
1

Introduction

This text looks at computer organization and architecture from a strictly
conceptual point of view. It is primarily concerned with ways and means of
organizing computations, emphasizing the relationship between algorithmic
problem specifications and the very basic mechanisms and runtime struc-
tures necessary to transform these specifications step by step into problem
solutions. We will completely abstract both from concrete programming lan-
guages, whether imperative or functional, and from concrete machine archi-
tectures, their instruction sets, data formats, addressing modes, register sets,
etc., and nothing will be said about their hardware implementation either.
Only in the last chapter will a brief overview of two representative real ma-
chine architectures be given to show how they relate to the various abstract
machines we are going to talk about.

These abstract machines form what may be considered common interfaces
that may be shared by real computing machines featuring widely varying
architectures. They are derived from basic theoretical concepts of computer
science that are invariant against actual trends of doing things. These concepts
were originally developed in response to the fundamental question of what
can be effectively computed in principle and of what the basic mechanisms
for having these computations performed by machinery are.

Computability became a subject of intensive research between 1930 and
1940, interestingly enough, some time before the first computers as we know
them today came into being. It led to various mathematical models, devel-
oped more or less independently, that capture in a nutshell the essence of
performing computations mechanically. These models include Post’s produc-
tion systems, Markov algorithms, Kleene’s recursive functions, Schoenfinkel’s
and Curry’s combinators, Church’s λ-calculus and the Turing machine, all of
which are equivalent with respect to provable propositions about what can
and what cannot be accomplished with algorithmic approaches to problem
solving. Though more than 60 years old by now, these models are lasting and
stable foundations of computer science.



2 1 Introduction

The preferred model for studying computability is the Turing machine,
since, on a very elementary level, it closely mimics the workings of computers.
The machine consists of a tape that holds sequences of characters from some
finite alphabet (including blanks) and a primitive processor that can be moved
back and forth along the tape. It also includes controls that may assume
one of finitely many states. The machine goes repeatedly through a cycle
of transforming current states and characters read from the tape into next
states and characters written on the tape, and of moving the processor by one
character position to the left or right. Disregarding efficiency, this primitive
apparatus is capable of computing solutions for all problems that can be
specified algorithmically. It is a simple model of what is doable in principle
by any existing or yet to be invented computing machine.

However, the controls that need to be ‘wired’ into the processor to do
the jobs at hand bear hardly any resemblance to algorithms as they may
be specified in some high-level language. Programming the Turing machine
is primarily concerned with organizing computations as sequences of elemen-
tary character manipulations, using the very basic mechanisms of substituting
one thing (a character) by another one and of moving along the tape to the
positions where substitutions have to take place. Though these two mecha-
nisms realize the most important operations of computing, more important
than adding numbers, the level of granularity is simply too fine to relate the
workings of the Turing machine in an easily comprehensible way to the com-
putational steps specified by high-level algorithms.

The computational model that bridges the gap between high-level algorith-
mic specifications and the machines that are capable of executing them is the
λ-calculus. It strongly influences today’s programming paradigms, the basic
operating principles of computing machines, the runtime environments that
need to be built up during program execution, and to some extent also the
design of compilers that translate high-level algorithms into machine codes.

The λ-calculus is a theory of computable functions. It talks about elemen-
tary properties of operators and operands, about the application of operators
to operands and about the role of variables in this game. In its simplest
and purest form, the λ-calculus knows only three syntactical figures for the
construction of computable expressions – variables, abstractions (of variables
from expressions) and applications (of operator to operand expressions) – and
a single rule for transforming λ-expressions into other λ-expressions. This β-
reduction rule, which specifies the substitution of variables by λ-expressions,
tells the whole story about computing, and it does so in a more appropriate
setting than the simple character substitutions of the Turing machine.

In this text, we will therefore take the λ-calculus as the starting point for
a tour through various abstract computing machines. This tour leads from
complete realizations of the λ-calculus to restricted forms of it that can typi-
cally be found in implementations of functional and imperative languages. The
idea is to follow what is commonly known as a language-directed approach
toward architecting computing machines that emphasizes the basic mecha-



1 Introduction 3

nisms and runtime structures necessary to perform algorithmically specified
computations, rather than the handling of bits, bytes, addresses, etc. on the
register-transfer structure of concrete hardware machinery.

In this text we will proceed as follows.
Chapter 2 discusses rather informally some essentials of designing and

executing algorithms. They include the concepts of variables and of (recursive)
abstractions, the termination problem, symbolic computations, and operations
on structured data. The chapter also gives an overview of types and type
systems. The purpose of the chapter is to highlight some issues that require a
more formal treatment in subsequent chapters, since they play an important
role in designing abstract machines.

