui

ui
)

since Tr is K-linear and the ci’s are in K. We have Tr(f) = df since f ∈ K,
and

Tr(Dv) = D(Tr(v)) and Tr

(
Dui

ui

)
=

DN(ui)
N(ui)

by Theorem 3.2.4, so

f = Dw +
n∑

i=1

ci

d

Dwi

wi

which is of the form (5.3) with w = Tr(v)/d ∈ K and wi = N(ui) ∈ K∗. ut

Of course, in practice we may have to adjoin new constants in order to
compute integrals, as we have seen in Chap. 2. We first show that new tran-
scendental constants are not necessary in order to express an elementary in-
tegral.

Theorem 5.5.2. Let K be a differential field with algebraically closed con-
stant field and f ∈ K. If there exist an elementary extension E of K and
g ∈ E such that Dg = f , then there are v ∈ K, u1, . . . , un ∈ K∗ and
c1, . . . , cn ∈ Const(K) such that

f = Dv +
n∑

i=1

ci
Dui

ui
.
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Proof. Suppose that there exist an elementary extension E of K and g ∈ E
such that Dg = f . Write Const(K) = C, Const(E) = C(a1, . . . , am) for some
constants a1, . . . , am in E, and let F = K(a1, . . . , am). Since C(a1, . . . , am) ⊆
F ⊆ E, C(a1, . . . , am) ⊆ Const(F ) ⊆ Const(E), so F and E have the same
constant subfield. In addition, f ∈ F and E is elementary over F , so by
Theorem 5.5.1, there are v ∈ F , u1, . . . , um ∈ F ∗ and c1, . . . , cn ∈ Const(F )
such that

f = Dv +
n∑

i=1

ci
Dui

ui
. (5.6)

Let X1, . . . , Xm be independent indeterminates over K. Since the elements of
F are rational functions in a1, . . . , an, we can write

v =
p(a1, . . . , am)
q(a1, . . . , am)

, ci =
ri(a1, . . . , am)
si(a1, . . . , am)

and ui =
pi(a1, . . . , am)
qi(a1, . . . , am)

(5.7)

where p, q, pi, qi are in K[X1, . . . , Xm], and ri, si are in C[X1, . . . , Xm]. In
addition, g(a1, . . . , am) 6= 0, where

g = q

(
n∏

i=1

si

)(
n∏

i=1

pi

)(
n∏

i=1

qi

)
∈ K[X1, . . . , Xm] .

Replacing v, c1, . . . , cm and u1, . . . , um by the fractions (5.7) in (5.6), and
clearing denominators, we obtain a polynomial h ∈ K[X1, . . . , Xm] such that
h(a1, . . . , am) = 0. By Lemma 3.3.6 applied to g and S = {h}, there are
b1, . . . , bm ∈ C such that g(b1, . . . , bm) 6= 0 and h(b1, . . . , bm) = 0. But this
implies that

f = Dw +
n∑

i=1

di
Dwi

wi

where

w =
p(b1, . . . , bm)
q(b1, . . . , bm)

, di =
ri(b1, . . . , bm)
si(b1, . . . , bm)

and wi =
pi(b1, . . . , bm)
qi(b1, . . . , bm)

.

Since p, q, pi, qi ∈ K[X1, . . . , Xm] and ri, si ∈ C[X1, . . . , Xm], we get w ∈ K,
w1, . . . , wn ∈ K∗ and d1, . . . , dn ∈ C, which proves the theorem. ut

We can finally remove all the constant restrictions in Liouville’s Theorem,
showing that for arbitrary constant subfields, v in (5.3) can be taken in K,
and the ui’s can be taken in K(c1, . . . , cn).

Theorem 5.5.3 (Liouville’s Theorem – Strong version). Let K be a
differential field, C = Const(K), and f ∈ K. If there exist an elementary
extension E of K and g ∈ E such that Dg = f , then there are v ∈ K,
c1, . . . , cn ∈ C, and u1, . . . , un ∈ K(c1, . . . , cn)∗ such that

f = Dv +
n∑

i=1

ci
Dui

ui
.
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Proof. Suppose that there exist an elementary extension E of K and g ∈
E such that Dg = f . Since CK is algebraic over K, Const(CK) = C ∩
CK = C by Corollary 3.3.1. Hence, CK has an algebraically closed constant
subfield, f ∈ CK, g ∈ CE, which is an elementary extension of CK, so by
Theorem 5.5.2, there are v ∈ CK, u1, . . . , un ∈ (CK)∗ and c1, . . . , cn ∈ C
such that

f = Dv +
n∑

i=1

ci
Dui

ui
.

F = K(v, u1, . . . , un, c1, . . . , cn) is finite algebraic over K, so let TrF
K : F → K

be the trace from F to K, K be the algebraic closure of K and σ1, . . . , σm

be the distinct embeddings of F in K over K. Each σj can be extended to a
field automorphism of K over K, and since TrF

K and each σj commute with
D by Theorem 3.2.4, we have

mf =
m∑

j=1

fσj = TrF
K(Dv) +

m∑
j=1

n∑
i=1

c
σj

i

Du
σj

i

u
σj

i

so

f = Dw +
m∑

j=1

n∑
i=1

dij
Dwij

wij

with w =
1
m

TrF
K(v) ∈ K, dij =

1
m

c
σj

i ∈ K and wij = u
σj

i ∈ K
∗
.

In addition, Const(K) = C ∩ K = C by Corollary 3.3.1, and Ddij =
D(cσj

i /m) = (Dci)σj /m = 0, so dij ∈ C for each i and j. Let now
L = K(d11, . . . , dmn) and M = L(w11, . . . , wmn). Since L is algebraic over
K, K is the algebraic closure of L. Since M is finite algebraic over L, let
TrM

L : M → L and N : M → L be the trace and norm maps from M to L.
Since dij ∈ L and TrM

L is L-linear, we have

TrM
L

(
dij

Dwij

wij

)
= dij TrM

L

(
Dwij

wij

)
= dij

DN(wij)
N(wij

by Theorem 3.2.4, so

kf = TrM
L (f) = TrM

L (Dw) + TrM
L (

m∑
j=1

n∑
i=1

dij
Dwij

wij
)

= kDw +
m∑

j=1

n∑
i=1

dij
DN(wij)
N(wij)

hence

f = Dw +
m∑

j=1

n∑
i=1

dij

k

Dzij

zij

which is of the form (5.3) with w ∈ K, dij ∈ C and zij = N(wij) in
K(d11, . . . , dmn)∗. ut



5.6 The Residue Criterion 147

5.6 The Residue Criterion

Now that Liouville’s Theorem gives us a way of proving that a function has
no elementary integral over a given field, we can complete the integration
algorithm. For the rest of this chapter, let (k,D) be a differential field and t
a monomial over k. From the Hermite reduction, we can assume without loss
of generality that the integrand is given as the sum of a simple and a reduced
element of k(t).

We have seen in Sect. 2.4 that the Rothstein–Trager algorithm expresses
the integral of a simple rational function with no polynomial part as a sum
of logarithms. In this section, we show that this algorithm can be generalized
to any monomial extension, where it will either prove that a function has
no elementary integral, or reduce the problem to integrating elements of k〈t〉.
Rothstein had already generalized this algorithm to elementary transcendental
extensions in his dissertation [83].

Lemma 5.6.1. Let f ∈ k(t) be simple. If there are h ∈ k〈t〉, an algebraic
extension E of Const(k), v ∈ k(t), c1, . . . , cn ∈ E, and u1, . . . , un ∈ Ek(t)
such that

f + h = Dv +
n∑

i=1

ci
Dui

ui

then

residuep(f) =
n∑

i=1

ciνp(ui)

for any normal irreducible p ∈ Ek[t].

Proof. Let f ∈ k(t) be simple, and suppose that there are h ∈ k〈t〉, an alge-
braic extension E of Const(k), v ∈ k(t), c1, . . . , cn ∈ E, and u1, . . . , un ∈ Ek(t)
such that

f + h = Dv +
n∑

i=1

ci
Dui

ui
.

Note that f + h is simple since h ∈ k〈t〉. Let p ∈ Ek[t] be normal and
irreducible. Then, for each i, νp(Dui/ui) ≥ −1 and residuep(Dui/ui) = νp(ui)
by Corollary 4.4.2. Suppose that νp(v) < 0. Then νp(Dv) = νp(v) − 1 < −1
by Theorem 4.4.2, which implies that νp(f + h) < −1 in contradiction with
f + h being simple. Hence νp(v) ≥ 0, so νp(Dv) ≥ 0, which implies that
residuep(Dv) = 0. Furthermore, νp(h) ≥ 0, so residuep(h) = 0. Since residuep

is Ek-linear, we get

residuep(f) = residuep(f) + residuep(h) = residuep(f + h)

= residuep(Dv) +
n∑

i=1

ci residuep

(
Dui

ui

)
=

n∑
i=1

ci νp(ui) .

ut
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Lemma 5.6.2. Suppose that Const(k) is algebraically closed and let f ∈ k(t)
be simple. If there exists h ∈ k〈t〉 such that f + h has an elementary integral
over k(t), then residuep(f) ∈ Const(k) for any normal irreducible p ∈ k[t].

Proof. Let C = Const(k), and suppose C is algebraically closed and that f +h
has an elementary integral over k(t) where f ∈ k(t) is simple and h ∈ k〈t〉.
By Theorem 5.5.1, there are v, u1, . . . , un ∈ k and c1, . . . , cn ∈ C such that

f + h = Dv +
n∑

i=1

ci
Dui

ui
.

Let p ∈ k[t] be normal and irreducible. By Lemma 5.6.1 we have

residuep(f) =
n∑

i=1

ci νp(ui) ∈ C .

ut

Example 5.6.1. Let k = Q, t be a monomial over k with Dt = 1 (i.e. D =
d/dt), and

f =
2t− 2
t2 + 1

∈ k(t) .

Then, f has an elementary integral over k(t):∫
2t− 2
t2 + 1

dt = (1 +
√
−1) log(1 + t

√
−1) + (1−

√
−1) log(1− t

√
−1) .

On the other hand, t2 + 1 is irreducible over Q, but

residuet2+1(f) = πt2+1

(
2t− 2

2t

)
= t + 1

which is not a constant. This shows that the hypothesis that the constant
field of k be algebraically closed is required in Lemma 5.6.2. If we replace Q
by C, then t2 + 1 = (t−

√
−1)(t +

√
−1),

residuet−
√
−1(f) = πt−

√
−1

(
2t− 2

t +
√
−1

)
= 1 +

√
−1

and

residuet+
√
−1(f) = πt+

√
−1

(
2t− 2

t−
√
−1

)
= 1−

√
−1

which are constants. This shows that the hypothesis that p be irreducible is
also required in Lemmas 5.6.1 and 5.6.2.
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Theorem 5.6.1. Let f ∈ k(t) be simple, and write f = p+a/d where p, a, d ∈
k[t], d 6= 0, deg(a) < deg(d), and gcd(a, d) = 1. Let z be an indeterminate
over k,

r = resultantt(a− zDd, d) ∈ k[z] ,

r = rsrn be a splitting factorization of r w.r.t. the coefficient lifting κD of D
to k[z], and

g =
∑

rs(α)=0

α
Dgα

gα
(5.8)

where gα = gcd(a−αDd, d) ∈ k(α)[t] and the sum is taken over all the distinct
roots of rs. Then,

(i) g ∈ k(t), the denominator of g divides d, and f − g is simple.
(ii) If there exists h ∈ k〈t〉 such that f + h has an elementary integral over

k(t), then rn ∈ k and f − g ∈ k[t].
(iii) If there are h ∈ k〈t〉, an algebraic extension E of Const(k), v ∈ k(t),

c1, . . . , cn ∈ E, and u1, . . . , un ∈ Ek(t) such that

f + h = Dv +
n∑

i=1

ci
Dui

ui

then rs factors linearly over E.

