
5 Machine Learning in Bioinformatics

Supawan Prompramote1, Yan Chen1 and Yi-Ping Phoebe Chen1,2

1 School of Information Technology
Faculty of Science and Technology
Deakin University, 221 Burwood Highway, VIC3125, Australia

2 ARC Centre in Bioinformatics

5.1 Introduction

Given the complexity and gigantic volume of biological data, the tradi-
tional computer science techniques and algorithms fail to solve complex
biological problems of the real world. However, there are modern compu-
tational approaches called machine learning that can address the limita-
tions of the traditional techniques. Machine learning is an adaptive process
that enables computers to learn from experience, learn by example, and
learn by analogy. Learning capabilities are essential for automatically im-
proving the performance of a computational system over time on the basis
of previous results. A basic learning model typically consists of the follow-
ing four components:

• learning element, responsible for improving its performance,
• performance element, which decides the choice of actions to be taken,
• critical element, which tells learning element how the algorithm per-

forms, and
• problem generator, responsible for suggesting actions that could lead to

new or informative experiences (Adeli, 1995; Finlay and Dix 1996;

118 Supawan Prompramote et al.

Kuonen, 2003; Narayanan et al., 2002; Negnevitsky, 2002; Nilsson,
1996; Baldi and Brunak, 2001; and Westhead et al., 2002).

Machine learning typically can be divided into three phases, as follows:

1. analysis of a training set of examples and generation of a set of rules
from training set,

2. verification of the rules by human experts or automatic knowledge
based components and

3. use of the validated rules in responding to some new testing datasets
(Finlay and Dix 1996).

There are a number of reasons why machine learning approaches are
widely used in practice, especially in bioinformatics (Narayanan et al.,
2002; Nilsson, 1996; Baldi and Brunak, 2001; and Westhead et al., 2002)

• Traditionally, a human being builds such an expert system by collecting
knowledge from specific experts. The experts can always explain what
factors they use to assess a situation; however, it is often difficult for the
experts to say what rules they use, for example, for disease analysis and
control. This problem can be resolved by machine learning mechanisms.
Machine learning can extract the description of the hidden situation in
terms of those factors and then fire rules that match the expert’s behav-
ior.

• Systems often produce results different from the desired ones. This may
be caused by unknown properties or functions of inputs during the de-
sign of systems. This situation always occurs in the biological world be-
cause of the complexities and mysteries of life sciences. However, with
its capability of dynamic improvement, machine learning can cope with
this problem.

• In molecular biology research, new data and concepts are generated
every day, and those new data and concepts update or replace the old
ones. Machine learning can be easily adapted to a changing environ-
ment. This benefits system designers, as they do not need to redesign
systems whenever the environment changes.

• Missing and noisy data is one characteristic of biological data. The con-
ventional computer techniques fail to handle this. Machine learning
techniques are able to deal with missing and noisy data.

• With advances in biotechnology, huge volumes of biological data are
generated. In addition, it is possible that important hidden relationships
and correlations exist in the data. Machine learning methods are de-

 5 Machine Learning in Bioinformatics 119

signed to handle very large data sets, and can be used to extract such re-
lationships.

Table 5.1. The existing research on bioinformatics that has applied machine learn-
ing techniques.

Research Area Application Reference

BLAST http://www.ncbi.nlm.nih.gov/BL
AST/ Sequence alignment

FASTA http://www.ebi.ac.uk/fasta33/

ClustalW http://www.ebi.ac.uk/clustalw/

MultAlin http://prodes.toulouse.inra.fr/mult
alin/multalin.html

Multiple sequence
alignment

DiAlign http://www.genomatix.de/cgi-
bin/dialign/dialign.pl

Genscan http://genes.mit.edu/GENSCAN.h
tml

GenomeScan http://genes.mit.edu/genomescan/
Gene finding

GeneMark http://www.ebi.ac.uk/genemark/

Pfam http://www.sanger.ac.uk/Software
/Pfam/

BLOCKS http://www.blocks.fhcrc.org/
Protein domain analy-
sis and identification

ProDom http://prodes.toulouse.inra.fr/prod
om/current/html/ home.php

Gibbs Sampler http://bayesweb.wadsworth.org/gi
bbs/gibbs.html

AlignACE http://atlas.med.harvard.edu/cgi-
bin/alignace.pl

Pattern identification

MEME http://meme.sdsc.edu/meme/webs
ite/intro.html

PredictProtein
http://www.embl-
heidelberg.de/predictprotein/ pre-
dictprotein.html Protein folding predic-

tion

SwissModle http://www.expasy.org/swissmod/
SWISS-MODEL.html

120 Supawan Prompramote et al.

• There are some biological problems in which experts can specify only
input/output pairs, but not the relationships between inputs and outputs,
such as the prediction of protein structure and structural and functional
sequences. This limitation can be addressed by machine learning meth-
ods. They are able to adjust their internal structure to produce approxi-
mate results for the given problems.

Machine learning mechanisms form the basis of adaptive systems. In
bioinformatics research, a number of machine learning approaches are ap-
plied to discover new meaningful knowledge from the biological data-
bases, to analyze and predict diseases, to group similar genetic elements,
and to find relationships or associations in biological data. Examples of
machine learning approaches in bioinformatics research are shown in Ta-
ble 5.1.

In this chapter, the most popular of machine learning approaches,
namely, artificial neural networks, genetic algorithms, and fuzzy expert
systems, are elaborated. The basic background, definition, and models of
each method are presented. Further, a survey of tools for using the learning
techniques used in bioinformatics is included.

5.2 Artificial Neural Network

The process of learning is a complex phenomenon. Many puzzling ques-
tions arise from of it. How can one recognize the faces of others? How can
one identify complex patterns from the faces? How does one discriminate
images and backgrounds? How does one learn a shortcut to go to his or her
university? In order to answer these questions, one needs to know how the
brain works.

The human brain has been studied since the late Middle Ages; however,
its detailed structure began to be unraveled only in the nineteenth century.
Neuronists claim that the brain is a collection of about 10 billion densely
interconnected cellular units called neurons. The structure of a neuron and
its network is shown in Fig. 5.1.

