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Integration of Transcendental Functions

Having developped the required machinery in the previous chapters, we can
now describe the integration algorithm. In this chapter, we define formally
the integration problem in an algebraic setting, prove the main theorem of
symbolic integration (Liouville’s Theorem), and describe the main part of the
integration algorithm.

From now on, and without further mention, all the fields in this book are
of characteristic 0. We also use the convention throughout that deg(0) = —co.

5.1 Elementary and Liouvillian Extensions

We give in this section precise definitions of elementary functions, and of the
problem of integrating functions in finite terms. Throughout this section, let
k be a differential field and K a differential extension of k.

Definition 5.1.1. ¢t € K is a primitive over k if Dt € k. t € K* is an
hyperexponential over k if Dt/t € k. t € K is Liouvillian over k if t is either
algebraic, or a primitive or an hyperexponential over k. K is a Liouvillian
extension of k if there are tq,...,t, in K such that K = k(t1,...,t,) and t;
is Liouvillian over k(ty,...,t;—1) fori in {1,...,n}.

We write ¢t = [a when ¢ is a primitive over k such that Dt = a, and
t = el ® when t is an hyperexponential over k such that Dt/t = a. Given that
t is Liouvillian over k, we need to know whether ¢ is algebraic or transcendental
over k. We show that there are simple necessary and sufficient conditions that
guarantee that a primitive or hyperexponential is in fact a monomial over k.

Lemma 5.1.1. If t is a primitive over k and Dt is not the derivative of an
element of k, then Dt is not the derivative of an element of any algebraic
extension of k.
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Proof. Let t be a primitive over k, a = Dt, and suppose that a is not the
derivative of an element of k. Let E be any algebraic extension of k, and
suppose that Da = a for some a € E. Let T'r be the trace map from k(«a) to
k,n=[k(a): k], and b = Tr(a)/n € k. By Theorem 3.2.4,

Db = %D(Tr(a)) _ %Tr(Da) _ %Tr(a) _q

in contradiction with Du # a for any u € k. O

Theorem 5.1.1. If t is a primitive over k and Dt is not the derivative of an
element of k, then t is a monomial over k, Const(k(t)) = Const(k), and S = k
(i.e. S = ST = (). Conversely, if t is transcendental and primitive over k,
and Const(k(t)) = Const(k), then Dt is not the derivative of an element of k.

Proof. Let t be a primitive over k, a = Dt, k be the algebraic closure of k,
and suppose that a is not the derivative of an element of k. Then, Da # a
for any o € k by Lemma 5.1.1, so ¢t must be transcendental over k, hence it
is a monomial over k. Suppose that p € S\ k. Let then 8 € k be a root of
p. Then, DG = Dt = a by Theorem 3.4.3, in contradiction with Do # a for
any a € k, so p € k. Conversely, k C S by definition. Let ¢ € Const(k(t)).
By Lemma 3.4.5, both the numerator and denominator of ¢ must be special,
hence in k, so ¢ € k, which implies that Const(k(t)) C Const(k). The reverse
inclusion is given by Lemma 3.3.1, so Const(k(t)) = Const(k).

Conversely, let ¢t be a transcendental primitive over k& and suppose that
Const(k(t)) = Const(k). If there exists b € k such that Dt = Db, then ¢ =
t —b € Const(k(t)), so ¢ € k in contradiction with ¢ transcendental over k.
Hence Dt is not the derivative of an element in k. O

Theorem 5.1.2. If t is an hyperexponential over k and Dt/t is not a loga-
rithmic derivative of a k-radical, then t is a monomial over k, Const(k(t)) =
Const(k), and 8™ = S = {t}. Conversely, if t is transcendental and hyper-
exponential over k, and Const(k(t)) = Const(k), then Dt/t is not a logarith-
mic deriwative of a k-radical.

Proof. Let t be an hyperexponential over k, a = Dt/t, k be the algebraic
closure of k, and suppose that a is not a logarithmic derivative of a k-radical.
We have Dt/t = a and a is not a logarithmic derivative of a k-radical by
Lemma 3.4.8, so t must be transcendental over k, hence it is a monomial over
k since Dt = at.

Let p = bt™ for b € k and m > 0. Then, Dp = (Db + mab)t™, so p | Dp,
which means that p € S. Let now p € S'™ and suppose that p has a nonzero
root 3 € I Then, D3/ = Dt/t = a by Theorem 3.4.3, in contradiction with
Da/a # a for any a € %" Hence the only root of p in k is 0, so p = t.

We have Si™ C S by definition. Conversely, let p € S™. Then p = t,
so the only root of p in k is 8 = 0. We have pg = py = Dt/t = a, which
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is not a logarithmic derivative of a k-radical, so p € Si", which implies that
Sirr — Slrr'

Let ¢ € Const(k(t)). By Lemma 3.4.5, both the numerator and denomina-
tor of ¢ must be special, hence ¢ = bt? for b € k and q € Z. Suppose that b # 0
and g # 0. Then, 0 = Dc = (Db + gab)t?, so Db/b = qa, which implies that a
is a logarithmic derivative of a k-radical, in contradiction with our hypothesis.
Hence, b =0 or ¢ = 0, so ¢ € k, which implies that Const(k(t)) C Const(k).
The reverse inclusion is given by Lemma 3.3.1, so Const(k(t)) = Const(k).

Conversely, let t be a transcendental hyperexponential over k& and suppose
that Const(k(t)) = Const(k). If there exist b € k* and an integer n # 0 such
that nDt/t = Db/b, then ¢ = t"/b € Const(k(t)), so ¢ € k in contradiction
with ¢ transcendental over k. Hence Dt/t is not a logarithmic derivative of a
k-radical. O

In practice, we only consider primitives and hyperexponentials that sat-
isfy the hypotheses of Theorems 5.1.1 or 5.1.2. As we have seen, such prim-
itives and hyperexponentials are monomials that satisfy the extra condition
Const(k(t)) = Const(k). Those monomials are traditionally called Liouvillian
monomials in the literature.

Definition 5.1.2. t € K is a Liouvillian monomial over k if t is transcenden-
tal and Liowvillian over k and Const(k(t)) = Const(k).

One should be careful that our definition of monomial in Chap. 3 does not
require Const(k(t)) = Const(k), so it is possible for a monomial in the sense
of Chap. 3 to be Liouvillian over k& and yet not a Liouvillian monomial in
the sense of Definition 5.1.2 (for example log(2) over Q). Theorems 5.1.1
and 5.1.2 can be seen as necessary and sufficient conditions for a primitive or
hyperexponential to be a Liouvillian monomial. Furthermore, those theorems
describe all the special polynomials in such extensions, and they are all of the
first kind. We also have:

_ SRl if Dt € k,
H = {k[t,t‘l], if Dt/t € k. (5.1)

The fact that k and k(t) have the same field of constants allows us to refine
the relationship between the degree of a polynomial and its derivative in a
Liouvillian monomial extension, and to strenghten Theorem 4.4.4.

Lemma 5.1.2. Let t be a Liouvillian monomial over k, f € k(t) be such that
Df # 0, and write f = p/q where p,q € k[t] and q is monic. If voo(f) = 0,
then voo (D f) > 0. Otherwise, voo(f) # 0 and

Voo (f)s if Dt/t € k or D(le(p)) # 0,
Voo Df) = {uoo(f)—i-L if Dt € k and D(lc(;?)) =0.

Proof. Tf v (f) = 0, then voo(Df) > 0 by Theorem 4.4.4, so suppose from
now on that voo(f) # 0. Then, n — m # 0 where n = deg(p) and m = deg(q).
We have
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_ 4Dp —pDq

= =

hence voo (Df) = 2m — deg(¢Dp — pDq), so we need to compute deg(¢Dp —
pDq). Write p = bt" + r and ¢ = t™ + s where b € k* and r, s € k[t] satisfy
deg(r) < n and deg(s) < m. We treat the primitive and hyperexponential
cases separately.

Df

Primitive case: Suppose that Dt = a € k. Then,
Dp = (Db)t" + nabt" ' + Dr (5.2)

and
Dqg = mat™ ' + Ds

so deg(Dq) < m since deg(Ds) < m by Lemma 3.4.2.

Suppose first that Db # 0. Then, deg(Dp) = n since deg(Dr) < n by
Lemma 3.4.2; so deg(¢Dp) = m + n and deg(pDq) < m + n, which implies
that deg(¢Dp — pDq) = m + n, hence that

Voo(Df) =2m — (m+n)=m—n=vy(f).

Suppose now that Db = 0, and write r = ct"~! +u and s = dt™~! 4+ v, where
¢,d € k and u,v € k[t] satisfy deg(u) < n — 1 and deg(v) < m — 1. We have

qDp — pDq = (Dc + nab)t" ™™ 1 + (n — Dact™™ 2 4" Du
+(dt™ "t + v)Dp — b(Dd + ma)t"+tm 1
—(m — 1)abdt"™™ =2 — bt"Dv — (ct" ' +u)Dq
= (Dc —bDd + (n — m)ab) t" ™!
+((n—1)e— (m — 1)bd) at™+*™ 2
+(dt™ Y + v)Dp + t™Du — bt"Dv — (ct" "' +u)Dq.

Since n—m # 0 and b # 0, c—bd+(n—m)bt ¢ k,so D (¢ — bd + (n —m)bt) # 0
since Const(k(t)) = Const(k). But

D (c—bd+ (n—m)bt) = Dc—bDd + (n — m)ab

since b € Const(k), hence Dc — bDd + (n —m)ab # 0. In addition, (5.2) and
Db = 0 imply that deg(Dp) < n, and Lemma 3.4.2 imply that deg(Du) < n—1
and deg(Dv) < m—1. Hence, (dt™ ' +4v)Dp, t™ Du, bt" Dv and (ct" ! 4u)Dq
all have degrees strictly smaller than n+m — 1, which implies that deg(¢Dp —
pDq) = n+m — 1, hence that voo(Df) =2m - (n4+m—-1)=m—-n+1=
Voo (f) + 1.

Hyperexponential case: Suppose that Dt/t = a € k. Then,

qDp — pDq =(Db + nab)t"*™ + t™ Dr + sDp — bmat™t™ — bt" Ds — rDgq
= (Db+ (n —m)ab) "™ + (sDp — rDq + t" Dr — bt"Ds) .
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Since n —m # 0 and b # 0, bt"~™ ¢ k, so D (bt"~™) # 0 since Const(k(t)) =
Const(k). But D (bt"~™) = (Db+ (n — m)ab)t"~™, so Db+ (n —m)ab # 0.
In addition, deg(Dp) < n, deg(Dq) < m, deg(Dr) < n and deg(Ds) < m
by Lemma 3.4.2, so sDp, rDq, t""Dr and bt"Ds all have degrees strictly
smaller than n + m, which implies that deg(¢Dp — pDq) = n + m, hence that
Voo (Df) =2m — (n+m) =m —n = v(f). |

Note that when applied to polynomials p € k[t] when ¢ is a Liouvillian
monomial over k, Lemma 5.1.2 implies that

[ deg(p), if Dt/t € k or D(lc(p)) #0,
deg(Dp) = {de§<§> L Dtk and D(c(p)) = 0

whenever Dp # 0, and we often use it in this context in the sequel.

We now introduce the particular Liouvillian extensions that define the
integration in finite terms problem, namely the elementary extensions.

Definition 5.1.3. t € K is a logarithm over k if Dt = Db/b for some b € k*.
t € K* is an exponential over k if Dt/t = Db for some b € k. t € K s
elementary over k if t is either algebraic, or a logarithm or an exponential
over k. t € K is an elementary monomial over k if t is transcendental and
elementary over k, and Const(k(t)) = Const(k).

We write ¢t = log(b) when t is a logarithm over k such that Dt = Db/b, and
t = e® when t is an exponential over k such that Dt/t = b. Since logarithms
are primitives and exponentials are hyperexponentials, elementary monomials
are Liouvillian monomials and all the results of this section apply to them.

Definition 5.1.4. K is an elementary extension of k if there are ty,...,t, in
K such that K = k(ty,...,t,) and t; is elementary over k(t1,...,t;—1) fori in
{1,...,n}. We say that f € k has an elementary integral over k if there exists
an elementary extension E of k and g € E such that Dg = f. An elementary
function is any element of any elementary extension of (C(x),d/dx).

We can now define precisely the problem of integration in closed form: given
a differential field £ and an integrand f € k, to decide in a finite number of
steps whether f has an elementary integral over k, and to compute one if it
has any. Note that there is a difference between having an elementary integral
over k and having an elementary antiderivative: consider k = C(z, t1,t2) where
x,t1,ty are indeterminates over C, with the derivation D given by Dx = 1,
Dty =ty and Dty =ty /x (i.e. t1 = €® and t2 = Ei(z)). Then,

TR : 2
/e Ei(z) do — Ei(z) ck
x 2

so e”Ei(x)/x has an elementary integral over k even though its integral is not
an elementary function. The two notions coincide only when k itself is a field
of elementary functions.
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Remark that the elementary functions of Definition 5.1.4 include all the
usual elementary functions of analysis, since the trigonometric functions
and their inverses can be rewritten in terms of complex exponential and
logarithms by the usual formulas derived from Euler’s formula efV—1 =
cos(f) + sin(f)yv/—1. Those transformations have the computational incon-
venience that they introduce /—1, and it turns out that they can be avoided
when integrating real trigonometric functions (Sections 5.8 and 5.10).

5.2 Outline and Scope of the Integration Algorithm

We outline in this section the integration algorithm so that the structure of the
remaining sections and chapters will be easier to follow. Given an integrand
f(z)dz, we first need to construct a differential field containing f, and the
integration algorithm we describe requires that f be contained in a differential
field of the form K = C(t1,ta,...,t,) where C = Const(K), Dt; =1 (i.e. t; =
x is the integration variable), and each ¢; is a monomial over C(¢1,...,t;—1).
If the formula for f(z) contains only Liouvillian operations, this requirement
can be checked by integrating recursively the argument of each primitive or
hyperexponential before adjoining it!, and verifying using Theorem 5.1.1 or
Theorem 5.1.2 that it is a Liouvillian monomial. Another alternative, which
is in general more efficient, is to apply the algorithms that are derived from
the various structure theorems, whenever they are applicable (Chap. 9).

Ezample 5.2.1. Consider
/log(x) log(x + 1)log(22% + 2z)dx .

We construct the differential field K = Q(z, t1, ta,t3) with

1 1 20+ 1
Dx =1, Dty =-— Dty = d Dizg=——.
v ’ e 2T st an 3T 2 g

As we construct K, we integrate at each step and make the following verifi-
cations:

[ dx ¢ Q, so z is a Liouvillian monomial over Q;
[ dz/z ¢ Q(x), so t; is a Liouvillian monomial over Q(z);
Jdz/(x+1) ¢ Q(x,t1) so ty is a Liouvillian monomial over Q(z, t1);

2z +1
/$2—|—£de:t1 + to EQ($7t1,t2)

so t3 is not a Liouvillian monomial over Q(z,¢1,¢2), and K is isomorphic
as a differential field to Q(c)(z, t1,t2) where ¢ = t3 —t; — ta € Const(K).