Proof. (i) Let rs = cre1
1 · · · ren

n be the irreducible factorization of rs in k[z].
Then, g can be rewritten as

g =
n∑

i=1

∑
ri(α)=0

α
Dgα

gα
.

For each i, let ki be k(t) extended by all the roots of ri, and αi be a given
root of ri. Since ki is a finitely generated algebraic extension of k(t), the field
automorphisms of ki over k(t) commute with D by Theorem 3.2.4, so we get

g =
n∑

i=1

Tri

(
αi

Dgαi

gαi

)
by Theorem 3.2.4 where Tri is the trace map from k(t)(αi) to k(t). Hence,
g ∈ k(t). Furthermore, since gα | d for each root α of rs, lcmrs(α)=0(gα) | d, so
the denominator of g also divides d. Hence the denominator of f − g divides
d, which implies that f − g is simple since d is normal.
(ii) Suppose that f +h has an elementary integral over k(t) for some h ∈ k〈t〉,
and let k be the algebraic closure of k. By Corollary 3.4.1, t is a monomial over
k, and simple (resp. reduced) elements of k(t) remain simple (resp. reduced)
when viewed as elements of k(t). Furthermore f +h has an elementary integral
over k(t), so we work with k(t) in the rest of this proof. Let α ∈ k be any
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root of r. If α = 0, then Dα = 0. Otherwise α 6= 0 and α = residueq(f)
for some normal irreducible q ∈ k[x] by Theorem 4.4.3, hence Dα = 0 by
Lemma 5.6.2. Thus rs(α) = 0 in both cases by Theorem 3.5.2, so rn(α) 6= 0
since gcd(rn, rs) = 1. Since this holds for all the roots of r, we have rn ∈ k.

For any α ∈ k, write gα = gcd(d, a − αDd). Note that all the irreducible
factors of gα must be normal, since gα | d, which is normal. Let α, β ∈ k,
and q ∈ k[t] be a normal irreducible common factor of gα and gβ . Then
α = residueq(a/d) = β by Lemma 4.4.3, so gcd(gα, gβ) = 1 when α 6= β. Let
now q ∈ k[t] be irreducible and normal, and β = residueq(f). If β = 0, then q
does not divide d, so q does not divide any gα, which implies that νq(g) ≥ 0,
hence that residueq(g) = 0 = residueq(f − g). If β 6= 0, then r(β) = 0 by
Theorem 4.4.3, and q | gβ by Lemma 4.4.3, so rs(β) = 0 since rn ∈ k. Since
d is squarefree, gβ is squarefree, so νq(gβ) = 1. By Theorem 4.4.1, residueq is
k-linear, so we get

residueq(f − g) = β −
∑

rs(α)=0

α residueq

(
Dgα

gα

)
= β −

∑
rs(α)=0

α νq(gα)

by Corollary 4.4.2. Since νq(gα) = 0 for α 6= β, this gives residueq(s) = β−β =
0. Since this holds for any normal irreducible q ∈ k[t] and f − g is simple, we
have f − g ∈ k[t], hence f − g ∈ k[t].
(iii) Suppose that there are h ∈ k〈t〉, an algebraic extension E of Const(k),
v ∈ k(t), c1, . . . , cn ∈ E, and u1, . . . , un ∈ Ek(t) such that

f + h = Dv +
n∑

i=1

ci
Dui

ui
. (5.9)

Let k be the algebraic closure of k. As explained in part (ii), we can replace
k(t) by k(t) and view (5.9) as an equality in k(t). Let α ∈ k be any root of
rs. By Theorem 4.4.3, α = residuep(f) for some normal irreducible p ∈ k[t],
so by Lemma 5.6.1

α = residuep(f) =
n∑

i=1

ciνp(ui) ∈ E .

Hence, E contains all the roots of rs in k, so rs factors linearly over E. ut

Note that since the roots of rs are all constants by Theorem 3.5.2, g as
given by (5.8) always has an elementary integral, namely∫

g =
∑

rs(α)=0

α log(gcd(d, a− αDd))

which is the Rothstein–Trager formula in the case of rational functions.
Part (iii) of Theorem 5.6.1 applied to the rational function case proves part (iii)
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of Theorem 2.4.1, thereby completing the proof of that theorem. As in the
rational function case, a prime factorization rs = u se1

1 · · · sem
m is required, as

well as a gcd computation in k(αi)[t] for each i, where αi is a root of si.
There is no need however to compute the splitting field of rs. Furthermore,
the monic part of rs always has constant coefficients.

ResidueReduce(f, D) (* Rothstein–Trager resultant reduction *)

(* Given a derivation D on k(t) and f ∈ k(t) simple, return g elementary
over k(t) and a Boolean b ∈ {0, 1} such that f − Dg ∈ k[t] if b = 1, or
f + h and f + h − Dg do not have an elementary integral over k(t) for
any h ∈ k〈t〉 if b = 0. *)

d← denominator(f)

(p, a)← PolyDivide(numerator(f), d) (∗ f = p + a/d ∗)
z ← a new indeterminate over k(t)

r ← resultantt(d, a− zDd)

(rn, rs)← SplitFactor(r, κD)

u se1
1 · · · sem

m ← factor(rs) (* factorization into irreducibles *)

for i← 1 to m do
α← α | si(α) = 0
gi ← gcd(d, a− αDd) (* algebraic gcd computation *)

if rn ∈ k then b← 1 else b← 0

return(
∑m

i=1

∑
α|si(α)=0 α log(gi), b)

Example 5.6.2. Consider∫
2 log(x)2 − log(x)− x2

log(x)3 − x2 log(x)
dx .

Let k = Q(x) with D = d/dx, and let t be a monomial over k satisfying
Dt = 1/x, i.e. t = log(x). Our integrand is then

f =
2t2 − t− x2

t3 − x2t
∈ k(t)

which is simple since t3 − x2t is squarefree. We get

d = t3 − x2t, p = 0, a = 2t2 − t− x2

and

r = resultantt

(
(t3 − x2t,

2x− 3z

x
t2 + (2xz − 1)t + x(z − x)

)
= 4x3(1− x2)

(
z3 − xz2 − 1

4
z +

x

4

)
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which is squarefree. Then,

κDr = −x2(4(5x2 + 3)z3 + 8x(3x2 − 2)z2 + (5x2 − 3)z − 2x(3x2 − 2))

so the splitting factorization of r w.r.t. κD is

rs = gcd(r, κDr) = x2

(
z2 − 1

4

)
and

rn =
r

rs
= −4x(x2 − 1)(z − x) /∈ k .

Hence, f does not have an elementary integral. Proceeding further we get

g1 = gcd
(

t3 + x2t,
2x− 3α

x
t2 + (2xα− 1)t + x(α− x)

)
= t + 2αx

where α2 − 1/4 = 0, so

g =
∑

α|α2−1/4=0

α log(t + 2αx) =
1
2

log(t + x)− 1
2

log(t− x) .

Computing f −Dg we find∫
2 log(x)2 − log(x)− x2

log(x)3 − x2 log(x)
dx =

1
2

log
(

log(x) + x

log(x)− x

)
+
∫

dx

log(x)

=
1
2

log
(

log(x) + x

log(x)− x

)
+ Li(x)

where Li(x) is the logarithmic integral, which has been proven to be nonele-
mentary since rn /∈ k.

With the notation as in Theorem 5.6.1, we have gcd(rs, rn) = 1, so any
root α of rs with multiplicity n is also a root of r with multiplicity n. Since
gcd(a, d) = gcd(d,Dd) = 1 and deg(a) < deg(d), we can apply Theorem 2.5.1
with A = a, B = Dd and C = d, and we get that for any root α of r of
multiplicity i > 0,

gcd(d, a− αDd) = ppt(Rm)(α, t)

where degt(Rm) = i and Rm is in the subresultant PRS of d and a − zDd
if deg(Dd) ≤ deg(d), or of a − zDd and d if deg(Dd) > deg(d). Thus, the
Lazard–Rioboo–Trager algorithm is applicable in arbitrary monomial exten-
sions, and it is not necessary to compute the prime factorization of rs, or
the gα’s appearing in (5.8), we can use the various remainders appearing in
the subresultant PRS instead. As in the case of rational functions, we use a
squarefree factorization of rs =

∏n
i=1 qi

i to split the sum appearing in (5.8)
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into several summands, each indexed by the roots of qi. We can also avoid com-
puting ppt(Rm), ensuring instead that its leading coefficient is coprime with
the corresponding qi. And since multiplying any gα in (5.8) by an arbitrary
nonzero element of k(α) does not change the conclusion of Theorem 5.6.1,
we can make ppt(Rm)(α, t) monic in order to simplify the answer. This last
step requires inverting an element of k[α] and is optional. As in the rational
function case, it turns out that the leading coefficients of the ppt(Rm)(α, t)’s
are always invertible in k[α] (Exercise 2.7).

ResidueReduce(f, D)
(* Lazard–Rioboo–Rothstein–Trager resultant reduction *)

(* Given a derivation D on k(t) and f ∈ k(t) simple, return g elementary
over k(t) and a Boolean b ∈ {0, 1} such that f − Dg ∈ k[t] if b = 1, or
f + h and f + h − Dg do not have an elementary integral over k(t) for
any h ∈ k〈t〉 if b = 0. *)

d← denominator(f)

(p, a)← PolyDivide(numerator(f), d) (∗ f = p + a/d ∗)
z ← a new indeterminate over k(t)

if deg(Dd) ≤ deg(d)
then (r, (R0, R1, . . . , Rq, 0))← SubResultantx(d, a− zDd)
else (r, (R0, R1, . . . , Rq, 0))← SubResultantx(a− zDd, d)

((n1, . . . , nn), (s1, . . . , sn))← SplitSquarefreeFactor(r, κD)

for i← 1 to n such that deg(si) > 0 do
if i = deg(d) then Si ← d
else

Si ← Rm where degt(Rm) = i, 1 ≤ m < q
(A1, . . . , As)← SquareFree(lct(Si))
for j ← 1 to s do Si ← Si/ gcdz(Aj , si)

j (* exact quotient *)

if
∏n

i=1 ni ∈ k then b← 1 else b← 0

return(
∑m

i=1

∑
α|si(α)=0 α log(Si(α, t)), b)

Example 5.6.3. Consider the same integrand as in example 5.6.2. We have
deg(Dd) < deg(d) and the subresultant PRS of d and a− zDd is

i Ri

0 t3 − x2t

1 (2− 3z/x)t2 + (2xz − 1)t + x(z − x)
2 (4x2 − 6)z2 + 3xz − 2x2 + 1)t + x(z − x)(2xz − 1)
3 4x3(1− x2)

(
z3 − xz2 − 1

4z + 1
4x
)

The Rothstein–Trager resultant is r = R3, and its split–squarefree factoriza-
tion w.r.t. κD is
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s1 = gcd(r, κDr) = x2

(
z2 − 1

4

)
, n1 =

r

s1
= −4x(x2 − 1)(z − x) /∈ k .