Each neuron consists of a cell body called soma, a number of root-like
extensions connected to a thousand adjacent neurons called dendrites, and
a single transmission line extending out from the soma called axon. The
two specialized extensions of a soma are responsible for carrying informa-
tion from/to a cell body. Dendrites bring information to a cell body and
axons take information away from a cell body. The connection between

 5 Machine Learning in Bioinformatics 121

two neurons, in particular, between an axon terminal and another neuron,
is called synapse.

Fig. 5.1. Biological neural network (Adapted from: http://ffden2.phys.uaf.edu/-
212_fall2003.web.dir/Keith_Palchikoff/Intro_page.html)

Each neuron uses biochemical reactions to receive processes and trans-
mit information. Neurons communicate with each other through an elec-
trochemical process. This means that chemicals create an electrical signal.
When a neuron does not send a signal, it is in a resting state. The inside of
the neuron has a negative electric potential. When a neuron sends a signal,
it causes a change in the electrical potential of the cell body. The change
occurs due to the release of chemical substances from the synaptic cell,
called neurotransmitter. When the potential exceeds a certain threshold, an
action potential occurs. Consequently, the neuron will fire the electrical
signal down the axon. The occurrence of action potential can be increased
or decreased by changing the constitution of various neurotransmitters.

An essential characteristic of biological neural networks is plasticity, an
ability of the brain to reorganize with learning, based on experience or sen-
sory stimulation. Scientists believe that there are two types of modifica-
tions that form the basis of learning in the brain, namely, 1) a change in the
internal structure of the synapses and 2) an increase in the number of syn-
apses between neurons.

122 Supawan Prompramote et al.

The natural and power of a biological neural network, in particular, the
potential of learning process, motivated computer scientists to design and
develop a new network platform that worked in a way similar to that of the
biological neurons (Adeli, 1995; Freeman and Skapura, 1991; Haykin,
1994; Müller and Reinhardt, 1990; and Negnevitsky, 2002). This leads to
the introduction of Artificial Neural Networks (ANNs).

An Artificial Neural Network (ANN) is an information processing
model that is able to capture and represent complex input-output relation-
ships. The motivation the development of the ANN technique came from a
desire for an intelligent artificial system that could process information in
the same way the human brain. Its novel structure is represented as multi-
ple layers of simple processing elements, operating in parallel to solve
specific problems. An architecture of a typical artificial neural network is
illustrated in Fig. 5.2. ANNs resemble human brain in two respects: learn-
ing process and storing experiential knowledge. An artificial neural net-
work learns and classifies a problem through repeated adjustments of the
connecting weights between the elements. In other words, an ANN learns
from examples and generalizes the learning beyond the examples supplied.
For instance, human beings learn to recognize faces from examples of
faces.

Fig. 5.2. Schematic representation of a generic ANN

Each element (analogous to a neuron) in the network is connected to its
neighbors with weights (analogous to synapses) that represent the strengths
of the connections. Typically, a single processing element receives a num-
ber of inputs (analogous to dendrites) through its connection, combines
them, performs a (non-)linear operation on the result, and then produces

 5 Machine Learning in Bioinformatics 123

the final result (analogous to an axon). The input can be information from
external environments or outputs of other neurons. The output can be ei-
ther a final solution to the problem or an input to other neurons. Figure 5.3
illustrates a neuron model, and Table 5.2 shows that the artificial neural
network concepts are similar to those of the biological brain.

Fig. 5.3. A neuron model

The neuron determines its output on the basis of the weighted sum of
the inputs, a threshold value (θ), and an activation function. An activation
function of a neuron can be any mathematical function. In practice, four
functions are commonly used. They are step function, sign function, sig-
moid function, and linear function. If one chooses a sign function as an ac-
tivation function and the net input is less thanθ , the neuron output is 1;
otherwise, it is -1.

Table 5.2. An analogy between the biological and artificial neural networks and
the functions of their components

Function of each component Biological
neural net-
works

Artificial neu-
ral networks

Accept Inputs Dendrite Input

Process the inputs Soma Neuron

Turn the processed inputs into outputs Axon Output

Involve learning process Synapse Weight

To build an artificial network, one must decide which network architec-
ture and learning algorithm should be used. Network architecture tells how
the neurons are used, and how they are connected in a network. The aim of
the learning function is to modify the weights of the inputs to achieve the
desired outputs.

124 Supawan Prompramote et al.

Based on the arrangement of the internal nodes in the network layer, the
neural network architecture can be classified into different types, namely,
perceptron, feedforward networks, and feedback networks. The simplest
type of neural network is a perceptron (Rosenblatt, 1958). It consists of a
single layer wherein weights are trained to produce a correct output when
presented with inputs. The perceptron is typically used for class classifica-
tion, where the classes are linearly separable, regardless of the type of acti-
vation function. If the classification problem is not linearly separable, the
perceptron cannot perform classification correctly. Therefore, perceptrons
are suitable only for simple problems in pattern classification. The limita-
tions of the single layered perceptron were mathematically analyzed. The
outcome of this analysis was the multilayer perceptron (Minsky and Pa-
pert, 1969).

The multilayer perceptron expands the basic single layer network by
having one or more hidden layers. In the multilayer structure, the input
layer accepts information from the external environment and passes the in-
formation to all units in the first hidden layer. The outputs from the first
hidden layer are redistributed to the next hidden layer, and so on. The out-
put layer accepts output from the last hidden layer and generates the final
output of the entire network.

A feedforward network is a network of neurons that have signals
traveling from input layer to output layer only. In contrast, feedback
networks allow signals traveling in both directions (from input layer to
output layer and vice versa). A type of feedback network is a recurrent
neural network.

One important function of the human brain is to collect down and recall
the memories. This is done with short and long term memories. The human
memory is associative, that is, people recognize an input pattern by com-
paring it with patterns stored in their memories. If the input pattern is
noisy, the associative memory returns the closest stored pattern. In other
words, if a corrupted image is given to a network, the network will auto-
matically reconstruct a perfect image. A recurrent neural network, a varia-
tion of the multilayer perceptron, is able to emulate the associative charac-
teristics. It is a modification to the multilayer neural networks, trained with
the backpropagation algorithm; that is, a recurrent neural network has
feedback loops from its outputs to its inputs. As in backpropagation learn-
ing, the feedbacks are used to adjust the weights of inputs. Then the output
is computed again. The algorithm is repeatedly iterated until output be-
comes convergent.