! A simpler version of the integration algorithm can be used for those verifications,
see Sect. 5.12
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e Alternatively, applying the Risch structure Theorem (Corollary 9.3.1), we
find that the linear equation (9.8) for a = 222 + 22 becomes

r r4+2 20+ 1
1+ .

x  r4+1 224z

which has the rational solution r; = ro = 1. This implies that Dtz is the
derivative of an element of K and that ¢ = t3 — t; — to € Const(K).

Ezample 5.2.2. Consider

/(621' +em+10g(m)/2> .

We construct the differential field K = Q(z, t1, ta,t3) with
1 1
Dz = 1, Dt1 = 2t1, DtQ = — and Dt3 =11 + — t3 .
T 2z

As we construct K we integrate at each step and make the following verifica-
tions:

[ dx ¢ Q, so z is a Liouvillian monomial over Q;

[ 2dz # log(v)/n for any v € Q(x) and n € Z, so 2 is not the logarithmic
derivative of a Q(z)-radical, which implies that ¢; is a Liouvillian monomial
over Q(z);

o [dx/x ¢ Q(z,t1), so ty is a Liouvillian monomial over Q(z, t1);

1 1

so 1+ 1/(2z) is the logarithmic derivative of a Q(z,t1,ts)-radical, so t3
is not a Liouvillian monomial over Q(x,t1,¢3), and K is isomorphic as a
differential field to Q (x,t1,t2, v/@l1).

e Alternatively, applying the Risch structure Theorem (Corollary 9.3.1), we
find that the linear equation (9.9) for b = x + t2/2 becomes

1
2 op =14 —
T 2z
which has the rational solution r; = ro = 1/2. This implies that Dtz /t3
is the logarithmic derivative of a K-radical, and that ¢ = t3/(xt;) €
Const(K).

Note that the requirement that each t; be a monomial eliminates expres-
sions containing algebraic functions from the algorithm presented here. Al-
though the problem of integrating elementary functions containing algebraic
functions is also decidable, the algorithms used in the algebraic function case
are beyond the scope of this book [8, 9, 11, 14, 29, 73, 74, 76, 91].
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Once we have a tower of monomials K = C(ty,...,t,), the algorithms of
this chapter reduce the problem of integrating an element of K to various
integration-related problems involving elements of C(t1,...,t,—1), thereby

eliminating the monomial t,. Since the reduced problems involve integrands
in a tower of smaller transcendence degree over C, we can use the algorithm
recursively on them, and termination is ensured. In order to avoid writing
the full tower of extensions throughout this book, we write K = k(t) where
k= C(t1,...,tp—1) and t = ¢, is a monomial over k, and the task of the
algorithms of this chapter is to reduce integrating a given element of k(t) to
integration-related problems over k. If ¢ is elementary over k, then having an
elementary integral over k(t) is equivalent to having an elementary integral
over k, so the algorithms we present in this book provide a complete decision
procedure for the problem of deciding whether an element of a purely tran-
scendental elementary extension of (C(x),d/dx) has an elementary integral
over C(x). For more general functions, when ¢ is not elementary over k, it
can be proven that if ¢ is either an hyperexponential monomial or nonlin-
ear monomial over k with S = S"* then having an elementary integral
over k(t) is equivalent to having an elementary integral over k (Exercise 5.5),
so the algorithm is complete for integrands built from transcendental loga-
rithms, arc-tangents, hyperexponentials and tangents. The only obstruction
to a complete algorithm for Liouvillian integrands is the case where ¢ is a
nonelementary primitive over k: even though we can reduce the problem to
an integrand in k, the problem becomes however to determine whether f € k
has an elementary integral over k(t), and although there are algorithms for
special types of primitive monomials [6, 21, 22, 52, 53, 94], this problem has
not been solved for general monomials (Exercise 5.5f)). As will be seen from
numerous examples in this book, the algorithm can still be used successfully
on many integrands involving nonelementary monomials. It cannot however
always provide a proof on nonexistence of an elementary integral over k(t)
when ¢ is a nonelementary primitive over k. The reduction from k(t) to ¢ is
also incomplete for general nonlinear monomials, but is complete for tangents
and hyperbolic tangents.

The general line of the integration algorithm is to perform successive re-
ductions, which all transform the integrand to a “simpler” one, until the re-
maining integrand is in & (Fig. 5.1):

e The Hermite reduction (Sect. 5.3), which can be applied to arbitrary mono-
mials, transforms a general integrand to the sum of a simple and a reduced
integrand;

e The polynomial reduction (section 5.4), which can be applied to nonlinear
monomials, reduces the degree of the polynomial part of an integrand;

e The residue criterion (Sect. 5.6), which can be applied to arbitrary mono-
mials, either proves that an integrand does not have an elementary integral
over k(t), or transforms it to a reduced integrand (i.e. an integrand in k(t));
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e Reduced integrands are integrated by specific algorithms for each case of
Liouvillian or hypertangent monomial (Sect. 5.8, 5.9 and 5.10). Those algo-
rithms either prove that there is no elementary integral over k(t), or reduce
the problem to various integration-related problems over k. Algorithms for

solving those related problems are described in Chap. 6, 7 and 8.

Except for the last part, the various reductions are applicable to arbitrary

monomial extensions.

fek)

Hermite Reduction

f =g+ h,gsimple, h € k(t)

Polynomial Reduction

f =g+ h,gsimple, h € k(t)

fekt)

\

No elementary
integral

Primitive Case

Exponential Case

Tangent Case

Limited Integration

Risch D.E.

Coupled D.E. System

fek

. No elementary

integral

Fig. 5.1. General outline of the integration algorithm
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5.3 The Hermite Reduction

We have seen in Sect. 2.2 that the Hermite reduction rewrites any rational
function as the sum of a derivative and a rational function with a squarefree
denominator. In this section, we show that the Hermite reduction can be
applied to the normal part of any element of a monomial extension. Let (k, D)
be a differential field and ¢t a monomial over k for the next two sections.

Definition 5.3.1. For f € k(t), we define the polar multiplicity of f to be

ulf) == min (p(f))-
Note that 4(0) = —oo and that p(f) > 0 for any f # 0, since in that case there
is always some polynomial p € k[t] for which v,(f) = 0. Also, the minimum in
the above definition can be taken over all the irreducible or squarefree factors
of the denominator of f. It is easy to see that for f # 0, u(f) is exactly the
highest power appearing in any squarefree factorization of the denominator
of f (Exercise 5.1).

Theorem 5.3.1. Let f € k(t). Using only the extended Euclidean algorithm
in k[t], one can find g,h,r € k(t) such that h is simple, r is reduced, and
f = Dg+ h + r. Furthermore, the denominators of g,h and r divide the
denominator of f, and either g =0 or p(g) < p(f).

Proof. Let f = f, + fs + fn be the canonical representation of f, and write
fn = a/d with a,d € k[t] and ged(a,d) = 1. We proceed by induction on
m = u(fn). Let d = did%---d™ be a squarefree factorization of d. If m < 1,
then either f,, = 0 or d is normal. In both cases, f,, is simple, so g =0, h = f,
and r = f, + fs € k(t) satisfy the theorem.

Otherwise, m > 1, so assume that the theorem holds for any nonzero
g = gp + gn + gs with pu(g,) < m, and let v = d,, and v = d/v™. Since
every squarefree factor of d is normal by the definition of the canonical rep-
resentation, v is normal, so ged(Dv,v) = 1. In addition, ged(u,v) = 1 by the
definition of a squarefree factorization, so ged(uDv,v) = 1. Hence, we can use
the extended Euclidean algorithm to find b, ¢ € k[t] such that

a
1—-m

=buDv + cw.

Multiplying both sides by (1 —m)/(uv™) gives

fo = a :(1—m)bDv+(1—m)c

uY™ ™ uym—1

so, adding and subtracting Db/v™ ! to the right hand side, we get

= Dgo+w

uvmfl

£ = ( Db (m-— 1)bDv) N (1 —m)c — uDb

,Umfl m
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where go = b/v"™ ! and w = ((1—m)c—uDb)/(uv™~1). Since the denominator
of w divides uv™ !, w has no special part, so let w = wp+wy, be the canonical
representation of w. Since pu(w) < m — 1, we have p(w,) < m — 1, so by
induction we can find g1,k and r1 in k(¢) such that w, = Dgy + h+r1, h
is simple, 71 is reduced, the denominators of g;,h and 7 divide uv™ !, and
1(g1) < p(w) if g1 # 0. Let then g = go+9¢1 and r = fp+wp+ fs+71, and write
e for the denominator of f. Note that d | e by the definition of the canonical
representation. The denominator of g; divides uv™~! and gy = b/v™ !, so
the denominator of ¢ divides d hence e. The denominator of h divides uv™ !,
so it divides d hence e. The denominator of w divides d and the denominator
of r1 divides uv™~!, so the denominator of r divides e. In addition, f,,w,, fs
and 7y are in k(t), which is a subring of k(t) by Corollary 4.4.1, so r € k(t).
Finally, we have

f:fp+f€+fn:fp+fe+Dg0+w
:fp+fs+DgO+wp+Dgl—|—h—|—r1:Dg_|_h+r

which proves the theorem. a

Although we have used the quadratic version of the Hermite reduction
in the above proof, the other versions are also valid in monomial extensions
(Exercise 5.2). Instead of splitting a rational function into a derivative and a
simple rational function, the Hermite reduction splits any element of k() into
a derivative, a simple and a reduced element. Thus, it reduces any integration
problem to integrands that are the sum of a simple and a reduced element.

HermiteReduce(f, D) (* Hermite Reduction — quadratic version *)

(* Given a derivation D on k(t) and f € k(t), return g, h,r € k(t) such
that f = Dg+ h +r, h is simple and r is reduced. *)

(fp, fs» fn) — CanonicalRepresentation(f, D)
(a,d) < (numerator( f, ), denominator(f,)) (* d is monic *)
(di,...,dm) «— SquareFree(d)
g0
for i « 2 to m such that deg(d;) >0 do

UV — d1

w — d/v’

for j «—i—1to 1step —1do

(b,c) «— ExtendedEuclidean(u Dv,v, —a/j)

g —g+b/v’
a+— —jc—uDb
d — uv

(g,r) «— PolyDivide(a, uv)
return(g,r/(w),q+ fp + fs)
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Ezample 5.3.1. Let k = Q(z) with D = d/dx, and let ¢t be a monomial over k
satisfying Dt = 1+ t2, i.e. t = tan(z), and consider

x —tan(z) x—t

f= = € k(t).

tan(z)? t2

Since f has no polynomial part and ¢ is normal in k[t], the canonical repre-
sentation of f is (fp, fs, fn) = (0,0, f) so we get a = x — t and d = t? = d3
where do = t. We then have:

Q‘t‘l‘l‘—x‘mt—t—l‘—mt

and a/uv = —axt/t = —=x, so the Hermite reduction returns (—z/t,0, —z),

which means that
/x—tan(x)dx:_ x —/xda:
tan(x)? tan(z)

and the remaining integrand is in k(t).

The Hermite reduction can also be iterated, yielding a decomposition of f
into a sum of higher-order derivatives of reduced and simple elements of k(t)
(Exercise 5.3).

5.4 The Polynomial Reduction

In the case of nonlinear monomials, another reduction allows us to rewrite
any polynomial in k[t] as the sum of a derivative and a polynomial of degree
less than §(t).

Theorem 5.4.1. If ¢ is a nonlinear monomial, then for any p € k[t], we can
find q,r € k[t] such that p= Dq+r and deg(r) < §(t).

Proof. We proceed by induction on n = deg(p). If n < §(t), then ¢ = 0 and
r = p satisfy the theorem. Otherwise n > () so assume that the theorem
holds for any a € k[t] with deg(a) < n. Let

le(p)

T OES G I

qo = ct" O+ and ry = p — Dgqy. Since t is nonlinear and deg(qy) > 0,
Lemma 3.4.2 implies that deg(Dqo) = deg(qo) + 0(¢t) — 1 = n, and that the
leading coefficient of Dgqg is (n—48(t)+1) ¢ A(t) = le(p). Hence, deg(rg) < n, so
by induction we can find ¢1,7 € k[t] such that ro = Dgy +7 and deg(r) < 6(¢).
Therefore,

p=Dqy+190=Dqg+Dg1 +r=Dqg+r

where ¢ = qo + ¢1 € k[t]. O
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PolynomialReduce(p, D) (* Polynomial Reduction *)

(* Given a derivation D on k(t) and p € Ek[t] where ¢ is a nonlinear
monomial over k, return ¢,r € k[t] such that p = Dg + r, and deg(r) <

5()- )

if deg(p) < §(¢t) then return(0, p)

m «— deg(p) — () + 1

q0 — (le(p)/(mA())) t™

(¢,7) < PolynomialReduce(p — Dqo, D)
return(qo + q,7)

Ezample 5.4.1. Let k = Q(z) with D = d/dx, and let ¢t be a monomial over k
satisfying Dt = 1+ t2, i.e. t = tan(z), and consider

p=1+ztan(z) + tan(z)? = 1 + ot + > € k[t].

We have §(t) = 2, A(t) = 1, and applying PolynomialReduce, we get m =
deg(p) —1=1,q0 =t, Dgo = 1+ 12, so p — Dqg = xt, which has degree 1.
Thus,

/(1 + ztan(z) + tan(z)?) dz = tan(z) + / x tan(x)dx

and it will be proven later that the remaining integral is not an elementary
function.

If S # k, i.e. S™ # (), then any nontrivial element of S can be used to
eliminate the term of degree 6(¢) — 1 from a polynomial.

Theorem 5.4.2. Suppose that t is a nonlinear monomial. Let p € k[t] with
deg(p) < 8(t), a € k be the coefficient of t* D=1 in p, and ¢ = a/\(t). Then,

c Dgq
deg (p ~ deg(q) Q) <o) -1

for any g € S\ k.

Proof. Let ¢ € S\ k, then Dq/q € k[t] and by Lemma 3.4.2, deg(Dgq/q) =
deg(Dq)—deg(q) = 6(t)—1, and the leading coefficient of Dgq is deg(q)lc(q)A(t).