Hence, f does not have an elementary integral. Proceeding further we find
that s1 is squarefree, and the remainder of degree 1 in t in the PRS is

R2 = ((4x2 − 6)z2 + 3xz − 2x2 + 1)t + x(z − x)(2xz − 1) .

Since

gcd(lct(R2), s1) = gcd
(

(4x2 − 6)z2 + 3xz − 2x2 + 1, x2

(
z2 − 1

4

))
= 1 ,

S1 = R2. Evaluating for z at a root α of z2 − 1/4 = 0 we get

S1(α, t) = −1
2
((2x2 − 6αx + 1)t + 4αx3 − 3x2 + 2αx)

so

g =
∑

α|α2−1/4=0

α log
(
−1

2
((2x2 − 6αx + 1)t + x(4αx2 − 3x + 2α))

)

=
1
2

log
(
− (2x2 − 3x + 1)(t + x)

2

)
− 1

2
log
(
− (2x2 + 3x + 1)(t− x)

2

)
.

Computing f −Dg we find∫
2 log(x)2 − log(x)− x2

log(x)3 − x2 log(x)
dx =

1
2

log
(

(2x2 − 3x + 1)(log(x) + x)
(2x2 + 3x + 1)(log(x)− x)

)
+
∫ (

1
log(x)

− 6x2 − 3
4x4 − 5x2 + 1

)
dx

where the remaining integral has been proven to be nonelementary. In fact, it
is the integral of a rational function plus the logarithmic integral Li(x).
If we had decided to make S1(α, t) monic, we would have obtained

S1(α, x) = −1
2
(2x2 − 6αx + 1)(t + 2αx)

so the integral is then the same as in example 5.6.2.

5.7 Integration of Reduced Functions

From the results of the previous sections, we are left with the problem of
integrating reduced elements of a monomial extension. We use a specialized
version of Liouville’s Theorem for such elements.
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Theorem 5.7.1. Let k be a differential field, t be a monomial over k, C =
Const(k(t)), and f ∈ k〈t〉. If there exist an elementary extension E of k(t)
and g ∈ E such that Dg = f , then there are v ∈ k〈t〉, c1, . . . , cn ∈ C, and
u1, . . . , un ∈ Sk(c1,...,cn)[t]:k(c1,...,cn) such that

f = Dv +
n∑

i=1

ci
Dui

ui
.

Proof. Suppose that there exist an elementary extension E of k(t) and g ∈ E
such that Dg = f . Then, by Theorem 5.5.3, there are v ∈ k(t), c1, . . . , cn ∈ C,
and u1, . . . , un ∈ k(c1, . . . , cn)(t) such that f = Dv +

∑n
i=1 ciD(ui)/ui. Write

g =
∑n

i=1 ciD(ui)/ui. Since g = f−Dv, it follows that g ∈ k(t). Let p ∈ k[t] be
normal and irreducible, and q ∈ k(c1, . . . , cn)[t] be any irreducible factor of p
over k(c1, . . . , cn). Then, νp(f) ≥ 0 by Corollary 4.4.1, and νq(ciDui/ui) ≥ −1
for each i by Corollary 4.4.2, so νq(g) ≥ −1. Since this holds for any irreducible
factor q of p and g ∈ k(t), Theorem 4.1.2 implies that νp(g) ≥ −1. Suppose
that νp(v) < 0. Then, νp(Dv) = νp(v) − 1 < −1 by Theorem 4.4.2, which
implies that νp(Dv + g) < −1, hence that νp(f) < −1, in contradiction with
f reduced. Hence, νp(v) ≥ 0 for all normal irreducible p ∈ k[t], which means
that v ∈ k〈t〉 and Dv ∈ k〈t〉 by Corollary 4.4.1.

Write now ui = wi

∏ni

j=1 p
eij

ij where wi ∈ k(c1, . . . , cn), each pij is a monic
irreducible element of k(c1, . . . , cn)[t], and the eij ’s are integers. Then, us-
ing the logarithmic derivative identity and grouping together all the terms
involving the same pij , we get

f = Dv +
n∑

i=1

ci
Dwi

wi
+

N∑
j=1

dj
Dqj

qj
(5.10)

where the qj ’s are in k(c1, . . . , cn)[t], monic, irreducible and coprime. Each wi

is special since it is in k(c1, . . . , cn). Suppose that qs is normal for some s.
Then, Lemma 5.6.1 applied to (5.10) implies that

residueqs
(f) =

n∑
i=1

ciνqs
(wi) +

n∑
j=1

djνqs
(qj) .

But residueqs
(f) = 0 since f ∈ k〈t〉, and νqs

(wi) = 0 since wi ∈ k(c1, . . . , cn),
and νqs

(qj) = 0 for j 6= s since the qj ’s are coprime. Hence, 0 = dsνqs
(qs) =

ds, so ds = 0 whenever qs is normal. Keeping only the nonzero summands
in (5.10), we get that each qj is special, which proves the theorem. ut

In the case of nonlinear monomials, we have seen that we can always
rewrite a polynomial p ∈ k[t] as the sum of a derivative and a polynomial
of degree less than δ(t). We then have an analogue of the residue criterion
that either proves that such a reduced function does not have an elementary
integral, or eliminates the term of degree δ(t)− 1 from its polynomial part.
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Theorem 5.7.2. Suppose that t is a nonlinear monomial. Let f ∈ k〈t〉 and
write f = p + a/d where p, a, d ∈ k[t], d 6= 0, deg(p) < δ(t) and deg(a) <
deg(d). Let b ∈ k be the coefficient of tδ(t)−1 in p, and c = b/λ(t). If f has an
elementary integral over k(t) then Dc = 0.

Proof. Let C = Const(k). Replacing C by its algebraic closure, we can assume
without loss of generality that C is algebraically closed. Suppose that f has
an elementary integral over k(t). Then, by Theorem 5.7.1, there are v ∈ k〈t〉,
c1, . . . , cn ∈ C, and u1, . . . , un ∈ S such that

f = Dv +
n∑

i=1

ci
Dui

ui
. (5.11)

By Theorem 4.4.4, ν∞(Dui/ui) ≥ −m and π∞(t−mDui/ui) = −ν∞(ui)λ(t)
for each i where m = δ(t) − 1. Furthermore, ν∞(a/d) > 0 since deg(a) <
deg(d), so ν∞(f) ≥ −deg(p) ≥ −m and π∞(a/d) = π∞(t−ma/d) = 0, which
implies that π∞(t−mf) = b. Suppose that ν∞(v) < 0, then ν∞(Dv) < −m
by Theorem 4.4.4, so ν∞(Dv +

∑n
i=1 ciDui/ui) < −m, in contradiction with

ν∞(f) ≥ −m. Hence ν∞(v) ≥ 0. If ν∞(v) > 0, then ν∞(Dv) > −m by Theo-
rem 4.4.4. Otherwise, ν∞(v) = 0 and ν∞(Dv) > −m also by Theorem 4.4.4.
Hence ν∞(t−mDv) > 0 in any case, so π∞(t−mDv) = 0. Multiplying both
sides of (5.11) by t−m and applying π∞, we get

b = π∞(t−mf) =
n∑

i=1

ci π∞

(
t−m Dui

ui

)
= −

n∑
i=1

ci ν∞(ui)λ(t)

hence c = b/λ(t) = −
∑n

i=1 ci ν∞(ui), so Dc = 0. ut

If c is a constant, then Theorem 5.4.2 implies that

f −D

(
c

deg(q)
log(q)

)
has degree at most δ(t) − 2 for any q ∈ S \ k, so in the case of nonlinear
monomials, we are left with reduced integrands with polynomial parts of de-
gree at most δ(t) − 2, provided that we know at least one nontrivial special
polynomial. If we know that there are no nontrivial special polynomials, then
integrating reduced elements of such nonlinear extensions is in fact easier, and
an algorithm for that purpose will be presented in Sect. 5.11.

We have now all the necessary tools to complete the integration algorithm.
In the following sections, we give algorithms that, given an integrand f in k(t)
for a monomial t, either prove that f has no elementary integral over k(t), or
compute an elementary extension E of k(t) and an element g ∈ E such that
f −Dg ∈ k. This process eliminates t from the integrand, thus reducing the
problem to integrating an element of k, which can be done recursively, i.e. the
algorithms of this chapter can be applied to elements of k until we are left
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with constants to integrate. Note that when t itself is not elementary over
k, then the problems of deciding whether an element of k has an elementary
integral over k or over k(t) are fundamentally different, so our algorithms will
produce proofs of nonintegrability only if the integrand is itself an elementary
function. They can be applied however to much larger classes of functions.

It turns out that it will also be necessary to assume that some related
problems are solvable for elements of k. Those problems depend on the kind
of monomial we are dealing with, so we need to handle the various cases
separately at this point. Algorithms for all those related problems will be
presented in later chapters.

5.8 The Primitive Case

In the case of primitive monomials over a differential field k, the related
problem we need to solve over k is the limited integration problem: recall
that the problem of integration in closed form is, given f ∈ k to determine
whether there exist an elementary extension E of k and g ∈ E such that
Const(E) is algebraic over Const(k) and Dg = f . Let w1, . . . , wn ∈ k be
fixed. The problem of limited integration with respect to w1, . . . , wn is: given
f ∈ k, determine whether there are g ∈ k and c1, . . . , cn ∈ Const(k) such that
Dg = f − c1w1 − . . . − cnwn, and to compute g and the ci’s if they exist. It
is very similar to the problem of integration in closed form, except that the
specific differential extension k(

∫
w1, . . . ,

∫
wn) is provided for the integral.

We present in this section an algorithm that, with appropriate assumptions
on k, integrates elements of k(t) when t is a primitive monomial over k. We
first describe an algorithm for integrating elements of k[t].

Theorem 5.8.1. Let k be a differential field and t a primitive over k. If the
problem of limited integration w.r.t. Dt is decidable for elements of k, and Dt
is not the derivative of an element of k, then for any p ∈ k[t] we can either
prove that p has no elementary integral over k(t), or compute q ∈ k[t] such
that p−Dq ∈ k.

