
I have no particular talent. I am merely inquisitive.
— Albert Einstein

Albert Einstein
(1879–1955)

1 A Short Tour Through the Book

1.1 Introduction . 2
1.2 Simplicity & Uncertainty . 3

1.2.1 Introduction . 3
1.2.2 Algorithmic Information Theory . 4
1.2.3 Uncertainty & Probabilities . 5
1.2.4 Algorithmic Probability & Universal Induction 6
1.2.5 Generalized Universal (Semi)Measures 7

1.3 Universal Sequence Prediction . 7
1.3.1 Setup & Convergence . 8
1.3.2 Loss Bounds . 8
1.3.3 Optimality Properties . 9
1.3.4 Miscellaneous . 10

1.4 Rational Agents in Known Probabilistic Environments 11
1.4.1 The Agent Model . 11
1.4.2 Value Functions & Optimal Policies 11
1.4.3 Sequential Decision Theory & Reinforcement Learning . . 12

1.5 The Universal Algorithmic Agent AIXI . 13
1.5.1 The Universal AIXI Model . 13
1.5.2 On the Optimality of AIXI . 14
1.5.3 Value-Related Optimality Results . 15
1.5.4 Markov Decision Processes . 17
1.5.5 The Choice of the Horizon . 18

...

2 1 A Short Tour Through the Book

1.6 Important Environmental Classes . 18
1.6.1 Introduction . 18
1.6.2 Sequence Prediction (SP) . 19
1.6.3 Strategic Games (SG) . 19
1.6.4 Function Minimization (FM) . 19
1.6.5 Supervised Learning from Examples (EX) 19
1.6.6 Other Aspects of Intelligence . 20

1.7 Computational Aspects . 20
1.7.1 The Fastest & Shortest Algorithm for All Problems 20
1.7.2 Time-Bounded AIXI Model . 22

1.8 Discussion . 24
1.9 History & References . 26

This Chapter represents a short tour through the book. It is not meant as a
gentle introduction for novices, but as a condensed presentation of the most
important concepts and results of the book. The price for this brevity is that
in this chapter we mostly forgo mathematical rigor, subtleties, proofs, discus-
sions, references and comparisons to other work. More seriously, some sec-
tions demand high background knowledge. Readers unfamiliar with algorith-
mic information theory should first read Chapter 2 or consult the textbooks
[LV97, Cal02]. Readers unfamiliar with sequential decision theory should first
read Chapter 4 or consult the textbooks [BT96, SB98]. Before becoming dis-
couraged by the complexity of some of the sections, it is better to skip them
completely.

1.1 Introduction

Artificial Intelligence. The science of artificial intelligence (AI) might be
defined as the construction of intelligent systems and their analysis. A natural
definition of a system is anything that has an input and an output stream. In-
telligence is more complicated. It can have many faces like creativity, solving
problems, pattern recognition, classification, learning, induction, deduction,
building analogies, optimization, surviving in an environment, language pro-
cessing, knowledge and many more. A formal definition incorporating every
aspect of intelligence, however, seems difficult. Further, intelligence is graded:
There is a smooth transition between systems, which everyone would agree
to be not intelligent, and truly intelligent systems. One simply has to look in
nature, starting with, for instance, inanimate crystals, then amino acids, then
some RNA fragments, then viruses, bacteria, plants, animals, apes, followed
by the truly intelligent homo sapiens, and possibly continued by AI systems or
ETs. So, the best we can expect to find is a partial or total order relation on
the set of systems, which orders them w.r.t. their degree of intelligence (like

1.2 Simplicity & Uncertainty 3

intelligence tests do for human systems, but for a limited class of problems).
Having this order we are, of course, interested in large elements, i.e. highly
intelligent systems. If a largest element exists, it would correspond to the most
intelligent system which could exist.

Most, if not all, known facets of intelligence can be formulated as goal
driven or, more precisely, as maximizing some utility function. It is therefore
sufficient to study goal-driven AI. For example, the (biological) goal of animals
and humans is to survive and spread. The goal of AI systems should be to
be useful to humans. The problem is that, except for special cases, we know
neither the utility function nor the environment in which the agent will operate
in advance.

Main idea. This book presents a theory that formally1 solves the problem
of unknown goal and environment. It might be viewed as a unification of the
ideas of universal induction, probabilistic planning and reinforcement learning,
or as a unification of sequential decision theory with algorithmic information
theory. We apply this model to some of the facets of intelligence, including
induction, game playing, optimization, reinforcement and supervised learning,
and show how it solves these problem classes. This, together with general
convergence theorems, supports the belief that the constructed universal AI
system is the best one in a sense to be clarified in the following, i.e. that it is
the most intelligent environment-independent system possible. The intention
of this book is to introduce the universal AI model and give an extensive
analysis.

1.2 Simplicity & Uncertainty

This section introduces Occam’s razor principle, Kolmogorov complexity, and
objective/subjective probabilities. We finally arrive at the problem of universal
prediction, and its solution by Solomonoff.

1.2.1 Introduction

An important and nontrivial aspect of intelligence is inductive inference. Sim-
ply speaking, induction is the process of predicting the future from the past,
or, more precisely, it is the process of finding rules in (past) data and us-
ing these rules to guess future data. Weather or stock-market forecasting or
continuing number series in an IQ test are nontrivial examples. Making good
predictions plays a central role in natural and artificial intelligence in general,
and in machine learning in particular. All induction problems can be phrased
1 With a formal solution we mean a rigorous mathematically definition, uniquely

specifying the solution. In the following, a solution is always meant in this formal
sense.

4 1 A Short Tour Through the Book

as sequence prediction tasks. This is, for instance, obvious for time-series pre-
diction, but also includes classification tasks. Having observed data xt at times
t<n, the task is to predict the nth symbol xn from sequence x1...xn−1. This
prequential approach [Daw84] skips over the intermediate step of learning a
model based on observed data x1...xn−1 and then using this model to predict
xn. The prequential approach avoids problems of model consistency, how to
separate noise from useful data, and many other issues. The goal is to make
“good” predictions, where the prediction quality is usually measured by a loss
function, which shall be minimized. The key concept to well-defining and solv-
ing induction problems is Occam’s razor (simplicity) principle, which says that
“Entities should not be multiplied beyond necessity.” This may be interpreted
as keeping the simplest theory consistent with the observations x1...xn−1 and
using this theory to predict xn. Before we can present Solomonoff’s formal so-
lution, we have to quantify Occam’s razor in terms of Kolmogorov complexity,
and introduce the notions of subjective and objective probabilities.

1.2.2 Algorithmic Information Theory

Intuitively, a string is simple if it can be described in a few words, like “the
string of one million ones”, and is complex if there is no such short description,
like for a random string whose shortest description is specifying it bit by bit.
We can restrict the discussion to binary strings, since for other (non-stringy
mathematical) objects we may assume some default coding as binary strings.
Furthermore, we are only interested in effective descriptions, and hence restrict
decoders to be Turing machines. Let us choose some universal (so-called prefix)
Turing machine U with unidirectional binary input and output tapes and a
bidirectional work tape. We can then define the prefix Kolmogorov complexity
[Cha75, Gác74, Kol65, Lev74] of a binary string x as the length ` of the
shortest program p for which U outputs the binary string x

K(x) := min
p
{`(p) : U(p) = x}.

Simple strings like 000...0 can be generated by short programs, and, hence
have low Kolmogorov complexity, but irregular (e.g. random) strings are their
own shortest description, and hence have high Kolmogorov complexity. An
important property of K is that it is nearly independent of the choice of U .
Furthermore, it shares many properties with Shannon’s entropy (information
measure) S, but K is superior to S in many respects. Figure 2.11 on page 38
contains a schematic graph of K. To be brief, K is an excellent universal com-
plexity measure, suitable for quantifying Occam’s razor. There is (only) one
severe disadvantage: K is not finitely computable. More precisely, a function f
is said to be finitely computable (or recursive) if there exists a Turing machine
which, given x, computes f(x) and then halts. Some functions are not finitely
computable but still approximable in the sense that there is a nonhalting Tur-
ing machine with an infinite output sequence y1,y2,y3,... with limt→∞yt=f(x).

1.2 Simplicity & Uncertainty 5

If additionally the output sequence is monotone increasing/decreasing, then
f is said to be lower/upper semicomputable (or enumerable/co-enumerable).
Finally, we call f estimable if some Turing machine, given x and a precision
ε, finitely computes an ε-approximation of x. The major algorithmic property
of K is that it is co-enumerable, but not finitely computable.