Hence,
e Doy e delolel@MO _ 0,
lc(oleg@ q) dogla)  le(g) A

which implies that the degree of p — ¢/ deg(q) Dq/q is at most 6(t) — 2. O
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5.5 Liouville’s Theorem

Given a differential field K and an integrand f € K, if an elementary inte-
gral is found, it can be easily proven correct by differentiation. Furthermore,
there are usually several ways to find elementary integrals when they exist.
Proving that f has no elementary integral is however quite a different prob-
lem, since we need results that connect the existence of an elementary integral
to a special form of the integrand. The first such result is Laplace’s princi-
ple [55], which states roughly that we can simplify the integration problem by
allowing only new logarithms to appear linearly in the integral, all the other
functions must be in the integrand already?. Liouville was the first to state
and prove a precise theorem from this observation, first in the case of alge-
braic integrands [57, 58], then for more general integrands [59]. See Chap. IX
of [61] for the fascinating history of Liouville’s Theorem in the 19" century.
This theorem has become the main tool used in proving that no elementary
integral exists for a given function. Furthermore, since it provides an explicit
class of elementary extensions to search for an integral, it forms the basis
of the integration algorithm. While Liouville used analytic arguments, it is
now possible to prove it algebraically in the context of differential fields. Al-
gebraic techiques were first used by Ostrowski [69], who presented a modern
proof of Liouville’s Theorem, together with an algorithm that reduces inte-
grating in k(t) to integrating in k when ¢ is a primitive monomial over k. The
first complete algebraic proof of Liouville’s Theorem was then published by
Rosenlicht [79] and the first proof of the strong version of Liouville’s Theorem
by Risch, who published it together with a complete integration algorithm for
purely transcendental elementary functions [75]. We follow both of them here,
first presenting essentially Rosenlicht’s proof of the weak Liouville Theorem,
and then progressively removing the restrictions on the constant fields, obtain-
ing Risch’s proof of the strong Liouville Theorem. We remark that Liouville’s
Theorem has been extended in various directions [17, 71, 81, 86], but those
extensions go beyond the scope of this book. Integration algorithms that yield
nonelementary integrals [21, 22, 52, 53] are based on such extensions [86].

Theorem 5.5.1 (Liouville’s Theorem). Let K be a differential field and
f € K. If there exist an elementary extension E of K with Const(E) =
Const(K) and g € E such that Dg = f, then there arev € K, uy,...,u, € K*
and c1,. .., ¢, € Const(K) such that

n

f:Dv—l—Zci

i=1

Dui
(7 '

(5.3)

2« la différentiation laissant subsister les quantités exponentielles et radi-

cales, et ne faisant disparaitre les quantités logarithmiques qu’autant qu’elles ont
multipliées par des constantes, on doit en conclure que l'intégrale d’une fonction
différentielle ne peut contenir d’autres quantités exponentielles et radicales que celles
qui sont contenues dans cette fonction. . .”
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Proof. Write C' = Const(K) and let E be an elementary extension of K with
Const(E) = C and g € E be such that Dg = f. Then, there are ty,...,t, € F
such that £ = K(t1,...,t,) and each ¢; is elementary over K(t1,...,t;—1).
We proceed by induction on m. For m = 0, we have E = K, so letting
v =g € K, we get f = Duv, which is of the form (5.3) with n = 0. Suppose
now that m > 0 and that the theorem holds for any elementary extension
generated by m — 1 elements. Let ¢t = t; and F = K(t). Since K C F C E,
then C' C Const(F) C Const(E) = C, so Const(F') = C. In addition, f € F,

and E = F(ta,...,tmn) is an elementary extension of F' generated by m — 1

elements, so by induction there are v € F', uy,...,u, € F* and ¢1,...,¢c, € C
such that

=Dv+ Ci . 5.4

f ; o (54)

Case 1: t transcendental over K. Then, since Const(F) = C, t is Liouvil-
lian monomial over K by Theorems 5.1.1 and 5.1.2. Let p € K]Jt] be nor-
mal and irreducible. We have v,(Du;/u;) > —1 by Corollary 4.4.2, hence
vp(3o  ¢;Du;fu;) > —1 by Theorem 4.1.1. Suppose that v,(v) < 0. Then,
vp(Dv) = vp(v)—1 < —1 by Theorem 4.4.2, s0 v,(f) = min(v,(Dv), 1) < —1
by Theorem 4.1.1, in contradiction with f € K. Hence v,(v) > 0, so, since
this holds for any normal irreducible p, v € K(t). Hence, Dv € K(t) by
Corollary 4.4.1. Write now u; = w; H] 1pr” where w; € K*, each p;; € K[t]
is monic irreducible, and the e;;’s are integers. Then, using the logarithmic
derivative identity and grouping together all the terms involving the same p;;,

we get
n

f= Do+ Z e le + Z d; qu (5.5)

where the ¢;’s are in K[t], monic, irreducible and coprime. Write

g—zq e K, h= ZquJ

w; =4

and suppose that one of the g;’s, say g, is normal. We have v, (¢x) = 1
and vy, (¢;) = 0 for j # k, so vy, (dgDar/qr) = —1 and vy, (d;Dg;/q;) = 0
by Corollary 4.4.2. This implies that vg, (3_,., d;Dq;j/q;) = 0, hence that
Vg, (h) = —1. But g; is normal and Dv € K (t), hence v, (Dv) > 0, so vg, (f) =
—1, in contradiction with f € K. Hence all the ¢;’s in equation (5.5) are
special.

Case la: t is a logarithm over K. Then, Dt = Da/a for some a € K*, and every
irreducible p € K[t] is normal by Theorem 5.1.1, so N = 0 in equation (5.5)
and v, Dv € K]Jt]. From (5.5) we get Dv = f — g € K. By Lemma 5.1.2, this
implies that or v = ct+b where b, ¢ € K and D¢ = 0 (otherwise deg(Dv) > 1).
Hence,
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n

Duw;
f= Db+c—+ZcZ il

which is of the form (5.3).

Case 1b: ¢t is an exponential over K. Then, Dt/t = Da for some a € K, and
the only special monic irreducible p € KJt] is p = t by Theorem 5.1.2, so
N =1 in equation (5.5) and ¢; = ¢ (with d; possibly 0). Hence, d1Dq1/q1 =
d1Dt/t = d1Da, so f = Dw + g where w = v + dja € K(t). Suppose that
vi(w) < 0, then v,(Dw) = v (w) < 0 by Theorem 4.4.2 since t € S, so
v¢(f) < 0 in contradiction with f € K. Hence, v4(w) > 0 so w € K[t]. By
Lemma 5.1.2, voo (Dw) = voo(w), so deg(Dw) = deg(w), which implies that
deg(w) = 0 since f = Dw+ g € K. Hence w € K and

n

f= Dw+chle

which is of the form (5.3).

Case 2: t algebraic over K. Let Tr : F — K and N : FF — K be the trace
and norm maps from F to K and d = [F : K]. Applying Tr to both sides of
equation (5.4) we get:

Dul

Usg

Tr(f)="Tr( DU—%—ZQ =Tr(Dv) +ZCZT’F

=1 . =1

since Tr is K-linear and the ¢;’s are in K. We have Tr(f) = df since f € K,
and

)

Tr(Dv) = D(Tr(v)) and Tr (D“’) _ DN(u)

 N(w)

Us
by Theorem 3.2.4, so

" ¢; Dw;
f=Dwyy G Dw
o dow

which is of the form (5.3) with w = Tr(v)/d € K and w; = N(u;) € K*. O

Of course, in practice we may have to adjoin new constants in order to
compute integrals, as we have seen in Chap. 2. We first show that new tran-
scendental constants are not necessary in order to express an elementary in-
tegral.

Theorem 5.5.2. Let K be a differential field with algebraically closed con-
stant field and f € K. If there exist an elementary extension E of K and
g € E such that Dg = f, then there are v € K, uy,...,u, € K* and
€1y, Cp € Const(K) such that

n

Du;
f:DerZc,; uu .
i=1 v
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Proof. Suppose that there exist an elementary extension F of K and g € F
such that Dg = f. Write Const(K) = C, Const(E) = C(ay, ..., an) for some
constants aq,...,a,, in E, and let F = K(aq,...,ay). Since C(ay,...,amn) C
F CE, C(ay,...,am) C Const(F) C Const(FE), so F and E have the same
constant subfield. In addition, f € F and F is elementary over F', so by
Theorem 5.5.1, there are v € F, uy,...,uy, € F* and ¢1,...,¢, € Const(F)
such that

n

D’U,i

=Dv+ C; . 5.6
Let X;,...,X,, be independent indeterminates over K. Since the elements of
F are rational functions in ay,...,a,, we can write
a1y...,0 ri(ay,...,a i(ar,...,a
:p( 1 m)7 = ’L( 1 m) and uZ:pz( 1 m) (57)
qlay, ..., am) si(ay, ..., am) gi(ay, ..., am)

where p, q,p;,q; are in K[X;,...,X,,], and r;,s; are in C[Xq,...,X,,]. In
addition, g(ai,...,ay) # 0, where

g=4q (H&) (HM) (H%’) € K[Xy,...,Xpn].

Replacing v, ¢1,...,¢n and uy,...,u, by the fractions (5.7) in (5.6), and
clearing denominators, we obtain a polynomial h € K[X1,...,X,,] such that
h(ai,...,am) = 0. By Lemma 3.3.6 applied to g and S = {h}, there are
bi,...,b;m € C such that g(by,...,b,) # 0 and h(by,...,b,) = 0. But this
implies that

n

Dwi
where
p(bl,...,bm) Ti(bl,...,bm) pz(blyabm)
W= —F, dzzi andwizi.
q(bl,...,bm) Si(bl,...,bm) Qi(b17~-~7bm)

Since p, q,pi,qi € K[X1,...,Xn] and r4,8; € C[Xq, ..., X, we get w € K|
wi,...,w, € K*and dy,...,d, € C, which proves the theorem. a

We can finally remove all the constant restrictions in Liouville’s Theorem,
showing that for arbitrary constant subfields, v in (5.3) can be taken in K,
and the u;’s can be taken in K(cq,...,cp).

Theorem 5.5.3 (Liouville’s Theorem — Strong version). Let K be a
differential field, C = Const(K), and f € K. If there exist an elementary
extension E of K and g € E such that Dg = f, then there are v € K,
Cly...ycn €C, and ug, ... ,up € K(c1,...,¢n)* such that
D
f=Dv+ Z &
i=1

Uj
(7 '
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Proof. Suppose that there exist an elementary extension E of K and g €
E such that Dg = f. Since CK is algebraic over K, Const(CK) = C N
CK = C by Corollary 3.3.1. Hence, CK has an algebraically closed constant
subfield, f € CK, g € CFE, which is an elementary extension of CK, so by

Theorem 5.5.2, there are v € CK, uy, ... € (CK)* and ¢1,...,¢c, € C
such that
- Dul
f=Dv+ Z C; .
F=K(v,u1,...,Un,C1y...,Cp) 18 ﬁnlte algebralc over K, so let Trf; F—- K

be the trace from F to K, K be the algebraic closure of K and oy,...,0m
be the distinct embeddings of F in K over K. Each o; can be extended to a
field automorphism of K over K, and since Trf and each o; commute with
D by Theorem 3.2.4, we have

mf = ZfUJ—TTK Dv) ZZ? a;]
Jj=1 Jj=1i=1
SO
- Dw;;
f= Dw+22dw ”J

=1 =1

with w = %T?‘ﬁ(v) €K, dj= %cfj eK and wj=ul€ekK .
In addition, Const(K) = C N K = C by Corollary 3.3.1, and Dd;; =
D(c¢]?/m) = (D¢;)%/m = 0, so d;; € C for each i and j. Let now
L = K(di1,...,dmn) and M = L(wi1,...,Wpmy). Since L is algebraic over
K, K is the algebraic closure of L. Since M is finite algebraic over L, let
Tr% :M — L and N : M — L be the trace and norm maps from M to L.
Since d;; € L and TrM is L-linear, we have

Dw;; Dw;; DN (w;;)
Trif (dyy—=2 ) = di; Tr L) =dy; ———2
' < 7wy ) AN 7 N(wy

by Theorem 3.2.4, so

n

Kf =T () = T (Dw) + Trit (303 dyy 20

wij

j=11i=1

n

= kDw + szu D]\]/vV(wl

Jj=11i=1

hence

= Dw+ZZdeDZi”

j=11i=1

which is of the form (5.3) with w € K, d;; € C and z;; = N(w;;) in
K(di1,. . dmn)* |
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5.6 The Residue Criterion

Now that Liouville’s Theorem gives us a way of proving that a function has
no elementary integral over a given field, we can complete the integration
algorithm. For the rest of this chapter, let (k, D) be a differential field and ¢
a monomial over k. From the Hermite reduction, we can assume without loss
of generality that the integrand is given as the sum of a simple and a reduced
element of k(t).

We have seen in Sect. 2.4 that the Rothstein—Trager algorithm expresses
the integral of a simple rational function with no polynomial part as a sum
of logarithms. In this section, we show that this algorithm can be generalized
to any monomial extension, where it will either prove that a function has
no elementary integral, or reduce the problem to integrating elements of k(t).
Rothstein had already generalized this algorithm to elementary transcendental
extensions in his dissertation [83].

Lemma 5.6.1. Let f € k(t) be simple. If there are h € k(t), an algebraic
extension E of Const(k), v € k(t), ¢1,...,¢n € E, and uy,...,u, € Ek(t)
such that

n

f—&—h:Dv—i—Zci

i=1

Dui

Us

then .
residue,(f) = Z civp(u;)
i=1

for any normal irreducible p € Eklt].

Proof. Let f € k(t) be simple, and suppose that there are h € k(t), an alge-
braic extension E of Const(k), v € k(t), c1,...,¢, € E,and uy, ..., u, € Ek(t)
such that

f+h=Dv+ Z ¢
i=1

Note that f + h is simple since h € k(t). Let p € FEk[t] be normal and
irreducible. Then, for each i, v,(Du;/u;) > —1 and residue, (Du;/u;) = vp(u;)
by Corollary 4.4.2. Suppose that v,(v) < 0. Then v,(Dv) = vp(v) —1 < —1
by Theorem 4.4.2, which implies that v,(f + h) < —1 in contradiction with
f + h being simple. Hence v,(v) > 0, so v,(Dv) > 0, which implies that
residue, (Dv) = 0. Furthermore, v,(h) > 0, so residue,(h) = 0. Since residue,
is Fk-linear, we get

Dui

Usg

residue, (f) = residue, (f) + residue,(h) = residue, (f + h)

“ Du
= residue,(Dv) + ¢; residue ( !
(D) +3 e residue, (21

2 ) = ﬁ;c vo(us).



148 5 Integration of Transcendental Functions

Lemma 5.6.2. Suppose that Const(k) is algebraically closed and let f € k(t)
be simple. If there exists h € k(t) such that f + h has an elementary integral
over k(t), then residue,(f) € Const(k) for any normal irreducible p € klt].