Learning in neural networks can be divided into two types: supervised
and unsupervised learning. In supervised learning, an artificial neural net-
work is trained by an external teacher who presents inputs, weights, and

 5 Machine Learning in Bioinformatics 125

desired outputs to a network. Weights are randomly initialized to the in-
puts of the network to compute the actual outputs. The actual outputs are
compared to the desired outputs. The weights are then adjusted by the net-
work to produce actual outputs that are close to the desired outputs. The
input weights are continuously modified until acceptable actual outputs are
achieved. In contrast, unsupervised learning, also known as self-supervised
learning, does not require an external teacher. During the training phase, a
neural network receives a number of inputs, discovers regularities in the
inputs, and learns how to organize itself.

With remarkable abilities such as nonlinearity, adaptive learning, self
organization, real-time operation, very large-scale integrated implementa-
tion, and fault tolerance via redundant information coding, neural networks
are able to solve complex problems that human and other computer tech-
niques cannot do. For example, neural networks outperform the decision
tree approach on the same data. However, neural networks have some limi-
tations. For instance, complex neural network models lack explanations to
interpret the decisions of each node in the network as rules; as testing and
verification. This problem comes from adaptive learning capability, in
which a network learns how to solve problem by itself, and its operations
cannot therefore be interpreted.

The neural network is one of several machine learning approaches that
have been successfully applied to solving a wide variety of bioinformatics
problems. In sequence analysis, ANNs have been applied or integrated
with other methods or systems. For example, a knowledge-based neural
network system was applied to analyzing DNA sequence (Fu, 1999). An
artificial neural network was trained to predict the sequence of the human
TP53 tumor suppressor gene based on a p53 GeneChip (Spicker et al.,
2002). A multilayered feed-forward ANN was developed as a tool to pre-
dict a mycobacterial promoter sequence in a nucleotide sequence (Kalate et
al., 2003).

There are two popular gene finder tools that accommodated ANNs.
GRAIL (Uberbacher and Mural, 1991) is the first gene finder program,
which was designed to identify genes, exons, and various features in DNA
sequences. It uses a neural network that combines a series of coding pre-
diction algorithms to recognize coding potential in fixed length windows
without looking for additional features. Figure 5.4 shows a snapshot of the
GRAIL tool screen.

Another gene finder system is GeneParser (Synder and Stormo, 1993,
1997). It was designed to identify and determine the fine structure of pro-
tein genes in genomic DNA sequences. It comprises two variations of a
single layer network, namely, 1) one fully connected and one partially
connected with an activation bias added to some inputs, and 2) a partially

126 Supawan Prompramote et al.

connected two-layer network. Dynamic programming has been used as the
learning algorithm to train the system for protein sequencing.

Fig. 5.4. GRAIL gene finding tool (Source from: Presentation slides appeared in
Bioinformatics Forum, Thailand. 2002)

ANN has been widely used in protein structural and functional predic-
tion. The prediction of protein secondary structure using neural networks
was formerly carried out in 1988 (Bohr et al., 1990, and Qian and Se-
jnowski, 1988). However, this has requirements of training several neural
networks and of adding an extra layer. Much work has been done to im-
prove the effective methods (Baldi, 2000; Fairchild et al., 1995; Riis and
Krogh, 1996; and Rost and Sander, 1993). Most of the recent methods use
ensembles of neural networks.

 ANN has also been used to carry out expression analysis. An artificial
neural system for gene classification called GenCANS was developed to
analyze and manage a large volume of molecular sequencing data from the
Human Genome Project (Wu, 1993, 1996; and Wu et al., 1992). Gen-
CANS is based on a three-layered feed-forward backpropagation network.
GenCANS was initially designed to classify unknown sequences into
known classes. There are two extensive works of GenCANS – GenCANS-
RDP (Wu and Shivakumar, 1994) and GenCANS-PIR (Wu, 1995). Gen-
CANS-RDP is the RNA classification system which groups a number of
small subunit ribosomal RNAs together based on RDP (Ribosomal Data-
base Project) phylogenetic classes. GenCANS-PIR is the protein classifica-
tion system which currently classifies protein sequences into more than
3,300 PIR (Protein Identification Resource) superfamilies.

 5 Machine Learning in Bioinformatics 127

Unsupervised learning neural networks can be generally categorized
into the following types:

• self-organizing map (SOM) (Golub, 1999; Tamayo et al., 1999; Toronen
et al., 1999),

• self-organizing tree (SOTA) (Herrero et al., 2001), and
• adaptive resonance theory (ART) (Azuaje, 2003, and Tomida et al.,

2001).

Fig. 5.5. The 828 genes of yeast cell cycle were grouped into 30 clusters (source:
Tamayo et al., 1999)

They have been used to analyze gene expression data. ART was used to
show that unsupervised learning neural network tools outperform for the
analysis and visualization of gene expression profiles. Figure 5.5 shows an
example result of applying SOM to analyze gene expression data.

128 Supawan Prompramote et al.

5.3 Neural Network Architectures and Applications

Neural networks are parallel and distributed information processing sys-
tems that are inspired by and derived from biological learning systems
such as the human brain. The architecture of neural networks consists of a
network of nonlinear information processing elements that are normally ar-
ranged in layers and executed in parallel. This layered arrangement is re-
ferred to as the topology of a neural network. The nonlinear information
processing elements in the network are called neurons, and the intercon-
nections between these neurons in the network are called synapses or
weights. A learning algorithm must be used to train a neural network so
that it can process information in a useful and meaningful way. Neural
networks are used in a wide variety of applications in pattern classifica-
tion, language processing, complex systems modeling, control, optimiza-
tion, and prediction (Lippman, 1987). Neural networks have also been ac-
tively used in many bioinformatics applications such as DNA sequence
prediction, protein secondary structure prediction, gene expression profile
classification, and analysis of gene expression patterns (Wu and McLarty,
2000). In this section, we provide a review of neural network applications
in bioinformatics that accommodates the most recent advances.

