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5.1 Introduction 

Given the complexity and gigantic volume of biological data, the tradi-
tional computer science techniques and algorithms fail to solve complex 
biological problems of the real world. However, there are modern compu-
tational approaches called machine learning that can address the limita-
tions of the traditional techniques. Machine learning is an adaptive process 
that enables computers to learn from experience, learn by example, and 
learn by analogy. Learning capabilities are essential for automatically im-
proving the performance of a computational system over time on the basis 
of previous results. A basic learning model typically consists of the follow-
ing four components: 

• learning element, responsible for improving its performance,  
• performance element, which decides the choice of actions to be taken,  
• critical element, which tells learning element how the algorithm per-

forms, and 
• problem generator, responsible for suggesting actions that could lead to 

new or informative experiences (Adeli, 1995; Finlay and Dix 1996; 
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Kuonen, 2003; Narayanan et al., 2002; Negnevitsky, 2002; Nilsson, 
1996; Baldi and Brunak, 2001; and Westhead et al., 2002). 

Machine learning typically can be divided into three phases, as follows: 

1. analysis of a training set of examples and generation of a set of rules 
from training set, 

2. verification of the rules by human experts or automatic knowledge 
based components and 

3. use of the validated rules in responding to some new testing datasets 
(Finlay and Dix 1996). 

There are a number of reasons why machine learning approaches are 
widely used in practice, especially in bioinformatics (Narayanan et al., 
2002; Nilsson, 1996; Baldi and Brunak, 2001; and Westhead et al., 2002) 

• Traditionally, a human being builds such an expert system by collecting 
knowledge from specific experts. The experts can always explain what 
factors they use to assess a situation; however, it is often difficult for the 
experts to say what rules they use, for example, for disease analysis and 
control. This problem can be resolved by machine learning mechanisms. 
Machine learning can extract the description of the hidden situation in 
terms of those factors and then fire rules that match the expert’s behav-
ior. 

• Systems often produce results different from the desired ones. This may 
be caused by unknown properties or functions of inputs during the de-
sign of systems. This situation always occurs in the biological world be-
cause of the complexities and mysteries of life sciences. However, with 
its capability of dynamic improvement, machine learning can cope with 
this problem. 

• In molecular biology research, new data and concepts are generated 
every day, and those new data and concepts update or replace the old 
ones. Machine learning can be easily adapted to a changing environ-
ment. This benefits system designers, as they do not need to redesign 
systems whenever the environment changes. 

• Missing and noisy data is one characteristic of biological data. The con-
ventional computer techniques fail to handle this. Machine learning 
techniques are able to deal with missing and noisy data. 

• With advances in biotechnology, huge volumes of biological data are 
generated. In addition, it is possible that important hidden relationships 
and correlations exist in the data. Machine learning methods are de-
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signed to handle very large data sets, and can be used to extract such re-
lationships. 

Table 5.1. The existing research on bioinformatics that has applied machine learn-
ing techniques. 

Research Area Application Reference 

BLAST http://www.ncbi.nlm.nih.gov/BL
AST/ Sequence alignment 

FASTA http://www.ebi.ac.uk/fasta33/ 

ClustalW http://www.ebi.ac.uk/clustalw/ 

MultAlin http://prodes.toulouse.inra.fr/mult
alin/multalin.html 

Multiple sequence 
alignment 

DiAlign http://www.genomatix.de/cgi-
bin/dialign/dialign.pl 

Genscan http://genes.mit.edu/GENSCAN.h
tml

GenomeScan http://genes.mit.edu/genomescan/ 
Gene finding 

GeneMark http://www.ebi.ac.uk/genemark/ 

Pfam http://www.sanger.ac.uk/Software
/Pfam/ 

BLOCKS http://www.blocks.fhcrc.org/ 
Protein domain analy-
sis and identification 

ProDom http://prodes.toulouse.inra.fr/prod
om/current/html/ home.php 

Gibbs Sampler http://bayesweb.wadsworth.org/gi
bbs/gibbs.html 

AlignACE http://atlas.med.harvard.edu/cgi-
bin/alignace.pl 

Pattern identification 

MEME http://meme.sdsc.edu/meme/webs
ite/intro.html 

PredictProtein 
http://www.embl-
heidelberg.de/predictprotein/ pre-
dictprotein.html Protein folding predic-

tion 

SwissModle http://www.expasy.org/swissmod/
SWISS-MODEL.html 
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• There are some biological problems in which experts can specify only 
input/output pairs, but not the relationships between inputs and outputs, 
such as the prediction of protein structure and structural and functional 
sequences. This limitation can be addressed by machine learning meth-
ods. They are able to adjust their internal structure to produce approxi-
mate results for the given problems. 

Machine learning mechanisms form the basis of adaptive systems. In 
bioinformatics research, a number of machine learning approaches are ap-
plied to discover new meaningful knowledge from the biological data-
bases, to analyze and predict diseases, to group similar genetic elements, 
and to find relationships or associations in biological data. Examples of 
machine learning approaches in bioinformatics research are shown in Ta-
ble 5.1. 

In this chapter, the most popular of machine learning approaches, 
namely, artificial neural networks, genetic algorithms, and fuzzy expert 
systems, are elaborated. The basic background, definition, and models of 
each method are presented. Further, a survey of tools for using the learning 
techniques used in bioinformatics is included. 

5.2 Artificial Neural Network 

The process of learning is a complex phenomenon. Many puzzling ques-
tions arise from of it. How can one recognize the faces of others? How can 
one identify complex patterns from the faces? How does one discriminate 
images and backgrounds? How does one learn a shortcut to go to his or her 
university? In order to answer these questions, one needs to know how the 
brain works. 

The human brain has been studied since the late Middle Ages; however, 
its detailed structure began to be unraveled only in the nineteenth century. 
Neuronists claim that the brain is a collection of about 10 billion densely 
interconnected cellular units called neurons. The structure of a neuron and 
its network is shown in Fig. 5.1. 