Proof. Let C = Const(k), and suppose C' is algebraically closed and that f+h
has an elementary integral over k(¢) where f € k(t) is simple and h € k(t).
By Theorem 5.5.1, there are v,uq,...,u, € k and c1,...,c, € C such that

n

Du;
f—l—thv—&—Zci i
i=1

Usg

Let p € k[t] be normal and irreducible. By Lemma 5.6.1 we have

residue, (f) = Zci vp(u;) € C.
i=1

O

Ezample 5.6.1. Let k = Q, ¢t be a monomial over k with Dt = 1 (i.e. D =
d/dt), and

2t — 2

—— € k(t).

241 € k(t)

Then, f has an elementary integral over k(t):

f=

/ﬁdt =(1+vV=1)log(l +tv/=1) + (1 — vV=1)log(1 — t/—1).

241

On the other hand, t? + 1 is irreducible over Q, but

2t — 2
residues2 1 (f) = m2 41 <2t> —t41

which is not a constant. This shows that the hypothesis that the constant
field of k be algebraically closed is required in Lemma 5.6.2. If we replace Q

by C, then 2 4+ 1 = (t — /—=1)(t + v/—1),

. 2t — 2
reSIduetﬂ/Tl(f) =T y=1 <t+ Tl) =1+v-1

and o
. t—
residue, , /—1(f) = =1 (15_ Cl> —tovd

which are constants. This shows that the hypothesis that p be irreducible is
also required in Lemmas 5.6.1 and 5.6.2.
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Theorem 5.6.1. Let f € k(t) be simple, and write f = p+a/d where p,a,d €
klt], d # 0, deg(a) < deg(d), and ged(a,d) = 1. Let z be an indeterminate
over k,

r = resultant;(a — zDd, d) € k7],

r =11y be a splitting factorization of r w.r.t. the coefficient lifting kp of D

to k[z], and
Dga
g= Z « (5.8)
rs(a)=0 Yo

where g, = ged(a—aDd, d) € k(a)[t] and the sum is taken over all the distinct
roots of rs. Then,

(i) g € k(t), the denominator of g divides d, and f — g is simple.

(ii) If there exists h € k(t) such that f 4+ h has an elementary integral over
k(t), then r, € k and f — g € kt].

(iii) If there are h € k(t), an algebraic extension E of Const(k), v € k(t),
Cly...ycn € B, and uy, ..., u, € Ek(t) such that

n

f‘f’h:D’U—cmi

i=1

D’U,i

Uq

then rg factors linearly over E.

Proof. (i) Let rs = cr{'---rt» be the irreducible factorization of r, in k[z].
Then, g can be rewritten as

S ol

1 r;(a)=0 Ja

g:

n
1=

For each i, let k; be k(t) extended by all the roots of r;, and «; be a given
root of r;. Since k; is a finitely generated algebraic extension of k(t), the field
automorphisms of k; over k(t) commute with D by Theorem 3.2.4, so we get

. Dy,
- (o22)
i=1 i

by Theorem 3.2.4 where T'r; is the trace map from k(t)(a;) to k(t). Hence,
g € k(t). Furthermore, since g, | d for each root a of 7, lem,. (4)—0(9a) | d, sO
the denominator of g also divides d. Hence the denominator of f — g divides
d, which implies that f — g is simple since d is normal.

(ii) Suppose that f+h has an elementary integral over k(t) for some h € k(t),
and let k be the algebraic closure of k. By Corollary 3.4.1, t is a monomial over
k, and simple (resp. reduced) elements of k(t) remain simple (resp. reduced)
when viewed as elements of k(t). Furthermore f+h has an elementary integral
over k(t), so we work with k(¢) in the rest of this proof. Let a € k be any
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root of r. If & = 0, then Da = 0. Otherwise a # 0 and a = residue,(f)
for some normal irreducible ¢ € k[z] by Theorem 4.4.3, hence Da = 0 by
Lemma 5.6.2. Thus rs(a) = 0 in both cases by Theorem 3.5.2, so r,(a) # 0
since ged(ry,7s) = 1. Since this holds for all the roots of r, we have r, € k.

For any a € k, write g, = ged(d, a — aDd). Note that all the irreducible
factors of g, must be normal, since g, | d, which is normal. Let o, 3 € F,
and ¢ € k[t] be a normal irreducible common factor of g, and gg. Then
a = residuey(a/d) = [ by Lemma 4.4.3, so gcd(ga, 93) = 1 when a # . Let
now ¢ € k[t] be irreducible and normal, and 3 = residue,(f). If 3 = 0, then ¢
does not divide d, so ¢ does not divide any g, which implies that v,(g) > 0,
hence that residuey(g) = 0 = residue,(f — g). If 5 # 0, then r(3) = 0 by
Theorem 4.4.3, and ¢ | g3 by Lemma 4.4.3, so rs(8) = 0 since r,, € k. Since
d is squarefree, gg is squarefree, so v4(gg) = 1. By Theorem 4.4.1, residue, is
k-linear, so we get

residuey(f —g) = 5 — Z aresidue, (Dgga> =p- Z avg(ga)

rs(a)=0

by Corollary 4.4.2. Since v4(ga) = 0 for o # (3, this gives residuey(s) = -0 =
0. Since this holds for any normal irreducible q € k[t] and f — g is simple, we
have f — g € k[t], hence f — g € k[t].

(iii) Suppose that there are h € k(t), an algebraic extension E of Const(k),
v € k(t), c1,...,cn € E, and uq,...,u, € Ek(t) such that

n

f—i—h:Dv—&—Zci
i=1

D’U,i

Uy

(5.9)

Let k be the algebraic closure of k. As explained in part (ii), we can replace
k(t) by k(t) and view (5.9) as an equality in k(t). Let a € k be any root of
rs. By Theorem 4.4.3, o = residue,(f) for some normal irreducible p € kl[t],
so by Lemma 5.6.1

a = residue,(f) = ZCin(Ui) ekb.
i=1

Hence, E contains all the roots of r, in k, so rs factors linearly over E. a

Note that since the roots of r, are all constants by Theorem 3.5.2, g as
given by (5.8) always has an elementary integral, namely

/g = Z alog(ged(d, a — aDd))
rs(a)=0

which is the Rothstein—Trager formula in the case of rational functions.
Part (iii) of Theorem 5.6.1 applied to the rational function case proves part (iii)
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of Theorem 2.4.1, thereby completing the proof of that theorem. As in the
rational function case, a prime factorization ry = us7* -+ s&m is required, as
well as a ged computation in k(a;)[t] for each i, where a; is a root of s;.
There is no need however to compute the splitting field of r,. Furthermore,
the monic part of g always has constant coefficients.

ResidueReduce(f, D) (* Rothstein—Trager resultant reduction *)

(* Given a derivation D on k(t) and f € k(t) simple, return g elementary
over k(t) and a Boolean b € {0,1} such that f — Dg € k[t] if b = 1, or
f+hand f+ h — Dg do not have an elementary integral over k(t) for
any h € k(t) if b= 0. *)

d «— denominator( f)
(p,a) — PolyDivide(numerator(f), d) (x f=p+a/dx)
z < a new indeterminate over k(t)
r « resultant:(d, a — zDd)
(rn,rs) < SplitFactor(r,xp)
usit .- sy — factor(rs) (* factorization into irreducibles *)
for i — 1 to m do

a—alsi(a)=0

gi < ged(d, a — aDd) (* algebraic gcd computation *)
ifr, €ckthenb«— lelse b0
return(}_7%, 37 ()=o @log(gi), b)

Ezample 5.6.2. Consider
21 21 — 2
[ Postar —egle) 7,

log(z)3 — a2 log(x)

Let k = Q(z) with D = d/dz, and let ¢t be a monomial over k satisfying
Dt =1/z, i.e. t = log(z). Our integrand is then

f_2t2—t—a:2
B3 -2t

€ k()

which is simple since t3 — 2%t is squarefree. We get
d=t>—2%, p=0, a=2>—t—2>

and

2x — 3z

r = resultant, ((t3 — %, 24 2wz — Dt + (2 — x))

1 T
:431_2 3 _ 2 _ - el
x°( ac)(z xz 4z+4
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which is squarefree. Then,
kpr = —x2(4(5x? 4 3)23 + 8x(32? — 2)2% + (52 — 3)z — 2x(32? — 2))

so the splitting factorization of r w.r.t. kp is

1
ry = ged(r, kpr) = 2 (z2 — 4)

and r
ra= - = —da(@® ~1)(z ) ¢ k.

T's

Hence, f does not have an elementary integral. Proceeding further we get
3 9 —3a
g1 =ged [ ¢ +xt7 + 2za—-Dt+az(a—z) ) =t+2azx
x
where o? —1/4 =0, so
g= Z a log(t 4 2azx) = 1 log(t + z) — 1 log(t — z) .
2 2
a|la?—1/4=0
Computing f — Dg we find
/ 2log(r)? — log(z) — 22 dr = 11 log(:lc) +x +/ dx
log(z)3 — 22 log(x) 2 log(z) — x log(x)
1 og(z) + .
lo L
=518 (g 2 ) + 1)

where Li(z) is the logarithmic integral, which has been proven to be nonele-
mentary since r,, ¢ k.

With the notation as in Theorem 5.6.1, we have ged(rs,r,) = 1, so any
root « of ry with multiplicity n is also a root of r with multiplicity n. Since
ged(a, d) = ged(d, Dd) = 1 and deg(a) < deg(d), we can apply Theorem 2.5.1
with A = a, B = Dd and C = d, and we get that for any root a of r of
multiplicity ¢ > 0,

ged(d, a — aDd) = pp,(Rm) (e, t)

where deg,(R,,) = i and R,, is in the subresultant PRS of d and a — zDd
if deg(Dd) < deg(d), or of a — zDd and d if deg(Dd) > deg(d). Thus, the
Lazard-Rioboo-Trager algorithm is applicable in arbitrary monomial exten-
sions, and it is not necessary to compute the prime factorization of 74, or
the g,’s appearing in (5.8), we can use the various remainders appearing in
the subresultant PRS instead. As in the case of rational functions, we use a
squarefree factorization of ry = [[;_, ¢ to split the sum appearing in (5.8)
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into several summands, each indexed by the roots of ¢;. We can also avoid com-
puting pp,(R,,), ensuring instead that its leading coefficient is coprime with
the corresponding ¢;. And since multiplying any g, in (5.8) by an arbitrary
nonzero element of k(«) does not change the conclusion of Theorem 5.6.1,
we can make pp,(Ry,)(a,t) monic in order to simplify the answer. This last
step requires inverting an element of k[a] and is optional. As in the rational
function case, it turns out that the leading coefficients of the pp,(R,,)(c,t)’s
are always invertible in k[a] (Exercise 2.7).

ResidueReduce(f, D)
(* Lazard-Rioboo-Rothstein—Trager resultant reduction *)

(* Given a derivation D on k(t) and f € k(t) simple, return g elementary
over k(t) and a Boolean b € {0,1} such that f — Dg € k[t] if b = 1, or
f+hand f+ h — Dg do not have an elementary integral over k(t) for
any h € k(t) if b=0. *)

d <« denominator(f)
(p,a) — PolyDivide(numerator(f), d) (x f=p+a/dx)
z < a new indeterminate over k(t)
if deg(Dd) < deg(d)
then (r, (Ro, R1,...,Rq,0)) — SubResultant.(d,a — zDd)
else (r, (Ro, R1,...,Rq,0)) — SubResultant,(a — zDd, d)
((n1,...,mn),(81,...,8n)) < SplitSquarefreeFactor(r, kp)
for i < 1 to n such that deg(s;) >0 do
if ¢ = deg(d) then S; — d
else
Si < Ry, where deg,(Rm) =14, 1<m<gq
(A1,...,As) «— SquareFree(lc(S;))
for j < 1to s do S; « S;/ged, (4, s;)7 (* exact quotient *)
if [[",ni€kthenb—1lelse b—0
return(3_;0, 37 0 (ay=o @ log(Si(a, 1)), b)

Ezample 5.6.3. Consider the same integrand as in example 5.6.2. We have
deg(Dd) < deg(d) and the subresultant PRS of d and a — zDd is

1 R;

0 3 — x?t

1 (2 —3z/2)t? + 2wz — 1)t + 2(2 — )

2|(422 — 6)2%2 + 322 — 222 + V)t + 2(2 — ) (222 — 1)
3 423(1 — 2?) (2% — 22% — 12+ 12)

The Rothstein—Trager resultant is r = R3, and its split—squarefree factoriza-
tion w.r.t. kp is
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1
51 = ged(r, kpr) = 2 (22 - 4) , ny = Sl —dx(z? -1 (z—2) ¢ k.
S1

Hence, f does not have an elementary integral. Proceeding further we find
that s; is squarefree, and the remainder of degree 1 in ¢ in the PRS is

Ry = ((42% — 6)2 + 322 — 22° + 1)t + 2(2 — ) (2z2 — 1).

Since

1
ged(leg(R2), s1) = ged ((4x2 —6)2% + 32z — 222 + 1,27 <z2 - 4)) =1,

S1 = Rs. Evaluating for z at a root a of 22 — 1/4 = 0 we get

1
Si(o,t) = —5((2:52 — 6oz + 1)t + dax® — 322 + 2ax)

SO
1
g= Z a log (2((212 — 6oz + 1)t + 2(4ax? 3x+2a))>
ala?—1/4=0
1 2z? — 1 1 2z? 1)(t —
:210g(_(m‘ 3x;— )(t+a:)>_2log(_(x —|—3x;— )t x))

Computing f — Dg we find

/ 2log(r)? — log(z) — 22 i 110 ((2x2 — 3z + 1)(log(x) + x)>

log(z)3 — 22 log(x) T2 (222 + 3z 4+ 1)(log(z) — x)

+/ o 6% — 3 da
log(x) 4a*—52%2+1

where the remaining integral has been proven to be nonelementary. In fact, it
is the integral of a rational function plus the logarithmic integral Li(x).
If we had decided to make S («, t) monic, we would have obtained

1
Sy (a,z) = —5(21‘2 — 6ax + 1)(t + 2ax)

so the integral is then the same as in example 5.6.2.