1.2.3 Uncertainty & Probabilities

For the objectivist, probabilities are real aspects of the world.2 The outcome
of an observation or an experiment is not deterministic, but involves physical
random processes. Kolmogorov’s axioms of probability theory formalize the
properties which probabilities should have. In the case of independent and
identically distributed (i.i.d.) experiments the probabilities assigned to events
can be interpreted as limiting frequencies (frequentist view), but applications
are not limited to this case. Conditionalizing probabilities and Bayes’ rule
are the major tools in computing posterior probabilities from prior ones. For
instance, given the initial binary sequence x1...xn−1, what is the probability
of the next bit being 1? The probability of observing xn at time n, given
past observations x1...xn−1 can be computed with multiplication or the chain
rule3 if the true generating distribution µ of the sequences x1x2x3... is known:
µ(xn|x<n) = µ(x1:n)/µ(x<n), where we introduced the abbreviations x1:n ≡
x1x2...xn and x<n ≡ x1x2...xn−1. The problem, however, is that one often
does not know the true distribution µ (e.g. in the cases of weather and stock-
market forecasting).

The subjectivist uses probabilities to characterize an agent’s degree of belief
in (or plausibility of) something, rather than to characterize physical random
processes. This is the most relevant interpretation of probabilities in AI. It
is somewhat surprising that plausibilities can be shown to also respect Kol-
mogorov’s axioms of probability and the chain rule by assuming only a few
plausible qualitative rules they should follow [Cox46]. Hence, if the plausibil-
ity of x1:n is ρ(x1:n), the degree of belief in xn given x<n is, again, given by
the chain rule: ρ(xn|x<n)=ρ(x1:n)/ρ(x<n).

The chain rule allows the computation of posterior probabili-
ties/plausibilities from prior ones, but leaves open the question of how to
determine the priors themselves. In statistical physics, the principle of indif-
ference (symmetry principle) and the maximum entropy principle can often be
exploited to determine prior probabilities, but only Occam’s razor is general
enough to assign prior probabilities in every situation, especially to cope with
complex domains typical for AI.
2 Readers not believing in objective and/or subjective probabilities should read the

remark at the beginning of Section 2.3.
3 Strictly speaking, it is just the definition of conditional probabilities.

6 1 A Short Tour Through the Book

1.2.4 Algorithmic Probability & Universal Induction

Occam’s razor (appropriately interpreted and in compromise with Epicurus’
principle of indifference) tells us to assign high/low a priori plausibility to
simple/complex strings x. Using K as complexity measure, any monotone
decreasing function of K, e.g. ρ(x)=2−K(x), would satisfy this criterion. But
ρ also has to satisfy the probability axioms, so we have to be a bit more careful.
Solomonoff [Sol64, Sol78] defined the universal prior M(x) as the probability
that the output of a universal Turing machine U starts with x when provided
with fair coin flips on the input tape. Formally, M can be defined as

M(x) :=
∑

p : U(p)=x∗
2−`(p) (1.1)

where the sum is over all (so-called minimal) programs p for which U outputs
a string starting with x. Strictly speaking M is only a semimeasure since
it is not normalized to 1, but this is acceptable/correctable. We derive the
following bound:
∞∑

t=1

(1−M(xt|x<t))2≤− 1
2

∞∑
t=1

lnM(xt|x<t) =− 1
2 lnM(x1:∞)≤ 1

2 ln2 ·Km(x1:∞)

where Km(x1:∞) is the length of the shortest (nonhalting) program computing
x1:∞. In the first inequality we have used (1−a)2 ≤− 1

2 lna for 0≤ a≤ 1. In
the equality we exchanged the sum with the logarithm and eliminated the
resulting product by the chain rule. In the last inequality we used M(x)≥
2−Km(x), which follows from definition (1.1) by dropping all terms in

∑
p

except for the shortest p computing x. If x1:∞ is a computable sequence, then
Km(x1:∞) is finite, which implies M(xt|x<t)→1 (

∑∞
t=1(1−at)2 <∞ ⇒ at→

1). This means that if the environment is a computable sequence (whichever,
e.g. the digits of π or e in binary representation), after having seen the first
few digits, M correctly predicts the next digit with high probability, i.e. it
recognizes the structure of the sequence.

Assume now that the true sequence is drawn from the distribution µ, i.e.
the true (objective) probability of x1:n is µ(x1:n), but µ is unknown. How is
the posterior (subjective) belief M(xn|x<n)=M(xn)/M(x<n) related to the
true (objective) posterior probability µ(xn|x<n)? Solomonoff’s [Sol78] central
result is that the posterior (subjective) beliefs converge to the true (objective)
posterior probabilities, if the latter are computable. More precisely, he showed
that

∞∑
t=1

∑

x<t∈{0,1}t−1

µ(x<t)
(
M(0|x<t)− µ(0|x<t)

)2

≤ 1
2 ln 2·K(µ) + O(1). (1.2)

The complexity K(µ) is finite if µ is a computable function, but the infinite
sum on the l.h.s. can only be finite if the difference M(0|x<t)−µ(0|x<t) tends
to zero for t→∞ with µ-probability 1 (w.µ.p.1). This shows that using M as
an estimate for µ may be a reasonable thing to do.

1.3 Universal Sequence Prediction 7

1.2.5 Generalized Universal (Semi)Measures

One can derive a universal prior in a different way: Solomonoff [Sol64, Eq.(13)]
defines a somewhat problematic mixture over all computable probability dis-
tributions. Levin [ZL70] considers the larger class MU := {ν1,ν2,...} of all
so-called enumerable semimeasures. Let µ∈MU , and assign (consistent with
Occam’s razor) a prior plausibility of 2−K(νa) to νa. Then the prior plausibility
of x1:n is, by elementary probability theory,

ξU (x1:n) :=
∑

ν∈MU

2−K(ν)ν(x1:n). (1.3)

One can show that ξU coincides with M within an (irrelevant) multiplicative
constant, i.e. M(x)×=ξU (x), where f(x)×≤g(x) abbreviates f(x)=O(g(x)), and
×= denotes ×≤ and ×≥. Both ξU and M can be shown to be lower semicomputable.
The dominance M(x) ×= ξU (x)≥ 2−K(µ)µ(x) is the central ingredient in the
proof of (1.2). The advantage of ξU over M is that the definition immediately
generalizes to arbitrary weighted sums of (semi)measures in M for arbitrary
countable M. Most proofs in this book go through for generic M and weights.

So, what is so special about the class of all enumerable semimeasures
MU? The larger we choose M, the less restrictive is the assumption that
M should contain the true distribution µ, which will be essential throughout
the book. Why not restrict to the still rather general class of estimable or
finitely computable (semi)measures? For every countable class M, the mix-
ture ξ(x) := ξM(x) :=

∑
ν∈Mwνν(x) with wν > 0, the important dominance

ξ(x)≥wνν(x) is satisfied. The question is, what properties does ξ possess.
The distinguishing property of MU is that ξU is itself an element of MU . On
the other hand, in this book ξM∈M is not by itself an important property.
What matters is whether ξ is computable in one of the senses we defined
above. There is an enumerable semimeasure (M) that dominates all enumer-
able semimeasures in MU . As we will see, there is no estimable semimea-
sure that dominates all computable measures, and there is no approximable
semimeasure that dominates all approximable measures. From this it follows
that for a universal (semi)measure which at least satisfies the weakest form of
computability, namely being approximable, the largest dominated class among
the classes considered in this book is the class of enumerable semimeasures,
but there are even larger classes [Sch02a]. This is the reason why MU and
M play a special role in this (and other) works. In practice though, one has
to restrict to a finite subset of finitely computable environments ν to get a
finitely computable ξ.

1.3 Universal Sequence Prediction

In the following we more closely investigate sequence prediction (SP) schemes
based on Solomonoff’s universal prior M ×= ξU and on more general Bayes

8 1 A Short Tour Through the Book

mixtures ξ, mainly from a decision-theoretic perspective. In particular, we
show that they are optimal w.r.t. various optimality criteria.

1.3.1 Setup & Convergence

Let M :={ν1,ν2,...} be a countable set of candidate probability distributions
on strings over the finite alphabet X . We define a weighted average on M:

ξ(x1:n) :=
∑

ν∈M
wν ·ν(x1:n),

∑

ν∈M
wν = 1, wν > 0. (1.4)

It is easy to see that ξ is a probability distribution as the weights wν are pos-
itive and normalized to 1 and the ν∈M are probabilities. We call ξ universal
relative to M, as it multiplicatively dominates all distributions in M in the
sense that ξ(x1:n)≥wν ·ν(x1:n) for all ν∈M. In the following, we assume that
M is known and contains the true but unknown distribution µ, i.e. µ∈M,
and x1:∞ is sampled from µ. We abbreviate expectations w.r.t. µ by E[..]; for
instance, E[f(x1:n)]=

∑
x1:n∈Xnµ(x1:n)f(x1:n). We use the (total) relative en-

tropy Dn and squared Euclidian distance Sn to measure the distance between
µ and ξ:

Dn := E

[
ln

µ(x1:n)
ξ(x1:n)

]
, Sn :=

n∑
t=1

E

[∑

x′t∈X

(
µ(x′t|x<t)− ξ(x′t|x<t)

)2
]
. (1.5)

The following sequence of inequalities can be shown, which generalize
Solomonoff’s result (1.2): Sn≤Dn≤ lnw−1

µ <∞. The finiteness of S∞ implies
ξ(x′t|x<t)−µ(x′t|x<t)→0 for t→∞ w.µ.p.1 for any x′t (

∑∞
t=1s

2
t <∞⇒st→0).