Each neuron consists of a cell body called soma, a number of root-like 
extensions connected to a thousand adjacent neurons called dendrites, and 
a single transmission line extending out from the soma called axon. The 
two specialized extensions of a soma are responsible for carrying informa-
tion from/to a cell body. Dendrites bring information to a cell body and 
axons take information away from a cell body. The connection between 
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two neurons, in particular, between an axon terminal and another neuron, 
is called synapse.  

Fig. 5.1. Biological neural network (Adapted from: http://ffden2.phys.uaf.edu/-
212_fall2003.web.dir/Keith_Palchikoff/Intro_page.html) 

Each neuron uses biochemical reactions to receive processes and trans-
mit information. Neurons communicate with each other through an elec-
trochemical process. This means that chemicals create an electrical signal. 
When a neuron does not send a signal, it is in a resting state. The inside of 
the neuron has a negative electric potential. When a neuron sends a signal, 
it causes a change in the electrical potential of the cell body. The change 
occurs due to the release of chemical substances from the synaptic cell, 
called neurotransmitter. When the potential exceeds a certain threshold, an 
action potential occurs. Consequently, the neuron will fire the electrical 
signal down the axon. The occurrence of action potential can be increased 
or decreased by changing the constitution of various neurotransmitters. 

An essential characteristic of biological neural networks is plasticity, an 
ability of the brain to reorganize with learning, based on experience or sen-
sory stimulation. Scientists believe that there are two types of modifica-
tions that form the basis of learning in the brain, namely, 1) a change in the 
internal structure of the synapses and 2) an increase in the number of syn-
apses between neurons. 
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The natural and power of a biological neural network, in particular, the 
potential of learning process, motivated computer scientists to design and 
develop a new network platform that worked in a way similar to that of the 
biological neurons (Adeli, 1995; Freeman and Skapura, 1991; Haykin, 
1994; Müller and Reinhardt, 1990; and Negnevitsky, 2002). This leads to 
the introduction of Artificial Neural Networks (ANNs). 

An Artificial Neural Network (ANN) is an information processing 
model that is able to capture and represent complex input-output relation-
ships. The motivation the development of the ANN technique came from a 
desire for an intelligent artificial system that could process information in 
the same way the human brain. Its novel structure is represented as multi-
ple layers of simple processing elements, operating in parallel to solve 
specific problems. An architecture of a typical artificial neural network is 
illustrated in Fig. 5.2. ANNs resemble human brain in two respects: learn-
ing process and storing experiential knowledge. An artificial neural net-
work learns and classifies a problem through repeated adjustments of the 
connecting weights between the elements. In other words, an ANN learns 
from examples and generalizes the learning beyond the examples supplied. 
For instance, human beings learn to recognize faces from examples of 
faces. 

Fig. 5.2. Schematic representation of a generic ANN 

Each element (analogous to a neuron) in the network is connected to its 
neighbors with weights (analogous to synapses) that represent the strengths 
of the connections. Typically, a single processing element receives a num-
ber of inputs (analogous to dendrites) through its connection, combines 
them, performs a (non-)linear operation on the result, and then produces 
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the final result (analogous to an axon). The input can be information from 
external environments or outputs of other neurons. The output can be ei-
ther a final solution to the problem or an input to other neurons. Figure 5.3 
illustrates a neuron model, and Table 5.2 shows that the artificial neural 
network concepts are similar to those of the biological brain. 

Fig. 5.3. A neuron model 

The neuron determines its output on the basis of the weighted sum of 
the inputs, a threshold value (θ ), and an activation function. An activation 
function of a neuron can be any mathematical function. In practice, four 
functions are commonly used. They are step function, sign function, sig-
moid function, and linear function. If one chooses a sign function as an ac-
tivation function and the net input is less thanθ , the neuron output is 1; 
otherwise, it is -1. 

Table 5.2. An analogy between the biological and artificial neural networks and 
the functions of their components 

Function of each component Biological 
neural net-
works 

Artificial neu-
ral networks 

Accept Inputs Dendrite Input 

Process the inputs Soma Neuron 

Turn the processed inputs into outputs Axon Output 

Involve learning process Synapse Weight 

To build an artificial network, one must decide which network architec-
ture and learning algorithm should be used. Network architecture tells how 
the neurons are used, and how they are connected in a network. The aim of 
the learning function is to modify the weights of the inputs to achieve the 
desired outputs.  
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Based on the arrangement of the internal nodes in the network layer, the 
neural network architecture can be classified into different types, namely, 
perceptron, feedforward networks, and feedback networks. The simplest 
type of neural network is a perceptron (Rosenblatt, 1958). It consists of a 
single layer wherein weights are trained to produce a correct output when 
presented with inputs. The perceptron is typically used for class classifica-
tion, where the classes are linearly separable, regardless of the type of acti-
vation function. If the classification problem is not linearly separable, the 
perceptron cannot perform classification correctly. Therefore, perceptrons 
are suitable only for simple problems in pattern classification. The limita-
tions of the single layered perceptron were mathematically analyzed. The 
outcome of this analysis was the multilayer perceptron (Minsky and Pa-
pert, 1969). 

The multilayer perceptron expands the basic single layer network by 
having one or more hidden layers. In the multilayer structure, the input 
layer accepts information from the external environment and passes the in-
formation to all units in the first hidden layer. The outputs from the first 
hidden layer are redistributed to the next hidden layer, and so on. The out-
put layer accepts output from the last hidden layer and generates the final 
output of the entire network. 

A feedforward network is a network of neurons that have signals 
traveling from input layer to output layer only. In contrast, feedback 
networks allow signals traveling in both directions (from input layer to 
output layer and vice versa). A type of feedback network is a recurrent 
neural network. 