Proof. We proceed by induction on m = deg(p). If m = 0, then p ∈ k and
q = 0 satisfies the theorem, so suppose that m > 0 and that the theorem holds
for any polynomial of degree less than m. Since Dt is not the derivative of an
element of k, t is a monomial over k, Const(k(t)) = Const(k), and S = k by
Theorem 5.1.1. Thus, Theorem 5.7.1 says that if p has an elementary integral
over k(t), then there are v ∈ k[t], c1, . . . , cn ∈ C and u1, . . . , un ∈ k(c1, . . . , cn)
such that

p = Dv +
n∑

i=1

ci
Dui

ui
(5.12)

where C = Const(k). K = k(c1, . . . , cn) is an algebraic extension of k, so t is
transcendental over K. Furthermore, Dt is not the derivative of an element of
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K by Lemma 5.1.1, so t is a monomial over K and Const(K(t)) = Const(K).
Equating degrees in (5.12) we get deg(Dv) = deg(p) = m > 0, so deg(v) ≤
m + 1 by Lemma 5.1.2, so write p = atm + s and v = ctm+1 + btm + w where
a, b, c ∈ k, s, w ∈ k[t], deg(s) < m and deg(w) < m. Equating the coefficients
of tm+1 and tm in (5.12) we get Dc = 0 and

a = Db + (m + 1) cDt . (5.13)

Since we can solve the problem of limited integration w.r.t. Dt for elements of k
and a ∈ k, we can either prove that (5.13) has no solution b ∈ k, c ∈ Const(k),
or find such a solution. If it has no solution, then (5.12) has no solution
so p has no elementary integral over k(t). If we have a solution b, c, letting
q0 = ctm+1 + btm, we get

p−Dq0 = (atm + s)−((m + 1)cDt + Db) tm−(mbDt)tm−1 = s−(mbDt)tm−1

hence deg(p−Dq0) < m. By induction we can either prove that p−Dq0 has
no elementary integral over k(t), in which case p has no elementary integral
over k(t), or we get q1 ∈ k[t] such that p−Dq0−Dq1 ∈ k, which implies that
p−Dq ∈ k where q = q0 + q1. ut

IntegratePrimitivePolynomial(p, D)
(* Integration of polynomials in a primitive extension *)

(* Given a is a primitive monomial t over k, and p ∈ k[t], return q ∈ k[t]
and a Boolean β ∈ {0, 1} such that p −Dq ∈ k if β = 1, or p −Dq does
not have an elementary integral over k(t) if β = 0. *)

if p ∈ k then return(0, 1)

a← lc(p)

(* LimitedIntegrate will be given in Chap. 7 *)

(b, c)← LimitedIntegrate(a, Dt, D) (∗ a = Db + cDt ∗)
if (b, c) = “no solution” then return(0, 0)

m← deg(p)

q0 ← ctm+1/(m + 1) + btm

(q, β)← IntegratePrimitivePolynomial(p−Dq0, D)

return(q + q0, β)

Example 5.8.1. Consider∫ ((
log(x) +

1
log(x)

)
Li(x)− x

log(x)

)
dx

where Li(x) =
∫

dx/ log(x) is the logarithmic integral. Let k = Q(x, t0) with
D = d/dx, where t0 is a monomial over Q(x) satisfying Dt0 = 1/x, i.e. t0 =
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log(x), and let t be a monomial over k satisfying Dt = 1/t0, i.e. t = Li(x).
Our integrand is then

p =
(

t0 +
1
t0

)
t− x

t0
∈ k[t] .

We get

1. a = lc(p) = t0 + 1/t0
2. (

t0 +
1
t0

)
− 1

t0
= t0 = log(x) =

d

dx
(x log(x)− x) = D(xt0 − x)

so (b, c) = LimitedIntegrate(t0 + 1/t0, 1/t0, D) = (xt0 − x, 1)
3. q0 = ct2/2 + bt = t2/2 + (xt0 − x)t
4. p −Dq0 = −x ∈ k so the call IntegratePrimitivePolynomial(−x,D)

returns (q, β) = (0, 1).

Hence,∫ ((
log(x) +

1
log(x)

)
Li(x)− x

log(x)

)
dx

=
Li(x)2

2
+ (x log(x)− x)Li(x)−

∫
xdx

=
Li(x)2

2
+ (x log(x)− x)Li(x)− x2

2
.

Putting all the pieces together, we get an algorithm for integrating ele-
ments of k(t).

Theorem 5.8.2. Let k be a differential field and t a primitive over k. If the
problem of limited integration w.r.t. Dt is decidable for elements of k, and Dt
is not the derivative of an element of k, then for any f ∈ k(t) we can either
prove that f has no elementary integral over k(t), or compute an elementary
extension E of k(t) and g ∈ E such that f −Dg ∈ k.

Proof. Suppose that Dt is not the derivative of an element of k, then t is a
monomial over k and Const(k(t)) = Const(k) by Theorem 5.1.1. Let f ∈ k(t).
By Theorem 5.3.1, we can compute g1, h, r ∈ k(t) such that f = Dg1+h+r, h
is simple and r is reduced. From h, which is simple, we compute g2 ∈ k(t) given
by (5.8) in Theorem 5.6.1. Note that g0 = g1 +

∫
g2 lies in some elementary

extension of k(t). Let p = h− g2 and q = p + r, then f = Dg0 + q so f has an
elementary integral over k(t) if and only if q has one. If p /∈ k[t], then p + r
does not have an elementary integral over k(t) by Theorem 5.6.1, so f does
not have an elementary integral over k(t). Suppose now that p ∈ k[t]. We
have k〈t〉 = k[t] by (5.1), so r ∈ k[t], hence q ∈ k[t]. By Theorem 5.8.1 we can
either prove that q has no elementary integral over k(t), in which case f has
no elementary integral over k(t), or compute s ∈ k[t] such that q − Ds ∈ k,
in which case f −Dg ∈ k where g = g0 + s. ut
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IntegratePrimitive(f, D) (* Integration of primitive functions *)

(* Given a is a primitive monomial t over k, and f ∈ k(t), return g
elementary over k(t) and β ∈ {0, 1} such that f − Dg ∈ k if β = 1, or
f −Dg does not have an elementary integral over k(t) if β = 0. *)

(g1, h, r)← HermiteReduce(f, D)

(g2, β)← ResidueReduce(h, D)

if β = 0 then return(g1 + g2, 0)

(q, β)← IntegratePrimitivePolynomial(h−Dg2 + r, D)

return(g1 + g2 + q, β)

5.9 The Hyperexponential Case

In the case of hyperexponential monomials over a differential field k, the
related problem we need to solve over k is the Risch differential equation
problem: given f, g ∈ k, determine whether there exists y ∈ k such that

Dy + fy = g (5.14)

and to compute y if it exists. It may happen in general that (5.14) has more
than one solution in k, so we first need to examine when this can happen.

Lemma 5.9.1. Let (K, D) be a differential field. If there are α, y, z ∈ K such
that y 6= z and Dy + αy = Dz + αz, then α = Du/u for some u ∈ K∗.

Proof. Let u = 1/(y − z) ∈ K∗. Then,

Du− αu = −Dy −Dz

(y − z)2
− α

y − z
=

(Dz + αz)− (Dy + αy)
(y − z)2

= 0

so α = Du/u. ut

We present in this section an algorithm that, with appropriate assumptions
on k, integrates elements of k(t) when t is a hyperexponential monomial over
k. We first describe an algorithm for integrating elements of k〈t〉.

Theorem 5.9.1. Let k be a differential field and t an hyperexponential over
k. If we can solve Risch differential equations over k, and Dt/t is not a log-
arithmic derivative of a k-radical, then for any p ∈ k〈t〉 we can either prove
that p has no elementary integral over k(t), or compute q ∈ k〈t〉 such that
p−Dq ∈ k.

Proof. Since Dt/t is not a logarithmic derivative of a k-radical, t is a monomial
over k, Const(k(t)) = Const(k), and S irr = {t} by Theorem 5.1.2. Thus k〈t〉 =
k[t, t−1] by (5.1), and Theorem 5.7.1 says that if p has an elementary integral
over k(t), then there are v ∈ k〈t〉, c1, . . . , cn ∈ C, b1, . . . , bn ∈ k(c1, . . . , cn),
and m1, . . . ,mn ∈ Z such that
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p = Dv +
n∑

i=1

ci
Dbit

mi

bitmi
= Dv +

Dt

t

n∑
i=1

mici +
n∑

i=1

ci
Dbi

bi
(5.15)

where C = Const(k). K = k(c1, . . . , cn) is an algebraic extension of k, so t is
transcendental over K. Furthermore, Dt/t is not a logarithmic derivative of
a K-radical by Lemma 3.4.8, so t is a monomial over K and Const(K(t)) =
Const(K). Since p, v ∈ k[t, t−1], write p =

∑M
i=m ait

i and v =
∑R

i=r vit
i where

ai, vi ∈ k, m,M, r,R ∈ Z, m ≤M and r ≤ R. Let p1 =
∑0

i=m ait
i. If M = 0,

then p − Dq0 = p1 where q0 = 0 ∈ k〈t〉. If M > 0, then ν∞(p) = −M < 0,
which implies that ν∞(Dv) = −M < 0, so ν∞(v) = −M by Lemma 5.1.2,
hence R = M . Equating the coefficients of t, . . . , tM in (5.15) we get

ai = Dvi + i
Dt

t
vi for 1 ≤ i ≤M . (5.16)

Since we can solve Risch differential equations over k and ai, Dt/t ∈ k, we
can either prove that (5.16) has no solution vi ∈ k, or find such a solution3

If it has no solution for some i, then (5.15) has no solution so p has no
elementary integral over k(t). If we have solutions vi for 1 ≤ i ≤ M , letting
q0 = v1t + . . . vM tM , we get

p−Dq0 =
M∑
i=1

ait
i +

0∑
i=m

ait
i −

M∑
i=1

(
Dvi + i

Dt

t
vi

)
ti =

0∑
i=m

ait
i = p1 .

If m = 0, then p1 ∈ k so q = q0 satisfies the theorem. If m < 0, then
νt(p1) = −m < 0, which implies that νt(Dv) = −m < 0, so νt(v) = −m
by Theorem 4.4.2 (since t ∈ S irr), hence r = m. Equating the coefficients of
t−1, . . . , t−m in (5.15) we get

ai = Dvi + i
Dt

t
vi for m ≤ i ≤ −1 . (5.17)

Since we can solve Risch differential equations over k and ai, Dt/t ∈ k, we
can either prove that (5.17) has no solution vi ∈ k, or find such a solution. If
it has no solution for some i, then (5.15) has no solution, so p1 and p have no
elementary integrals over k(t). If we have solutions vi for m ≤ i ≤ −1, letting
q1 = v−1t

−1 + . . . v−mt−m and q = q0 + q1 ∈ k〈t〉, we get

p−Dq = p1 −Dq1 =
−1∑

i=m

ait
i + a0 −

−1∑
i=m

(
Dvi + i

Dt

t
vi

)
ti = a0 ∈ k .

ut

3Although this fact is not needed by the algorithm, we remark that Lemma 5.9.1
implies that (5.16) has at most one solution in k.
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IntegrateHyperexponentialPolynomial(p, D)
(* Integration of hyperexponential polynomials *)

(* Given an hyperexponential monomial t over k and p ∈ k[t, t−1] return
q ∈ k[t, t−1] and a Boolean β ∈ {0, 1} such that p −Dq ∈ k if β = 1, or
p−Dq does not have an elementary integral over k(t) if β = 0. *)

q ← 0, β ← 1

for i← νt(p) to −ν∞(p) such that i 6= 0 do
a← coefficient(p, ti)
(* RischDE will be given in Chap. 6 *)
v ← RischDE(iDt/t, a) (∗ a = Dv + ivDt/t ∗)
if v = “no solution” then β ← 0 else q ← q + vti

return(q, β)

Example 5.9.1. Consider∫ ((
tan(x)3 + (x + 1) tan(x)2 + tan(x) + x + 2

)
etan(x) +

1
x2 + 1

)
dx .

Let k = Q(x, t0) with D = d/dx, where t0 is a monomial over Q(x) satisfying
Dt0 = 1 + t20, i.e. t0 = tan(x), and let t be a monomial over k satisfying
Dt = (1 + t20)t, i.e. t = etan(x). Our integrand is then

p =
(
t30 + (x + 1)t20 + t0 + x + 2

)
t +

1
x2 + 1

∈ k[t] .

We get

1. q = 0, β = 1
2. νt(p) = −ν∞(p) = 1
3. i = 1
4. a = lc(p) = t30 + (x + 1)t20 + t0 + x + 2
5. D(t0 + x) + (1 + t20)(t0 + x) = a, so v = RischDE(1 + t20, a) = t0 + x
6. q = vt = (t0 + x)t
7. p−Dq = 1/(x2 + 1) .