5.7 Integration of Reduced Functions

From the results of the previous sections, we are left with the problem of
integrating reduced elements of a monomial extension. We use a specialized
version of Liouville’s Theorem for such elements.
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Theorem 5.7.1. Let k be a differential field, t be a monomial over k, C' =
Const(k(t)), and f € k(t). If there exist an elementary extension E of k(t)
and g € E such that Dg = f, then there are v € k{t), c1,...,¢, € C, and
Ulyenny Uy € Sk(cl ..... en) [tk (cty e sen) such that

n

f= Dv—i—ch

Du;

Proof. Suppose that there exist an elementary extension E of k(t) and g € E
such that Dg = f. Then, by Theorem 5.5.3, there are v € k(t), ¢1,...,¢, € C,
and uy, ..., u, € k(c1,...,¢,)(t) such that f = Dv+ 3" | ¢;D(u;)/u;. Write
g =1 ¢;D(u;)/u;. Since g = f—Dw, it follows that g € k(t). Let p € kl[t] be
normal and irreducible, and ¢ € k(cy, ..., c,)[t] be any irreducible factor of p
over k(ci,...,¢pn). Then, v,(f) > 0 by Corollary 4.4.1, and v (c; Du, /u;) > —1
for each ¢ by Corollary 4.4.2, so v,(g) > —1. Since this holds for any irreducible
factor ¢ of p and g € k(t), Theorem 4.1.2 implies that v,(g) > —1. Suppose
that v,(v) < 0. Then, v,(Dv) = vp(v) —1 < —1 by Theorem 4.4.2, which
implies that v,(Dv + g) < —1, hence that v,(f) < —1, in contradiction with
f reduced. Hence, vp,(v) > 0 for all normal irreducible p € k[t], which means
that v € k(t) and Dv € k(t) by Corollary 4.4.1.

Write now u; = w; ]_[],1 pf” where w; € k(cq,...,¢p), each p;; is a monic
irreducible element of k(ci,...,c,)[t], and the e;;’s are integers. Then, us-
ing the logarithmic derivative identity and grouping together all the terms
involving the same p;;, we get

n

N
f= Dv—l—chle z_: (5.10)

i=1
where the ¢;’s are in k(cq, . . ., ¢, )[t], monic, irreducible and coprime. Each w;
is special since it is in k(cy,...,c,). Suppose that ¢ is normal for some s.

Then, Lemma 5.6.1 applied to (5.10) implies that
residueg, (f) = Y civg, (wi) + Y djvg, (45).-

But residueg, (f) = 0 since f € k(t), and v,, (w;) = 0 since w; € k(c1,...,¢n),
and v, (¢;) = 0 for j # s since the g;’s are coprime. Hence, 0 = d,vy, (gs) =
ds, so ds = 0 whenever g5 is normal. Keeping only the nonzero summands
n (5.10), we get that each g; is special, which proves the theorem. a

In the case of nonlinear monomials, we have seen that we can always
rewrite a polynomial p € k[t] as the sum of a derivative and a polynomial
of degree less than (t). We then have an analogue of the residue criterion
that either proves that such a reduced function does not have an elementary
integral, or eliminates the term of degree §(¢) — 1 from its polynomial part.
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Theorem 5.7.2. Suppose that t is a nonlinear monomial. Let f € k(t) and
write f = p+ a/d where p,a,d € k[t], d # 0, deg(p) < (t) and deg(a) <
deg(d). Let b € k be the coefficient of t? D=1 in p, and ¢ = b/\(t). If f has an
elementary integral over k(t) then Dec = 0.

Proof. Let C' = Const(k). Replacing C' by its algebraic closure, we can assume
without loss of generality that C is algebraically closed. Suppose that f has
an elementary integral over k(t). Then, by Theorem 5.7.1, there are v € k(t),

C1y...,¢n € C,and ug,...,u, €S such that
=D s 5.11
f v+Zc " (5.11)

i—1 i

By Theorem 4.4.4, voo(Du;/u;) > —m and oo (7" Dui/u;) = —Voo (ui)A(E)
for each ¢ where m = §(t) — 1. Furthermore, v (a/d) > 0 since deg(a) <
deg(d), so Voo (f) > —deg(p) > —m and 7o (a/d) = oo (t™™a/d) = 0, which
implies that 7 (t~™f) = b. Suppose that v (v) < 0, then voo(Dv) < —m
by Theorem 4.4.4, S0 Voo (Dv + >, ¢;Du;/u;) < —m, in contradiction with
Voo (f) = —m. Hence vy (v) > 0. If voo(v) > 0, then voo(Dv) > —m by Theo-
rem 4.4.4. Otherwise, vy (v) = 0 and v (Dv) > —m also by Theorem 4.4.4.
Hence voo(t™™Dv) > 0 in any case, 80 oo (t~""Dv) = 0. Multiplying both
sides of (5.11) by t~™ and applying 7., we get

b= t70) = D (17728 ) = 3 e (1) AD)
i=1 ¢ i=1

hence ¢ = b/A(t) = — Y i, ¢ Voo(u;), s0 De = 0. O

If ¢ is a constant, then Theorem 5.4.2 implies that

)

has degree at most §(t) — 2 for any ¢ € S\ k, so in the case of nonlinear
monomials, we are left with reduced integrands with polynomial parts of de-
gree at most () — 2, provided that we know at least one nontrivial special
polynomial. If we know that there are no nontrivial special polynomials, then
integrating reduced elements of such nonlinear extensions is in fact easier, and
an algorithm for that purpose will be presented in Sect. 5.11.

We have now all the necessary tools to complete the integration algorithm.
In the following sections, we give algorithms that, given an integrand f in k(t)
for a monomial ¢, either prove that f has no elementary integral over k(t), or
compute an elementary extension E of k(t) and an element g € E such that
f — Dg € k. This process eliminates t from the integrand, thus reducing the
problem to integrating an element of k, which can be done recursively, i.e. the
algorithms of this chapter can be applied to elements of & until we are left
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with constants to integrate. Note that when ¢ itself is not elementary over
k, then the problems of deciding whether an element of k has an elementary
integral over k or over k(t) are fundamentally different, so our algorithms will
produce proofs of nonintegrability only if the integrand is itself an elementary
function. They can be applied however to much larger classes of functions.

It turns out that it will also be necessary to assume that some related
problems are solvable for elements of k. Those problems depend on the kind
of monomial we are dealing with, so we need to handle the various cases
separately at this point. Algorithms for all those related problems will be
presented in later chapters.

5.8 The Primitive Case

In the case of primitive monomials over a differential field k, the related
problem we need to solve over k is the limited integration problem: recall
that the problem of integration in closed form is, given f € k to determine
whether there exist an elementary extension E of k and g € E such that
Const(E) is algebraic over Const(k) and Dg = f. Let wy,...,w, € k be
fixed. The problem of limited integration with respect to w1, ..., w, is: given
f € k, determine whether there are g € k and ¢4, ..., ¢, € Const(k) such that
Dg = f—cw —...— cpwy, and to compute g and the ¢;’s if they exist. It
is very similar to the problem of integration in closed form, except that the
specific differential extension k([ ws,..., [w,) is provided for the integral.
We present in this section an algorithm that, with appropriate assumptions
on k, integrates elements of k(t) when ¢ is a primitive monomial over k. We
first describe an algorithm for integrating elements of k[t].

Theorem 5.8.1. Let k be a differential field and t a primitive over k. If the
problem of limited integration w.r.t. Dt is decidable for elements of k, and Dt
is not the derivative of an element of k, then for any p € k[t] we can either
prove that p has no elementary integral over k(t), or compute q € k[t] such
that p— Dq € k.

Proof. We proceed by induction on m = deg(p). If m = 0, then p € k and
q = 0 satisfies the theorem, so suppose that m > 0 and that the theorem holds
for any polynomial of degree less than m. Since Dt is not the derivative of an
element of k, t is a monomial over k, Const(k(t)) = Const(k), and S = k by
Theorem 5.1.1. Thus, Theorem 5.7.1 says that if p has an elementary integral
over k(t), then there are v € k[t], c1,...,c, € C and uy,...,u, € k(ci,...,cp)
such that

i Dui
p:Dv—l—Zci "

i=1 v

(5.12)

where C' = Const(k). K = k(cy,...,c,) is an algebraic extension of k, so ¢ is
transcendental over K. Furthermore, Dt is not the derivative of an element of
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K by Lemma 5.1.1, so ¢ is a monomial over K and Const(K (t)) = Const(K).
Equating degrees in (5.12) we get deg(Dv) = deg(p) = m > 0, so deg(v) <
m + 1 by Lemma 5.1.2, so write p = at™ + s and v = ct™+! + bt™ + w where
a,b,c € k, s,w € k[t], deg(s) < m and deg(w) < m. Equating the coefficients
of t™*1 and t™ in (5.12) we get Dc = 0 and

a=Db+ (m+1)cDt. (5.13)

Since we can solve the problem of limited integration w.r.t. Dt for elements of k
and a € k, we can either prove that (5.13) has no solution b € k, ¢ € Const(k),
or find such a solution. If it has no solution, then (5.12) has no solution
so p has no elementary integral over k(t). If we have a solution b, ¢, letting
go = ct™! £ bt™, we get

p—Dqo = (at™ + s)—((m + 1)cDt + Db) t™ — (mbDt)t™ ! = s— (mbDt)t™

hence deg(p — Dqo) < m. By induction we can either prove that p — Dgo has
no elementary integral over k(t), in which case p has no elementary integral
over k(t), or we get ¢1 € k[t] such that p — Dgo — Dgq1 € k, which implies that
p— Dq € k where ¢ = qo + q1. a

IntegratePrimitivePolynomial(p, D)
(* Integration of polynomials in a primitive extension *)

(* Given a is a primitive monomial ¢ over k, and p € k[t], return ¢ € k|t]
and a Boolean 3 € {0,1} such that p — Dg € k if 8 =1, or p — Dq does
not have an elementary integral over k(t) if 5 = 0. *)

if p € k then return(0, 1)

a « le(p)

(* LimitedIntegrate will be given in Chap. 7 *)

(b,c) «— LimitedIntegrate(a, Dt, D) (x a = Db+ cDt %)
if (b,c) = “no solution” then return(0,0)

m « deg(p)

qo — ct™ M /(m + 1) + bt™

(¢,8) — IntegratePrimitivePolynomial(p — Dqo, D)

return(q + qo, 5)

Example 5.8.1. Consider

/ (<log(x) + logl(x)> Li(z) — 10;(;,;)) dx

where Li(z) = [ dz/log(z) is the logarithmic integral. Let k = Q(x,to) with
D = d/dx, where tg is a monomial over Q(x) satisfying Dty = 1/z, i.e. tg =
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log(x), and let ¢t be a monomial over k satisfying Dt = 1/tg, i.e. t = Li(x).
Our integrand is then

1
p= <t0+)tm € klt].
to to
We get,

1.a =1c(p) =to + 1/to
2.

(to + tlo> - % = tg = log(z) = % (zlog(z) —z) = D(zty — )

so (b, ¢) = LimitedIntegrate(to + 1/to, 1/to, D) = (xtg — x,1)

3.q0 = ct?/2 + bt =1?/2 + (xto — x)t

4.p — Dgy = —x € k so the call IntegratePrimitivePolynomial(—z, D)
returns (¢, 5) = (0,1).

Hence,
/ <<10g(x) + logl(x)> Li(x) — logz(m)> dx
= Li(;)Q + (zlog(z) — z)Li(z) — /mdx
= Li(;)Q + (zlog(z) — z)Li(z) — %2 .

Putting all the pieces together, we get an algorithm for integrating ele-
ments of k(t).

Theorem 5.8.2. Let k be a differential field and t a primitive over k. If the
problem of limited integration w.r.t. Dt is decidable for elements of k, and Dt
is not the derivative of an element of k, then for any f € k(t) we can either

prove that f has no elementary integral over k(t), or compute an elementary
extension E of k(t) and g € E such that f — Dg € k.

Proof. Suppose that Dt is not the derivative of an element of k, then ¢ is a
monomial over k and Const(k(t)) = Const(k) by Theorem 5.1.1. Let f € k(¢).
By Theorem 5.3.1, we can compute g1, h,r € k(t) such that f = Dgy +h+7r, h
is simple and r is reduced. From h, which is simple, we compute go € k(t) given
by (5.8) in Theorem 5.6.1. Note that go = g1 + [ g2 lies in some elementary
extension of k(t). Let p=h —go and ¢ = p+r, then f = Dgg + ¢ so f has an
elementary integral over k(t) if and only if ¢ has one. If p ¢ k[t], then p + r
does not have an elementary integral over k(t) by Theorem 5.6.1, so f does
not have an elementary integral over k(t). Suppose now that p € k[t]. We
have k(t) = k[t] by (5.1), so r € k[t], hence ¢ € k[t]. By Theorem 5.8.1 we can
either prove that ¢ has no elementary integral over k(t), in which case f has
no elementary integral over k(t), or compute s € k[t] such that ¢ — Ds € k,
in which case f — Dg € k where g = gy + s. a
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IntegratePrimitive(f, D) (* Integration of primitive functions *)

(* Given a is a primitive monomial ¢ over k, and f € k(t), return g
elementary over k(t) and 8 € {0,1} such that f — Dg € k if 3 = 1, or
f — Dg does not have an elementary integral over k(t) if 8 = 0. *)

(g1, h,r) — HermiteReduce(f, D)

(92, 8) — ResidueReduce(h, D)

if 8 =0 then return(g; + g2,0)

(¢, B) < IntegratePrimitivePolynomial(h — Dgs + r, D)
return(gi + g2 + ¢, )

5.9 The Hyperexponential Case

In the case of hyperexponential monomials over a differential field k, the
related problem we need to solve over k is the Risch differential equation
problem: given f, g € k, determine whether there exists y € k such that

Dy+fy=g (5.14)

and to compute y if it exists. It may happen in general that (5.14) has more
than one solution in &, so we first need to examine when this can happen.

Lemma 5.9.1. Let (K, D) be a differential field. If there are a,y,z € K such
that y # z and Dy + ay = Dz + az, then a = Du/u for some u € K*.

Proof. Let w=1/(y — z) € K*. Then,

Dy—Dz o _ (Dz+az)— (Dy+ay) —0
(y—2? y—= (y—2)?

Du —au =

so a = Du/u. O

We present in this section an algorithm that, with appropriate assumptions
on k, integrates elements of k(¢) when ¢ is a hyperexponential monomial over
k. We first describe an algorithm for integrating elements of k(t).

Theorem 5.9.1. Let k be a differential field and t an hyperexponential over
k. If we can solve Risch differential equations over k, and Dt/t is not a log-
arithmic derivative of a k-radical, then for any p € k(t) we can either prove
that p has no elementary integral over k(t), or compute q € k(t) such that
p—Dqgek.