One important function of the human brain is to collect down and recall 
the memories. This is done with short and long term memories. The human 
memory is associative, that is, people recognize an input pattern by com-
paring it with patterns stored in their memories. If the input pattern is 
noisy, the associative memory returns the closest stored pattern. In other 
words, if a corrupted image is given to a network, the network will auto-
matically reconstruct a perfect image. A recurrent neural network, a varia-
tion of the multilayer perceptron, is able to emulate the associative charac-
teristics. It is a modification to the multilayer neural networks, trained with 
the backpropagation algorithm; that is, a recurrent neural network has 
feedback loops from its outputs to its inputs. As in backpropagation learn-
ing, the feedbacks are used to adjust the weights of inputs. Then the output 
is computed again. The algorithm is repeatedly iterated until output be-
comes convergent. 

Learning in neural networks can be divided into two types: supervised 
and unsupervised learning. In supervised learning, an artificial neural net-
work is trained by an external teacher who presents inputs, weights, and 
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desired outputs to a network. Weights are randomly initialized to the in-
puts of the network to compute the actual outputs. The actual outputs are 
compared to the desired outputs. The weights are then adjusted by the net-
work to produce actual outputs that are close to the desired outputs. The 
input weights are continuously modified until acceptable actual outputs are 
achieved. In contrast, unsupervised learning, also known as self-supervised 
learning, does not require an external teacher. During the training phase, a 
neural network receives a number of inputs, discovers regularities in the 
inputs, and learns how to organize itself. 

With remarkable abilities such as nonlinearity, adaptive learning, self 
organization, real-time operation, very large-scale integrated implementa-
tion, and fault tolerance via redundant information coding, neural networks 
are able to solve complex problems that human and other computer tech-
niques cannot do. For example, neural networks outperform the decision 
tree approach on the same data. However, neural networks have some limi-
tations. For instance, complex neural network models lack explanations to 
interpret the decisions of each node in the network as rules; as testing and 
verification. This problem comes from adaptive learning capability, in 
which a network learns how to solve problem by itself, and its operations 
cannot therefore be interpreted. 

The neural network is one of several machine learning approaches that 
have been successfully applied to solving a wide variety of bioinformatics 
problems. In sequence analysis, ANNs have been applied or integrated 
with other methods or systems. For example, a knowledge-based neural 
network system was applied to analyzing DNA sequence (Fu, 1999). An 
artificial neural network was trained to predict the sequence of the human 
TP53 tumor suppressor gene based on a p53 GeneChip (Spicker et al., 
2002). A multilayered feed-forward ANN was developed as a tool to pre-
dict a mycobacterial promoter sequence in a nucleotide sequence (Kalate et 
al., 2003).  

There are two popular gene finder tools that accommodated ANNs. 
GRAIL (Uberbacher and Mural, 1991) is the first gene finder program, 
which was designed to identify genes, exons, and various features in DNA 
sequences. It uses a neural network that combines a series of coding pre-
diction algorithms to recognize coding potential in fixed length windows 
without looking for additional features. Figure 5.4 shows a snapshot of the 
GRAIL tool screen. 

Another gene finder system is GeneParser (Synder and Stormo, 1993, 
1997). It was designed to identify and determine the fine structure of pro-
tein genes in genomic DNA sequences. It comprises two variations of a 
single layer network, namely, 1) one fully connected and one partially 
connected with an activation bias added to some inputs, and 2) a partially 
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connected two-layer network. Dynamic programming has been used as the 
learning algorithm to train the system for protein sequencing. 

Fig. 5.4. GRAIL gene finding tool (Source from: Presentation slides appeared in 
Bioinformatics Forum, Thailand. 2002) 

ANN has been widely used in protein structural and functional predic-
tion. The prediction of protein secondary structure using neural networks 
was formerly carried out in 1988 (Bohr et al., 1990, and Qian and Se-
jnowski, 1988). However, this has requirements of training several neural 
networks and of adding an extra layer. Much work has been done to im-
prove the effective methods (Baldi, 2000; Fairchild et al., 1995; Riis and 
Krogh, 1996; and Rost and Sander, 1993). Most of the recent methods use 
ensembles of neural networks. 

 ANN has also been used to carry out expression analysis. An artificial 
neural system for gene classification called GenCANS was developed to 
analyze and manage a large volume of molecular sequencing data from the 
Human Genome Project (Wu, 1993, 1996; and Wu et al., 1992). Gen-
CANS is based on a three-layered feed-forward backpropagation network. 
GenCANS was initially designed to classify unknown sequences into 
known classes. There are two extensive works of GenCANS – GenCANS-
RDP (Wu and Shivakumar, 1994) and GenCANS-PIR (Wu, 1995). Gen-
CANS-RDP is the RNA classification system which groups a number of 
small subunit ribosomal RNAs together based on RDP (Ribosomal Data-
base Project) phylogenetic classes. GenCANS-PIR is the protein classifica-
tion system which currently classifies protein sequences into more than 
3,300 PIR (Protein Identification Resource) superfamilies. 
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Unsupervised learning neural networks can be generally categorized 
into the following types: 

• self-organizing map (SOM) (Golub, 1999; Tamayo et al., 1999; Toronen 
et al., 1999),  

• self-organizing tree (SOTA) (Herrero et al., 2001), and 
• adaptive resonance theory (ART) (Azuaje, 2003, and Tomida et al., 

2001).  

Fig. 5.5. The 828 genes of yeast cell cycle were grouped into 30 clusters (source: 
Tamayo et al., 1999) 

They have been used to analyze gene expression data. ART was used to 
show that unsupervised learning neural network tools outperform for the 
analysis and visualization of gene expression profiles. Figure 5.5 shows an 
example result of applying SOM to analyze gene expression data. 
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5.3 Neural Network Architectures and Applications 

Neural networks are parallel and distributed information processing sys-
tems that are inspired by and derived from biological learning systems 
such as the human brain. The architecture of neural networks consists of a 
network of nonlinear information processing elements that are normally ar-
ranged in layers and executed in parallel. This layered arrangement is re-
ferred to as the topology of a neural network. The nonlinear information 
processing elements in the network are called neurons, and the intercon-
nections between these neurons in the network are called synapses or 
weights. A learning algorithm must be used to train a neural network so 
that it can process information in a useful and meaningful way. Neural 
networks are used in a wide variety of applications in pattern classifica-
tion, language processing, complex systems modeling, control, optimiza-
tion, and prediction (Lippman, 1987). Neural networks have also been ac-
tively used in many bioinformatics applications such as DNA sequence 
prediction, protein secondary structure prediction, gene expression profile 
classification, and analysis of gene expression patterns (Wu and McLarty, 
2000). In this section, we provide a review of neural network applications 
in bioinformatics that accommodates the most recent advances. 