Hence,∫ ((
tan(x)3 + (x + 1) tan(x)2 + tan(x) + x + 2

)
etan(x) +

1
x2 + 1

)
dx

= (tan(x) + x)etan(x) +
∫

dx

x2 + 1
= (tan(x) + x)etan(x) + arctan(x) .

Putting all the pieces together, we get an algorithm for integrating ele-
ments of k(t).
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Theorem 5.9.2. Let k be a differential field and t an hyperexponential over k.
If we can solve Risch differential equations over k, and Dt/t is not a logarith-
mic derivative of a k-radical, then for any f ∈ k(t) we can either prove that
f has no elementary integral over k(t), or compute an elementary extension
E of k(t) and g ∈ E such that f −Dg ∈ k.

Proof. Suppose that Dt/t is not a logarithmic derivative of a k-radical, then
t is a monomial over k and Const(k(t)) = Const(k) by Theorem 5.1.2. Let
f ∈ k(t). By Theorem 5.3.1, we can compute g1, h, r ∈ k(t) such that f =
Dg1+h+r, h is simple and r is reduced. From h, which is simple, we compute
g2 ∈ k(t) given by (5.8) in Theorem 5.6.1. Note that g0 = g1 +

∫
g2 lies in

some elementary extension of k(t). Let p = h − g2 and q = p + r, then
f = Dg0 + q so f has an elementary integral over k(t) if and only if q has
one. If p /∈ k[t], then p + r does not have an elementary integral over k(t) by
Theorem 5.6.1, so f does not have an elementary integral over k(t). Suppose
now that p ∈ k[t]. We have k〈t〉 = k[t, t−1] by (5.1), so r ∈ k[t, t−1], hence
q ∈ k[t, t−1]. By Theorem 5.9.1 we can either prove that q has no elementary
integral over k(t), in which case f has no elementary integral over k(t), or
compute s ∈ k[t, t−1] such that q −Ds ∈ k, in which case f −Dg ∈ k where
g = g0 + s. ut

IntegrateHyperexponential(f, D)
(* Integration of hyperexponential functions *)

(* Given an hyperexponential monomial t over k and f ∈ k(t), return g
elementary over k(t) and a Boolean β ∈ {0, 1} such that f − Dg ∈ k if
β = 1, or f −Dg does not have an elementary integral over k(t) if β = 0.
*)

(g1, h, r)← HermiteReduce(f, D)

(g2, β)← ResidueReduce(h, D)

if β = 0 then return(g1 + g2, 0)

(q, β)← IntegrateHyperexponentialPolynomial(h−Dg2 + r, D)

return(g1 + g2 + q, β)

5.10 The Hypertangent Case

Tangents and trigonometric functions can be integrated by transforming them
to complex logarithms and exponentials, but the theory of monomial exten-
sions allows us to integrate them directly without introducing the algebraic
number

√
−1. We start by defining tangent monomials and computing the

special polynomials. Let k be a differential field and K a differential extension
of k.
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Definition 5.10.1. Let t ∈ K be such that t2+1 6= 0. t is a hypertangent over
k if Dt/(t2 +1) ∈ k. t is a tangent over k if Dt/(t2 +1) = Db for some b ∈ k.
t is a hypertangent (resp. tangent) monomial over k if t is a hypertangent
(resp. tangent) over k, transcendental over k, and Const(k(t)) = Const(k).

We write t = tan(
∫

a) when t is a hypertangent over k such that Dt/(t2+1) =
a, and t = tan(b) when t is a tangent over k such that Dt/(t2 + 1) = Db.

Lemma 5.10.1. Let (F,D) be a differential field containing
√
−1, a ∈ F be

such that a2 + 1 6= 0, and b = (
√
−1− a)/(

√
−1 + a). Then, b 6= 0 and

Db

b
= 2
√
−1

Da

a2 + 1
.

Proof. b 6= 0 since a2 + 1 6= 0, and we have

Db

b
= D

(√
−1− a√
−1 + a

) √
−1 + a√
−1− a

= −2
√
−1

Da

(
√
−1 + a)2

√
−1 + a√
−1− a

= 2
√
−1

Da

1 + a2
.

ut

Theorem 5.10.1. If t is an hypertangent over k and
√
−1Dt/(t2 + 1) is not

a logarithmic derivative of a k(
√
−1)-radical, then t is a monomial over k,

Const(k(t)) = Const(k), and any p ∈ S irr divides t2 + 1 in k[t]. Furthermore,
S irr

1 = S irr. Conversely, if t is transcendental and hypertangent over k, and
Const(k(t)) = Const(k), then

√
−1Dt/(t2 + 1) is not a logarithmic derivative

of a k(
√
−1)-radical.

Proof. Let t be an hypertangent over k, a = Dt/(t2 + 1), and suppose that
a
√
−1 is not a logarithmic derivative of a k(

√
−1)-radical. Let θ =

√
−1−t√
−1+t

∈
k(
√
−1)(t). By Lemma 5.10.1, we have

Dθ

θ
= 2
√
−1

Dt

1 + t2
= 2a

√
−1 ∈ k(

√
−1)

so θ is hyperexponential over k(
√
−1). Since a

√
−1 is not a logarithmic deriva-

tive of a k(
√
−1)-radical, 2a

√
−1 is not one either, so by Theorem 5.1.2, θ

is a monomial over k(
√
−1), and Const(k(

√
−1)(θ)) = Const(k(

√
−1)). But

t =
√
−1(θ−1)/(θ+1), so t is transcendental over k(

√
−1), hence a monomial

over k since Dt = a + at2. Furthermore, k(
√
−1)(θ) = k(

√
−1)(t), so

Const(k(
√
−1)(t)) = Const(k(

√
−1)(θ)) = Const(k(

√
−1)) = C ∩ k(

√
−1)

by Corollary 3.3.1 where C is the algebraic closure of Const(k). This implies
that Const(k(t)) ⊆ C ∩ k(

√
−1) ∩ k(t) ⊆ k since t is transcendental over k.

Hence, Const(k(t)) ⊆ Const(k). The reverse inclusion is given by Lemma 3.3.1,
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so Const(k(t)) = Const(k), which implies that Const(k(t)) = Const(k) by
Lemma 3.3.3.

We have D(t2 + 1) = 2tDt = 2at(t2 + 1) so t2 + 1 ∈ S, hence any factor of
t2 + 1 is special by Theorem 3.4.1. Suppose now that p ∈ S, and let β ∈ k be
any root of p. Dβ = aβ2 + a by Theorem 3.4.3, so

D

(
t− β

βt + 1

)
= a

(t2 − β2)(βt + 1)− (t− β)(tβ2 + t + βt2 + β)
(βt + 1)2

= a(t− β)
(βt2 + t + β2t + β)− (tβ2 + t + βt2 + β)

(βt + 1)2
= 0

which implies that c = (t − β)/(βt + 1) ∈ Const(k(t)) ⊆ k. Since t is tran-
scendental over k, (cβ − 1)t + (c + β) = 0 implies that cβ − 1 = c + β = 0,
so β2 + 1 = 0. Since this holds for every root of p, this implies that every
irreducible factor of p divides t2 + 1 in k[t].

We have S irr
1 ⊆ S irr by definition. Conversely, let p ∈ S irr. Then p divides

t2 + 1, so all the roots of p in k satisfy β2 = −1. Hence,

pβ =
Dt−Dβ

t− β
= a

t2 + 1
t− β

= a(t + β)

which implies that pβ(β) = 2aβ = ±2
√
−1a, which is not a logarithmic deriva-

tive of a k(
√
−1)-radical, hence not a logarithmic derivative of a k(β)-radical.

Thus, p ∈ S irr
1 which implies that S irr

1 = S irr.
Conversely, let t be a transcendental hypertangent over k and suppose that

Const(k(t)) = Const(k). Then, Const(k(t)) = Const(k) by Lemma 3.3.3. If
there exist b ∈ k(

√
−1)∗ and an integer n > 0 such that

n
√
−1

Dt

t2 + 1
=

Db

b

then, taking

θ =
√
−1− t√
−1 + t

and c =
θn

b2
∈ k(
√
−1)(t)

we get
Dc

c
= n

Dθ

θ
− 2

Db

b
= 2n

√
−1

Dt

t2 + 1
− 2

Db

b
= 0

so c ∈ Const(k(t)) ⊆ k in contradiction with t transcendental over k. Hence,√
−1Dt/(t2 + 1) is not a logarithmic derivative of a k(

√
−1)-radical. ut

As a consequence, we have

k〈t〉 = {f ∈ k(t) such that (t2 + 1)nf ∈ k[t] for some integer n ≥ 0}

when t is a hypertangent monomial over k. We now present an algorithm
that, with appropriate assumptions on k, integrates elements of k(t) when t
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is a hypertangent monomial over k. Note first that if the polynomial X2 + 1
factors over k, then

√
−1 ∈ k, so k(t) = k(θ) where θ = (

√
−1 − t)/(

√
−1 +

t) is a hyperexponential monomial over k. Hence we can use the algorithm
for integrating elements of hyperexponential extensions in this case, so we
can assume for the rest of this section that X2 + 1 is irreducible over k, in
other words that

√
−1 /∈ k. Since hypertangents are nonlinear monomials,

integrating elements of k[t] is straightforward.

Theorem 5.10.2. Let k be a differential field not containing
√
−1, and t an

hypertangent over k. If
√
−1Dt/(t2 + 1) is not a logarithmic derivative of a

k(
√
−1)-radical, then for any p ∈ k[t] we can compute q ∈ k[t] and c ∈ k such

that

p−Dq − c
D(t2 + 1)

t2 + 1
∈ k .

Furthermore, if Dc 6= 0, then p has no elementary integral over k.

Proof. Let α = Dt/(t2 + 1) ∈ k. Since α
√
−1 is not a logarithmic derivative

of a k(
√
−1)-radical, t is a monomial over k, Const(k(t)) = Const(k), and all

the special irreducible polynomials divide t2 + 1 in k[t] by Theorem 5.10.1.
Since

√
−1 /∈ k, t2 + 1 is irreducible over k, so S irr = {t2 + 1}. Since δ(t) = 2,

Theorem 5.4.1 shows how to compute q, r ∈ k[t] such that p − Dq = r and
deg(r) ≤ 1. Write r = at + b where a, b ∈ k, and let c = a/(2α) ∈ k. Since
h = t2 + 1 ∈ S, Theorem 5.4.2 says that deg(r − cDh/h) < 1, hence that

p−Dq − c
D(t2 + 1)

t2 + 1
∈ k .