We also show that
∑n

t=1E[(
√

ξ(xt|x<t)/µ(xt|x<t)−1)2]≤Dn ≤ lnw−1
µ <∞,

which implies ξ(xt|x<t)/µ(xt|x<t)→ 1 for t→∞ w.µ.p.1. This convergence
motivates the belief that predictions based on (the known) ξ are asymptoti-
cally as good as predictions based on (the unknown) µ, with rapid convergence.

1.3.2 Loss Bounds

Most predictions are eventually used as a basis for some decision or action,
which itself leads to some reward or loss. Let `xtyt ∈ [0,1]⊂IR be the received
loss when performing prediction/decision/action yt ∈ Y, and xt ∈ X is the
tth symbol of the sequence. Let yΛ

t ∈Y be the prediction of a (causal) pre-
diction scheme Λ. The true probability of the next symbol being xt, given
x<t, is µ(xt|x<t). The expected loss when predicting yt is E[`xtyt]. The total
µ-expected loss suffered by the Λ scheme in the first n predictions is

LΛ
n :=

n∑
t=1

E[`xtyΛ
t
].

1.3 Universal Sequence Prediction 9

The goal is to minimize the expected loss. More generally, we de-
fine the Λρ sequence prediction scheme (later also called SPρ) yΛρ

t :=
argminyt∈Y

∑
xt

ρ(xt|x<t)`xtyt , which minimizes the ρ-expected loss. If µ is
known, Λµ is obviously the best prediction scheme in the sense of achieving
minimal expected loss (LΛµ

n ≤ LΛ
n for any Λ). We prove the following loss

bound for the universal Λξ predictor

0 ≤ LΛξ
n − LΛµ

n ≤ Dn +
√

4LΛµ
n Dn + D2

n ≤ 2Dn + 2
√

LΛµ
n Dn. (1.6)

Together with Ln≤n and D∞≤ lnw−1
µ <∞, this shows that 1

nLΛξ
n − 1

nLΛµ
n =

O(n−1/2), i.e. asymptotically Λξ achieves the optimal average loss of Λµ with
rapid convergence. Moreover, LΛξ∞ is finite if LΛµ∞ is finite, and LΛξ

n /LΛµ
n →1 if

LΛµ∞ is not finite. Bound (1.6) also implies LΛ
n≥LΛξ

n −2
√

LΛξ
n Dn, which shows

that no (causal) predictor Λ whatsoever achieves significantly less (expected)
loss than Λξ. Note that for wν = 2−K(ν), Dn ≤ ln2 ·K(µ) is of “reasonable”
size. Instantaneous loss bounds can also be proven.

1.3.3 Optimality Properties

For any predictor Λ, a worst-case lower bound that asymptotically matches the
upper bound (1.6) can be derived. More precisely, let Λ be any deterministic
predictor not knowing from which distribution µ∈M the observed sequence
x1x2... is sampled. Predictor Λ knows (depends on) M, wν , and `, and has at
time t access to the previous outcomes x<t. Then for every n there is an M
and µ∈M and ` and weights wν such that

LΛ
n − LΛµ

n ≥ 1
2 [Sn +

√
4LΛµ

n Sn + S2
n], and Dn/Sn → 1 for n →∞.

For the universal predictor Λ=Λξ, the lower bound holds even without the
factor 1

2 . This shows that bound (1.6) is quite tight in the sense that no
other predictor can lead to significantly smaller bounds without making extra
assumptions on M, wν , or `. For instance, for logarithmic and quadratic loss
functions the regret LΛξ∞ −LΛµ∞ is finite and bounded by lnw−1

µ .
A different kind of optimality is Pareto optimality. Let F(µ,ρ) be any

performance measure of ρ relative to µ. The universal prior ξ is called Pareto
optimal w.r.t. F if there is no ρ with F(ν,ρ) ≤ F(ν,ξ) for all ν ∈M and
strict inequality for at least one ν. We show that the universal prior ξ is
Pareto optimal w.r.t. the squared distance Sn, the relative entropy Dn, and
the losses Ln. That is, for all performance measures that are relevant from a
decision-theoretic point of view (i.e. for all loss functions `) any improvement
achieved by some predictor Λρ over Λξ in some environments ν is balanced
by a deterioration in other environments. There are non-decision-theoretic
performance measures w.r.t. which ξ is not Pareto optimal. Pareto optimality
is a rather weak notion of optimality, but it emphasizes the distinctiveness of
Bayes mixture strategies.

10 1 A Short Tour Through the Book

Pareto optimality of ξ still leaves open the question of how to choose the
class M and the weights wν . We have argued that MU is the largest M
suitable from a computational point of view. MU is also sufficiently large if
we make the mild assumption that strings are sampled from a computable
probability distribution. We show that within the class of enumerable weight
functions with short program, the universal weights wν =2−K(ν) lead to the
smallest performance bounds within an additive (to lnw−1

ν) constant in all
enumerable environments. This argument justifies the selection of Solomonoff-
Levin’s prior (1.3) among all possible Bayes mixtures.4

1.3.4 Miscellaneous

Games of chance. The general loss bound (1.6) can, for instance, be used
to estimate the time needed to reach the winning threshold in a game of
chance (defined as a sequence of bets, observations and rewards). At time t
we bet, depending on the history x<t, a certain amount of money st, take some
action yt, observe outcome xt, and receive reward rt. Our net profit, which
we want to maximize, is pt = rt−st ∈ [pmax−p∆,pmax]. The loss, which we
want to minimize, can be identified with the negative (scaled) profit, `xkyt =
(pmax−pt)/p∆ ∈ [0,1]. The Λρ-system acts as to maximize the ρ-expected
profit. Let p̄Λρ

n be the average expected profit of the first n rounds. Bound (1.6)
shows that the average profit of the Λξ system converges to the best possible
average profit p̄Λµ

n achieved by the Λµ scheme (p̄Λξ
n −p̄Λµ

n =O(n−1/2)→ 0 for
n→∞). If there is a profitable scheme at all, then asymptotically the universal
Λξ scheme will also become profitable with the same average profit. We further
show using ξU that (2p∆/p̄Λµ

n)2 ·ln2·K(µ) is an upper bound on the number
of bets n needed to reach the winning zone. The bound is proportional to the
complexity of the environment µ.

Continuous probability classes M. We have considered thus far count-
able probability classes M, which makes sense from a computational point
of view. On the other hand, in statistical parameter estimation one often
has a continuous hypothesis class (e.g. a Bernoulli(θ) process with unknown
θ∈ [0,1]). Let M :={µθ : θ∈Θ⊆ IRd} be a family of probability distributions
parameterized by a d-dimensional continuous parameter θ. Let µ≡µθ0∈M be
the true generating distribution. For a continuous weight density w(θ)>0 the
sums in (1.4) are naturally replaced by integrals: ξ(x1:n):=

∫
Θ

w(θ)·µθ(x1:n)dθ
with

∫
Θ

w(θ)dθ = 1. The most important property of ξ in the discrete case
was the dominance ξ(x1:n)≥wν ·ν(x1:n), which was obtained from (1.4) by
dropping the sum over ν. The analogous construction here is to restrict the
integral over Θ to a small vicinity Nδ of θ. For sufficiently smooth µθ and
w(θ) we expect ξ(x1:n)>∼|Nδn | ·w(θ) ·µθ(x1:n), where |Nδn | is the volume of

4 Readers who smell some free lunch here [WM97] should appease their hunger
with Section 3.6.5.

1.4 Rational Agents in Known Probabilistic Environments 11

Nδn . This in turn leads to Dn
<∼lnw−1

µ +ln|Nδn |−1, where wµ := w(θ0). Nδn

should be the largest possible region in which lnµθ is approximately flat on
average. More precisely, generalizing [CB90] to the non-i.i.d. case, we show
Dn≤ lnw−1

µ + d
2 ln n

2π +O(1), where the O(1) term depends on the smoothness
of µθ, measured by the Fisher information. Dn is no longer bounded by a con-
stant, but still grows only logarithmically with n, the intuitive reason being
the necessity to describe θ to an accuracy O(n−1/2). So, bound (1.6) is also
applicable to the case of continuously parameterized probability classes.