A review of neural network architectures and learning algorithms is 
briefly presented in the next section. This is followed by a review of appli-
cations of neural networks in bioinformatics. The reviewed applications 
are then compared and categorized based on the areas of application. 

5.3.1 Neural Network Architecture 

Feed-Forward Neural Networks  

As discussed in section 5.2, a perceptron is the most basic and the simplest 
feed-forward neural network model. It consists of an input layer and a sin-
gle output layer of processing units called nodes. Input values presented to 
neurons in the input layer are mapped directly to neurons in the output 
layer. There are no intermediate processing steps. Each input is associated 
with a weight to reflect the significance of the input to the output. Given a 
set of training patterns that consist of exemplar “input” and “desired out-
put” pairs, the perceptron is trained by feeding the input patterns to it and 
minimizing the error between its outputs and the desired outputs. Since the 
perceptron performs a direct mapping of input to output, it is a linear clas-
sifier, because only its weights define a hyperplane that divides input space 
into regions of pattern classes. The perceptron, therefore is, incapable of 
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performing tasks that require nonlinear mappings between input and out-
put. 

For more complicated problems, a linear hyperplane is not good enough 
as a separator. A nonlinear surface that separates the classes is used in-
stead. This can be achieved by the multi-layer perceptron (MLP), or the 
feed-forward network that consists of three layers of nodes, or neurons. 
Besides having an input layer and output layer, MLP has one (or several) 
hidden layer(s) in the middle. All artificial neural networks have a similar 
structure or topology, as shown in Fig. 5.6. 

xn

x2 

x1 

output 
layer

input 
layer

hidden 
layer

weights

 output 

input 
data

neurons

Fig. 5.6. The architecture of a multi-layer perceptron 

Input data is a long continuous-valued vector that contains n  elements, 
x = (x1, x2,…,xn). The n  elements can be considered as the lengths of the 
inputs, and are determined by the problem specification. Each hidden neu-
ron (i = 1, 2,…,m) stores an exemplar training sample faithfully as its 
weight vector w = (wi,1, wi,2,…,wi,n). A hidden neuron i  is computed from 
the inputs 

,( )i i n n
n

h F w x= ∑ (5.1)

where nx  denotes the nth input and ,i nw  denotes the weights between the 

input and hidden layers. 
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The hidden neurons are then used as inputs for the output y

,( )i i n n
n

y G v h= ∑ (5.2)

where ,i nv denotes the weights between the hidden and output layers. The 

activation function F or G is a sigmoid or logistic function which is usually 
differentiable and contributes to stability in neural network learning (Nara-
yanan et al., 2003a). 

Despite the simplicity of neural network, the summation functions can 
be more complex than just the simple sum of the products of inputs and 
their weights. The specific algorithm to combine neural inputs is deter-
mined by the chosen network architecture and hypothesis. 

Training of Feed-Forward Neural Networks 

Once a network has been structured for a problem specification, training of 
the network is the next step to be followed. The training of the network is 
nothing but finding the weights to minimize possible error. The initial 
weights are allocated randomly. Then, the training, or learning, begins. 
The commonly used algorithm for error is defined by 

21
( )

2 i i
i

E t O= −∑
,

(5.3)

where it is the target output and iO is the actual output. The steps used to 

find the weights for minimizing error are: 

• choose the initial weights randomly for a sample input values,  
• compare the actual output value with the target output value,  
• calculate the error, and 
• modify the weights so that the actual output is closer to the target out-

put next time, with smaller error. 

This process is repeated for all samples in the dataset and results, and 
then repeated until the output error for all the samples achieves an accept-
able low value, which indicates the end point of the training. Once the 
training is finished, testing can be done using the rest of the data set, not 
used during the training phase, to test the trained neural network. If the 
testing is not satisfactory, further modification of the weights has to be 
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done. Otherwise, the output value of the tested data is preserved for any 
decision making.  

5.3.2 Neural Network Learning Algorithms 

There are many different types of neural networks. Based on the type of 
learning, they can be categorized into supervised and unsupervised neural 
networks. 

Supervised Learning Neural Networks 

Most neural networks are trained with supervised training algorithms. This 
means that the desired output must be provided for each input used in the 
training. In other words, both the inputs and the outputs are already known. 
In supervised training, a network processes the inputs and compares its ac-
tual outputs against the expected outputs. Errors are then propagated back 
through the network, and the weights that control the network are changed. 
This process is repeated until the errors are minimized. This means that the 
same dataset is processed many times while the weights between the layers 
of the network are being refined during the training of the network. Figure 
5.7 demonstrate the architecture for a supervised neural network that in-
cludes three layers, namely, input layer, output layer and, a hidden layer in 
the middle. 

Support vector machines (SVMs) are considered supervised computer 
learning methods. Since the support vector machine (SVM) is well known 
as a training algorithm for learning classification from data, SVMs, as one 
of the major supervised neural networks, are widely used for the applica-
tions of classification and pattern recognition problems in bioinformatics 
(Vapnik, 1995, and Cristianini and Shawe-Taylor, 2000). 