Suppose now that Dc 6= 0, and that r has an elementary integral over k(t).
Then, by Theorem 5.7.1, there are v ∈ k〈t〉, c1, . . . , cn ∈ C, b1, . . . , bn ∈
k(c1, . . . , cn), and m1, . . . ,mn ∈ Z such that

at + b = Dv +
n∑

i=1

ci
Dbi(t2 + 1)mi

bi(t2 + 1)mi
= Dv + 2tα

n∑
i=1

mici +
n∑

i=1

ci
Dbi

bi
. (5.18)

If ν∞(v) < 0, then ν∞(Dv) = ν∞(v) − 1 < −1 by Theorem 4.4.4, in con-
tradiction with (5.18), hence ν∞(v) ≥ 0, which implies that ν∞(Dv) ≥ 0 by
Theorem 4.4.4. Let c = a/(2α) ∈ k. Equating the coefficients of t in (5.18),
we get a = 2α

∑n
i=1 mici, so

c =
a

2α
=

n∑
i=1

mici ∈ Const(k)

in contradiction with Dc 6= 0. Hence (5.18) has no solution if Dc 6= 0, which
implies that r, and hence p, have no elementary integral over k(t). ut
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IntegrateHypertangentPolynomial(p, D)
(* Integration of hypertangent polynomials *)

(* Given a differential field k such that
√
−1 /∈ k, a hypertangent mono-

mial t over k and p ∈ k[t], return q ∈ k[t] and c ∈ k such that
p−Dq− cD(t2 +1)/(t2 +1) ∈ k and p−Dq does not have an elementary
integral over k(t) if Dc 6= 0. *)

(q, r)← PolynomialReduce(p, D) (∗ deg(r) ≤ 1 ∗)
α← Dt/(t2 + 1)

c← coefficient(r, t)/(2α)

return(q, c)

Example 5.10.1. Consider∫ (
tan(x)2 + x tan(x) + 1

)
dx

Let k = Q(x) with D = d/dx, and and let t be a monomial over k satisfying
Dt = 1 + t2, i.e. t = tan(x). Our integrand is then

p = t2 + xt + 1 ∈ k[t] .

We get

1. (q, r) = PolynomialReduce(t2 + xt + 1) = (t, xt)
2. α = Dt/(t2 + 1) = 1
3. c = x/2.

Since Dc = 1/2 6= 0, we conclude that∫ (
tan(x)2 + x tan(x) + 1

)
dx = tan(x) +

∫
x tan(x)dx

and the latter integral is not an elementary function.

For reduced elements in an hypertangent extension, the related problem
we need to solve over k is the coupled differential system problem: given
f1, f2, g1, g2 ∈ k, determine whether there are y1, y2 ∈ k such that(

Dy1

Dy2

)
+
(

f1 −f2

f2 f1

)(
y1

y2

)
=
(

g1

g2

)
and to compute y1 and y2 if they exist.

Theorem 5.10.3. Let k be a differential field not containing
√
−1, and t an

hypertangent over k. If we can solve coupled differential systems over k, and√
−1Dt/(t2 + 1) is not a logarithmic derivative of a k(

√
−1)-radical, then for

any p ∈ k〈t〉 we can either prove that p has no elementary integral over k(t),
or compute q ∈ k〈t〉 such that p−Dq ∈ k[t].
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Proof. Let α = Dt/(t2 + 1) ∈ k. Since α
√
−1 is not a logarithmic derivative

of a k(
√
−1)-radical, t is a monomial over k, Const(k(t)) = Const(k), and all

the special irreducible polynomials divide t2 + 1 in k[t] by Theorem 5.10.1.
Since

√
−1 /∈ k, t2 + 1 is irreducible over k, so S irr = S irr

1 = {t2 + 1}. Thus,
Theorem 5.7.1 says that if p has an elementary integral over k(t), then there
are v ∈ k〈t〉, c1, . . . , cn ∈ C, b1, . . . , bn ∈ k(c1, . . . , cn), and m1, . . . ,mn ∈ Z
such that

p = Dv +
n∑

i=1

ci
Dbi(t2 + 1)mi

bi(t2 + 1)mi

= Dv + 2tα
n∑

i=1

mici +
n∑

i=1

ci
Dbi

bi
= Dv + w (5.19)

where C = Const(k), and

w = 2tα
n∑

i=1

mici +
n∑

i=1

ci
Dbi

bi
∈ k(c1, . . . , cn)[t] .

K = k(c1, . . . , cn) is an algebraic extension of k, so t is transcendental over K.
Furthermore, α

√
−1 is not a logarithmic derivative of a K(

√
−1)-radical by

Lemma 3.4.8, so t is a monomial over K and Const(K(t)) = Const(K). We
proceed by induction on −νt2+1(p). If νt2+1(p) ≥ 0, then p−Dq ∈ k[t] where
q = 0 ∈ k〈t〉, so suppose that m = −νt2+1(p) > 0 and that the theorem holds
for all h ∈ k〈t〉 with −νt2+1(h) < m. Since p ∈ k〈t〉 and m = −νt2+1(p) > 0,
we have p = r/(t2+1)m where r ∈ k[t] and gcd(r, t2+1) = 1. Since νt2+1(p) =
−m < 0, (5.19) implies that νt2+1(Dv) = −m < 0, hence that νt2+1(v) = −m
by Theorem 4.4.2, since t2 +1 ∈ S1. Thus, v = s/(t2 +1)m where s ∈ k[t] and
gcd(s, t2 + 1) = 1. Dividing r and s by t2 + 1, we get r = r0(t2 + 1) + at + b
and s = s0(t2 + 1) + ct + d, where r0, s0 ∈ k[t], a, b, c, d ∈ k, at + b 6= 0, and
ct + d 6= 0. From (5.19), we get

at + b

(t2 + 1)m
+

r0

(t2 + 1)m−1
= D

(
ct + d

(t2 + 1)m
+

s0

(t2 + 1)m−1

)
+ w

=
tDc + cα(t2 + 1) + Dd

(t2 + 1)m
− 2mαt(t2 + 1)(ct + d)

(t2 + 1)m+1
+ Dw0 + w

=
tDc + Dd

(t2 + 1)m
− 2mα

ct2 + dt

(t2 + 1)m
+ cα

1
(t2 + 1)m−1

+ Dw0 + w

=
tDc + Dd

(t2 + 1)m
− 2mα

dt− c

(t2 + 1)m
+ cα

1− 2m

(t2 + 1)m−1
+ Dw0 + w

where w0 = s0/(t2 + 1)m−1. Since νt2+1(w0) > −m, νt2+1(Dw0) > −m by
Theorem 4.4.2, so, equating the coefficients of (t2 + 1)−m we get

at + b = (Dc− 2mαd)t + Dd + 2mαc
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which implies that(
Dc
Dd

)
+
(

0 −2mα
2mα 0

)(
c
d

)
=
(

a
b

)
. (5.20)

Since we can solve coupled differential systems over k and a, b, α ∈ k, we can
either prove that (5.20) has no solution c, d ∈ k, or find such a solution. If it has
no solution in k, then (5.19) has no solution, so p has no elementary integral
over k(t). If we have a solution c, d ∈ k, letting q0 = (ct+ d)/(t2 +1)m ∈ k〈t〉,
we get

p−Dq0 =
u

(t2 + 1)m−1

for some u ∈ k[t], so νt2+1(p−Dq0) > −m. By induction we can either prove
that p − Dq0 has no elementary integral over k(t), in which case p has no
elementary integral over k(t), or we get q1 ∈ k〈t〉 such that p−Dq0−Dq1 ∈ k[t],
which implies that p−Dq ∈ k[t] where q = q0 + q1. ut

IntegrateHypertangentReduced(p, D)
(* Integration of hypertangent reduced elements *)

(* Given a differential field k such that
√
−1 /∈ k, a hypertangent mono-

mial t over k and p ∈ k〈t〉, return q ∈ k〈t〉 and a Boolean β ∈ {0, 1} such
that p−Dq ∈ k[t] if β = 1, or p−Dq does not have an elementary integral
over k(t) if β = 0. *)

m← −νt2+1(p)

if m ≤ 0 then return(0, 1)

h← (t2 + 1)mp (∗ h ∈ k[t] ∗)
(q, r)← PolyDivide(h, t2 + 1) (∗ h = (t2 + 1)q + r, deg(r) ≤ 1 ∗)
a← coefficient(r, t), b← r − at (∗ r = at + b ∗)
(* CoupledDESystem will be given in Chap. 8 *)

(c, d)← CoupledDESystem(0, 2mDt/(t2 + 1), a, b)
(∗ Dc− 2mDt/(t2 + 1)d = a, Dd + 2mDt/(t2 + 1)c = b ∗)
if (c, d) = “no solution” then return(0, 0)

q0 ← (ct + d)/(t2 + 1)m

(q, β)← IntegrateHypertangentReduced(p−Dq0, D)

return(q + q0, β)

Example 5.10.2. Consider ∫
sin(x)

x
dx .

Let k = Q(x) with D = d/dx, and and let t be a monomial over k satisfying
Dt = (1 + t2)/2, i.e. t = tan(x/2). Using the classical half-angle formula, our
integrand is then
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p =
sin(x)

x
=

2 tan(x/2)
x(tan(x/2)2 + 1)

=
2t/x

t2 + 1
∈ k〈t〉 .

We get Dt/(t2 + 1) = 1/2 and

1. m = −νt2+1(p) = 1
2. h = p(t2 + 1) = 2t/x
3. (q, r) = PolyDivide(2t/x, t2 + 1) = (0, 2t/x), so (a, b) = (2/x, 0)
4. Since (

Dc
Dd

)
+
(

0 −1
1 0

)(
c
d

)
=
(

2/x
0

)
has no solution in Q(x), CoupledDESystem(0, 1, 2/x, 0) returns “no
solution”.

Hence, ∫
sin(x)

x
dx

is not an elementary function.

Example 5.10.3. Consider∫
tan(x)5 + tan(x)3 + x2 tan(x) + 1

(tan(x)2 + 1)3
dx .

Let k = Q(x) with D = d/dx, and and let t be a monomial over k satisfying
Dt = 1 + t2, i.e. t = tan(x). Our integrand is then

p =
t5 + t3 + x2t + 1

(t2 + 1)3
∈ k〈t〉 .

We get Dt/(t2 + 1) = 1 and

1. m = −νt2+1(p) = 3
2. h = p(t2 + 1)3 = t5 + t3 + x2t + 1
3. (q, r) = PolyDivide(h, t2 + 1) = (t3, x2t + 1), so (a, b) = (x2, 1)
4. Since (

Dc
Dd

)
+
(

0 −6
6 0

)(
c
d

)
=
(

x2

1

)
has the solution c = x/18 + 1/6 and d = 1/108− x2/6 in Q(x),
(c, d) = CoupledDESystem(0, 6, x2, 1) = (x/18 + 1/6, 1/108− x2/6).

5.

q0 =
ct + d

(t2 + 1)3
=

(1 + x/3) t−
(
x2 − 1/18

)
6 (t2 + 1)3

,

p−Dq0 =
t3 + 5x/18 + 15/18

(t2 + 1)2
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6. Recursively calling (q, β) = IntegrateHypertangentReduced(p −
Dq0), we get β = 1 and

q =
5 (1 + x/3) t + 77/12

24 (t2 + 1)2
+

5 (1 + x/3) t− 43/6
16 (t2 + 1)

7.
p−D(q + q0) =

5
16

(
1 +

x

3

)
Hence,∫

tan(x)5 + tan(x)3 + x2 tan(x) + 1
(tan(x)2 + 1)3

dx =

(1 + x/3) tan(x)−
(
x2 − 1/18

)
6 (tan(x)2 + 1)3

+
5 (1 + x/3) tan(x) + 77/12

24 (tan(x)2 + 1)2

+
5 (1 + x/3) tan(x)− 43/6

16 (tan(x)2 + 1)
+

5
16

∫ (
1 +

x

3

)
dx

and the remaining integral is of course x + x2/6.

Putting all the pieces together, we get an algorithm for integrating ele-
ments of k(t).

Theorem 5.10.4. Let k be a differential field not containing
√
−1, and t an

hypertangent over k. If we can solve coupled differential systems over k, and√
−1Dt/(t2 + 1) is not a logarithmic derivative of a k(

√
−1)-radical, then for

any f ∈ k(t) we can either prove that f has no elementary integral over k(t),
or compute an elementary extension E of k(t) and g ∈ E such that f−Dg ∈ k.