1.4 Rational Agents in Known Probabilistic
Environments

1.4.1 The Agent Model

A very general framework for intelligent systems is that of rational agents
[RN95]. In cycle k, an agent performs action yk∈Y (output), which results in
a perception xk∈X (input), followed by cycle k+1, and so on. We assume that
the action and perception spaces X and Y are finite. We write p(x<k)=y1:k

to denote the output y1:k of the agent’s policy p on input x<k, and similarly
q(y1:k)=x1:k for the environment q in the case of deterministic environments.
We call policy p and environment q behaving in this way chronological. The
figure on the book cover and on page 128 depicts this interaction in the case
where p and q are modeled by Turing machines. Note that policy and envi-
ronment are allowed to depend on the complete history. We do not make any
mdp or pomdp assumption here, and we do not talk about states of the envi-
ronment, only about observations. In the more general case of a probabilistic
environment, given the history yx<kyk ≡ yx1...yxk−1yk ≡ y1x1...yk−1xk−1yk,
the probability that the environment leads to perception xk in cycle k is (by
definition) µ(yx<kyxk). The underlined argument xk in µ is a random vari-
able, and the other non-underlined arguments yx<kyk represent conditions.5

We call probability distributions like µ chronological. Since value-optimizing
policies (see below) can always be chosen deterministic, there is no real need
to generalize the setting to probabilistic policies.

1.4.2 Value Functions & Optimal Policies

The goal of the agent is to maximize future rewards, which are provided by
the environment through the inputs xk. The inputs xk≡rkok are divided into
a regular part ok and some (possibly empty or delayed) reward rk∈[0 , rmax].6

We use the abbreviation
5 The standard notation µ(xk|yx<kyk) for conditional probabilities destroys the

chronological order and would become confusing in later expressions.
6 In the reinforcement learning literature when dealing with (po)mdps the reward

is usually considered to be a function of the environmental state. The zero-

12 1 A Short Tour Through the Book

µ(yx<kyxk:m) = µ(yx<kyxk)·µ(yx1:kyxk+1)· ... ·µ(yx<myxm),

which is essentially the chain rule, and ε=yx<1 for the empty string. We define
the (total) value of policy p in environment µ, or shorter, the µ-value of p, as
the µ-expected reward sum

V p
µ :=

∑
x1:m

(r1+ ... +rm)µ(yx1:m)|y1:m=p(x<m), (1.7)

where m is the lifespan or initial horizon of the agent. The optimal policy pµ

that maximizes the value V p
µ is

pµ := arg max
p

V p
µ , V ∗

µ := V pµ

µ = max
p

V p
µ ≥ V p

µ ∀p.

The policy pµ, which we call AIµ model, is optimal in the sense that no other
policy for an agent leads to higher µ-expected reward. Explicit expressions for
the action yk in cycle k of the µ-optimal policy pµ and their value V ∗

µ are

yk = yµ
k := arg max

yk

∑
xk

max
yk+1

∑
xk+1

... max
ym

∑
xm

(rk+ ... +rm)·µ(yx<kyxk:m),

(1.8)

V ∗
µ = max

y1

∑
x1

max
y2

∑
x2

... max
ym

∑
xm

(r1+ ... +rm)·µ(yx1:m), (1.9)

where yx<k is the actual history. We show that these definitions are consis-
tent and correctly capture our intention. For instance, consider the expec-
timax expression (1.9): The best expected reward is obtained by averaging
over possible perceptions xi and by maximizing over the possible actions yi.
This has to be done in chronological order y1x1...ymxm to correctly incorpo-
rate the dependencies of xi and yi on the history. This is the origin of the
alternating expectimax sequence, which is similar to the well-known minimax
sequence/tree/algorithm in game theory.

1.4.3 Sequential Decision Theory & Reinforcement Learning

One can relate (1.9) to the Bellman equations [Bel57] of sequential decision
theory by identifying complete histories yx<k with states, µ(yx<kyxk) with the
state transition matrix, V ∗

µ with the value function, and yk with the action in
cycle k [BT96, RN95]. Due to the use of complete histories as state space, the
AIµ model assumes neither stationarity nor the Markov property nor complete
accessibility of the environment. Every state occurs at most once in the lifetime
of the system. For this and other reasons the explicit formulation (1.8) is more

assumption analogue here is that the reward rk is some probabilistic function
µ′ depending on the complete history. It is very convenient to integrate rk into
xk and µ′ into µ.

1.5 The Universal Algorithmic Agent AIXI 13

natural and useful here than to enforce a pseudo-recursive Bellman equation
form.

As we have in mind a universal system with complex interactions, the
action and perception spaces Y and X are huge (e.g. video images), and every
action or perception itself occurs usually only once in the lifespan m of the
agent. As there is no (obvious) universal similarity relation on the state space,
an effective reduction of its size is impossible, but there is no principle problem
in determining yk from (1.8) as long as µ is known and computable and X , Y
and m are finite.

Things drastically change if µ is unknown. Reinforcement learning algo-
rithms [BT96, KLM96, SB98] are commonly used in this case to learn the
unknown µ or directly its value. They succeed if the state space is either
small or has effectively been made small by generalization or function ap-
proximation techniques. In any case, the solutions are either ad hoc, work in
restricted domains only, have serious problems with state space exploration
versus exploitation, are prone to diverge, or have nonoptimal learning rates.
There is no universal and optimal solution to this problem so far. The central
theme of this book is to present a new model and to argue that it formally
solves all these problems in an optimal way. The true probability distribu-
tion µ will not be learned directly, but will be replaced by some generalized
universal prior ξU , which converges to µ, similarly to the induction (SP) case.

1.5 The Universal Algorithmic Agent AIXI

1.5.1 The Universal AIXI Model

We have developed enough formalism to present the universal AIXI model.
All we have to do is to suitably generalize Solomonoff’s universal prior M
and to replace the true but unknown probability µ in the AIµ model by this
generalized M . Similarly to (1.1), we define M as the 2−`(q) weighted sum
over all chronological programs (environments) q that output x1:k, but with
y1:k provided on the input tape. This also generalizes ξU (within an irrelevant
multiplicative constant):

ξ(yx1:k) = ξU (yx1:k) ×= M(yx1:k) :=
∑

q:q(y1:k)=x1:k

2−`(q). (1.10)

If not clear from context, we add superscripts SP and AI to ξ, to resolve
ambiguities between (1.3) and (1.10). Replacing µ by ξ in (1.8) the AIXI
system outputs

yk = yξ
k := arg max

yk

∑
xk

... max
ym

∑
xm

(rk+ ... +rm)·ξ(yx<kyxk:m) (1.11)

in cycle k given the history yx<k. The ξ-value V p
ξ and the universal value V ∗

ξ

are defined as in (1.7) and (1.9), with µ replaced by ξ. The AIXI model and

14 1 A Short Tour Through the Book

its behavior is completely defined by (1.10) and (1.11). It (slightly) depends
on the choice of the universal Turing machine, because K() and `() depend on
U and hence are defined only up to terms of order one. The AIXI model also
depends on the choice of X and Y, but we do not expect any bias when the
spaces are chosen sufficiently large and simple, e.g. all strings of length 216.
Choosing IN as the I/O spaces would be ideal, but whether the maxima (or
suprema) exist in this case has to be shown beforehand. The only nontrivial
dependence is on the horizon m. Ideally, we would like to chose m=∞, but
there are several subtleties to be unraveled later, which prevent at least a naive
limit m→∞. So apart from m and unimportant details, the AIXI system is
uniquely defined by (1.10) and (1.11) without adjustable parameters.

1.5.2 On the Optimality of AIXI

Universality and convergence of ξ. One can show that also ξ defined in
(1.10) is universal and rapidly converges to µ analogous to the induction (SP)
case. If we take a finite product of conditional ξ’s and use the chain rule, we
see that also ξ(yx<kyxk:k+h) converges to µ(yx<kyxk:k+h) for k→∞. This gives
confidence that the outputs yξ

k of the AIXI model (1.11) could converge to the
outputs yµ

k of the AIµ model (1.8), at least for a bounded moving horizon h.
The problems with a fixed horizon m and especially m→∞ will be discussed
at the end of this section.