The theory of SVMs can be applied to the clustering of yeast microarray 
expression data. When the misclassification rates of SVMs are compared 
with those of other machine learning approaches, SVMs are found to be 
the best performing methods (Brown et al., 2000). In addition to their use 
for evaluating microarray expression data, SVMs have been shown to per-
form well in multiple areas of biological analysis, including detecting re-
mote protein homologies (Jaakkola, 1999) and recognizing translation ini-
tiation sites. SVMs can also be used to analyze expression data (Furey et 
al., 2000). Gene expression data is usually high dimensional data that con-
stitutes a serious problem in several machine learning methods. Dimen-
sionality reduction can be used, but it leads often to information loss and 
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performance degradation. Fortunately, SVMs can overcome this problem 
as they can generalize high dimensional data well (Valentini, 2002). 

xn

x2 

x1 

expected 
output 

input 
data

error backpropagation

change weights

Fig. 5.7. A sample structure of supervised neural network 

Unsupervised Learning Neural Networks 

The learning algorithm used in unsupervised neural networks is an unsu-
pervised learning algorithm. In unsupervised training, the network is pro-
vided only with inputs, while the expected output is unknown. The neural 
network must itself choose features to group the input data without being 
trained (Agatonovic-Kustrin and Beresford, 2000). Once an unsupervised 
neural network has been trained, it must be tested to show that the network 
really represents the data; the data is expected to be well represented in 
clusters. 

A self-organizing network known as self-organizing map (SOM), or 
Kohonen network, is the most common algorithm used in unsupervised 
neural networks (Kohonen, 1982). It is different from the supervised learn-
ing described earlier. The neighborhood of a neuron is used to find and 
group the data that has the similarity. The grouped neurons are arranged in 
a matrix pattern called a map. Every input neuron is connected to other 
neurons in this map. Finally, these neurons form the output of the neural 
network, as shown Fig. 5.8. 
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The SOM consists of an input layer and a competitive output layer. The 
output layer is normally organized into a two-dimensional grid of fully 
connected neurons, as illustrated in Fig. 5.8. The input vectors are fed into 
input layer and mapped with competitive neurons in the output layer. The 
competition learning algorithm in the output layer ensures that similar in-
put vectors are mapped with competitive neurons that are closer to each 
other in the grid than dissimilar ones. In SOM, input vectors in high di-
mensional space are, therefore, projected on to two-dimensional output 
space based on their spatial similarities. Similar input patterns are clustered 
into one small region in the grid of the output layer. 

Fig. 5.8. Self-organizing map (adapted from Narayanan et al., 2003a) 

The SOM is widely used as a data mining and visualization method in 
bioinformatics. It is a more robust and accurate method for the clustering 
of large amounts of noisy data than hierarchical clustering methods are for 
analyzing the gene expression data. In the analysis of the Stanford yeast 
gene expression dataset using SOMs, the best performance of gene expres-
sion analysis was the result of combining clustering and visualization 
methods (Torkkola et al., 2001). SOMs, can be used to reduce the amount 
of data through clustering, and to construct a nonlinear projection of the 
data onto a low dimensional display simultaneously. Therefore, SOMs can 
be used to combine aspects of gene analysis, namely, clustering and visu-
alization. 

Nevertheless, this approach presents several problems (Fritzke, 1994). 
They are as follows: 

• As the SOM is a topology-preserving neural network, the number of 
clusters is randomly fixed from the beginning. Therefore, the clustering 
obtained is not proportionate.  

• The lack of a tree structure makes it impossible to detect higher order 
relationships between clusters. 
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The hierarchical clustering and the SOM can be combined to surmount 
the problems faced by these methods in analysing the gene expression pro-
files and the gene expression data from DNA array experiments (Herrero 
et al., 2001, and Dopazo and Carazo, 1997).  

The advantages of SOTA are as follows: 

• the clustering obtained is proportional to the heterogeneity of the data  
• the binary topology produces a nested structure in which nodes at each 

level are averages of the items below them. 

An alternative way to avoid the problems is to use Fuzzy Kohonen Neu-
ral Networks that combines a Kohonen network and a fuzzy c-means algo-
rithm to keep the advantages and overcome the shortcomings of both tech-
niques (Granzow et al., 2001). 

The advantages of the SOM can be attributed to its ability to map high 
dimensional data onto more comprehensible lower dimensional space and 
to its fast execution. It is potentially very useful for dealing with high di-
mensionality and large-scale databases to extract information from gene 
expression data. However, the effectiveness of its combining with database 
queries warrants further investigation. SOM also has limitations, namely, 
1) no convergence guarantee and 2) the nondeterministic results that de-
pend on learning rates. 

5.3.3 Neural Network Applications in Bioinformatics 

Neural networks have been widely used in biology since the early 1980s 
(Brusic and Zeleznikow, 1999). They can be used to 

• predict the translation initiation sites in DNA sequences (Stormo et al., 
1982).  

• explain the theory of neural networks using applications in biology 
(Baldi and Brunak, 1998).  

• predict immunologically interesting peptides by) combining an evolu-
tionary algorithm (Brusic et al. 1998a) 

• study human TAP transporter (Brusic et al., 1998b).  
• carry out pattern classification and signal processing successfully in bio-

informatics; in fact, a large number of applications of neural network 
can be found in this area 

• perform protein sequence classification; neural networks are applied to 
protein sequence classification by extracting features from protein data 
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and using them in combination with the Bayesian neural network (BNN) 
(Wu et al., 1993, 1995, 1997, 2000). 

• predict protein secondary structure prediction (Qian and Sejnowski, 
1988).  

• analyze the gene expression patterns as an alternative to hierarchical 
clusters (Toronen, Kolehmainen, et al., 1999; Wang, Ma, et al., 2000; 
Bicciato, Pandin, et al., 2001; and Torkkola, Gardner, et al., 2001); gene 
expression can even be analyzed using a single layer neural network 
(Narayanan, Keedwell, et al., 2003b). 

In summary, a neural network is presented with a pattern on its input 
nodes, and the network produces an output pattern based on its learning al-
gorithm during the training phase. Once trained, the neural network can be 
applied to classify new input patterns. This makes neural networks suitable 
for the analysis of gene expression patterns, prediction of protein structure, 
and other related processes in bioinformatics.. 