A review of neural network architectures and learning algorithms is
briefly presented in the next section. This is followed by a review of appli-
cations of neural networks in bioinformatics. The reviewed applications
are then compared and categorized based on the areas of application.

5.3.1 Neural Network Architecture

Feed-Forward Neural Networks

As discussed in section 5.2, a perceptron is the most basic and the simplest
feed-forward neural network model. It consists of an input layer and a sin-
gle output layer of processing units called nodes. Input values presented to
neurons in the input layer are mapped directly to neurons in the output
layer. There are no intermediate processing steps. Each input is associated
with a weight to reflect the significance of the input to the output. Given a
set of training patterns that consist of exemplar “input” and “desired out-
put” pairs, the perceptron is trained by feeding the input patterns to it and
minimizing the error between its outputs and the desired outputs. Since the
perceptron performs a direct mapping of input to output, it is a linear clas-
sifier, because only its weights define a hyperplane that divides input space
into regions of pattern classes. The perceptron, therefore is, incapable of

 5 Machine Learning in Bioinformatics 129

performing tasks that require nonlinear mappings between input and out-
put.

For more complicated problems, a linear hyperplane is not good enough
as a separator. A nonlinear surface that separates the classes is used in-
stead. This can be achieved by the multi-layer perceptron (MLP), or the
feed-forward network that consists of three layers of nodes, or neurons.
Besides having an input layer and output layer, MLP has one (or several)
hidden layer(s) in the middle. All artificial neural networks have a similar
structure or topology, as shown in Fig. 5.6.

xn

x2

x1

output
layer

input
layer

hidden
layer

weights

 output

input
data

neurons

Fig. 5.6. The architecture of a multi-layer perceptron

Input data is a long continuous-valued vector that contains n elements,
x = (x1, x2,…,xn). The n elements can be considered as the lengths of the
inputs, and are determined by the problem specification. Each hidden neu-
ron (i = 1, 2,…,m) stores an exemplar training sample faithfully as its
weight vector w = (wi,1, wi,2,…,wi,n). A hidden neuron i is computed from
the inputs

,()i i n n
n

h F w x= ∑ (5.1)

where nx denotes the nth input and ,i nw denotes the weights between the

input and hidden layers.

130 Supawan Prompramote et al.

The hidden neurons are then used as inputs for the output y

,()i i n n
n

y G v h= ∑ (5.2)

where ,i nv denotes the weights between the hidden and output layers. The

activation function F or G is a sigmoid or logistic function which is usually
differentiable and contributes to stability in neural network learning (Nara-
yanan et al., 2003a).

Despite the simplicity of neural network, the summation functions can
be more complex than just the simple sum of the products of inputs and
their weights. The specific algorithm to combine neural inputs is deter-
mined by the chosen network architecture and hypothesis.

Training of Feed-Forward Neural Networks

Once a network has been structured for a problem specification, training of
the network is the next step to be followed. The training of the network is
nothing but finding the weights to minimize possible error. The initial
weights are allocated randomly. Then, the training, or learning, begins.
The commonly used algorithm for error is defined by

21
()

2 i i
i

E t O= −∑
,

(5.3)

where it is the target output and iO is the actual output. The steps used to

find the weights for minimizing error are:

• choose the initial weights randomly for a sample input values,
• compare the actual output value with the target output value,
• calculate the error, and
• modify the weights so that the actual output is closer to the target out-

put next time, with smaller error.

This process is repeated for all samples in the dataset and results, and
then repeated until the output error for all the samples achieves an accept-
able low value, which indicates the end point of the training. Once the
training is finished, testing can be done using the rest of the data set, not
used during the training phase, to test the trained neural network. If the
testing is not satisfactory, further modification of the weights has to be

 5 Machine Learning in Bioinformatics 131

done. Otherwise, the output value of the tested data is preserved for any
decision making.

5.3.2 Neural Network Learning Algorithms

There are many different types of neural networks. Based on the type of
learning, they can be categorized into supervised and unsupervised neural
networks.

Supervised Learning Neural Networks

Most neural networks are trained with supervised training algorithms. This
means that the desired output must be provided for each input used in the
training. In other words, both the inputs and the outputs are already known.
In supervised training, a network processes the inputs and compares its ac-
tual outputs against the expected outputs. Errors are then propagated back
through the network, and the weights that control the network are changed.
This process is repeated until the errors are minimized. This means that the
same dataset is processed many times while the weights between the layers
of the network are being refined during the training of the network. Figure
5.7 demonstrate the architecture for a supervised neural network that in-
cludes three layers, namely, input layer, output layer and, a hidden layer in
the middle.

Support vector machines (SVMs) are considered supervised computer
learning methods. Since the support vector machine (SVM) is well known
as a training algorithm for learning classification from data, SVMs, as one
of the major supervised neural networks, are widely used for the applica-
tions of classification and pattern recognition problems in bioinformatics
(Vapnik, 1995, and Cristianini and Shawe-Taylor, 2000).

The theory of SVMs can be applied to the clustering of yeast microarray
expression data. When the misclassification rates of SVMs are compared
with those of other machine learning approaches, SVMs are found to be
the best performing methods (Brown et al., 2000). In addition to their use
for evaluating microarray expression data, SVMs have been shown to per-
form well in multiple areas of biological analysis, including detecting re-
mote protein homologies (Jaakkola, 1999) and recognizing translation ini-
tiation sites. SVMs can also be used to analyze expression data (Furey et
al., 2000). Gene expression data is usually high dimensional data that con-
stitutes a serious problem in several machine learning methods. Dimen-
sionality reduction can be used, but it leads often to information loss and

132 Supawan Prompramote et al.

performance degradation. Fortunately, SVMs can overcome this problem
as they can generalize high dimensional data well (Valentini, 2002).

xn

x2

x1

expected
output

input
data

error backpropagation

change weights

Fig. 5.7. A sample structure of supervised neural network

Unsupervised Learning Neural Networks

The learning algorithm used in unsupervised neural networks is an unsu-
pervised learning algorithm. In unsupervised training, the network is pro-
vided only with inputs, while the expected output is unknown. The neural
network must itself choose features to group the input data without being
trained (Agatonovic-Kustrin and Beresford, 2000). Once an unsupervised
neural network has been trained, it must be tested to show that the network
really represents the data; the data is expected to be well represented in
clusters.