Universally optimal AI systems. We call an AI model universal if it is
independent of the true environment µ (unbiased, model-free) and is able to
solve any solvable problem and learn any learnable task. Further, we call a
universal model universally optimal if there is no program that can solve or
learn significantly faster (in terms of interaction cycles). As the AIXI model
is parameter-free, ξ converges to µ, the AIµ model is itself optimal, and we
expect no other model to converge faster to AIµ by analogy to the SP case,

we expect AIXI to be universally optimal.

This is our main claim. Further support is given below.

Intelligence order relation. We want to call a policy p more or equally
intelligent than a policy p′ and write pºp′ if p yields in every cycle k and for
every fixed history yx<k higher (future) ξ-expected reward sum than p′. It is a
formal exercise to show that pξºp for all p. The AIXI model is hence the most
intelligent agent w.r.t. º. Relation º is a universal order relation in the sense
that it is free of any parameters (except m) or specific assumptions about
the environment. A proof that º is a reasonable intelligence order (which we
believe to be true) would prove that AIXI is universally optimal.

Value bounds. The values V ∗
ρ associated with the AIρ systems correspond

roughly to the negative total loss−LΛρ
n (with n=m) of the SPρ (=Λρ) systems.

1.5 The Universal Algorithmic Agent AIXI 15

In the SP case we were interested in small bounds for the regret LΛξ
n −LΛµ

n .
Unfortunately, simple value bounds for AIXI or any other AI system in terms
of V ∗

ν analogous to the loss bound (1.6) cannot hold. We even have difficulties
in specifying what we can expect to hold for AIXI or any AI system that claims
to be universally optimal. In SP, the only important property of µ for proving
loss bounds was its complexity K(µ). In the AI case, there are no useful
bounds in terms of K(µ) only. We either have to study restricted problem or
environmental classes or consider bounds depending on other properties of µ,
rather than on its complexity only.

1.5.3 Value-Related Optimality Results

The mixture distribution ξ. In the following, we consider general Bayes
mixtures ξ over classes M of chronological probability distributions ν:

ξ(yx1:m) =
∑

ν∈M
wνν(yx1:m) with

∑

ν∈M
wν = 1 and wν > 0 ∀ν ∈M.

We define V p
ξ , pξ, and V ∗

ξ as in (1.7)–(1.9) with µ replaced by ξ. Policy pξ is
called the AIξ model. For ξ = ξU the AIXI≡AIξU model is recovered. If µ is
unknown, but known to belong to the known class M, it is natural to follow
policy pξ, which maximizes V p

ξ . The (true µ-)expected reward when following

policy pξ is V pξ

µ . The optimal (but infeasible) policy pµ yields reward V pµ

µ ≡V ∗
µ .

It is now of interest (a) whether there are policies with uniformly larger value
than V pξ

µ and (b) how close V pξ

µ is to V ∗
µ .

Linearity and convexity of Vρ in ρ. The following properties of Vρ are
crucial. V p

ρ is a linear function in ρ, and V ∗
ρ is a convex function in ρ in the

sense that
V p

ξ =
∑

ν∈M
wνV p

ν and V ∗
ξ ≤

∑

ν∈M
wνV ∗

ν .

Linearity is obvious from the definition of V p
ρ , and convexity follows easily

from the convexity of maxp and nonnegativity of the weights wν . One loose
interpretation of the convexity is that a mixture can never increase perfor-
mance.

Pareto optimality of AIξ. Similarly to the SP case, one can show that pξ

is Pareto optimal in the sense that there is no other policy p with V p
ν ≥V pξ

ν

for all ν ∈M and strict inequality for at least one ν. In particular, AIXI is
Pareto optimal.

Self-optimizing policy pξ w.r.t. average value. Since we do not know the
true environment µ in advance, we are interested under which circumstances7

7 Here and elsewhere we interpret am → bm as an abbreviation for am−bm → 0.
limm→∞bm may not exist.

16 1 A Short Tour Through the Book

1
mV pξ

ν → 1
mV ∗

ν for horizon m →∞ for all ν ∈M. (1.12)

Note that Vν as well as pξ =pξ
m depend on m. The least we must demand from

M to have a chance that (1.12) is true is that there exists a policy (sequence)
p̃= p̃m at all with this property, i.e.

∃p̃ : 1
mV p̃

ν → 1
mV ∗

ν for horizon m →∞ for all ν ∈M. (1.13)

We show that this necessary condition is also sufficient, i.e. (1.13) implies
(1.12). This is another (asymptotic) optimality property of policy pξ. If uni-
versal convergence in the sense of (1.13) is possible at all in a class of environ-
ments M, then policy pξ converges in the same sense (1.12). We call policies
p̃ with a property like (1.13) self-optimizing [KV86].

Unfortunately, the result is not an asymptotic convergence statement of
a single policy pξ, since pξ depends on m. The result merely says that under
the stated conditions the average value of pξ

m is arbitrarily close to optimum
for sufficiently large (pre-chosen) horizon m. This weakness will be resolved
in the following.

Discounted future value function. We now shift our focus from the total
value to future values (value-to-go). First, we have to get rid of the horizon
parameter m. We eliminate the horizon by discounting the rewards rk ;γkrk

with γk≥0 and
∑∞

i=1γi <∞ and taking m→∞. The analogue of m is now an

effective horizon heff
k , which may be defined by

∑k+heff
k

i=k γi≈
∑∞

i=k+heff
k

γi. Fur-
thermore, we renormalize the value V by

∑∞
i=kγi and denote it by Vkγ . Finally,

we extend the definition to probabilistic policies π (which is not essential). We
define the γ-discounted weighted-average future value of (probabilistic) policy
π in environment ρ given history yx<k, or shorter, the ρ-value of π given yx<k,
as

V πρ
kγ (yx<k) :=

1
Γk

lim
m→∞

∑
yxk:m

(γkrk+ ... +γmrm)ρ(yx<kyxk:m)π(yx<kyxk:m),

with Γk :=
∑∞

i=kγi. The policy pρ is defined as to maximize the future value
V πρ

kγ :

pρ := arg max
π

V πρ
kγ , V ∗ρ

kγ := V pρρ
kγ = max

π
V πρ

kγ ≥ V πρ
kγ ∀π.

Setting γk =1 for k≤m and γk =0 for k>m gives back the old undiscounted
model with horizon m and V pρ

1γ = 1
mV p

ρ . Note that Vkγ depends on the real-
ized history yx<k. More important, pρ can be shown to be independent of k.
Similarly to the undiscounted case, one can prove that for every k and history
yx<k, V πρ

kγ is a linear function in ρ, V ∗ρ
kγ is a convex function in ρ, and pξ is

Pareto optimal in the sense that there is no other policy π with V πν
kγ ≥V pξν

kγ for
all ν∈M and strict inequality for at least one ν. Finally, pξ is self-optimizing
(w.r.t. discounted value) if M admits self-optimizing policies:

1.5 The Universal Algorithmic Agent AIXI 17

If ∃π̃∀ν : V π̃ν
kγ

k→∞−→ V ∗ν
kγ w.ν.p.1 =⇒ V pξµ

kγ
k→∞−→ V ∗µ

kγ w.µ.p.1.

The probability qualifier refers to the historic perceptions x<k. The historic
actions y<k are arbitrary. Note that k is a real running value, namely the
current cycle number, whereas m was a pre-chosen fixed horizon.

1.5.4 Markov Decision Processes

From all possible environments, Markov (decision) processes are probably the
most intensively studied ones. µ is called a (completely observable stationary)
Markov decision process (mdp) if the probability of perceiving xk ∈X , given
history yx<kyk only depends on the last action yk∈Y and the last perception
xk−1, i.e. if µ(yx<kykxk) = µ(xk−1ykxk). In this case xk is called a state, X
the state space, and µ(xk−1ykxk) the transition matrix. An mdp µ is called
ergodic if there exists a policy under which every state is visited infinitely
often with probability 1. If an mdp µ(xk−1ykxk) is independent of the action
yk it is a Markov process; if it is independent of the last perception xk−1 it is
an i.i.d. process.

Stationary mdps µ with geometric discounting γk = γk have stationary
optimal policies pµ mapping the same state/perception xk always to the same
action yk. On the other hand, a mixture ξ of mdps is itself not an mdp, i.e.
ξ 6∈MMDP, which implies that pξ is, in general, not a stationary policy.