5.4 Genetic Algorithm 

The genetic algorithm is an artificial system based on biological evolution-
ary mechanisms (Holland, 1975). A modern biological evolutionary theory 
came into existence by incorporating genetics and population biology the-
ory into the classical evolution theory of Charles Darwin (Darwin, 1859). 
It can be defined as the inheritable changes, via genetic materials in a 
population of chromosomes, from one generation to the next generation. 
The main goal of evolution is to produce a population of chromosomes 
with increasing fitness. The fitness is a quantitative measure of the success 
of a chromosome in survival and reproduction. The main processes of 
natural evolution are reproduction of some chromosomes within a popula-
tion, mutation in the DNA sequence within a gene or chromosome of an 
organism to create a new character not found in the parental type, and 
competition and fitness selection to limit expanding populations of differ-
ent species in finite space. 

The recombination (or crossover) first occurs during reproduction, re-
sulting in the combination of genes from parents to form a new chromo-
some. The new chromosome, which consists of genes or blocks of DNA, 
can be mutated. The mutation can be caused, for example, by errors in 
copying genes from parents. These errors change the gene’s position (or 
locus) in the chromosome, and this change is called genetic variation. But 
one might question which parents should be chosen to form a new chro-
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mosome. Naturally, parental chromosomes are selected to produce new 
chromosome according to the fitness of the genotypes. A chromosome 
with higher fitness has a higher chance than other chromosomes of being 
selected to reproduce. Natural evolution is a gradual, continuous, and 
never ending process. 

The biological evolutionary theory inspired computer scientists to de-
velop an intelligent system that is capable of imitating the principles of 
natural evolution.  

An automatic mechanism to adapt and learn is desirable for producing 
good solutions. This is the starting point of a genetic algorithm. 

The genetic algorithm is a search algorithm that operates on pieces of 
information. It is similar to a natural evolutionary process that operates on 
the information stored in genes. In the genetic algorithm, chromosomes are 
represented as binary strings; these strings are modified in the same way 
that populations of chromosomes evolve in nature. The population of 
strings improves its fitness over interactions, and after a number of genera-
tions the population finally evolves to the best solution for a given prob-
lem. In each generation, all strings are evaluated by a fitness function for 
their performance. Based on these evaluations, a new population of strings, 
with well adapted effectiveness, is formed by using genetic operators such 
as selection, crossover, and mutation. 

Fig. 5.9. The illustration showing how crossover and mutation operators work 

The selection operator selects the as many survival chromosomes as 
possible from a given population based on their fitness values. The aim of 
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the selection is to increase the occurrence of fitter chromosomes in the 
population over subsequent generations. There exist a wide number of se-
lection techniques (Forrest, 1985; Goldberg and Deb, 1991; and Grefen-
stette and Baker, 1989); however, a detailed discussion on the selection 
techniques is beyond the scope of this book. Further reading can be found 
in any genetic algorithm book. 

The crossover operator breaks and then swaps some parts of two paren-
tal chromosomes. The mutation operator represents a mechanism through 
which a randomly chosen gene (or several genes) is (are) changed to some 
other gene. The mutation introduces diversity to the population and guar-
antees that the population is not trapped at a local maximum. Figure 5.9 
shows a typical case of crossover and mutation operators.  

As mentioned before, the genetic algorithm simulates the process of 
natural evolution. Analogies between the two can be found in Table 5.3. 

Table 5.3. A comparison of the genetic algorithm and the natural evolutionary 
mechanism 

Natural evolution Genetic algorithm 

Environment Given problem 

Chromosome Binary string 

Fitness of phenotype (probability of 
survival) 

Fitness function 

Locus A position on the string 

Selection, recombination, crossover, 
and mutation  

Genetic operators 

A population of chromosomes that suits 
to the environment 

The optimal solutions to a given 
problem 

The genetic algorithm is a simple computational model compared to the 
natural mechanism; however, complex and interesting structures have been 
developed using genetic algorithms. Most genetic algorithms consist of the 
following steps (Coley, 1999; Ghanea-Hercock, 2003; and Goldberg, 
1989): 

Step 1 (a) Encode the problem variables as a chromosome, representing 
    a fixed-length binary string.
(b) Choose a population size, N. 
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(c) Define a fitness function to measure the probability that a 
chromosome will be selected as a parent chromosome to fur-
ther generate new chromosomes. 

Step 2 Randomly generate a population of chromosomes of size, N.
Step 3 Test each chromosome in the population with the fitness func-

tion. 
Step 4 Perform the following sub-steps until termination condition such 

as specified best fitness values, is satisfied. 
(a) Select a pair of chromosomes from the population with the 

higher fitness value as parent chromosomes for reproduction. 
(b) Apply the genetic operators to selected parent chromosomes 

to create a pair of offspring chromosomes. 
(c) Allow the offspring chromosomes and their parents to form 

the new population. 
(d) Replace the current chromosome population with the new 

population. 
(e) Calculate the fitness value of each chromosome of the new 

population. 
Step 5 Output the optimal solutions to a given problem as the fittest 

chromosomes. 

Genetic algorithms have a number of advantages. 

• A genetic algorithm is a parallel search, that is, in each generation sev-
eral solutions are checked at once. It generates optimized and robust so-
lutions via powerful operators; for example, bad solutions are filtered 
out by selection, and local optimal solutions can be avoided by muta-
tion.  

• A genetic algorithm can provide good solutions even if very little in-
formation about the problem is provided. As a result, genetic algorithms 
are widely used in classification and optimization. 

However there are limitations with the genetic algorithm. 

• Encoding a given problem in a suitable representation (for example, bit 
string) is difficult and often changes the nature of the problem being in-
vestigated. Natural evolution does not always produce a good solution. 
Nor does a genetic algorithm. It frequently converges to a local opti-
mum.  