A self-organizing network known as self-organizing map (SOM), or
Kohonen network, is the most common algorithm used in unsupervised
neural networks (Kohonen, 1982). It is different from the supervised learn-
ing described earlier. The neighborhood of a neuron is used to find and
group the data that has the similarity. The grouped neurons are arranged in
a matrix pattern called a map. Every input neuron is connected to other
neurons in this map. Finally, these neurons form the output of the neural
network, as shown Fig. 5.8.

 5 Machine Learning in Bioinformatics 133

The SOM consists of an input layer and a competitive output layer. The
output layer is normally organized into a two-dimensional grid of fully
connected neurons, as illustrated in Fig. 5.8. The input vectors are fed into
input layer and mapped with competitive neurons in the output layer. The
competition learning algorithm in the output layer ensures that similar in-
put vectors are mapped with competitive neurons that are closer to each
other in the grid than dissimilar ones. In SOM, input vectors in high di-
mensional space are, therefore, projected on to two-dimensional output
space based on their spatial similarities. Similar input patterns are clustered
into one small region in the grid of the output layer.

Fig. 5.8. Self-organizing map (adapted from Narayanan et al., 2003a)

The SOM is widely used as a data mining and visualization method in
bioinformatics. It is a more robust and accurate method for the clustering
of large amounts of noisy data than hierarchical clustering methods are for
analyzing the gene expression data. In the analysis of the Stanford yeast
gene expression dataset using SOMs, the best performance of gene expres-
sion analysis was the result of combining clustering and visualization
methods (Torkkola et al., 2001). SOMs, can be used to reduce the amount
of data through clustering, and to construct a nonlinear projection of the
data onto a low dimensional display simultaneously. Therefore, SOMs can
be used to combine aspects of gene analysis, namely, clustering and visu-
alization.

Nevertheless, this approach presents several problems (Fritzke, 1994).
They are as follows:

• As the SOM is a topology-preserving neural network, the number of
clusters is randomly fixed from the beginning. Therefore, the clustering
obtained is not proportionate.

• The lack of a tree structure makes it impossible to detect higher order
relationships between clusters.

134 Supawan Prompramote et al.

The hierarchical clustering and the SOM can be combined to surmount
the problems faced by these methods in analysing the gene expression pro-
files and the gene expression data from DNA array experiments (Herrero
et al., 2001, and Dopazo and Carazo, 1997).

The advantages of SOTA are as follows:

• the clustering obtained is proportional to the heterogeneity of the data
• the binary topology produces a nested structure in which nodes at each

level are averages of the items below them.

An alternative way to avoid the problems is to use Fuzzy Kohonen Neu-
ral Networks that combines a Kohonen network and a fuzzy c-means algo-
rithm to keep the advantages and overcome the shortcomings of both tech-
niques (Granzow et al., 2001).

The advantages of the SOM can be attributed to its ability to map high
dimensional data onto more comprehensible lower dimensional space and
to its fast execution. It is potentially very useful for dealing with high di-
mensionality and large-scale databases to extract information from gene
expression data. However, the effectiveness of its combining with database
queries warrants further investigation. SOM also has limitations, namely,
1) no convergence guarantee and 2) the nondeterministic results that de-
pend on learning rates.

5.3.3 Neural Network Applications in Bioinformatics

Neural networks have been widely used in biology since the early 1980s
(Brusic and Zeleznikow, 1999). They can be used to

• predict the translation initiation sites in DNA sequences (Stormo et al.,
1982).

• explain the theory of neural networks using applications in biology
(Baldi and Brunak, 1998).

• predict immunologically interesting peptides by) combining an evolu-
tionary algorithm (Brusic et al. 1998a)

• study human TAP transporter (Brusic et al., 1998b).
• carry out pattern classification and signal processing successfully in bio-

informatics; in fact, a large number of applications of neural network
can be found in this area

• perform protein sequence classification; neural networks are applied to
protein sequence classification by extracting features from protein data

 5 Machine Learning in Bioinformatics 135

and using them in combination with the Bayesian neural network (BNN)
(Wu et al., 1993, 1995, 1997, 2000).

• predict protein secondary structure prediction (Qian and Sejnowski,
1988).

• analyze the gene expression patterns as an alternative to hierarchical
clusters (Toronen, Kolehmainen, et al., 1999; Wang, Ma, et al., 2000;
Bicciato, Pandin, et al., 2001; and Torkkola, Gardner, et al., 2001); gene
expression can even be analyzed using a single layer neural network
(Narayanan, Keedwell, et al., 2003b).

In summary, a neural network is presented with a pattern on its input
nodes, and the network produces an output pattern based on its learning al-
gorithm during the training phase. Once trained, the neural network can be
applied to classify new input patterns. This makes neural networks suitable
for the analysis of gene expression patterns, prediction of protein structure,
and other related processes in bioinformatics..

5.4 Genetic Algorithm

The genetic algorithm is an artificial system based on biological evolution-
ary mechanisms (Holland, 1975). A modern biological evolutionary theory
came into existence by incorporating genetics and population biology the-
ory into the classical evolution theory of Charles Darwin (Darwin, 1859).
It can be defined as the inheritable changes, via genetic materials in a
population of chromosomes, from one generation to the next generation.
The main goal of evolution is to produce a population of chromosomes
with increasing fitness. The fitness is a quantitative measure of the success
of a chromosome in survival and reproduction. The main processes of
natural evolution are reproduction of some chromosomes within a popula-
tion, mutation in the DNA sequence within a gene or chromosome of an
organism to create a new character not found in the parental type, and
competition and fitness selection to limit expanding populations of differ-
ent species in finite space.