One can construct self-optimizing policies for the class of ergodic mdps
w.r.t. the average value 1

mV p
ρ and if γk+1

γk
→ 1 also w.r.t. to the discounted

future value V πρ
kγ . The necessary condition γk+1

γk
→ 1 ensures unboundedly

increasing effective horizon heff
k . The existence of self-optimizing policies for

ergodic mdps implies that for a countable classM of ergodic mdps, the policies
pξ

m maximizing V p
ξ and pξ maximizing V πξ

kγ are self-optimizing in the sense
that

∀ν∈M : 1
mV

pξ
mν

1m
m→∞−→ 1

mV ∗ν
1m and V pξν

kγ
k→∞−→ V ∗ν

kγ if γk+1
γk

→ 1. (1.14)

We also show that if M is finite, then the speed of the first convergence
is at least O(m−1/3). The conditions Γk <∞ and γk+1

γk
→ 1 on the discount

sequence are, for instance, satisfied for γk = 1/k2, but not for the popular
geometric discount γk =γk, which has finite effective horizon.

Limits (1.14) show that pξ is self-optimizing for bandits, i.i.d. processes,
and classification tasks, since they are special (degenerate) cases of ergodic
mdps. The existence of self-optimizing policies is not limited to (subclasses
of ergodic) mdps. Certain classes of pomdps, kth-order ergodic mdps, factor-
izable environments, repeated games, and prediction problems are not mdps,
but nevertheless admit self-optimizing policies. Hence the corresponding Bayes
optimal mixture policy pξ is self-optimizing.

18 1 A Short Tour Through the Book

1.5.5 The Choice of the Horizon

The only significant arbitrariness in the AIXI model lies in the choice of the
lifespan m or in the discounted case in the discount sequence γk. We will not
discuss ad hoc choices for specific problems. We are interested in universal
choices. In many cases the time we are willing to run a system depends on
the quality of its actions. Hence, the lifetime, if finite at all, is not known in
advance. Geometric discounting rk;rk·γk solves the mathematical problem of
m→∞ but is not a real solution, since an effective horizon heff∼lnγ−1<∞ has
been introduced. The scale-invariant discounting rk ;rk ·k−α with α>1 has a
dynamic horizon h∼k. This choice has some appeal, as it seems that humans of
age k years also usually do not plan their lives for more than the next∼k years.
It also satisfies the condition γk+1

γk
→1, necessary for AIξ being self-optimizing

in ergodic mdps. The largest lower semicomputable horizon with guaranteed
finite reward sum Γ1 <∞ is obtained by the discount rk ; rk ·2−K(k), where
K(k) is the Kolmogorov complexity of k. This is maybe the most attractive
universal discount. It is similar to a near-harmonic discount rk ;rk ·k−(1+ε),
since 2−K(k)≤ 1/k for most k and 2−K(k)≥ c/(k log2k) for some constant c.
We are not sure whether the choice of the horizon is of marginal importance,
as long as it is chosen sufficiently large, or whether the choice will turn out
to be a central topic for the AIXI model or for the planning aspect of any
universal AI system in general. Most, if not all, problems in agent design of
balancing exploration and exploitation vanish by a sufficiently large choice of
the (effective) horizon and a sufficiently general prior.

1.6 Important Environmental Classes

In this and the next section we define ξ = ξU
×=M be Solomonoff’s prior, i.e.

AIξ=AIXI. Each subsection represents an abstract on what will be done in
the corresponding section of Chapter 6.

1.6.1 Introduction

In order to give further support for the universality and optimality of the AIξ
theory, we apply AIξ to a number of problem classes. They include sequence
prediction, strategic games, function minimization and, especially, how AIξ
learns to learn supervised. For some classes we give concrete examples to illu-
minate the scope of the problem class. We first formulate each problem class
in its natural way (when µproblem is known) and then construct a formulation
within the AIµ model and prove its equivalence. We then consider the conse-
quences of replacing µ by ξ. The main goal is to understand why and how the
problems are solved by AIξ. We only highlight special aspects of each problem
class. The goal is to give a better picture of the flexibility of the AIξ model.

1.6 Important Environmental Classes 19

1.6.2 Sequence Prediction (SP)

Using the AIµ model for sequence prediction (SP) is identical to Bayesian
sequence prediction SPµ. One might expect, when using the AIξ model for
sequence prediction, one would recover exactly the universal sequence predic-
tion scheme SPξ, as AIξ was a unification of the AIµ model and the idea of
universal probability ξ. Unfortunately, this is not the case. One reason is that
ξ is only a probability distribution in the inputs x and not in the outputs y.
This is also one of the origins of the difficulty of proving loss/value bounds for
AIξ. Nevertheless, we argue that AIξ is as well suited for sequence prediction
as SPξ. In a very limited setting we prove a (weak) error bound for AIξ, which
gives hope that a general proof is attainable.

1.6.3 Strategic Games (SG)

A very important class of problems are strategic games (SG). We restrict
ourselves to deterministic strictly competitive strategic games like chess. If the
environment is a minimax player, the AIµ model itself reduces to a minimax
strategy. Repeated games of fixed lengths are a special case of factorizable µ.
The consequences of variable game lengths are sketched. The AIξ model has to
learn the rules of the game under consideration, as it has no prior information
about these rules. We describe how AIξ actually learns these rules.

1.6.4 Function Minimization (FM)

Many problems fall into the category ‘resource-bounded function minimiza-
tion’ (FM). They include the traveling salesman problem, minimizing pro-
duction costs, inventing new materials or even producing, e.g. nice paintings,
which are (subjectively) judged by a human. The task is to (approximately)
minimize some function f :Y→Z within a minimal number of function calls.
We will see that a greedy model trying to minimize f in every cycle fails.
Although the greedy model has nothing to do with downhill or gradient tech-
niques (there is nothing like a gradient or direction for functions over Y),
which are known to fail, we discover the same difficulties. FM has already
nearly the full complexity of general AI. The reason being that FM can ac-
tively influence the information gathering process by its trials yk (whereas SP
and CF=classification cannot). We discuss in detail the optimal FMµ model
and its inventiveness in choosing the y∈Y. A discussion of the subtleties when
using AIξ for function minimization follows.

1.6.5 Supervised Learning from Examples (EX)

Reinforcement learning, as the AIξ model does, is an important learning tech-
nique, but not the only one. To improve the speed of learning, supervised
learning, i.e. learning by acquiring knowledge, or learning from a constructive

20 1 A Short Tour Through the Book

teacher, is necessary. We show how AIξ learns to learn supervised. It actually
establishes supervised learning very quickly within O(1) cycles.

1.6.6 Other Aspects of Intelligence

Finally, we give a brief survey of other general aspects, ideas and methods in
AI, and their connection to the AIξ model. Some aspects are directly included
in the AIξ model, while others are or should be emergent.

1.7 Computational Aspects

Up to now we have shown the universal character of the AIXI model but
have completely ignored computational aspects. We start by developing an
algorithm Mε

p∗ that is capable of solving any well-defined problem p as quickly
as the fastest algorithm computing a solution to p, save for a factor of 1+ε
and lower-order additive terms. Based on a similar idea we then construct a
computable version of the AIXI model.

1.7.1 The Fastest & Shortest Algorithm
for All Well-Defined Problems

Introduction. A wide class of problems can be phrased in the following
way. Given a formal specification f :X →Y of a problem depending on some
parameter x ∈ X , we are interested in a fast algorithm computing solution
y∈Y.

Levin search is (within a large constant factor) the fastest algorithm to in-
vert a function g :Y→X , if g can be evaluated quickly [Lev73b, Lev84]. Levin
search can also handle time-limited optimization problems [Sol86]. Prime fac-
torization, graph coloring, and truth assignments are example problems suit-
able for Levin search, if we want to find a solution, since verification is quick.
Levin search cannot decide the corresponding decision problems. It is also
not applicable to, e.g. matrix multiplication and reinforcement learning, since
the verification task g is as hard as the computation task. Blum’s speed-up
theorem [Blu67, Blu71] shows that there are types of problems f for which an
(incomputable) sequence of speed-improving algorithms (of increasing size)
exists, but no fastest algorithm.

In the approach presented here, we consider only those algorithms that
provably solve a given problem and have a fast (i.e. quickly computable) time
bound. Neither the programs themselves nor the proofs need to be known
in advance. Under these constraints we construct the asymptotically fastest
algorithm save a factor of 1+ε that solves any well-defined problem f .

The fast algorithm Mε
p∗ . Let p∗ be a given algorithm computing p∗(x)

from x, or, more generally, a specification of a function f . One ingredient to

1.7 Computational Aspects 21

our fastest algorithm Mε
p∗ to compute p∗(x) is an enumeration of proofs of

increasing length in some formal axiomatic system. If a proof actually proves
that some p is functionally equivalent to p∗, and p has time bound tp, the tuple
(p,tp) is added to a list L. The program p in L with the currently smallest
time bound tp(x) is executed. By construction, the result p(x) is identical
to p∗(x). The trick to achieve a small runtime is to schedule everything in a
proper way, in order not to lose too much performance by computing slow p’s
and tp’s before the p has been found.