• A genetic algorithm involves several parameters, such as representation, 
population size, and fitness function. In practice, it is difficult to define 
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or create these parameters due to the lack of guidelines for choosing 
them.  

It is expected that new developments in genetic algorithms may over-
come the limitations. 

Fig. 5.10. The layout of the SAGA algorithm (Notredame and Higgins, 1996) 

The genetic algorithm has been successfully applied for solving many 
practical problems in many disciplines, in particular, in bioinformatics. 
Genetic algorithms have been used to solve multiple sequence alignment 
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problems. One well known approach is SAGA (Ohno-Machado et al., 
2002). SAGA randomly creates an initial population of alignments and 
evolves them in a quasi-evolutionary manner. Through each generation, 
the fitness of the population is gradually improved. The authors show that 
SAGA outperforms the most common solution of the multiple alignment 
problem that uses progressive approach (Barton and Sternberg, 1987; Feng 
and Doolitle, 1987; and Thompson et al., 1994). The layout of the SAGA 
algorithm is shown in Fig. 5.10. The first generation initially creates a ran-
dom population (G0) consisting of a set of alignments. The subsequent 
generations are derived from better parents, as measured by multiple 
alignment quality. When creating children, genetic operators are involved 
in selecting the better parents, in mixing the contents, and in modifying a 
single parent. These steps are repeated iteratively to increase the fitness of 
the population until no more improvement can be made. 

In addition to SAGA, there are a few approaches (Chellapilla and Fogel, 
1999; Isokawa et al., 1996; Nguyen et al., 2002; Wayama et al., 1995; and 
Zhang and Wong, 1997) that have applied genetic algorithms to multiple 
sequence alignment. 

Genetic algorithms have been commonly applied to a set of RNA se-
quences to find common RNA secondary structures (Benedetti and Mo-
rosetti, 1995; Chen et al., 2000; Gultyaev et al., 1995; Shapiro and 
Navetta, 1994; Shapiro et al., 2001; and Wu and Shapiro, 1999). The early 
proposed methods can deal only with a single RNA sequence, while the 
latest improved methods can be used to determine RNA structures in RNA 
sequences. 

The trend to use pure genetic algorithms to analyze gene expression data 
has diminished. The new techniques tend to combine genetic algorithm 
with other computational methods, such as the K-nearest Neighbor Method 
(Li et al., 2001) and the neural network (Keedwell and Narayanan, 2003), 
to solve gene expression problems. They are called neural-genetic hybrid 
methods. Keedwell and Narayanan use a genetic algorithm to select a set 
of genes for classification and use a neural network to determine the fit-
ness of the genes.  

The steps that are to be followed in neural-genetic hybrid methods can 
be seen in Fig. 5.11. Preprocessing, to convert each attribute in the dataset 
into binary field, is the first step. Then, the genetic algorithm initializes a 
random population of chromosomes. The population becomes the input to 
the neural network. The network is trained till the desired output (mini-
mum error) is produced. The error from each chromosome acts as a fitness 
function to determine mutation, crossover, and selection for the next gen-
eration of chromosomes. The generation creation process is iterated until 
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the maximum number of generations is satisfied, that is, until the correct 
classification of genes is finally discovered. 

Fig. 5.11. The visual layout of neural-genetic algorithm (adapted from Keedwell 
and Narayanan, 2003) 

5.5 Fuzzy System 

A fuzzy system is an expert system that uses a collection of fuzzy mem-
bership functions and rules, instead of Boolean logic, to reason about data. 
It provides a rich meaningful addition to classical logic. The basic con-
cepts of a fuzzy system include fuzzy logic and fuzzy set theory. In order 
to understand a fuzzy expert system, related terminologies and theories are 
first explained. 

A characteristic of human mind is its ability to reason about vague and 
ambiguous terms. For example, today may feel hot because the tempera-
ture is more than 33°C. If the temperature tomorrow is 31°C, human 
senses can immediately interpret it as moderately hot. However, a com-
puter with conventional logic cannot replicate that statement. The reason is 
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that in conventional logic a statement is either true or false, and not multi-
valued or partially true or false. 

There have been attempts to emulate the way human senses work with 
computers so that they are able to respond like human. This is the starting 
point of fuzzy logic. Fuzzy logic is a superset of conventional logic. It can 
describe partial truth or uncertainty. In fuzzy logic, a true statement can 
range from completely true through half truth to completely false. In other 
words, it is possible that a statement is 0.75 true, or not completely true. 
The multivalued logic has been widely studied since the last century, but 
the most significant breakthrough was the theory of fuzzy sets proposed by 
Lotfi Zadeh. Based on fuzzy sets, fuzzy logic can be defined as a set of 
mathematical principles for knowledge representation based on degree of 
membership rather than on crisp membership. 

A crisp set is a set in classical logic where elements either belong or do 
not belong to the set, whereas a fuzzy set is a set in fuzzy logic where 
members have a degree of membership or degree of truth that ranges from 
0 to 1. Let us consider Table 5.4 to make things clear. 

Table 5.4. Crisp and fuzzy membership 

  Degree of membership of “Hot day” 

Day Temperature, º C Crisp Fuzzy 

1 5 0.0 0.0 

2 10 0.0 0.0 

3 25 0.0 0.1 

4 27 0.0 0.3 

5 29 0.0 0.5 

6 30 0.0 0.8 

7 33 1.0 1.0 

8 35 1.0 1.0 

9 40 1.0 1.0 

In crisp set theory, days 1 through 9 fall into only two groups (hot and 
not hot), depending on their temperatures (°C). If the temperature is less 
than 33°C, the day is considered not hot. Unlike crisp set theory, fuzzy set 
theory classifies its members (days) by regarding the degree of truth (hot-
ness). Therefore, there are more than two groups of days. It is a cold day if 
the temperature is less than or equal 10°C and it is hot day if the tempera-
ture is equal to or more than 33°C. For example, days 1 and 2 are hot with 



 5 Machine Learning in Bioinformatics     143 

0 degree of truth; days 3 through 6 are hot with 0.10, 0.30, 0.50, and 0.80 
degrees of through respectively; and days 7 through 9 are considered hot 
day with 1 degree of truth. The question is how to find the degree of mem-
bership. 