Chapter 3 introduces an expression-oriented algorithmic language al that
will be used as a reference language throughout the text. Its semantics is
defined by an abstract evaluator that prescribes how and in what order the
value of an expression may be computed from the values of its subexpressions.
The chapter identifies some problems related to the chosen evaluation strategy
and also to the freedom provided by the al syntax for designing algorithms.

To fully understand the implications of these problems requires a close
look at the underlying theory, which is given in Chap. 4 on the λ-calculus.
It begins with a precise definition of the binding status of variables and of
the β-reduction rule that governs the substitution of variables by expressions,
including the orderly resolution of potential naming conflicts. The unbinding
mechanism used to this effect leads to a nameless Λ-calculus that represents
binding structures by means of indices that considerably facilitate the imple-
mentation of the β-reduction rule.

The chapter also discusses reduction strategies such as applicative (ope-
rands-first) versus normal (operands-when-needed) order, confluence, termi-
nation with full normal forms (which are the ultimate goals of reducing λ-
expressions), and with intermediate head normal forms and weak (head) nor-
mal forms. It also addresses recursions in the λ-calculus, outlines how the pure
λ-calculus may be extended by primitive arithmetic, logic and relational op-
erations on numbers, Boolean values and character strings and by operations
on simple structured data, and formalizes what has been said about typing in
Chap. 2.

This brief excursion into the λ-calculus covers everything that needs to
be known to understand the abstract machines described in the following
chapters.

In Chap. 5, we begin with a very simple abstract machine that inter-
prets expressions of the pure λ-calculus. This machine, which supports both
applicative- and normal-order reduction, is derived from Landin’s original
secd machine. It is a weakly normalizing machine, meaning that it imple-
ments a naive form of β-reduction that does not penetrate abstractions. An
important concept realized by this machine is that of delayed substitutions
using an environment. Closely related to this concept are closures that pair
abstractions with the environments in which they may have to be evaluated



4 1 Introduction

later on. Delayed substitutions, environments and closures are the key ingre-
dients of efficient computations that are shared by several of the abstract
machines discussed in subsequent chapters.

The chapter also includes brief descriptions of two other weakly normaliz-
ing abstract machines, the K-machine and the categorial abstract machine.

Chapter 6 describes two interesting approaches to fully normalizing ma-
chines that employ environment-based β-reductions.

The λσ-calculus introduces environments through the notion of explicit
substitutions, as an extension of the nameless Λ-calculus. These substitutions
are manipulated by a set of σ-rules that in fact define a weakly normalizing
abstract machine. Continuing beyond weak normal forms requires a special
beta-rule that pushes substitutions under abstractions, whereupon weak nor-
malization may be resumed in abstraction bodies. Repeated weak normaliza-
tions followed by applications of this beta-rule lead to head normal forms, and
applying this head normalization to all subexpressions of head normal forms
produces full normal forms.

The other approach treats environments as an integral part of the Λ-
calculus itself. It is based on the systematic transformation of Λ-expressions
from head forms to head normal forms by so-called β-reductions in the lar-
ge, governed by a head-order reduction regime. This is basically a process
that recursively distributes largest possible chunks of consecutive β-redices
over the components of head forms, thus in fact creating environments for
binding indices that occur in head positions. These indices either select from
the environments other expressions with which the process continues in their
place or, if they reach beyond the environments, terminate with head normal
forms.

Fully normalizing λ-calculus machines that realize both concepts are de-
scribed in the following four chapters.

Chapter 7 takes the abstract head-order reducer one step closer toward
a real machine. It uses graph reduction techniques based on the substitution
and rearrangement of pointers, rather than of the (sub)expressions or the
environments they represent, which permits a great deal of sharing of the
evaluation of subexpressions among several pointer occurrences. It is the key
to achieving significantly better runtime efficiency as compared with direct
interpretation.

In Chap. 8, this graph reducer is turned into a code-executing abstract
machine. As an interesting feature that follows from head-order reduction,
this machine supports two instruction streams, of which one executes in a
forward direction to dynamically generate the other stream which executes in
a backward direction. Both codes in cooperation produce the code-equivalent
of fully normalized expressions eventually, if they exist.

The G-machine introduced in Chap. 9 is another code-executing abstract
machine, specifically designed for the implementation of functional languages
with lazy semantics. It is weakly normalizing, permitting the computation of
ground terms (or basic values) only, which is more or less a consequence of



1 Introduction 5

compiling functions to static code. This goes hand in hand with the conversion,
prior to compilation, of nested function definitions into flat sets of closed
abstractions, also referred to as supercombinators, that rule out reductions
under abstractions. Supercombinator compilation yields fairly efficient codes
whose runtime environments can be accommodated in single, coherent stack
frames.