Proof. Suppose that
√
−1Dt/(t2 + 1) is not a logarithmic derivative of a

k(
√
−1)-radical, then t is a monomial over k and Const(k(t)) = Const(k)

by Theorem 5.10.1. Let f ∈ k(t). By Theorem 5.3.1, we can compute
g1, h, r ∈ k(t) such that f = Dg1 +h+r, h is simple and r is reduced. From h,
which is simple, we compute g2 ∈ k(t) given by (5.8) in Theorem 5.6.1. Note
that g0 = g1 +

∫
g2 lies in some elementary extension of k(t). Let p = h− g2

and q = p + r, then f = Dg0 + q so f has an elementary integral over k(t)
if and only if q has one. If p /∈ k[t], then p + r does not have an elementary
integral over k(t) by Theorem 5.6.1, so f does not have an elementary integral
over k(t). Suppose now that p ∈ k[t]. Then p ∈ k〈t〉 so q ∈ k〈t〉. By Theo-
rem 5.10.3 we can either prove that q has no elementary integral over k(t), in
which case f has no elementary integral over k(t), or compute s ∈ k〈t〉 such
that u = q−Ds ∈ k[t], in which case by Theorem 5.10.2, we compute v ∈ k[t]
and c ∈ Const(k) such that u − Dv − cD(t2 + 1)/(t2 + 1) ∈ k. If Dc 6= 0,
then u, and hence f , have no elementary integral over k(t), otherwise Dc = 0
so f − Dg ∈ k where g = g0 + s + v + c

∫
D(t2 + 1)/(t2 + 1) lies in some

elementary extension of k(t). ut
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IntegrateHypertangent(f, D) (* Integration of hypertangent functions *)

(* Given a differential field k such that
√
−1 /∈ k, a hypertangent mono-

mial t over k and f ∈ k(t), return g elementary over k(t) and a Boolean
β ∈ {0, 1} such that f − Dg ∈ k if β = 1, or f − Dg does not have an
elementary integral over k(t) if β = 0. *)

(g1, h, r)← HermiteReduce(f, D)

(g2, β)← ResidueReduce(h, D)

if β = 0 then return(g1 + g2, 0)

p← h−Dg2 + r

(q1, β)← IntegrateHypertangentReduced(p, D)

if β = 0 then return(g1 + g2 + q1, 0)

(q2, c)← IntegrateHypertangentPolynomial(p−Dq1, D)

if Dc = 0 then return(g1 + g2 + q1 + q2 + c log(t2 + 1), 1)
else return(g1 + g2 + q1 + q2, 0)

5.11 The Nonlinear Case with no Specials

In the case of nonlinear monomials over a differential field k, we have seen
that we can reduce the problem to integrating reduced elements of the form
p + a/d where p, a ∈ k[t], d ∈ S \ {0}, deg(p) < δ(t) and deg(a) < deg(d).
Furthermore, Theorem 5.7.2 provides a criterion for nonintegrability, and if an
element of S\k is known, allows us to reduce the problem to deg(p) < δ(t)−1.
We address in this section the case S = k, i.e. S irr = ∅, which corresponds
to interesting classes of functions as will be illustrated in the examples. Note
that if S irr = ∅, then k〈t〉 = k[t], so as a result of the polynomial reduction
(Sect. 5.4), we consider integrands of the form p ∈ k[t] with deg(p) < δ(t). It
turns out that if such elements are integrable, then they must be in k.

Corollary 5.11.1. Suppose that t is a nonlinear monomial and that S irr = ∅.
Let p ∈ k[t] be such that deg(p) < δ(t). If p has an elementary integral over
k(t), then p ∈ k.

Proof. Let C = Const(k(t)), p ∈ k[t] be such that deg(p) < δ(t), and suppose
that p has an elementary integral over k(t). By Theorem 5.7.1 there are v ∈
k[t], c1, . . . , cn ∈ C and u1, . . . , un ∈ Sk(c1,...,cn)[t]:k(c1,...,cn) such that p =
Dv + g where g =

∑n
i=1 ciD(ui)/ui. Note that g = p − Dv ∈ k[t]. Since

S irr
k[t]:k = ∅, it follows that S irr

k(c1,...,cn)[t]:k(c1,...,cn) = ∅ (Exercise 3.5), hence
that Sk(c1,...,cn)[t]:k(c1,...,cn) = k(c1, . . . , cn). This implies that g ∈ k(c1, . . . , cn).
Since g ∈ k[t], we get that g ∈ k. Suppose that deg(v) ≥ 1, then,

deg(p) = deg(Dv + g) = deg(Dv) = deg(v) + δ(t)− 1 ≥ δ(t)

in contradiction with deg(p) < δ(t). Hence, v ∈ k, so p = Dv + g ∈ k. ut

This provides a complete algorithm for integrating elements of k(t).
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Theorem 5.11.1. Let k be a differential field and t be a nonlinear monomial
over k be such that S irr = ∅. Then, for any f ∈ k(t) we can either prove that
f has no elementary integral over k(t), or compute an elementary extension
E of k(t) and g ∈ E such that f −Dg ∈ k.

Proof. Suppose that t is a nonlinear monomial over k and that S irr = ∅. Then,
Const(k(t)) = Const(k) by Lemma 3.4.5. Let f ∈ k(t). By Theorem 5.3.1, we
can compute g1, h, r ∈ k(t) such that f = Dg1 + h + r, h is simple and r
is reduced. From h, which is simple, we compute g2 ∈ k(t) given by (5.8) in
Theorem 5.6.1. Note that g0 = g1 +

∫
g2 lies in some elementary extension

of k(t). Let p = h − g2 and q = p + r, then f = Dg0 + q so f has an
elementary integral over k(t) if and only if q has one. If p /∈ k[t], then p + r
does not have an elementary integral over k(t) by Theorem 5.6.1, so f does
not have an elementary integral over k(t). Suppose now that p ∈ k[t]. We
have k〈t〉 = k[t] by (5.1), so r ∈ k[t], hence q ∈ k[t]. By Theorem 5.4.1 we
compute q1, q2 ∈ k[t] such that q = Dq1 +q2 and deg(q2) < δ(t). We now have
f−Dg = q2 where g = g0+q1. If q2 ∈ k, then the theorem is proven, otherwise
0 < deg(q2) < δ(t), so q2, and therefore f , have no elementary integral over k
by Corollary 5.11.1. ut

IntegrateNonLinearNoSpecial(f, D)
(* Integration of nonlinear monomials with no specials *)

(* Given a is a nonlinear monomial t over k with S irr = ∅, and f ∈ k(t),
return g elementary over k(t) and a Boolean β ∈ {0, 1} such that f−Dg ∈
k if β = 1, or f − Dg does not have an elementary integral over k(t) if
β = 0. *)

(g1, h, r)← HermiteReduce(f, D)

(g2, β)← ResidueReduce(h, D)

if β = 0 then return(g1 + g2, 0)

(q1, q2)← PolynomialReduce(h−Dg2 + r, D)

if q2 ∈ k then β ← 1 else β ← 0

return(g1 + g2 + q1, β)

Example 5.11.1. Let ν ∈ Z be any integer and consider∫
Jν+1(x)
Jν(x)

dx

where Jν(x) is the Bessel function of the first kind of order ν. From

dJν(x)
dx

= −Jν+1(x) +
ν

x
Jν(x)
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we get∫
Jν+1(x)
Jν(x)

dx =
∫

ν
dx

x
−
∫

dJν(x)/dx

Jν(x)
dx = ν log(x)−

∫
φν(x)dx

where φν(x) is the logarithmic derivative of Jν(x). Since Jν(x) is a solution
of the Bessel equation

y′′(x) +
1
x

y′(x) +
(

1− ν2

x2

)
y(x) = 0 (5.21)

it follows that φν(x) is a solution of the Riccati equation

y′(x) + y(x)2 +
1
x

y(x) +
(

1− ν2

x2

)
= 0 . (5.22)

Let k = Q(x) with D = d/dx, and let t be a monomial over k satisfying
Dt = −t2− t/x− (1−ν2/x2), i.e. t = φν(x). It can be proven that S irr = ∅ in
this extension4 so Corollary 5.11.1 implies that t has no elementary integral
over k, hence that ∫

Jν+1(x)
Jν(x)

dx = ν log(x)−
∫

φν(x)dx

where the remaining integral is not elementary over Q(x, φν(x)).

Example 5.11.2. Let ν ∈ C be any complex number and consider∫
x2φ5

ν + xφ4
ν − ν2φ3

ν − x(x2 + 1)φ2
ν − (x2 − ν2)φν − x5/4

x2φ4
ν + x2(x2 + 2)φ2

ν + x2 + x4 + x6/4
dx

where φν(x) is the logarithmic derivative of Jν(x), the Bessel function of the
first kind of order ν. Let k = Q(x) with D = d/dx, and let t be a monomial
over k satisfying Dt = −t2 − t/x− (1− ν2/x2), i.e. t = φν(x). Our integrand
is then

f =
x2t5 + xt4 − ν2t3 − x(x2 + 1)t2 − (x2 − ν2)t− x5/4

x2t4 + x2(x2 + 2)t2 + x2 + x4 + x6/4

and we get

1. Calling (g1, h, r) = HermiteReduce(f,D) we get

g1 = − 1 + x2/4
t2 + 1 + x2/2

, h = − (ν2 + x4/2)t + x3 + x

x2t2 + x2 + x4/2
, and r = t +

1
x

.

4 The fact that (5.21) has no solutions in quadratures for ν ∈ Z (its Galois group
is SL2(C)) implies that (5.22) has no algebraic function solution, hence no solution
in k. Theorem 3.4.3 then implies that S irr = ∅.
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2. Calling (g2, β) = ResidueReduce(h, D) we get β = 1 and

g2 = −1
2

log
(

t2 + 1 +
x2

2

)
.

3. We have h−Dg2 + r = 0, so (q1, q2) = (0, 0).

Hence f = Dg1 + Dg2, which means that∫
x2φ5

ν + xφ4
ν − ν2φ3

ν − x(x2 + 1)φ2
ν − (x2 − ν2)φν − x5/4

x2φ4
ν + x2(x2 + 2)φ2

ν + x2 + x4 + x6/4
dx =

− 1 + x2/4
φν(x)2 + 1 + x2/2

− 1
2

log
(
φν(x)2 + 1 + x2/2

)
.

Note that the above integral is valid regardless of whether S irr is empty.

The above examples used Bessel functions, but in fact the algorithm of
this section can be applied whenever the integrand can be expressed in terms
of the logarithmic derivative of a function defined by a second-order linear
ordinary differential equation. If the defining equation is known not to have
solutions in quadratures (for example for Airy functions), then S irr = ∅, as
explained in note 4 of this chapter.

5.12 In–Field Integration

We outline in this section minor variants of the integration algorithm that are
used for deciding whether an element of k(t) is either a

• derivative of an element of k(t),
• logarithmic derivative of an element of k(t),
• logarithmic derivative of a k(t)-radical.

As we have seen in Sect. 5.2, such procedures are needed when building the
tower of fields containing the integrand. Furthermore, they will be needed at
various points by the algorithms of the remaining chapters, in particular when
bounding orders and degrees.

Note that the structure Theorems of Chap. 9 provide efficient alternatives
to the use of modified integration algorithms, and in some cases the only
complete algorithms for recognizing logarithmic derivatives.