In classical set theory, the degree of membership can be calculated by a 
characteristic function. For example, the crisp set “Hot day” can be defined 
as 

( )


 ≥

=
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etemperaturif
etemperaturf dayHot 0

331
(5.4)

The function ( )etemperaturf dayHot  maps each temperature value onto 0 

or 1. In a fuzzy set, the mapping function, called membership function, 
maps each temperature value onto the real interval [0, 1]. In the “Hot day” 
case, the membership function can be defined as 
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In a manner similar to that of producing crisp and fuzzy sets of “Hot day”, 
crisp and fuzzy sets of “Fine day” and “Cold day”, and their degrees of 
membership, can be obtained as shown in Table 5.5. 

Table 5.5. Crisp and fuzzy set temperatures, with members Cold, Fine, and Hot 

  Degree of membership 
  Crisp Fuzzy 

Day Temperature °C Cold Fine Hot Cold Fine Hot 
1 5 1.0 0.0 0.0 1.0 0.0 0.0 
2 10 1.0 0.0 0.0 1.0 0.0 0.0 
3 25 0.0 1.0 0.0 0.8 0.8 0.1 
4 27 0.0 1.0 0.0 0.5 1.0 0.3 
5 29 0.0 1.0 0.0 0.3 1.0 0.5 
6 30 0.0 1.0 0.0 0.1 0.8 0.8 
7 33 0.0 0.0 1.0 0.0 0.0 1.0 
8 35 0.0 0.0 1.0 0.0 0.0 1.0 
9 40 0.0 0.0 1.0 0.0 0.0 1.0 

The characteristic and membership functions that describe how to trans-
late from temperature in value to temperature in words, and vice versa, are 
shown in Fig. 5.12. 
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Fig. 5.12. Characteristic and membership functions of Cold, Fine, and Hot day 

Another important concept of fuzzy set theory is the linguistic variable. 
It is used to construct the fuzzy rules. For example, “Temperature” is 
called a linguistic variable, and “hot”, “fine”, and “cold” are called linguis-
tic values. A simple fuzzy rule can be represented in the following way: 

IF  x is A  THEN  y is B (5.6)

where x and y represent linguistic variables and A and B are linguistic val-
ues. One can use operations, including EQUAL, COMPLEMENT (NOT), 
CONTAINMENT, UNION (OR), and INTERSECTION (AND), to con-
struct a more complex fuzzy rule such as: 

IF (x is A) AND (y is B) AND (…) OR NOT (…) THEN z is Z

IF x is A THEN (y is B) AND (…) AND z is Z
(5.7)
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where x, y, and z are variables and A, B, and Z are values. The IF part of 
the rule is called the rule antecedent and the THEN part of the rule is 
called the rule consequent. If the antecedent part is true with a degree of 
membership, then consequent part is also true with the same degree. The 
outputs of fuzzy sets are aggregated into a single. Then the single output is 
transformed to a single output number. Many researchers have proposed 
techniques (Mamdani and Assilian, 1975) that facilitate the whole process 
from the beginning to the end. The most significant technique is fuzzy in-
ference. Fuzzy inference is a tool used to evaluate a knowledge base. It 
takes a given input and fires an output by using the theory of fuzzy sets. 
Generally, it consists of four steps: fuzzification of the input variables, rule 
evaluation, aggregation of the rule outputs, and defuzzification, as shown 
in Fig. 5.13. 

The development of the fuzzy expert system (FES) is an iterative proc-
ess. A typical process involves the following four steps: 

• determine problem input and output variables and their ranges,  
• define fuzzy sets and construct fuzzy rules,  
• perform fuzzy inference process, and  
• evaluate and tune the system. 

The basic structure of a fuzzy system can be seen in Fig. 5.14. It con-
sists of four basic components: a fuzzifier, an inference engine, a defuzzi-
fier, and a knowledge base. More details of these components are beyond 
the scope of this chapter; however, they can be found in general artificial 
intelligence or soft computing books (Kruse et al., 1994). 

Fuzzy systems have been successfully applied to several areas in prac-
tice. In bioinformatics, fuzzy systems play an important role for building 
knowledge-based systems. Most systems involve fuzzy logic-based and 
fuzzy rule-based models. They can control and analyze processes and di-
agnose and make decisions in biomedical sciences (Adriaenssens et al., 
2004; Boegl et al., 2004; Saritas et al., 2003; Sarkar and Leong, 2003; 
Schneider et al., 2003; Seker et al., 2003; and Virant-Klun and Virant, 
1999).  

A fuzzy expert system for the diagnosis of prostate cancer (Saritas et al., 
2003), has been explained in detail. The authors use prostate-specific anti-
gen (PSA), age, and prostate volume (PV) as input parameters, and pros-
tate cancer risk as output. The input values are converted to the linguistic 
variables, with degree of truth. This conversion is done by the membership 
function. Then, 80 rules are formed. The output of each rule has a degree 
of truth, obtained from fuzzy operation (MIN and MAX). Finally, the 
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fuzzy outputs are converted into real output values. Figure 5.15 shows the 
overview of the FES system and its components. 

Fig. 5.13. The general steps of fuzzy inference 

Fig. 5.14. The basic components of fuzzy expert system 

In addition, fuzzy logic has been recently applied to analyze (Woolf and 
Wang, 2000) and to classify (Ohno-Machado et al., 2002) gene expression 
data. The fuzzy logic-based classifier gives results similar to those of other 
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classifiers, but are much simpler and easier to interpret (Ohno-Machado et 
al., 2002). Fuzzy logic accounts for noisy data from a large number of bio-
logical patterns. 

Fig. 5.15. The structure of the fuzzy expert system (FES) for diagnosis of prostate 
cancer (adapted from Saritas et al., 2003) 
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