Proof. Since Dt/t is not a logarithmic derivative of a k-radical, ¢ is a monomial
over k, Const(k(t)) = Const(k), and 8™ = {t} by Theorem 5.1.2. Thus k(t) =
k[t,t~!] by (5.1), and Theorem 5.7.1 says that if p has an elementary integral
over k(t), then there are v € k(t), c1,...,¢, € C, by,... b, € k(c1,...,cpn),
and mq,...,m, € Z such that
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“~ Dbt Dt & “~ Db,
p= DU+ZCZ b U+T;mici+;ci i, (5.15)
where C' = Const(k). K = k(c1,...,¢,) is an algebraic extension of k, so t is

transcendental over K. Furthermore, Dt/t is not a logarithmic derivative of
a K-radical by Lemma 3.4.8, so t is a monomial over K and Const(K(t)) =
Const(K). Since p,v € k[t,t71], write p = S22 a;t* and v = 327 v;t? where
ai,v; € kym,M,r,R€Z, m <M and r < R. Let p; = So_ a;t’. If M =0,
then p — Dgop = p1 where go = 0 € k(t). If M > 0, then v(p) = —M < 0,
which implies that v (Dv) = —M < 0, 80 Veo(v) = —M by Lemma 5.1.2,
hence R = M. Equating the coefficients of ¢,...,t™ in (5.15) we get

Dt
a; = Dv; +i7m for1<i< M. (5.16)

Since we can solve Risch differential equations over k and a;, Dt/t € k, we
can either prove that (5.16) has no solution v; € k, or find such a solution®
If it has no solution for some i, then (5.15) has no solution so p has no
elementary integral over k(t). If we have solutions v; for 1 < i < M, letting
qo = vit +. ..thM, we get

p— Dqy = Zaztl—FZaztl Z(Dv,+z ) Zazt =pr.

i=m

If m = 0, then p; € k so ¢ = qo satisfies the theorem. If m < 0, then
v (p1) = —m < 0, which implies that v,(Dv) = —m < 0, so v (v) = —m
by Theorem 4.4.2 (since t € S'), hence r = m. Equating the coefficients of
t=1 ..., t7™ in (5.15) we get

Dt
= Duv; + iTUi form <i<-—1. (5.17)

Since we can solve Risch differential equations over k and a;, Dt/t € k, we
can either prove that (5.17) has no solution v; € k, or find such a solution. If
it has no solution for some 4, then (5.15) has no solution, so p; and p have no
elementary integrals over k(t). If we have solutions v; for m < i < —1, letting
o =v_1t 4. v_pt™™ and ¢ = qo + ¢1 € k{t), we get

1
Dt -
p—Dg=p — Dgi = zaﬁaoz(mmtm)ﬁ_aaek.

3 Although this fact is not needed by the algorithm, we remark that Lemma 5.9.1
implies that (5.16) has at most one solution in k.
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IntegrateHyperexponentialPolynomial(p, D)
(* Integration of hyperexponential polynomials *)

(* Given an hyperexponential monomial ¢ over k and p € k[t,t™!] return
q € k[t,t'] and a Boolean 3 € {0,1} such that p — Dg € kif 3 =1, or
p — Dq does not have an elementary integral over k(¢) if 8 = 0. *)

q—0,0<1
for ¢ < v4(p) to —voo(p) such that ¢ # 0 do
a «— coefficient(p, %)
(* RischDE will be given in Chap. 6 *)
v < RischDE(:Dt/t,a) (* a = Dv+ivDt/t )
if v = “no solution” then B « 0 else q «— q + vt

return(q, 3)

Example 5.9.1. Consider

/ ((tan(m)?’ + (z + 1) tan(z)? 4 tan(z) + = + 2) etan(@) 4 x21+ 1) de.

Let k = Q(x,tg) with D = d/dx, where t( is a monomial over Q(z) satisfying
Dty = 1+ 3, i.e. to = tan(z), and let ¢ be a monomial over k satisfying
Dt = (1+12)t, i.e. t = @) Our integrand is then

1
= (t Dtg+t 2)t+ ——— € klt].
p=(t+ (z+1)tg+to +a+2) Tl © 1]
We get

1l.g=0,6=1
2. v4(p) = —Voo(p) = 1
3.1=1
doa=le(p) =t3+ (x+ D)t +to + +2
5. D(to + ) + (1 + t3)(to + ) = a, so v = RischDE(1 + t3,a) = to +
6. g = vt = (tog + )t

EN|

.p—Dg=1/(22+1).

Hence,

2 +1

d
= (tan(z) + z)et*n®) 4 / = i 1

= (tan(z) + z)e'™®) 4+ arctan(z) .

/ ((tan(x)?’ + (z + 1) tan(z)? + tan(x) + @ + 2) ") 4 1) dx

Putting all the pieces together, we get an algorithm for integrating ele-
ments of k(t).
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Theorem 5.9.2. Let k be a differential field and t an hyperexponential over k.
If we can solve Risch differential equations over k, and Dt/t is not a logarith-
mic derivative of a k-radical, then for any f € k(t) we can either prove that
f has no elementary integral over k(t), or compute an elementary extension
E of k(t) and g € E such that f — Dg € k.

Proof. Suppose that Dt/t is not a logarithmic derivative of a k-radical, then
t is a monomial over k and Const(k(t)) = Const(k) by Theorem 5.1.2. Let
f € k(t). By Theorem 5.3.1, we can compute g1, h,r € k(t) such that f =
Dgi+h+r, his simple and r is reduced. From h, which is simple, we compute
g2 € k(t) given by (5.8) in Theorem 5.6.1. Note that go = g1 + [ g lies in
some elementary extension of k(t). Let p = h — g2 and ¢ = p + r, then
f = Dgo + g so f has an elementary integral over k(t) if and only if g has
one. If p ¢ k[t], then p + r does not have an elementary integral over k(t) by
Theorem 5.6.1, so f does not have an elementary integral over k(t). Suppose
now that p € k[t]. We have k(t) = k[t,t=1] by (5.1), so r € k[t,t71], hence
q € k[t,t71]. By Theorem 5.9.1 we can either prove that q has no elementary
integral over k(t), in which case f has no elementary integral over k(t), or
compute s € k[t,t71] such that ¢ — Ds € k, in which case f — Dg € k where
g=go+s. O

IntegrateHyperexponential(f, D)
(* Integration of hyperexponential functions *)

(* Given an hyperexponential monomial ¢ over k and f € k(t), return g
elementary over k(t) and a Boolean 8 € {0,1} such that f — Dg € k if
B =1, or f— Dg does not have an elementary integral over k(t) if 3 = 0.

)

(g1, h,r) — HermiteReduce(f, D)

(92, 8) — ResidueReduce(h, D)

if 8 =0 then return(g: + g2,0)

(¢, 8) — IntegrateHyperexponentialPolynomial(h — Dg> + r, D)
return(g: + g2 + ¢, 8)

5.10 The Hypertangent Case

Tangents and trigonometric functions can be integrated by transforming them
to complex logarithms and exponentials, but the theory of monomial exten-
sions allows us to integrate them directly without introducing the algebraic
number /—1. We start by defining tangent monomials and computing the
special polynomials. Let k be a differential field and K a differential extension
of k.
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Definition 5.10.1. Lett € K be such that t>+1 # 0. t is a hypertangent over
k if Dt/(t*+1) € k. t is a tangent over k if Dt/(t?> +1) = Db for some b € k.
t is a hypertangent (resp. tangent) monomial over k if ¢ is a hypertangent
(resp. tangent) over k, transcendental over k, and Const(k(t)) = Const(k).

We write ¢ = tan( [ a) when ¢ is a hypertangent over k such that Dt/(t*+1) =
a, and t = tan(b) when t is a tangent over k such that Dt/(t?> + 1) = Db.

Lemma 5.10.1. Let (F, D) be a differential field containing \/—1, a € F be
such that a®> +1#0, and b = (v—1—a)/(v/—1+a). Then, b # 0 and

Db Da
g /Wiy
b a2 +1

Proof. b# 0 since a® + 1 # 0, and we have

Db_D<\/—71—a> V-1+a

b vV-1+a/)+vV/-1-a
Da v—1+a Da
:—2\/—1 :2\/_17.
(V-1+a)?v/-1-a 1+4a?

O

Theorem 5.10.1. If t is an hypertangent over k and /—1Dt/(t*> 4+ 1) is not
a logarithmic derivative of a k(v/—1)-radical, then t is a monomial over k,
Const(k(t)) = Const(k), and any p € 8™ divides t*> + 1 in k[t]. Furthermore,
St = S Conwersely, if t is transcendental and hypertangent over k, and
Const(k(t)) = Const(k), then \/—1Dt/(t? +1) is not a logarithmic derivative
of a k(v/—1)-radical.

Proof. Let t be an hypertangent over k, a = Dt/(t> + 1), and suppose that
av/—1 is not a logarithmic derivative of a k(y/—1)-radical. Let 6 = \/‘/:::_i €
k(v/—1)(t). By Lemma 5.10.1, we have

Do Dt

- = 2ﬁ1+7t2 =2av/—1 € k(v/~1)

so 0 is hyperexponential over k(y/—1). Since ay/—1 is not a logarithmic deriva-
tive of a k(y/—1)-radical, 2ay/—1 is not one either, so by Theorem 5.1.2,
is a monomial over k(v/—1), and Const(k(v/—1)(6)) = Const(k(v/—1)). But
t=+/—=1(0—1)/(6+1), so t is transcendental over k(y/—1), hence a monomial
over k since Dt = a + at?. Furthermore, k(v/—1)(0) = k(v/=1)(t), so

Const(k(v/—1)(t)) = Const(k(v/—1)(#)) = Const(k(v/—1)) = C Nk(v/—1)

by Corollary 3.3.1 where C is the algebraic closure of Const(k). This implies
that Const(k(t)) € C N k(v/—1) Nk(t) C k since t is transcendental over k.
Hence, Const(k(t)) C Const(k). The reverse inclusion is given by Lemma 3.3.1,
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so Const(k(t)) = Const(k), which implies that Const(k(t)) = Const(k) by
Lemma 3.3.3.

We have D(t? + 1) = 2tDt = 2at(t* + 1) so t? + 1 € S, hence any factor of
t2 + 1 is special by Theorem 3.4.1. Suppose now that p € S, and let 3 € k be
any root of p. D = af3? + a by Theorem 3.4.3, so

D(t—ﬂ) _ =8B+ 1) — (t = B)(EF” +t + 57+ B)

Bt +1 (Bt +1)2

(Bt2+t+ 5%t +8) — (3% +t+ pt2 + )
(Bt +1)2

which implies that ¢ = (¢t — 3)/(Bt + 1) € Const(k(t)) C k. Since ¢ is tran-
scendental over k, (¢ — 1)t + (¢ + 3) = 0 implies that ¢ —1 =c+ 3 = 0,
so 32 4+ 1 = 0. Since this holds for every root of p, this implies that every
irreducible factor of p divides t? + 1 in k[t].

We have S C 8" by definition. Conversely, let p € ™. Then p divides
t2 + 1, so all the roots of p in k satisfy 32 = —1. Hence,

= a(t - ) =0

Dt—DjB t2—|—1
i—g  “t—5 "

which implies that ps(3) = 2a3 = +2y/—1a, which is not a logarithmic deriva-
tive of a k(y/—1)-radical, hence not a logarithmic derivative of a k(f3)-radical.
Thus, p € Sif which implies that SI'* = S,

Conversely, let ¢ be a transcendental hypertangent over k£ and suppose that
Const(k(t)) = Const(k). Then, Const(k(t)) = Const(k) by Lemma 3.3.3. If
there exist b € k(v/—1)* and an integer n > 0 such that

g = a(t + B)

Dt Db
V-1
" 241 b
then, taking
vV-1-—t 0"
= -"——— d =—ek(vV-1(t
\/jl—s—t an c= b2 € ( )( )
we get
Dc Do Db Db
— =ng =2 =Vl 27" =0
c 0 t2 +1 b
so ¢ € Const(k(t)) C k in contradiction with ¢ transcendental over k. Hence,
V/—1Dt/(t? + 1) is not a logarithmic derivative of a k(y/—1)-radical. O

As a consequence, we have
k(t) = {f € k(t) such that (t* +1)"f € k[t] for some integer n > 0}

when ¢ is a hypertangent monomial over k. We now present an algorithm
that, with appropriate assumptions on k, integrates elements of k(¢) when ¢
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is a hypertangent monomial over k. Note first that if the polynomial X2 + 1
factors over k, then /=1 € k, so k(t) = k(0) where 0 = (v/—1 —1t)/(v/—1+
t) is a hyperexponential monomial over k. Hence we can use the algorithm
for integrating elements of hyperexponential extensions in this case, so we
can assume for the rest of this section that X2 + 1 is irreducible over k, in
other words that /—1 ¢ k. Since hypertangents are nonlinear monomials,
integrating elements of k[t] is straightforward.

Theorem 5.10.2. Let k be a differential field not containing \/—1, and t an

hypertangent over k. If /—1Dt/(t* + 1) is not a logarithmic derivative of a

k(v/=1)-radical, then for any p € k[t] we can compute q € k[t] and c € k such

that

D(t* +1)
241

Furthermore, if Dc # 0, then p has no elementary integral over k.

p—Dg—c cek.

Proof. Let a = Dt/(t* + 1) € k. Since ay/—1 is not a logarithmic derivative
of a k(v/—1)-radical, ¢ is a monomial over k, Const(k(t)) = Const(k), and all
the special irreducible polynomials divide #> + 1 in k[t] by Theorem 5.10.1.
Since /=1 ¢ k, t> + 1 is irreducible over k, so 8™ = {¢?> + 1}. Since 6(¢) =
Theorem 5.4.1 shows how to compute ¢,r € k[t] such that p — Dg = r and
deg(r) < 1. Write r = at + b where a,b € k, and let ¢ = a/(2a) € k. Since
h=1t2+1 €S8, Theorem 5.4.2 says that deg(r — cDh/h) < 1, hence that

D(t? + 1)

k.
t2+1 <

p—Dg—c
Suppose now that Dc # 0, and that r has an elementary integral over E(t).
Then, by Theorem 5.7.1, there are v € k(t), ¢1,...,¢n € C, by,...,b, €
k(ci,...,cn), and mq,...,my € Z such that

n

at+bev+Z Db(tz_:r;)mleqLQtaZmzclJrz

(5.18)

If voo(v) < 0, then voo(Dv) = veo(v) —1 < —1 by Theorem 4.4.4, in con-
tradiction with (5.18), hence v (v) > 0, which implies that v (Dv) > 0 by
Theorem 4.4.4. Let ¢ = a/(2a) € k. Equating the coefficients of ¢ in (5.18),
we get a = 2ad 1 | m;c;, SO

a n
c=5p = Zm,;ci € Const(k)

i=1

in contradiction with D¢ # 0. Hence (5.18) has no solution if D¢ # 0, which
implies that r, and hence p, have no elementary integral over k(t). a
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IntegrateHypertangentPolynomial(p, D)
(* Integration of hypertangent polynomials *)

(* Given a differential field k such that v/—1 ¢ k, a hypertangent mono-
mial ¢ over k and p € k[t], return ¢ € k[t] and ¢ € k such that
p—Dq—cD(t*+1)/(#*> +1) € k and p — Dq does not have an elementary
integral over k(t) if Dc # 0. *)

(¢,7) «— PolynomialReduce(p, D) (* deg(r) <1 %)
a«— Dt/(t* +1)

¢ «— coefficient(r,t)/(2a)

return(q, c)

Example 5.10.1. Consider
/ (tan(z)? + z tan(z) + 1) da

Let k = Q(z) with D = d/dz, and and let ¢t be a monomial over k satisfying
Dt =1+ 1t2, i.e. t = tan(z). Our integrand is then

p=t*+at+1€k[t].