More formally, we say that a program “p computes function f”, when a
universal reference Turing machine U on input (p,x) computes f(x) for all x.
This is denoted by U(p,x) = f(x). To be able to talk about proofs, we need
a formal logic system (∀,λ,yi,ci,fi,Ri,→,∧,=,...) and axioms and inference
rules. A proof is a sequence of formulas, where each formula is either an
axiom or inferred from previous formulas in the sequence by applying the
inference rules. We only need to know that provability, Turing Machines, and
computation time can be formalized, and that the set of (correct) proofs is
enumerable. We say that p is provably equivalent to p∗ if the formula [∀y :
U(p,y)=U(p∗,y)] can be proven. Let us fix ε∈(0, 12). Mε

p∗ runs three algorithms
A, B, and C in parallel:

Mε
p∗(x)

Initialize the shared variables
L :={}, tfast :=∞, pfast :=p∗.
Start algorithms A, B, and C
in parallel with relative computational
resources ε, ε, and 1−2ε, respectively.

A
Run through all proofs.
if a proof proves for some (p,t) that
p(·) is equivalent to (computes) p∗(·)
and has time bound t(·)
then add (p,t) to L.

B
Compute all t(x) in parallel
for all (p,t)∈L with
relative computation time 2−`(p)−`(t).
if for some t, t(x)<tfast,
then tfast := t(x) and pfast :=p.
continue

C
run U on (pfast,x).
For each time step decrease tfast by 1.
if U halts then print result U(pfast,x)
and abort computation of A, B and C.

Note that A and B only terminate when aborted by C. It is obvious that Mε
p∗

is equivalent to (computes) p∗. We show that the computation time of Mε
p∗ is

bounded by

timeMε
p∗

(x) ≤ (1 + ε) · tp(x) + dp

ε · timetp(x) + cp

ε ,

dp = 3·2`(p)+`(tp), cp = 3·2`(proofp))+1 ·O(`(proofp)2),

where p is any algorithm, provably computing the same function as p∗ with
computation time provably bounded by the function tp(x) for all x, and
timetp(x) is the time needed to compute the time bound tp(x). Known

22 1 A Short Tour Through the Book

time bounds for practical problems can often be computed quickly, i.e.
timetp

(x)/timep(x) often converges very quickly to zero. Furthermore, from
a practical point of view, the provability restrictions are often rather weak.
Hence, we have constructed for all those problems a solution that is asymp-
totically only a factor 1+ε slower than the (provably) fastest algorithm. On
the flip side, for realistically sized problems, the lower-order terms usually
dominate, which limits the practical use of Mε

p∗ .

Algorithmic complexity and the shortest algorithm. A natural defi-
nition for the (Kolmogorov) complexity of a function f is the length of the
shortest program computing f : K ′(f) := minp{`(p) : U(p,x) = f(x) ∀x}. Un-
fortunately, K ′ suffers from not even being approximable, since functional
equality of programs is in general undecidable. Let p∗ be a formal specifica-
tion or a program for f . Using K(p∗) is also not a suitable alternative, since
it essentially depends on the choice of p∗ because, e.g. “dead code” in p∗ con-
tributes to K(p∗). A satisfactory solution is to take the length of the shortest
program provably equivalent to p∗:

K ′′(p∗) := min
p
{`(p) : a proof of [∀y :U(p, y) = U(p∗, y)] exists}.

K ′′ (like K) is upper semicomputable. Let p′ be some short description of p∗.
We are now concerned with the computation time of p′. Could we get slower
and slower algorithms by compressing p∗ more and more? Interestingly, this is
not the case. Inventing complex (long) programs is not necessary to construct
asymptotically fast algorithms, under the stated provability assumptions, in
contrast to Blum’s theorem [Blu67, Blu71]. We show that there exists a pro-
gram p̃, equivalent to p∗ with

(i) `(p̃) ≤ K ′′(p∗) + O(1),

(ii) timep̃(x) ≤ (1 + ε)·tp(x) + dp

ε ·timetp(x) + cp

ε ,

where p is any program provably equivalent to p∗ with computation time
provably less than tp(x). That is, p̃ is simultaneously among the shortest and
fastest programs.

Generalizations. Algorithm Mε
p∗ can be modified to handle I/O streams,

definable by a Turing machine with unidirectional input and output tapes
(and bidirectional work tapes) receiving an input stream and producing an
output stream, as is the case in the agent setup.

1.7.2 Time-Bounded AIXI Model

The major drawback of the AIXI model is that it is uncomputable. To over-
come this problem, we construct a modified algorithm AIXItl, which is still
superior to any other time t and length l bounded agent. The computation

1.7 Computational Aspects 23

time of AIXItl is of the order t·2l. Reducing the large factor 2l along the lines
of the previous subsection is possible, but will not be presented here.

Non-effectiveness of AIXI. ξAI=ξAI
U is not a computable but only an enu-

merable semimeasure. Hence, the output ẏk of the AIXI model is only asymp-
totically computable (approximable). AIXI yields an algorithm that produces
a sequence of trial outputs eventually converging to the correct output ẏk,
but one can never be sure whether one has already reached it. Besides this,
convergence is extremely slow, so this type of asymptotic computability is of
no direct practical use. Furthermore, the replacement of ξAI by time-limited
versions [LV91, LV97], which is suitable for sequence prediction, fails for the
AIXI model. This leads to the issues addressed next.

Time bounds and effectiveness. Let p̃ be a policy that calculates an ac-
ceptable output within a reasonable time t̃ per interaction cycle. This sort of
computability assumption, namely, that a general-purpose computer of suffi-
cient power and appropriate program is able to behave in an intelligent way, is
the very basis of AI research. Here it is not necessary to discuss what exactly
is meant by ‘reasonable time/intelligence’ and ‘sufficient power’. What we are
interested in is whether there is a computable version of the AIXI system
that is superior or equal to any policy p with computation time per cycle of
at most t̃.

What one can realistically hope to construct is an AIXIt̃l̃ system of com-
putation time c·t̃ per cycle for some constant c. The idea is to run all programs
p of length ≤ l̃ := `(p̃) and time ≤ t̃ per cycle and pick the best output in the
sense of maximizing the universal value V ∗

ξ . The total computation time is c·t̃
with c≈2l̃. Unfortunately, V ∗

ξ cannot be used directly since this measure is it-
self only semicomputable and the approximation quality by using computable
versions of ξAI given a time of order c· t̃ is crude [LV97]. On the other hand,
we have to use a measure that converges to V ∗

ξ for t̃,l̃→∞, since we want the
AIXIt̃l̃ model to converge to the AIXI model in that case.

Valid approximations. We suggest the following solution satisfying the
above conditions: The main idea is to consider extended chronological incre-
mental policies p, which in addition to the regular output yp

k rate their own
output with wp

k. The AIXIt̃l̃ model selects the output ẏk = yp
k of the policy

p with highest rating wp
k. Policy p might suggest any output yp

k, but it is
not allowed to rate itself with an arbitrarily high wp

k if one wants wp
k to be

a reliable criterion for selecting the best p. One must demand that no policy
p is allowed to claim that it is better than it actually is. We define a logical
predicate VA(p), called valid approximation, which is true if and only if p
always satisfies wp

k≤V p
ξ (yx<k), i.e. never overrates itself. V p

ξ (yx<k) is the ξAI-
expected future reward under policy p. Valid policies p can then be (partially)
ordered w.r.t. their rating wp

k.

The universal time-bounded AIXItl system. In the following, we de-
scribe the algorithm p∗ underlying the AIXIt̃l̃ system. It is essentially based

24 1 A Short Tour Through the Book

on the selection of the best algorithms p∗k out of the time t̃ and length l̃
bounded policies p, for which there exists a proof P of VA(p) with length
≤ lP .

1. Create all binary strings of length lP and interpret each as a coding of a
mathematical proof in the same formal logic system in which VA(·) has
been formulated. Take those strings that are proofs of VA(p) for some p
and keep the corresponding programs p.

2. Eliminate all p of length >l̃.
3. Modify the behavior of all remaining p in each cycle k as follows: Nothing

is changed if p outputs some wp
kyp

k within t̃ time steps. Otherwise stop p
and write wk =0 and some arbitrary yk to the output tape of p. Let P be
the set of all those modified programs.

4. Start first cycle: k :=1.
5. Run every p∈P on extended input ẏẋ<k, where all outputs are redirected

to some auxiliary tape: p(ẏẋ<k) = wp
1yp

1 ...wp
kyp

k. This step is performed
incrementally by adding ẏẋk−1 for k>1 to the input tape and continuing
the computation of the previous cycle.

6. Select the program p with highest rating wp
k: p∗k :=argmaxpw

p
k.