The recombination (or crossover) first occurs during reproduction, re-
sulting in the combination of genes from parents to form a new chromo-
some. The new chromosome, which consists of genes or blocks of DNA,
can be mutated. The mutation can be caused, for example, by errors in
copying genes from parents. These errors change the gene’s position (or
locus) in the chromosome, and this change is called genetic variation. But
one might question which parents should be chosen to form a new chro-

136 Supawan Prompramote et al.

mosome. Naturally, parental chromosomes are selected to produce new
chromosome according to the fitness of the genotypes. A chromosome
with higher fitness has a higher chance than other chromosomes of being
selected to reproduce. Natural evolution is a gradual, continuous, and
never ending process.

The biological evolutionary theory inspired computer scientists to de-
velop an intelligent system that is capable of imitating the principles of
natural evolution.

An automatic mechanism to adapt and learn is desirable for producing
good solutions. This is the starting point of a genetic algorithm.

The genetic algorithm is a search algorithm that operates on pieces of
information. It is similar to a natural evolutionary process that operates on
the information stored in genes. In the genetic algorithm, chromosomes are
represented as binary strings; these strings are modified in the same way
that populations of chromosomes evolve in nature. The population of
strings improves its fitness over interactions, and after a number of genera-
tions the population finally evolves to the best solution for a given prob-
lem. In each generation, all strings are evaluated by a fitness function for
their performance. Based on these evaluations, a new population of strings,
with well adapted effectiveness, is formed by using genetic operators such
as selection, crossover, and mutation.

Fig. 5.9. The illustration showing how crossover and mutation operators work

The selection operator selects the as many survival chromosomes as
possible from a given population based on their fitness values. The aim of

 5 Machine Learning in Bioinformatics 137

the selection is to increase the occurrence of fitter chromosomes in the
population over subsequent generations. There exist a wide number of se-
lection techniques (Forrest, 1985; Goldberg and Deb, 1991; and Grefen-
stette and Baker, 1989); however, a detailed discussion on the selection
techniques is beyond the scope of this book. Further reading can be found
in any genetic algorithm book.

The crossover operator breaks and then swaps some parts of two paren-
tal chromosomes. The mutation operator represents a mechanism through
which a randomly chosen gene (or several genes) is (are) changed to some
other gene. The mutation introduces diversity to the population and guar-
antees that the population is not trapped at a local maximum. Figure 5.9
shows a typical case of crossover and mutation operators.

As mentioned before, the genetic algorithm simulates the process of
natural evolution. Analogies between the two can be found in Table 5.3.

Table 5.3. A comparison of the genetic algorithm and the natural evolutionary
mechanism

Natural evolution Genetic algorithm

Environment Given problem

Chromosome Binary string

Fitness of phenotype (probability of
survival)

Fitness function

Locus A position on the string

Selection, recombination, crossover,
and mutation

Genetic operators

A population of chromosomes that suits
to the environment

The optimal solutions to a given
problem

The genetic algorithm is a simple computational model compared to the
natural mechanism; however, complex and interesting structures have been
developed using genetic algorithms. Most genetic algorithms consist of the
following steps (Coley, 1999; Ghanea-Hercock, 2003; and Goldberg,
1989):

Step 1 (a) Encode the problem variables as a chromosome, representing
 a fixed-length binary string.
(b) Choose a population size, N.

138 Supawan Prompramote et al.

(c) Define a fitness function to measure the probability that a
chromosome will be selected as a parent chromosome to fur-
ther generate new chromosomes.

Step 2 Randomly generate a population of chromosomes of size, N.
Step 3 Test each chromosome in the population with the fitness func-

tion.
Step 4 Perform the following sub-steps until termination condition such

as specified best fitness values, is satisfied.
(a) Select a pair of chromosomes from the population with the

higher fitness value as parent chromosomes for reproduction.
(b) Apply the genetic operators to selected parent chromosomes

to create a pair of offspring chromosomes.
(c) Allow the offspring chromosomes and their parents to form

the new population.
(d) Replace the current chromosome population with the new

population.
(e) Calculate the fitness value of each chromosome of the new

population.
Step 5 Output the optimal solutions to a given problem as the fittest

chromosomes.

Genetic algorithms have a number of advantages.

• A genetic algorithm is a parallel search, that is, in each generation sev-
eral solutions are checked at once. It generates optimized and robust so-
lutions via powerful operators; for example, bad solutions are filtered
out by selection, and local optimal solutions can be avoided by muta-
tion.

• A genetic algorithm can provide good solutions even if very little in-
formation about the problem is provided. As a result, genetic algorithms
are widely used in classification and optimization.

However there are limitations with the genetic algorithm.

• Encoding a given problem in a suitable representation (for example, bit
string) is difficult and often changes the nature of the problem being in-
vestigated. Natural evolution does not always produce a good solution.
Nor does a genetic algorithm. It frequently converges to a local opti-
mum.

• A genetic algorithm involves several parameters, such as representation,
population size, and fitness function. In practice, it is difficult to define

 5 Machine Learning in Bioinformatics 139

or create these parameters due to the lack of guidelines for choosing
them.

It is expected that new developments in genetic algorithms may over-
come the limitations.

Fig. 5.10. The layout of the SAGA algorithm (Notredame and Higgins, 1996)

The genetic algorithm has been successfully applied for solving many
practical problems in many disciplines, in particular, in bioinformatics.
Genetic algorithms have been used to solve multiple sequence alignment

140 Supawan Prompramote et al.

problems. One well known approach is SAGA (Ohno-Machado et al.,
2002). SAGA randomly creates an initial population of alignments and
evolves them in a quasi-evolutionary manner. Through each generation,
the fitness of the population is gradually improved. The authors show that
SAGA outperforms the most common solution of the multiple alignment
problem that uses progressive approach (Barton and Sternberg, 1987; Feng
and Doolitle, 1987; and Thompson et al., 1994). The layout of the SAGA
algorithm is shown in Fig. 5.10. The first generation initially creates a ran-
dom population (G0) consisting of a set of alignments. The subsequent
generations are derived from better parents, as measured by multiple
alignment quality. When creating children, genetic operators are involved
in selecting the better parents, in mixing the contents, and in modifying a
single parent. These steps are repeated iteratively to increase the fitness of
the population until no more improvement can be made.