The idea put forth by the λσ-calculus leads to another abstract machine
concept, presented in Chap. 10. It employs compiled graph reduction similar
to that of the G-machine for weak normalization and turns control over to a
special η-extension mechanism that prepares weak normal forms for further
code-controlled reductions under abstractions. The cycle of code execution and
η-extensions is repeated until the expressions are fully normalized. This π–
red machinery comes in two variants, of which one realizes a lazy (operands-
when-needed) and the other a strict (operands-first) semantics. Again, nested
function definitions are closed prior to compilation to code, but this is done in
a less rigorous way than in the G-machine to avoid some of the redundancies
of supercombinator reductions.

The complete machinery is made to appear to the user as a system
that performs high-level transformations of λ-expressions governed by full
β-reductions. These transformations may, under interactive control, be car-
ried out step by step, and intermediate expressions may be displayed to the
user in high-level notation for inspection or modification.

Chapter 11 introduces the concept of pattern matching – an operation
that extracts (sub)structures from given structural contexts and substitutes
them for placeholders in other (structural) contexts. Pattern matching may be
effectively employed to quickly prototype, on a meta-language level, compilers
and language interpreters (abstract machines), or to implement term rewrite
systems and essential parts of theorem provers. The chapter also describes how
pattern matching can be implemented on the lazy variant of the machinery
described in Chap. 10.

Chapter 12 returns to a weakly normalizing, code-executing functional ma-
chine that is more or less a direct descendant of the original secd machine. In
contrast to the G-machine, it implements an applicative-order (or operands-
first) regime and also abandons the concept of supercombinator reduction. In-
stead, it works with open abstractions, closures and runtime structures similar
to those used in the machines of Chaps. 7 and 8. This machine is a perfect
target for the compilation of al, and also for such functional languages as
Standard ml and scheme that feature an applicative-order semantics.

There is only a relatively small step, though one with considerable conse-
quences, from this secd i machine to the code-executing abstract machines for
imperative languages that are described in Chap. 13. The essence of executing
imperative programs is to effect sequences of incremental changes (updates)
on selected entries of the runtime environment. This concept is reflected in
assignments to variables that represent values held in the runtime environ-
ment but are not values themselves, and in abstractions called procedures



6 1 Introduction

that change their calling environments. Since the semantics of imperative lan-
guages demands that procedures be applied to full sets of arguments, there is
no need to support closures. As a consequence, the runtime environment can
be operated as a stack of activation records for procedure calls. Languages
that support nested procedure definitions, such as pascal, need to have the
activation records linked up in compliance with these nestings. Languages
that support only flat procedure definitions, such as C, have the complete en-
vironments accommodated in coherent activation records that are stacked up
in the order in which they are called but otherwise are completely unrelated
to each other, i.e., there are no links, which simplifies implementation and
enhances runtime efficiency.

The last chapter gives an overview of two representative architectures of
real computing machines. Conceptually, they look very much the same as the
abstract machines of Chap. 13. The differences that matter from a machine
language (assembler) programmer’s point of view relate basically to the re-
sources visible at this level that must be accounted for in ways that go beyond
what can be expressed by abstract machine code. The finiteness of physical
resources (specifically of register sets), certain bandwidth limitations and to
some extent also the mechanics of instruction execution call for a well-balanced
compromise between what is conceptually needed to support procedure calls
and the instruction sets, data formats and memory-addressing modes that
should (or can) actually be implemented.

One of the machines described in the chapter features a CISC (complex
instruction set) architecture very similar to that of the MC680x0 family. Its
instruction set and, specifically, its addressing modes are fairly high level, tai-
lored to the needs of languages that support open procedures that may be
nested inside each other, with variable occurrences bound nonlocally in sur-
rounding contexts. It calls for memory-resident runtime environments (stacks)
that have their activation records statically linked according to nesting levels.

The other machine belongs to the SPARC family, which has a RISC (re-
duced instruction set) architecture. Its most interesting feature is a register
file that is partitioned into several windows that accommodate the activation
records of procedure calls. The windows partially overlap, so that the registers
used by a calling procedure to pass parameters are shared with the called pro-
cedure. The important point is that only the window of the procedure call that
is active is visible at any time; all other windows are inaccessible, and there
can be no links to them either, meaning that all the variable instantiations of
a procedure call must be packed into a single window.

This approach is clearly derived from the programming language C, which
knows only flat procedure definitions. Except for references to global vari-
ables, these definitions are closed and thus are perfect candidates for direct
compilation to code that makes efficient use of the windows.