7. Write ẏk :=y
p∗k
k to the output tape.

8. Receive input ẋk from the environment.
9. Begin next cycle: k :=k+1, goto step 5.

Properties of the p∗ algorithm. Let p be any extended chronological (in-
cremental) policy of length `(p)≤ l̃ and computation time per cycle t(p)≤ t̃,
for which there exists a proof of VA(p) of length ≤ lP . The algorithm p∗, de-
pending on l̃, t̃ and lP but not on p, has always higher rating than any such p.
The setup time of p∗ is tsetup(p∗)=O(l2P ·2lP), and the computation time per
cycle is tcycle(p∗)=O(2l̃ · t̃). Furthermore, for t̃,l̃,lP →∞, policy p∗ converges
to the behavior of the AIXI model.

Roughly speaking, this means that if there exists a computable solution
to some AI problem at all, then the explicitly constructed algorithm p∗ is
such a solution. This claim is quite general, but there are some limitations
and open questions regarding the setup time, regarding the necessity that
the policies must rate their own output, regarding true but not (efficiently)
provable VA(p), and regarding “inconsistent” policies.

1.8 Discussion

What has been achieved. We suggested an elegant mathematical foun-
dation of artificial intelligence. More specifically, we developed a theory for
rational agents acting optimally in any environment. Thereby we touched var-
ious scientific areas, including reinforcement learning, algorithmic information

1.8 Discussion 25

theory, computational complexity theory, probability theory, sequential deci-
sion theory, and many more. We presented sequential decision theory in a very
general form and unified it with Solomonoff’s theory of universal induction,
both shown to be optimal in their own domain. The resulting parameter-
free AIXI model constitutes an agent for which we gave strong arguments
that it behaves optimally in any environment. For restricted environmental
classes and Bayes mixtures ξ we showed that AIξ is self-optimizing and Pareto
optimal. We discussed the choice of the horizon and motivated the use of
non-geometric discounting of rewards. We also discussed a number of impor-
tant problem classes, including sequence prediction, strategic games, function
minimization, and supervised learning. All in all, this shows that artificial
intelligence can be framed by an elegant mathematical theory. Some progress
has also been made toward an elegant computational theory of intelligence.
AIXItl has optimal order of computation time, apart from a large multiplica-
tive constant, which we could get rid of at the expense of an (unfortunately
even larger) additive constant.

Comparison to other approaches. There are many other approaches to
AI, too many to mention them all. Among the models that can learn from
experience are the “classical” reinforcement learning algorithms like temporal
difference learning [SB98], adaptive variants of Levin search [SZW97, Sch04],
prediction with expert advice [CB97], market/economy-based reinforcement
learning [Bau99, KHS01b], etc. All these models have been implemented and
are applicable in limited domains, often with reasonable performance. In con-
trast, AIXI(tl) behaves optimally in every (completely general) environment,
is data efficient, has generalization capabilities, addresses the exploration ver-
sus exploitation problem, etc., but is computationally not feasible without
further approximations.

Outlook & open questions. The major theoretical challenge is to derive
good non-asymptotic bounds on the value or related quantities for AIξ and
AIXI, ideally as strong as in the sequence prediction case. The major prac-
tical challenge is to scale the AIξ model down, e.g. by using more restricted
forms of ξ, like the minimum description length principle does for universal
induction. The AIXItl model is a different, very general approach toward a
computational model. Unfortunately, it suffers from the same large factor 2l̃ in
computation time as Levin search for inversion problems [Lev73b, Lev84]. On
the other hand, Levin search has been implemented and successfully adapted
and applied to a variety of problems [Sch97, Sch04, SZW97], and the mul-
tiplicative constant can be eliminated as in Mε

p∗ or reduced by the Gödel
machine [Sch03b]. Inspecting existing approaches suggests that, while AIXI is
an elegant mathematical theory that seems to serve all formal needs, compu-
tational AI may be messy. For instance, special-purpose algorithms for pre-
processing inputs and postprocessing outputs are likely to be necessary in any
efficient AI system. Another issue is that of incorporating extra knowledge.
In principal there is no need to modify AIXI, since any prior knowledge can

26 1 A Short Tour Through the Book

simply be presented as first input x1 in any format. As long as the algo-
rithm to interpret the data is of size O(1), AIXI will “understand” the data
after a few cycles. Another important issue is that of the training process it-
self. By a training process we mean a sequence of simple-to-complex tasks to
solve, with the simpler ones helping in learning the more complex ones. These
and many other conceptual, practical, and philosophical issues, including con-
current actions and perceptions, the choice of the I/O spaces, treatment of
encrypted information, peculiarities of mortal embodied agents, the free will
paradox, the existence of objective probabilities, the Turing test, the existence
of efficient and elegant universal theories of intelligence related to Penrose’s
non-computable environments and Chaitin’s ‘number of wisdom’ Ω will be
addressed later in the book.

1.9 History & References

Introductory textbooks. The book of Hopcroft and Ullman, and in the
new revision coauthored by Motwani [HMU01], is a very readable elementary
introduction to automata theory, formal languages, and computation theory.
The artificial intelligence book [RN95] by Russell and Norvig gives a compre-
hensive overview over AI approaches in general. For an excellent introduction
to algorithmic information theory, Kolmogorov complexity, and Solomonoff
induction one should consult the book of Li and Vitányi [LV97], or the book
of Calude [Cal02] which focuses more on algorithmic randomness. The rein-
forcement learning book by Sutton and Barto [SB98] requires no background
knowledge, describes the key ideas, open problems, and great applications of
this field. A tougher and more rigorous book by Bertsekas and Tsitsiklis on
sequential decision theory provides all (convergence) proofs [BT96].

Algorithmic information theory. Kolmogorov [Kol65] suggested to define
the information content of an object as the length of the shortest program
computing a representation of it. Solomonoff [Sol64] invented the closely re-
lated universal prior probability distribution and used it for binary sequence
prediction [Sol64, Sol78] and function inversion and minimization [Sol86]. To-
gether with Chaitin [Cha66, Cha75], this was the invention of what is now
called algorithmic information theory. For further literature and many ap-
plications see [LV97, Cal02]. Other interesting applications can be found in
[Cha91, Sch99, VW98, CV03]. Related topics are the weighted majority al-
gorithm invented by Littlestone and Warmuth [LW94], universal forecasting
by Vovk [Vov92], Levin search [Lev73b], PAC-learning introduced by Valiant
[Val84] and minimum description length [LV92a, Ris89]. Resource-bounded
complexity is discussed in [Dal73, Dal77, FMG92, Ko86, PF97], resource-
bounded universal probability in [LV91, LV97, Sch02b]. Implementations are
rare and mainly due to Schmidhuber [Sch95, WS96, Sch97, SZW97, Sch03a,

1.9 History & References 27

Sch04]. Good reviews with a philosophical touch are [LV92b, Sol97]. For an
older general review of inductive inference see Angluin [AS83].

Sequential decision theory. The other ingredient in our AIXI model is
sequential decision theory. We do not need much more than the maximum
expected utility principle and the expectimax algorithm [Mic66, RN95]. The
book of von Neumann and Morgenstern [NM44] might be seen as the initiation
of game theory, which already contains the expectimax algorithm as a special
case. If the true environmental µ is unknown, it needs to be learned with, e.g.
the help of reinforcement learning algorithms. Existing reinforcement learning
algorithms are [Sam59, BSA83, Sut88, Wat89, WD92, MA93, Tes94, BT96,
KLM96, KLC98, WS98, KS98], but they are rather limited in view of AIXI.
The literature on reinforcement learning and sequential decision theory is so
vast that we refer to the textbooks [SB98, BT96, KV86] for further references.

The author’s contributions. Many of the issues addressed in this book
can already be found scattered in various reports and publications by the au-
thor: The AIXI model was first introduced and discussed in March 2000 in
[Hut00] in a 62-page-long report. More succinct descriptions were published in
[Hut01d, Hut01e]. The AIXI model has been argued to formally solve a num-
ber of problem classes, including sequence prediction, strategic games, func-
tion minimization, reinforcement and supervised learning [Hut00]. The gener-
alization AIξ has recently been shown to be self-optimizing and Pareto opti-
mal [Hut02b]. The construction of a general fastest algorithm (within a factor
of 5) for all well-defined problems [Hut02a] arose from the construction of
the time-bounded AIXItl model [Hut00, Hut01d]. Convergence [Hut03b] and
tight [Hut03c] error [Hut01c, Hut01a] and loss [Hut01b, Hut03a] bounds for
Solomonoff’s universal sequence prediction scheme have been proven. These
and other papers are available at http://www.idsia.ch/∼marcus/ai.

http://www.springer.com/978-3-540-22139-5