In addition to SAGA, there are a few approaches (Chellapilla and Fogel,
1999; Isokawa et al., 1996; Nguyen et al., 2002; Wayama et al., 1995; and
Zhang and Wong, 1997) that have applied genetic algorithms to multiple
sequence alignment.

Genetic algorithms have been commonly applied to a set of RNA se-
quences to find common RNA secondary structures (Benedetti and Mo-
rosetti, 1995; Chen et al., 2000; Gultyaev et al., 1995; Shapiro and
Navetta, 1994; Shapiro et al., 2001; and Wu and Shapiro, 1999). The early
proposed methods can deal only with a single RNA sequence, while the
latest improved methods can be used to determine RNA structures in RNA
sequences.

The trend to use pure genetic algorithms to analyze gene expression data
has diminished. The new techniques tend to combine genetic algorithm
with other computational methods, such as the K-nearest Neighbor Method
(Li et al., 2001) and the neural network (Keedwell and Narayanan, 2003),
to solve gene expression problems. They are called neural-genetic hybrid
methods. Keedwell and Narayanan use a genetic algorithm to select a set
of genes for classification and use a neural network to determine the fit-
ness of the genes.

The steps that are to be followed in neural-genetic hybrid methods can
be seen in Fig. 5.11. Preprocessing, to convert each attribute in the dataset
into binary field, is the first step. Then, the genetic algorithm initializes a
random population of chromosomes. The population becomes the input to
the neural network. The network is trained till the desired output (mini-
mum error) is produced. The error from each chromosome acts as a fitness
function to determine mutation, crossover, and selection for the next gen-
eration of chromosomes. The generation creation process is iterated until

 5 Machine Learning in Bioinformatics 141

the maximum number of generations is satisfied, that is, until the correct
classification of genes is finally discovered.

Fig. 5.11. The visual layout of neural-genetic algorithm (adapted from Keedwell
and Narayanan, 2003)

5.5 Fuzzy System

A fuzzy system is an expert system that uses a collection of fuzzy mem-
bership functions and rules, instead of Boolean logic, to reason about data.
It provides a rich meaningful addition to classical logic. The basic con-
cepts of a fuzzy system include fuzzy logic and fuzzy set theory. In order
to understand a fuzzy expert system, related terminologies and theories are
first explained.

A characteristic of human mind is its ability to reason about vague and
ambiguous terms. For example, today may feel hot because the tempera-
ture is more than 33°C. If the temperature tomorrow is 31°C, human
senses can immediately interpret it as moderately hot. However, a com-
puter with conventional logic cannot replicate that statement. The reason is

142 Supawan Prompramote et al.

that in conventional logic a statement is either true or false, and not multi-
valued or partially true or false.

There have been attempts to emulate the way human senses work with
computers so that they are able to respond like human. This is the starting
point of fuzzy logic. Fuzzy logic is a superset of conventional logic. It can
describe partial truth or uncertainty. In fuzzy logic, a true statement can
range from completely true through half truth to completely false. In other
words, it is possible that a statement is 0.75 true, or not completely true.
The multivalued logic has been widely studied since the last century, but
the most significant breakthrough was the theory of fuzzy sets proposed by
Lotfi Zadeh. Based on fuzzy sets, fuzzy logic can be defined as a set of
mathematical principles for knowledge representation based on degree of
membership rather than on crisp membership.

A crisp set is a set in classical logic where elements either belong or do
not belong to the set, whereas a fuzzy set is a set in fuzzy logic where
members have a degree of membership or degree of truth that ranges from
0 to 1. Let us consider Table 5.4 to make things clear.

Table 5.4. Crisp and fuzzy membership

 Degree of membership of “Hot day”

Day Temperature, º C Crisp Fuzzy

1 5 0.0 0.0

2 10 0.0 0.0

3 25 0.0 0.1

4 27 0.0 0.3

5 29 0.0 0.5

6 30 0.0 0.8

7 33 1.0 1.0

8 35 1.0 1.0

9 40 1.0 1.0

In crisp set theory, days 1 through 9 fall into only two groups (hot and
not hot), depending on their temperatures (°C). If the temperature is less
than 33°C, the day is considered not hot. Unlike crisp set theory, fuzzy set
theory classifies its members (days) by regarding the degree of truth (hot-
ness). Therefore, there are more than two groups of days. It is a cold day if
the temperature is less than or equal 10°C and it is hot day if the tempera-
ture is equal to or more than 33°C. For example, days 1 and 2 are hot with

 5 Machine Learning in Bioinformatics 143

0 degree of truth; days 3 through 6 are hot with 0.10, 0.30, 0.50, and 0.80
degrees of through respectively; and days 7 through 9 are considered hot
day with 1 degree of truth. The question is how to find the degree of mem-
bership.

In classical set theory, the degree of membership can be calculated by a
characteristic function. For example, the crisp set “Hot day” can be defined
as

()


 ≥

=
otherwise

etemperaturif
etemperaturf dayHot 0

331
(5.4)

The function ()etemperaturf dayHot maps each temperature value onto 0

or 1. In a fuzzy set, the mapping function, called membership function,
maps each temperature value onto the real interval [0, 1]. In the “Hot day”
case, the membership function can be defined as

()








<<
≤
≥

=
331010

100

331

etemperaturifandbetween

etemperaturif

etemperaturif

etemperaturHotdayµ (5.5)

In a manner similar to that of producing crisp and fuzzy sets of “Hot day”,
crisp and fuzzy sets of “Fine day” and “Cold day”, and their degrees of
membership, can be obtained as shown in Table 5.5.

Table 5.5. Crisp and fuzzy set temperatures, with members Cold, Fine, and Hot

 Degree of membership
 Crisp Fuzzy

Day Temperature °C Cold Fine Hot Cold Fine Hot
1 5 1.0 0.0 0.0 1.0 0.0 0.0
2 10 1.0 0.0 0.0 1.0 0.0 0.0
3 25 0.0 1.0 0.0 0.8 0.8 0.1
4 27 0.0 1.0 0.0 0.5 1.0 0.3
5 29 0.0 1.0 0.0 0.3 1.0 0.5
6 30 0.0 1.0 0.0 0.1 0.8 0.8
7 33 0.0 0.0 1.0 0.0 0.0 1.0
8 35 0.0 0.0 1.0 0.0 0.0 1.0
9 40 0.0 0.0 1.0 0.0 0.0 1.0

The characteristic and membership functions that describe how to trans-
late from temperature in value to temperature in words, and vice versa, are
shown in Fig. 5.12.