Recognizing Derivatives

The first problem is, given f ∈ k(t), to determine whether there exists u ∈ k(t)
such that Du = f , and to compute such an u if it exists. We first perform the
Hermite reduction on f , obtaining g ∈ k(t), a simple h ∈ k(t), and r ∈ k〈t〉
such that f = Dg + h + r. At that point, we can prove (see Exercise 4.1) that
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if f = Du for some u ∈ k(t), then h ∈ k[t], so we are left with integrating
h+r which is reduced. The algorithms of Sects. 5.7 to 5.11 can then be applied
(with a minor modification in the nonlinear case, to prevent introducing a new
logarithm), either proving that there is no such u, or reducing the problem to
deciding whether an element a ∈ k has an integral in k(t).

If t is a primitive over k, then it follows from Theorem 4.4.2 and
Lemma 5.1.2 that if a has an integral in k(t), then a = Dv + cDt where
v ∈ k and c ∈ Const(k), and we are reduced to a limited integration problem
in k. Otherwise, δ(t) ≥ 1, and it follows from Theorem 4.4.2 and Lemmas 3.4.2
and 5.1.2 that if a has an integral in k(t), then a = Dv where v ∈ k, and we
are reduced to a similar problem in k.

When f = Da/a for some a ∈ k(t)∗, then Corollary 9.3.1, 9.3.2 or 9.4.1 pro-
vide alternative algorithms: f = Du for u ∈ k(t) if and only if the linear equa-
tion (9.8), (9.12) or (9.21) has a solution in Q. Corollary 9.3.2 also provides an
alternative algorithm if f = Db/(b2 + 1) for some b ∈ k(t), i.e. f = arctan(b).

It is obvious that the solution u is not unique, but that if f = Du = Dv
for u, v ∈ k(t), then u− v ∈ Const(k(t)).

Recognizing Logarithmic Derivatives

The second problem is, given f ∈ k(t), to determine whether there exists a
nonzero u ∈ k(t) such that Du/u = f , and to compute such an u if it exists.
We can prove (see Exercise 4.2) that if f = Du/u for some nonzero u ∈ k(t),
then f is simple and that all the roots of the Rothstein–Trager resultant are
integers. In that case, the residue reduction produces

g =
∑

rs(α)=0

α
Dgα

gα
=

D
(∏

rs(α)=0 gα
α

)
∏

rs(α)=0 gα
α

=
Dv

v

where v ∈ k(t) since the α’s are all integers. Furthermore, Theorem 5.6.1
implies that if f = Du/u for u ∈ k(t), then f − g ∈ k[t], so we are left
with deciding whether an element p of k[t] is the logarithmic derivative of an
element of k(t). If p = Du/u for u ∈ k(t), then it follows from Exercise 4.2
that deg(p) < max(1, δ(t)) and from Corollary 4.4.2 that u = pe1

1 . . . pen
n where

pi ∈ S and ei ∈ Z.
If t is a primitive over k, then both p and u must be in k since S = k, so

we are reduced to a similar problem in k.
If t is an hyperexponential over k, then p ∈ k and u = vte for v ∈ k∗ and

e ∈ Z, since S irr = {t}. We are thus reduced to deciding whether p ∈ k can
be written as

p =
Dv

v
+ e

Dt

t

for v ∈ k∗ and e ∈ Z. This is a special case of the parametric logarithmic
derivative problem, a variant of the limited integration problem, which is
discussed in Chap. 7.



5.12 In–Field Integration 177

If t is a hypertangent over k and
√
−1 /∈ k, then p = a + bt for a, b ∈ k,

and u = v(t2 + 1)e for v ∈ k∗ and e ∈ Z, since S irr = {t2 + 1}. We are thus
reduced to deciding whether a + bt can be written as

a + bt =
Dv

v
+ e

D(t2 + 1)
t2 + 1

=
Dv

v
+ 2e

Dt

t2 + 1
t

which is equivalent to

a =
Dv

v
and

b

2
t2 + 1
Dt

∈ Z .

The second condition can be immediately verified, while the first is the prob-
lem of deciding whether an element of k is the logarithmic derivative of an
element of k.

When f = Db for some b ∈ k(t), then Corollary 9.3.1, 9.3.2 or 9.4.1 provide
alternative algorithms: f is the logarithmic derivative of a k(t)-radical if and
only if the linear equation (9.9), (9.13) or (9.22) has a solution in Q.

The solution u is not unique, but if f = Du/u = Dv/v for u, v ∈ k(t)\{0},
then u/v ∈ Const(k(t)) (this is the case n = m = 1 of Lemma 5.12.1 below).

Recognizing Logarithmic Derivatives of k(t)-radicals

The third problem is, given f ∈ k(t), to determine whether there exist a
nonzero n ∈ Z and a nonzero u ∈ k(t) such that Du/u = nf , and to compute
such an n and u if they exist. We can prove (see Exercise 4.2) that if nf =
Du/u for some nonzero n ∈ Z and u ∈ k(t), then f is simple and that all the
roots of the Rothstein–Trager resultant are rational numbers. In that case, let
m be a common denominator for the roots of the Rothstein–Trager resultant.
Then, the residue reduction produces

g =
∑

rs(α)=0

α
Dgα

gα
=

1
m

D
(∏

rs(α)=0 gmα
α

)
∏

rs(α)=0 gmα
α

=
1
m

Dv

v

where v ∈ k(t) since the mα is an integer for each α. Furthermore, The-
orem 5.6.1 implies that if f = Du/(nu) for n ∈ Z and u ∈ k(t), then
f − Dg ∈ k[t], so we are left with deciding whether an element p of k[t]
is the logarithmic derivative of a k(t)-radical. If p = Du/(nu) for n ∈ Z and
u ∈ k(t), then it follows from Exercise 4.2 that deg(p) < max(1, δ(t)) and
from Corollary 4.4.2 that u = pe1

1 . . . pes
s where pi ∈ S and ei ∈ Z.

If t is a primitive over k, then both p and u must be in k since S = k, so
we are reduced to a similar problem in k.

If t is an hyperexponential over k, then p ∈ k and u = vte for v ∈ k∗ and
e ∈ Z, since S irr = {t}. We are thus reduced to deciding whether p ∈ k can
be written as
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p =
1
n

Dv

v
+

e

n

Dt

t

for v ∈ k∗ and n, e ∈ Z. This is the parametric logarithmic derivative problem,
a variant of the limited integration problem, which is discussed in Chap. 7.

If t is a hypertangent over k and
√
−1 /∈ k, then p = a + bt for a, b ∈ k,

and u = v(t2 + 1)e for v ∈ k∗ and e ∈ Z, since S irr = {t2 + 1}. We are thus
reduced to deciding whether a + bt can be written as

a + bt =
1
n

Dv

v
+

e

n

D(t2 + 1)
t2 + 1

=
1
n

Dv

v
+

2e

n

Dt

t2 + 1
t

which is equivalent to

na =
Dv

v
and

b

2
t2 + 1
Dt

∈ Q .

The second condition can be immediately verified, while the first is the prob-
lem of deciding whether an element of k is the logarithmic derivative of a
k-radical.

When f = Db for some b ∈ k(t), then Corollary 9.3.1, 9.3.2 or 9.4.1 provide
alternative algorithms: f is the logarithmic derivative of a k(t)-radical if and
only if the linear equation (9.9), (9.13) or (9.22) has a solution in Q.

The solution (n, u) is not unique, but any two solutions are related by the
following lemma.

Lemma 5.12.1. Let (K, D) be a differential field and u, v ∈ K∗. If

1
n

Du

u
=

1
m

Dv

v

for nonzero n, m ∈ Z, then

ulcm(n,m)/n

vlcm(n,m)/m
∈ Const(K) .

Proof. Let c = ulcm(n,m)/n/vlcm(n,m)/m. Then,

Dc

c
=

lcm(n, m)
n

Du

u
− lcm(n, m)

m

Dv

v
= lcm(n, m)

(
1
n

Du

u
− 1

m

Dv

v

)
= 0

so c ∈ Const(K). ut

Exercises

Exercise 5.1. Let k be a differential field of characteristic 0, t a monomial
over k, and d ∈ k[t] \ {0}. Let d = d1d

2
2 · · · dn

n be a squarefree factorization of
d. Show that µ(a/d) ≤ n for any a ∈ k[t], and that µ(a/d) = n if and only if
gcd(a, d) = 1.
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Exercise 5.2. Rewrite the proof of Theorem 5.3.1 using Mack’s linear version
of the Hermite reduction instead of the quadratic version.

Exercise 5.3. Let k be a differential field of characteristic 0, t a monomial
over k, and f ∈ k(t)∗. Show that using only the extended Euclidean algorithm
in k[t], one can find h0, h1, . . . , hq and r ∈ k(t) such that q ≤ µ(f), each hi is
simple, r is reduced, and f = r + h0 + Dh1 + D2h2 + · · ·+ Dqhq.

Exercise 5.4 (In-field integration). Let k be a differential field of char-
acteristic 0 and t be a monomial over k, Write an algorithm that, given any
f ∈ k(t), returns either g ∈ k(t) such that Dg = f , or “no solution” if f has
no antiderivative in k(t) (see Exercise 4.1).

Exercise 5.5 (Generalizations of Liouville’s Theorem). Let k be a dif-
ferential field of characteristic 0, C = Const(k), f ∈ k(t), t be a monomial
over k, and suppose that there exist an elementary extension E of k(t) and
g ∈ E such that Dg = f .

a) Prove that

f = Dv +
n∑

i=1

ci
Dui

ui
(5.23)

has a solution v ∈ k〈t〉, c1, . . . , cn ∈ C, and u1, . . . , un ∈ SCk[t]:Ck \ {0}.
b) Prove that if t is a nonlinear monomial over k, then (5.23) has a solution

v ∈ k[t], c1, . . . , cn ∈ C, and u1, . . . , un ∈ SCk[t]:Ck \ {0}.
c) Prove that if S irr

1 = S irr, then (5.23) has a solution v ∈ k[t], c1, . . . , cn ∈ C,
and u1, . . . , un ∈ SCk[t]:Ck \ {0}.

d) Prove that if t is a nonlinear monomial over k and S irr
1 = S irr, then f has

an elementary integral over k.
e) Prove that if t is an hyperexponential monomial over k, then f has an

elementary integral over k.
f) Prove that if t is a primitive monomial over k, then (5.23) has a solution

v = at + b, c1, . . . , cn ∈ C, and u1, . . . , un ∈ Ck∗, where a ∈ C and b ∈ k.

Exercise 5.6. Decide which of the following integrals are elementary func-
tions, and compute those that are elementary. Since the recursive problems in-
volving the procedures LimitedIntegrate, RischDE and CoupledDESys-
tem are trivial in these exercises, perform the portions allocated to those
procedures by elementary methods.

a) ∫
tan(ax)5dx, a ∈ C∗ .

b) ∫
xnexdx, n ∈ Z, n 6= 0 .
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c) ∫
log(x + a)

x + b
dx, a, b ∈ C, a 6= b .

d) ∫
(x + 1)ex2

+ 1(
ex2
)2 − 1

dx

e) ∫ (
1 +

x2−n

2− n
+

n− 1
xn

)
exdx, n ∈ Z, n 6= 2 .

f) ∫
2 + tan(x)2

1 + (tan(x) + x)2
dx

g) ∫
(3x− 2) log(x)3 + (x− 1) log(x)2 + 2x(x− 2) log(x) + x2

x log(x)6 − 4x2 log(x)5 + 6x3 log(x)4 − 4x4 log(x)3 + x5 log(x)2
dx
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