We get

1. (g,7) = PolynomialReduce(t? + xt + 1) = (¢, xt)
2.a=Dt/t*+1)=1
3.c=uz/2.

Since De =1/2 # 0, we conclude that
/ (tan(z)? + 2 tan(z) + 1) dz = tan(z) + /xtan(x)d:c

and the latter integral is not an elementary function.

For reduced elements in an hypertangent extension, the related problem
we need to solve over k is the coupled differential system problem: given
f1, f2,91, 92 € k, determine whether there are y;,y2 € k such that

(Do) (8 () -(2)

and to compute y; and ys if they exist.

Theorem 5.10.3. Let k be a differential field not containing v/—1, and t an
hypertangent over k. If we can solve coupled differential systems over k, and
V—=1Dt/(t? + 1) is not a logarithmic derivative of a k(v/—1)-radical, then for
any p € k(t) we can either prove that p has no elementary integral over k(t),
or compute q € k(t) such that p — Dq € kl[t].
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Proof. Let a = Dt/(t* + 1) € k. Since ay/—1 is not a logarithmic derivative
of a k(y/—1)-radical, t is a monomial over k, Const(k(t)) = Const(k), and all
the special irreducible polynomials divide #> + 1 in k[t] by Theorem 5.10.1.
Since /=1 ¢ k, t2 + 1 is irreducible over k, so S = &I = {2 4 1}. Thus,
Theorem 5.7.1 says that if p has an elementary integral over k(t), then there
are v € k(t), ¢1,...,¢c, € C, by,...,b, € k(c1,...,¢y), and my,...,m, €7
such that

n

Db (2 +1)m
p= DU+Z t2+1 m;

L= Dv+w (5.19)

= Dv+ 2taZmici + Zcilzb
i=1 i=1

where C' = Const(k), and

n . Dp
w = QtQZmici + ZCZT € k(cr, ..., cn)lt].
i=1 i=1

3

K =k(cy,...,cy) is an algebraic extension of k, so t is transcendental over K.
Furthermore, ay/—1 is not a logarithmic derivative of a K (y/—1)-radical by
Lemma 3.4.8, so ¢ is a monomial over K and Const(K (t)) = Const(K). We
proceed by induction on —v42 1 (p). If 42 1(p) > 0, then p — Dq € k[t] where
q = 0 € k(t), so suppose that m = —vy2,1(p) > 0 and that the theorem holds
for all h € k(t) with —vy2,1(h) < m. Since p € k(t) and m = —v21(p) > 0,
we have p = r/(t>41)™ where r € k[t] and ged(r, 2 +1) = 1. Since vz, 1(p) =
—m < 0, (5.19) implies that vz, 1(Dv) = —m < 0, hence that v;2,4(v) = —m
by Theorem 4.4.2, since t2 +1 € ;. Thus, v = s/(t> +1)™ where s € k[t] and
ged(s,t2 + 1) = 1. Dividing r and s by t2 + 1, we get r = ro(t? + 1) +at + b
and s = so(t? + 1) + ct + d, where 1o, so € k[t], a,b,c,d € k, at +b # 0, and
ct +d # 0. From (5.19), we get

at +b n 70 ct+d N S0 n
— w
#2+1)m = (24 1)m-t (2+1)m = (124 1)m-1
tDe+ca(t> + 1)+ Dd  2mat(t? + 1)(ct + d)

B N - e B
tDc+ Dd ct? + dt 1

= — 2ma————— — 4D
CEDR mao CEST + ca CE = + Dwg +w
tDc+ Dd dt —c 1—-2m

= 2ma———— ————— 4D
@rnm  CEr e YE e T

where wy = so/(t? + 1)™~ 1. Since vyz2 1 (wg) > —m, vz (Dwy) > —m by
Theorem 4.4.2, so, equating the coefficients of (#2 + 1)~™ we get

at + b= (Dc — 2mad)t + Dd 4 2mac
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which implies that

(B (%) ()-(). o

Since we can solve coupled differential systems over k and a, b, « € k, we can
either prove that (5.20) has no solution ¢, d € k, or find such a solution. If it has
no solution in k, then (5.19) has no solution, so p has no elementary integral
over k(t). If we have a solution ¢, d € k, letting qo = (ct+d)/(t> +1)™ € k(t),
we get
D W
p do = (2 + 1)m—1
for some wu € k[t], so v4241(p — Dqp) > —m. By induction we can either prove
that p — Dgp has no elementary integral over k(t), in which case p has no
elementary integral over k(t), or we get ¢1 € k(t) such that p—Dgo—Dgq; € klt],
which implies that p — Dq € k[t] where ¢ = g0 + q1. O

IntegrateHypertangentReduced(p, D)
(* Integration of hypertangent reduced elements *)

(* Given a differential field &k such that v/—1 ¢ k, a hypertangent mono-
mial ¢ over k and p € k(t), return ¢ € k(t) and a Boolean 8 € {0, 1} such

that p— Dq € k[t] if B = 1, or p— Dq does not have an elementary integral
over k(t) if 3 =0. *)

m — —v241(p)
if m <0 then return(0,1)

he (2 4+ )™ (+ h € K[t) %)
(q,r) « PolyDivide(h,t* 4 1) (x h = (t* 4+ 1)g +r,deg(r) <1 %)
a «— coefficient(r,t), b — r — at (x r=at+bx*)

(* CoupledDESystem will be given in Chap. 8 *)

(¢,d) — CoupledDESystem(0,2mDt/(t*> 4+ 1), a,b)

(x Dc —2mDt/(t* + 1)d = a, Dd 4+ 2mDt/(t* + 1)c = b *)
if (¢,d) = “no solution” then return(0,0)

go — (ct+d)/E+1)™

(¢,8) — IntegrateHypertangentReduced(p — Dqo, D)
return(q + qo, 3)

Ezample 5.10.2. Consider

/ sin(e)

Let k = Q(z) with D = d/dz, and and let ¢t be a monomial over k satisfying
Dt = (1 +1t%)/2, i.e. t = tan(x/2). Using the classical half-angle formula, our
integrand is then
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_sin(z)  2tan(x/2)  2t/x
b= r(tan(z/2)2 +1) 241 € kit)-

We get Dt/(t* +1) = 1/2 and

l.m=—-ve(p)=1

2.h=p(t?+1)=2t/z
3. (g, ) = PolyDivide(2t/z,t*> + 1) = (0,2t/z), so (a,b) = (2/x,0)
4. Sin
Dc n 0 -1 c\ _ (2/x
Dd 1 0 d) 0
has no solution in Q(z), CoupledDESystem(0,1,2/z,0) returns “no
solution”.
Hence,

/de

is not an elementary function.

Ezxample 5.10.3. Consider

dr .

/ tan(x)5 + tan(x)3 + 22 tan(x) + 1
(tan(z)? + 1)

Let k = Q(z) with D = d/dx, and and let ¢ be a monomial over k satisfying
Dt =1+1t2, i.e. t = tan(z). Our integrand is then

P4+ 22t 41
= Lxg—k € kit).
(t2+1)

We get Dt/(t?> +1) = 1 and

.m=—vpz(p) =3 ‘

h=p#?+ 1P =0+ 3+ 2%+ 1

. (g, ) = PolyDivide(h,t? + 1) = (3, 2%t + 1), so (a,b) = (22, 1)
. Sin

(o) + (& ') (2) = ()

has the solution ¢ = x/18 +1/6 and d = 1/108 — 22 /6 in Q(x),
(c,d) = CoupledDESystem(0,6,22,1) = (z/18 +1/6,1/108 — 22/6).

=W N

> ct+d  (1+a/3)t— (22— 1/18)
o= 2 +1)7° 6(t2+1)° ’

3 4 52 /18 4+ 15/18
(12 + 1)

p—Dqo =
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6. Recursively calling (¢,8) = IntegrateHypertangentReduced(p —
Dqp), we get f =1 and

51 +x/3)t+77/12  5(1+x/3)t — 43/6

24 (12 4+ 1)° 16 (2 +1)
7. 5
X
o= 1+3)
p=Dlg+a)=151+3
Hence,

/ tan(z)% + tan(x)? + 22 tan(z) + 1 .

(tan(z)? + 1)
(1+ 2/3) tan(z) — (2? — 1/18) N 5(1+ x/3) tan(z) + 77/12

6 (tan(z)? +1)° 24 (tan(z)? + 1)*
5(1+x/3)tan(z) —43/6 5 x
6tan@?2 1) 16 / (1+3)

and the remaining integral is of course z + 22 /6.

Putting all the pieces together, we get an algorithm for integrating ele-
ments of k(t).

Theorem 5.10.4. Let k be a differential field not containing \/—1, and t an
hypertangent over k. If we can solve coupled differential systems over k, and
V—=1Dt/(t? + 1) is not a logarithmic derivative of a k(v/—1)-radical, then for
any f € k(t) we can either prove that f has no elementary integral over k(t),
or compute an elementary extension E of k(t) and g € E such that f—Dg € k.

Proof. Suppose that /=1Dt/(t> + 1) is not a logarithmic derivative of a
k(v/=1)-radical, then t is a monomial over k and Const(k(t)) = Const(k)
by Theorem 5.10.1. Let f € k(t). By Theorem 5.3.1, we can compute
g1, h,r € k(t) such that f = Dgy; +h-+r, h is simple and r is reduced. From h,
which is simple, we compute g2 € k(t) given by (5.8) in Theorem 5.6.1. Note
that go = g1 + [ g2 lies in some elementary extension of k(t). Let p = h — go
and ¢ = p+r, then f = Dgo + ¢ so f has an elementary integral over k(t)
if and only if ¢ has one. If p ¢ k[t], then p + r does not have an elementary
integral over k(t) by Theorem 5.6.1, so f does not have an elementary integral
over k(t). Suppose now that p € k[t]. Then p € k(t) so ¢ € k(t). By Theo-
rem 5.10.3 we can either prove that ¢ has no elementary integral over k(t), in
which case f has no elementary integral over k(t), or compute s € k(t) such
that u = ¢ — Ds € k[t], in which case by Theorem 5.10.2, we compute v € k[t]
and ¢ € Const(k) such that u — Dv — eD(#? +1)/(t* + 1) € k. If Dc # 0,
then u, and hence f, have no elementary integral over k(t), otherwise D¢ = 0
so f—Dg € k where g = go+s+v+c [D(t? +1)/(t* + 1) lies in some
elementary extension of k(t). O
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IntegrateHypertangent(f, D) (* Integration of hypertangent functions *)

(* Given a differential field k£ such that «/—1 ¢ k, a hypertangent mono-
mial ¢t over k and f € k(t), return g elementary over k(t) and a Boolean
B € {0,1} such that f — Dg € k if 3 = 1, or f — Dg does not have an
elementary integral over k(¢) if 8 = 0. *)

(91, h,r) — HermiteReduce(f, D)

(92, 8) — ResidueReduce(h, D)

if 8 =0 then return(g: + g2,0)

p«—h—Dgs+r

(¢1,8) «— IntegrateHypertangentReduced(p, D)

if 8 =0 then return(g: + g2 + q1,0)

(g2,¢) — IntegrateHypertangentPolynomial(p — Dgqi, D)
if Dc =0 then return(gi + g2 + q1 + ¢2 + clog(t2 +1),1)
else return(gi + g2 + ¢1 + ¢2,0)

5.11 The Nonlinear Case with no Specials

In the case of nonlinear monomials over a differential field k, we have seen
that we can reduce the problem to integrating reduced elements of the form
p + a/d where p,a € k[t], d € S\ {0}, deg(p) < d(¢) and deg(a) < deg(d).
Furthermore, Theorem 5.7.2 provides a criterion for nonintegrability, and if an
element of S\ k is known, allows us to reduce the problem to deg(p) < §(¢) —1.
We address in this section the case S = k, i.e. S™ = (), which corresponds
to interesting classes of functions as will be illustrated in the examples. Note
that if S™ = (), then k(t) = k[t], so as a result of the polynomial reduction
(Sect. 5.4), we consider integrands of the form p € k[t] with deg(p) < d(¢). It
turns out that if such elements are integrable, then they must be in k.

Corollary 5.11.1. Suppose that t is a nonlinear monomial and that S™ = ().
Let p € k[t] be such that deg(p) < 6(t). If p has an elementary integral over
k(t), then p € k.

Proof. Let C = Const(k(t)), p € k[t] be such that deg(p) < d(t), and suppose
that p has an elementary integral over k(t). By Theorem 5.7.1 there are v €
k[t], c1,...,¢cn € C and uy,...,u, € Sk(cr,oen)tl:k(cr,.nen) Such that p =
Dv + g where g = >, ¢;D(u;)/u;. Note that ¢ = p — Dv € k[t]. Since
S}:ﬁ]:k = (), it follows that Slicr(rcl7...,c")[t]:k(c1,...7cn) = () (Exercise 3.5), hence
that Sy(c,,....cn)[t:k(crsen) = (€1, -+, cn). This implies that g € k(ci, ..., cn).
Since g € k[t], we get that g € k. Suppose that deg(v) > 1, then,

deg(p) = deg(Dv + g) = deg(Dv) = deg(v) +6(t) — 1 > 4(¢)
in contradiction with deg(p) < §(¢t). Hence, v € k, sop=Dv+g € k. O

This provides a complete algorithm for integrating elements of k(t).
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Theorem 5.11.1. Let k be a differential field and t be a nonlinear monomial
over k be such that S = (). Then, for any f € k(t) we can either prove that
f has no elementary integral over k(t), or compute an elementary extension
E of k(t) and g € E such that f — Dg € k.