The text is augmented by two appendices whose contents are somewhat pe-
ripheral to the main topic. The first one deals with input/output in expression-
oriented languages. It briefly discusses such concepts as interactions with an



1 Introduction 7

external state via streams or environment passing, continuations, and monad-
style specifications of interactions. The second appendix addresses theorem
proving. It describes, largely by means of a simple example, the basics of a
proof process and its al implementation, which uses pattern matching as in-
troduced in Chap. 11 and normalization of λ-terms to implement the proof
rules.

The material included in this text has been used in various ways by the
author to teach graduate courses on abstract computing machines. The ob-
jective of these courses was to familiarize students with the basic principles
of organizing mechanized computations as they are derived from theory. This
was thought to be more relevant with regard to understanding the architec-
tures and the workings of computers than talking about the manipulation of
bits and bytes in actual hardware machinery. The text is structured roughly
as presented in class, though not every subject could be addressed in as much
detail. The contents of some of the chapters more or less build on top of other
chapters. At the end of each chapter is a summary of its contents.

The diagram below depicts some alternative sequences in which the chap-
ters may be read. Following the thick arrows should give a coherent picture of
either weakly or fully normalizing machines. The dashed arrows depict links
between descriptions of either kind of machine and also connect to chapters
that may be skipped.1

�

�

�

��

�

�

�

�

� �

�

�
�

�

�

�

�

�

�

�

algorithms

algorith.
language

λ-calculus

se(m)cd

machines

machines
λ-calc.

reduction

graph

B-machine
the

G-machine
the

π–red

machine

a funct.

machines

imperat.

machines
real

matching
pattern

2

3

4

5

6

7

8

9

10

12

13

14

11

The hard core of the text is contained in Chap. 4 on the λ-calculus, specif-
ically in Sect. 4.4 on the nameless Λ-calculus, which is heavily used later on,
1 The appendices are not included in this diagram.



8 1 Introduction

and in Chaps. 5 and 6 on the basics of weakly and fully normalizing λ-calculus
machines. The (graph) reduction machines of Chaps. 7 and 8 can hardly be
understood without having read Sect. 6.4 on head-order reductions; the π–
red machines of Chap. 10 follow the basic idea of the λσ-calculus outlined in
Sect. 6.3; and the machines of Chaps. 9, 12, 13 and also those of Chap. 14,
which are weakly normalizing, are descendents of and inherit essential features
from the se(m)cd machines of Chap. 5.

The introductory Chaps. 2 and 3 may be left aside by readers who are fa-
miliar with algorithms and their evaluation. The chapter on pattern matching
may be skipped unless one wishes to read the appendix on theorem proving.
The appendix on input/output assumes knowledge of the λ-calculus only; it
may therefore be read anywhere after Chap. 4.

Owing to the abstract nature of the subject, the text contains many for-
mal specifications relating to the workings of the various machines and to
compilation of high-level algorithms to abstract machine code. These sections
are marked ∗ or ∗∗ in their headings to indicate that they are moderately or
very difficult to read. However, whenever deemed necessary, the formal appa-
ratus, mainly sets of state transition rules or sets of compilation rules, is also
explained verbally to facilitate understanding.

The text does not explicitly include any exercises, but offers an ample
number of challenging problems for homework assignments or for a comple-
mentary lab course in which some of the abstract machines and compilers
may be rapidly prototyped. This can be conveniently done using the pattern-
matching facilities of functional or function-based languages such as haskell,
clean, Standard ml, or KiR – a language developed by the author’s group
that has been extensively used for this purpose. Compilers or interpreters for
these languages are readily available on the Internet and may be downloaded
free of charge from

• www.haskell.org/ghc/download.html (for haskell),
• www.cs.kun.nl/∼clean/Download/main/main/htm (for clean),
• www.smlnj.org/software.html (for Standard ml),
• www.informatik.uni-kiel.de/∼base (for KiR).

Prototyping could begin with the fairly simple machines of Chap. 5, the ab-
stract λσ-machine or the hor machine specified in Chap. 6. Most suitable
for a small termproject would be prototyping the more difficult G-machine of
Chap. 9, the strict version of the code-executing π–red machines of Chap. 10
(stripped of the η-extension part), and the secd i machine of Chap. 12.

There is also a lot left to do for paper-and-pencil homework assignments.
Besides some exercises in reducing λ-terms, particularly of the nameless Λ-
calculus to get acquainted with the manipulation of binding indices, there are
several opportunities to do formal specifications that have been omitted from
the text, e.g., the state transformation rules for the head-order graph reducer
of Chap. 7 and the instruction sets of the π–red machines. On a simpler
level, the specification of instruction sets could be completed, where missing,



1 Introduction 9

by instructions that implement primitive arithmetic, logic and relational op-
erations, including operations on lists. Compiling small example programs by
hand, using the compilers specified in Chaps. 9, 10, 12 or 13, could provide
other worthwhile exercises.



http://www.springer.com/978-3-540-21146-4