144 Supawan Prompramote et al.

Fig. 5.12. Characteristic and membership functions of Cold, Fine, and Hot day

Another important concept of fuzzy set theory is the linguistic variable.
It is used to construct the fuzzy rules. For example, “Temperature” is
called a linguistic variable, and “hot”, “fine”, and “cold” are called linguis-
tic values. A simple fuzzy rule can be represented in the following way:

IF x is A THEN y is B (5.6)

where x and y represent linguistic variables and A and B are linguistic val-
ues. One can use operations, including EQUAL, COMPLEMENT (NOT),
CONTAINMENT, UNION (OR), and INTERSECTION (AND), to con-
struct a more complex fuzzy rule such as:

IF (x is A) AND (y is B) AND (…) OR NOT (…) THEN z is Z

IF x is A THEN (y is B) AND (…) AND z is Z
(5.7)

 5 Machine Learning in Bioinformatics 145

where x, y, and z are variables and A, B, and Z are values. The IF part of
the rule is called the rule antecedent and the THEN part of the rule is
called the rule consequent. If the antecedent part is true with a degree of
membership, then consequent part is also true with the same degree. The
outputs of fuzzy sets are aggregated into a single. Then the single output is
transformed to a single output number. Many researchers have proposed
techniques (Mamdani and Assilian, 1975) that facilitate the whole process
from the beginning to the end. The most significant technique is fuzzy in-
ference. Fuzzy inference is a tool used to evaluate a knowledge base. It
takes a given input and fires an output by using the theory of fuzzy sets.
Generally, it consists of four steps: fuzzification of the input variables, rule
evaluation, aggregation of the rule outputs, and defuzzification, as shown
in Fig. 5.13.

The development of the fuzzy expert system (FES) is an iterative proc-
ess. A typical process involves the following four steps:

• determine problem input and output variables and their ranges,
• define fuzzy sets and construct fuzzy rules,
• perform fuzzy inference process, and
• evaluate and tune the system.

The basic structure of a fuzzy system can be seen in Fig. 5.14. It con-
sists of four basic components: a fuzzifier, an inference engine, a defuzzi-
fier, and a knowledge base. More details of these components are beyond
the scope of this chapter; however, they can be found in general artificial
intelligence or soft computing books (Kruse et al., 1994).

Fuzzy systems have been successfully applied to several areas in prac-
tice. In bioinformatics, fuzzy systems play an important role for building
knowledge-based systems. Most systems involve fuzzy logic-based and
fuzzy rule-based models. They can control and analyze processes and di-
agnose and make decisions in biomedical sciences (Adriaenssens et al.,
2004; Boegl et al., 2004; Saritas et al., 2003; Sarkar and Leong, 2003;
Schneider et al., 2003; Seker et al., 2003; and Virant-Klun and Virant,
1999).

A fuzzy expert system for the diagnosis of prostate cancer (Saritas et al.,
2003), has been explained in detail. The authors use prostate-specific anti-
gen (PSA), age, and prostate volume (PV) as input parameters, and pros-
tate cancer risk as output. The input values are converted to the linguistic
variables, with degree of truth. This conversion is done by the membership
function. Then, 80 rules are formed. The output of each rule has a degree
of truth, obtained from fuzzy operation (MIN and MAX). Finally, the

146 Supawan Prompramote et al.

fuzzy outputs are converted into real output values. Figure 5.15 shows the
overview of the FES system and its components.

Fig. 5.13. The general steps of fuzzy inference

Fig. 5.14. The basic components of fuzzy expert system

In addition, fuzzy logic has been recently applied to analyze (Woolf and
Wang, 2000) and to classify (Ohno-Machado et al., 2002) gene expression
data. The fuzzy logic-based classifier gives results similar to those of other

 5 Machine Learning in Bioinformatics 147

classifiers, but are much simpler and easier to interpret (Ohno-Machado et
al., 2002). Fuzzy logic accounts for noisy data from a large number of bio-
logical patterns.

Fig. 5.15. The structure of the fuzzy expert system (FES) for diagnosis of prostate
cancer (adapted from Saritas et al., 2003)

References

Adeli, H. (1995) Machine learning : neural networks, genetic algorithms, and
fuzzy systems. New York: Wiley.

Adriaenssens, V., Baetsb, B.D., Goethalsa, P.L.M. and Pauwa, N.D. (2004) Fuzzy
rule-based models for decision support in ecosystem management. Science of
The Total Environment, vol. 319, pp 1-12.

Agatonovic-Kustrin, S., Beresford, R. (2000). Basic concepts of artificial neural
network (ANN) modeling and its application in pharmaceutical research.
Journal of Pharmaceutical and Biomedical Analysis 22(5): 717-727.

Azuaje, F. (2003) A computational evolutionary approach to evolving game strat-
egy and cooperation. IEEE Transactions on Systems, Man, and Cybernetics,
Part B, vol. 33, pp 498-503.

Baldi, P. and Brunak, S. (2001) “Bioinformatics The Machine Learning Ap-
proach”, The MIT Press.

Baldi, P., Brunak, S., Frasconi, P., Pollastri, G. and Soda, G. (2000) Bidirectional
IOHMMs and Recurrent Neural Networks for Protein Secondary Structure
Prediction. In: Protein Sequence Analysis in the Genomic Era, R. Casadio and
L. Masotti, Eds. CLUEB, Bologna, Italy.

Baldi, P. and Brunak, S. (1998) Bioinformatics: the Machine Learning Approach.
MIT Press.

Barton, G.J. and Sternberg, M.J.E. (1987) A strategy for the rapid multiple align-
ment of protein sequences: Confidence levels from tertiary structure compari-
sons. Journal of Molecular Biology, vol. 198, pp 327-337.

http://www.springer.com/978-3-540-20873-0