Proof. Suppose that t is a nonlinear monomial over k and that S = (). Then,
Const(k(t)) = Const(k) by Lemma 3.4.5. Let f € k(t). By Theorem 5.3.1, we
can compute g1, h,r € k(t) such that f = Dg; + h + r, h is simple and r
is reduced. From h, which is simple, we compute go € k(t) given by (5.8) in
Theorem 5.6.1. Note that go = g1 + f g2 lies in some elementary extension
of k(t). Let p = h— go and ¢ = p+ r, then f = Dgp + ¢ so f has an
elementary integral over k(t) if and only if ¢ has one. If p ¢ k[t], then p + r
does not have an elementary integral over k(t) by Theorem 5.6.1, so f does
not have an elementary integral over k(t). Suppose now that p € k[t]. We
have k(t) = k[t] by (5.1), so r € kt], hence ¢ € k[t]. By Theorem 5.4.1 we
compute q1, g2 € k[t] such that ¢ = Dg1 + ¢2 and deg(g2) < d(t). We now have
f—Dg = g2 where g = go+q1. If g2 € k, then the theorem is proven, otherwise
0 < deg(g2) < 6(t), so g2, and therefore f, have no elementary integral over k
by Corollary 5.11.1. O

IntegrateNonLinearNoSpecial(f, D)
(* Integration of nonlinear monomials with no specials *)

(* Given a is a nonlinear monomial ¢ over k with S™ = 0, and f € k(t),
return g elementary over k(t) and a Boolean 3 € {0,1} such that f—Dg €
kif 8 =1, or f — Dg does not have an elementary integral over k(t) if
B=0.%)

(91, h,r) — HermiteReduce(f, D)

(92, 8) — ResidueReduce(h, D)

if 8 =0 then return(g: + g2,0)

(¢1,92) — PolynomialReduce(h — Dgz + r, D)

if go € k then 8 — 1 else 30

return(g: + g2 + q1, 8)

Ezxample 5.11.1. Let v € Z be any integer and consider

where J,(z) is the Bessel function of the first kind of order v. From

dJ,(z)
dx

= Ty (@) + ()
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we get

where ¢, (x) is the logarithmic derivative of J,(x). Since J,(z) is a solution
of the Bessel equation

@)+ '@+ (15 ) i) =0 (5:21)

it follows that ¢, (x) is a solution of the Riccati equation

y'(x) +y(a)® + éy(az) - (1 — ;) =0. (5.22)

Let k = Q(x) with D = d/dz, and let ¢t be a monomial over k satisfying
Dt = —t2 —t/x — (1 —v?/x?), i.e. t = ¢, (). It can be proven that S = () in
this extension* so Corollary 5.11.1 implies that ¢ has no elementary integral
over k, hence that

7JV+1(JJ) r =vlog(z) — z)dx

where the remaining integral is not elementary over Q(z, ¢, (x)).

Example 5.11.2. Let v € C be any complex number and consider

/ 2’9, +ad, — Vi, — x(@® + )¢} — (2% —v*)d, —a°/4

d
229t + 12(2? + 2)¢2 + 22 + 2t +25/4 .

where ¢, () is the logarithmic derivative of J,(x), the Bessel function of the
first kind of order v. Let k = Q(z) with D = d/dz, and let ¢t be a monomial
over k satisfying Dt = —t2 —t/x — (1 —v%/2?), i.e. t = ¢, (x). Our integrand
is then

f 2280 + ot — 23 — (2?2 + )12 — (22 — 2t —2°/4
B 224 + 22(22 4 2)t% 4 22 4 24 4 25 /4

and we get

1. Calling (g1, h,r) = HermiteReduce(f, D) we get

1+2%/4 P+ttt d —t—|—1
24+ 14+22/2° 2212 + 22 + 21/2 anar=iT e

g1 =

* The fact that (5.21) has no solutions in quadratures for v € Z (its Galois group
is SL2(C)) implies that (5.22) has no algebraic function solution, hence no solution
in k. Theorem 3.4.3 then implies that S"* = ().
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2. Calling (g2, ) = ResidueReduce(h, D) we get =1 and
1 z?
- Clog(2r1+Z ).
g2 5108 (t +1+ 2)

3. We have h — Dgo +r =0, so (q1,42) = (0,0).
Hence f = Dg; + Dgs, which means that
/ P26] + a6l — 129} — o(a + )~ (7~ )6, — a7/
x
2208 + 22(22 4+ 2)¢2 + 22 + z* + 26 /4

1+ 22/4 1
<z>u<x>2++x1 /+ g 308 (G(@) +1+a%/2)

Note that the above integral is valid regardless of whether S™ is empty.

The above examples used Bessel functions, but in fact the algorithm of
this section can be applied whenever the integrand can be expressed in terms
of the logarithmic derivative of a function defined by a second-order linear
ordinary differential equation. If the defining equation is known not to have
solutions in quadratures (for example for Airy functions), then S = (), as
explained in note 4 of this chapter.

5.12 In—Field Integration

We outline in this section minor variants of the integration algorithm that are
used for deciding whether an element of k(t) is either a

e derivative of an element of k(t),
e logarithmic derivative of an element of k(t),
e logarithmic derivative of a k(t)-radical.

As we have seen in Sect. 5.2, such procedures are needed when building the
tower of fields containing the integrand. Furthermore, they will be needed at
various points by the algorithms of the remaining chapters, in particular when
bounding orders and degrees.

Note that the structure Theorems of Chap. 9 provide efficient alternatives
to the use of modified integration algorithms, and in some cases the only
complete algorithms for recognizing logarithmic derivatives.

Recognizing Derivatives

The first problem is, given f € k(¢), to determine whether there exists u € k(t)
such that Du = f, and to compute such an w if it exists. We first perform the
Hermite reduction on f, obtaining g € k(t), a simple h € k(t), and r € k(t)
such that f = Dg+ h+r. At that point, we can prove (see Exercise 4.1) that
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if f = Du for some u € k(t), then h € k[t], so we are left with integrating
h+r which is reduced. The algorithms of Sects. 5.7 to 5.11 can then be applied
(with a minor modification in the nonlinear case, to prevent introducing a new
logarithm), either proving that there is no such u, or reducing the problem to
deciding whether an element a € k has an integral in k(t).

If ¢ is a primitive over k, then it follows from Theorem 4.4.2 and
Lemma 5.1.2 that if ¢ has an integral in k(t), then a = Dv + ¢Dt where
v € k and ¢ € Const(k), and we are reduced to a limited integration problem
in k. Otherwise, 0(t) > 1, and it follows from Theorem 4.4.2 and Lemmas 3.4.2
and 5.1.2 that if a has an integral in k(t), then a = Dv where v € k, and we
are reduced to a similar problem in k.

When f = Da/a for some a € k(t)*, then Corollary 9.3.1,9.3.2 or 9.4.1 pro-
vide alternative algorithms: f = Du for u € k(t) if and only if the linear equa-
tion (9.8), (9.12) or (9.21) has a solution in Q. Corollary 9.3.2 also provides an
alternative algorithm if f = Db/(b* + 1) for some b € k(t), i.e. f = arctan(b).

It is obvious that the solution u is not unique, but that if f = Du = Dv
for u,v € k(t), then u — v € Const(k(t)).

Recognizing Logarithmic Derivatives

The second problem is, given f € k(t), to determine whether there exists a
nonzero u € k(t) such that Du/u = f, and to compute such an v if it exists.
We can prove (see Exercise 4.2) that if f = Du/u for some nonzero u € k(t),
then f is simple and that all the roots of the Rothstein—Trager resultant are
integers. In that case, the residue reduction produces

D (T1,, -0 92
g= Z aDga _ (Hrs(a)—oz ) _ &
rs(a)=0 Yo HTS (a)=0 9o v

where v € k(t) since the a’s are all integers. Furthermore, Theorem 5.6.1
implies that if f = Du/u for v € k(t), then f — g € k[t], so we are left
with deciding whether an element p of k[t] is the logarithmic derivative of an
element of k(t). If p = Du/u for u € k(t), then it follows from Exercise 4.2
that deg(p) < max(1,0(¢)) and from Corollary 4.4.2 that u = p7* ... pE» where
pi € Sande; € Z.

If ¢ is a primitive over k, then both p and v must be in k since S = k, so
we are reduced to a similar problem in k.

If ¢ is an hyperexponential over k, then p € k and u = vt® for v € k* and
e € Z, since S = {t}. We are thus reduced to deciding whether p € k can

be written as
Dv Dt
= — + e—
t
for v € k* and e € Z. This is a special case of the parametric logarithmic
derivative problem, a variant of the limited integration problem, which is

discussed in Chap. 7.

p
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If t is a hypertangent over k and /—1 ¢ k, then p = a + bt for a,b € k,
and u = v(t? + 1)¢ for v € k* and e € Z, since S = {t? + 1}. We are thus
reduced to deciding whether a + bt can be written as

Dv  D(#*+1) Dv Dt
ot v te t2+1 v +et2+1
which is equivalent to
Dv bt? +1
= — d —-——€Z.
“ v an 2 Dt

The second condition can be immediately verified, while the first is the prob-
lem of deciding whether an element of k is the logarithmic derivative of an
element of k.

When f = Db for some b € k(t), then Corollary 9.3.1, 9.3.2 or 9.4.1 provide
alternative algorithms: f is the logarithmic derivative of a k(t)-radical if and
only if the linear equation (9.9), (9.13) or (9.22) has a solution in Q.

The solution w is not unique, but if f = Du/u = Dv/v for u,v € k(t)\ {0},
then u/v € Const(k(t)) (this is the case n =m =1 of Lemma 5.12.1 below).

Recognizing Logarithmic Derivatives of k(t)-radicals

The third problem is, given f € k(t), to determine whether there exist a
nonzero n € Z and a nonzero u € k(t) such that Du/u = nf, and to compute
such an n and u if they exist. We can prove (see Exercise 4.2) that if nf =
Du/u for some nonzero n € Z and u € k(t), then f is simple and that all the
roots of the Rothstein—Trager resultant are rational numbers. In that case, let
m be a common denominator for the roots of the Rothstein—Trager resultant.
Then, the residue reduction produces

1 2([Lw=0) 1D

Dga
g - a - mao =
rs(%):—o ga  m 1l (a)=094 m v

where v € k(t) since the ma is an integer for each «. Furthermore, The-
orem 5.6.1 implies that if f = Du/(nu) for n € Z and u € k(t), then
f — Dg € k[t], so we are left with deciding whether an element p of k[t]
is the logarithmic derivative of a k(t)-radical. If p = Du/(nu) for n € Z and
u € k(t), then it follows from Exercise 4.2 that deg(p) < max(1,d(t)) and
from Corollary 4.4.2 that u = p§* ... p% where p; € S and e; € Z.

If ¢ is a primitive over k, then both p and v must be in k since § = k, so
we are reduced to a similar problem in k.

If ¢ is an hyperexponential over k, then p € k and u = vt® for v € k* and
e € Z, since 8" = {t}. We are thus reduced to deciding whether p € k can
be written as
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for v € k* and n, e € Z. This is the parametric logarithmic derivative problem,
a variant of the limited integration problem, which is discussed in Chap. 7.

If ¢ is a hypertangent over k and v/—1 ¢ k, then p = a + bt for a,b € k,
and u = v(t? + 1)¢ for v € k* and e € Z, since S = {t*> + 1}. We are thus
reduced to deciding whether a + bt can be written as

1Dv eD(t*+1) 1Dv  2e Dt

bt = = —
at n v +n t2+1 n v nt2+1

which is equivalent to

Dv q bt2+1
na = — an —
) 2 Dt

€Q.

The second condition can be immediately verified, while the first is the prob-
lem of deciding whether an element of k is the logarithmic derivative of a
k-radical.

When f = Db for some b € k(t), then Corollary 9.3.1, 9.3.2 or 9.4.1 provide
alternative algorithms: f is the logarithmic derivative of a k(t)-radical if and
only if the linear equation (9.9), (9.13) or (9.22) has a solution in Q.

The solution (n,w) is not unique, but any two solutions are related by the
following lemma.

Lemma 5.12.1. Let (K, D) be a differential field and u,v € K*. If

1Du 1 Dv
nou m v
for nonzero n,m € Z, then
ulcm(n,m)/n
€ Const(K) .

plem(n,m)/m

Proof. Let ¢ = ylom(nm)/n jylem(nm)/m Then,

D¢ lem(n,m) Du  lem(n,m) Dv 1Du 1 Dv
— = —_— = — =lem(n,m){—— - ——1] =0
c n u m v nou m o
so ¢ € Const(K). O
Exercises

Exercise 5.1. Let k be a differential field of characteristic 0, ¢ a monomial
over k, and d € k[t] \ {0}. Let d = d1d3 - - - d?" be a squarefree factorization of
d. Show that p(a/d) < n for any a € k[t], and that pu(a/d) = n if and only if
ged(a,d) = 1.
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Exercise 5.2. Rewrite the proof of Theorem 5.3.1 using Mack’s linear version
of the Hermite reduction instead of the quadratic version.

Exercise 5.3. Let k be a differential field of characteristic 0, ¢ a monomial
over k, and f € k(t)*. Show that using only the extended Euclidean algorithm
in k[t], one can find hg, h1, ..., hy and r € k(¢) such that ¢ < u(f), each h; is
simple, r is reduced, and f = r + hg + Dhy + D?ho + -+ + Dhy,.

Exercise 5.4 (In-field integration). Let k be a differential field of char-
acteristic 0 and ¢ be a monomial over k, Write an algorithm that, given any
f € k(t), returns either g € k(t) such that Dg = f, or “no solution” if f has
no antiderivative in k(t) (see Exercise 4.1).

Exercise 5.5 (Generalizations of Liouville’s Theorem). Let k be a dif-
ferential field of characteristic 0, C' = Const(k), f € k(¢), t be a monomial
over k, and suppose that there exist an elementary extension E of k(t) and
g € E such that Dg = f.

a) Prove that

n D’U,i
-D ' 5.23
f v+;c n (5.23)
has a solution v € k(t), ¢1,...,¢, € C, and uy, ..., u, € Sék[t]:ﬁk \ {0}.

b) Prove that if ¢ is a nonlinear monomial over k, then (5.23) has a solution
veEk[t, ey en €C,and ug, ..., uy, € Sﬁk[t]:ﬁk \ {0}.

¢) Prove that if Si = S then (5.23) has a solution v € k[t], ¢1,...,¢, € C,
and uy, ..., un € Sgyp.ep \ {0}

d) Prove that if ¢ is a nonlinear monomial over k and Si'" = S then f has
an elementary integral over k.

e) Prove that if ¢ is an hyperexponential monomial over k, then f has an
elementary integral over k.

f) Prove that if ¢ is a primitive monomial over k, then (5.23) has a solution
v=at+b, c1,...,cn €C,and uy,...,u, € Ck*, where a € C and b € k.

Exercise 5.6. Decide which of the following integrals are elementary func-
tions, and compute those that are elementary. Since the recursive problems in-
volving the procedures LimitedIntegrate, RischDE and Coupled DESys-
tem are trivial in these exercises, perform the portions allocated to those
procedures by elementary methods.

a)
/tan(ax)5d:ﬂ, aeC”.

b)
/x”e””dx, n€Z,n#0.
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c)
log(xz + a)
/de, a,bG(C,a;ﬁb.
d)
/(a:—&-l)i +1dm
(er*) —1
e)
2—n _
/(1+$ + 7 1>e$dx7 nezZmnt2.
2—n "
f)
2
/ 2 + tan(x) da
1+ (tan(z) + x)
g)

/ (3z — 2)log(z)? + (z — 1) log(z)? + 2z(x — 2) log(z) + 22
xlog(x)8 — 422 log(x)® 4 623 log(z)* — 4ot log(z)3 + x° log(x)?
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