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Therefore, the Appendix is shown on the next pages.



A. Appendix: Trees and Majorizing Measures

In this appendix we describe different ways to measure the size of a metric
space. Some of these ways played an important part in the development of the
theory. We will show that they are all equivalent to the functional v (T, d). It
is possible to consider more general notions corresponding to other functionals
considered in the book, but for simplicity we consider only the case of 7,.

A tree T of a metric space (T',d) is a finite collection of subsets of T with
the following two properties.

Given A,Bin T, if ANB # (), then either AC Borelse BCA. (A.l)

T has a largest element . (A.2)
IfA, BeT and B C A, B# A, we say that B is a child of A if

CeT,BCCCA=>C=BorC=A4A. (A.3)

We denote by ¢(A) the number of children of A. We will consider only trees
with the following property

If AeT and ¢(A) =0, then A contains exactly one point . (A4)

A separated tree is a tree T such that to each A in T with ¢(4) > 1 is
associated an integer s(A) € Z with the following properties.

If B; and B, are children of A, then d(Bj,By) > 4754 (A.5)

If Bis a child of A, then s(B) > s(A) . (A.6)

Here of course d(Bi,Bs) = inf{d(z1,22), 1 € By, 22 € By}. We then
define
Sr={teT; {t}eT}

and the depth of T,

Here and below we make the convention that the summation does not
include the term A = {t} (for which ¢(A4) = 0). We view d(7) as a “measure
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of the size” of the separated tree 7. We can then measure the size of T' by
sup{d(T); T separated tree}.

The notion of tree we just considered is but one of many possible. Let us
now consider another (more restrictive) notion. An organized tree is a tree T
such that to each A € T with ¢(4) > 1 are associated j = j(A) € Z,t € T
and t1,---,tca) € B(t,477) with the properties that

1< <l <c(A) = d(ty,te) > 4771

and that each ball B(t;,4=772) contains exactly one child of A.
If B; and B are children of A, then

d(By,By) > 477142 (A7)

so that an organized tree is also a separated tree (with s(A4) = j(A) + 2),
but the notion of organized tree is more restrictive. (For example we have no
control of the diameter of the children of A in a separated tree.)

We define the depth d'(T) of an organized tree by

"T) = i —i(4)
d(T) tle%fT tEAZET4 v1oge(A) .

If we simply view T as a separated tree using (A.7), then d(7) = d'(7)/16
(where d(T) is the depth of T as a separated tree). Thus we have shown the
following.

Proposition A.1. We have

sup{d'(T) ; T organized tree} < 16 sup{d(7T) ; T separated tree} . (A.8)
Proposition A.2. We have
v2(T,d) < Lsup{d'(T); T organized tree} . (A.9)
Proof. We consider the functional
Fo(A) = F(A) =sup{d(T); T C A, T organized tree},

where we write 7 C A as a shorthand for “VB € T, B C A”. In the course
of the proof of Theorem 1.3.1 we have noted that this theorem holds true
as soon as (1.31) holds true when a is of the type r=7~!. We check this
condition when r =4, #(n) = 2"/?>=2,3 =1, and 7 = 1. Consider n > 0 and
m = N, ;1. Consider j € Z ,t € T and t,---,t,, € B(t,477) with

1<l<l <m=dtety)>4971.

Consider sets H, C B(tg,47972) and ¢ < min<,, F(H,). Consider, for
£ < m atree T, C Hy with d'(7;¢) > ¢ and denote by A, its largest element.
Then it should be obvious that the tree 7 consisting of U = {J,.,, H¢ (its
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largest element) and the reunion of the trees T;, £ < m, is organized (with
j(U) =3, and Ay,---, Ay, as children of U). Moreover ST = J,<,,, S7;-
Consider t € S7, and let £ with ¢t € S7,. Then -

Z 4794 /log ¢(A) = 479 \/logm + Z 477 /log ¢(A)

teAeT teAeT:
479 \/logm +d'(Tg) > 477 /logm + ¢

Since /Togm > 2™/2, this proves (1.31).

To prove (A.9) we apply Lemma 1.3.3. To control the diameter of T, we
simply note that if s, ¢ € T, and j is the largest integer with 4=7 > d(s, ),
then the tree T consisting of T', {t}, {s}, is organized with j = j(T') and
c(T) =2,s0 d'(T) > 479/log 2. a

Proposition A.3. Given a metric space (T, d) we can find on T a probability
measure p, supported by a countable subset of T, and such that

” d < Ly (T, d) A.10
teT/ logu ‘ 2l ( )

A probability measure g on (T,d) such that the left-hand side of (A.10)
is usefully small is called a majorizing measure. The (in)famous theory of
majorizing measures used the infimum of the left-hand side of (A.10) over all
choices of p as a measure of the size of the metric space (T, d).

Proof. Consider an admissible sequence (A,) with

VEET, Y 2V A(An(t)) < 272(T,d) .
n>0

Since card A, < N,, there is a probability measure p on T', supported by
a countable set, and satisfying

1 1
so that given t € T
1
e> A(An(t),d) = u(B(t,0) > 1 (A11)

1
log L < on/2+1
& u(Bte) =

Now, since p is a probability, u(B(t,€)) = 1 for ¢ > A(T,d), and thus
log(1/u(B(t,€)) = 0. Thus
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og —de
n>1 A(A () w(B(t,¢€))
(T,d)

0g
<D 2P A(An (1) < Lya(Td

n>1
using (A.11). O

Proposition A.4. If i is a probability measure on T, (supported by a count-
able set) and T is a separated tree on T, then

) < Lsup/ Mlog
teT B(t,¢))

This completes the proof that the 4 “measures of the size of T” considered
in this appendix are indeed equivalent.

Proof. The basic observation is as follows. The sets
B(C, AW = {z €T; d(z,C) <4771}

are disjoint as C varies over the children of A (as follows from (A.5)). So one
of them has measure < c(A4)7!.

We then proceed in the following manner. We start with the largest ele-
ment Ay of 7. We then select a child A; of Ay with u(B(A;,4~5(40)-1)) <
1/c(Ap), and a child Ay of A; with u(B(As,4-°(A1)=1)) < 1/c(A,), etc., and
continue this construction as long as we can. It ends only when we reach a
set of 7 that has no child, and hence by (A.4) is reduced to a single point ¢.
Ift € A € T, by construction we have

1
B(t,4*WN71)) <
u(B(t, )< o
so that
—s(A)—1
4752 floge(A) < /4 1 4. (A.12)
T Ja-scay-2 IOgM(B(t,e))

By (A.6) the intervals ][4~ 5(4) =2 4-5(A)~1[ are disjoint for different sets A
with t € A € T, so summation of the inequalities (A.12) yields

1
—d(T) < Z 475(=2, flog ¢(A) < / \
16 v logu (t,¢€))



2 Springer
http://www.springer.com/978-3-540-24518-6

The Generic Chaining

Upper and Lower Bounds of Stochastic Processes
Talagrand, M,

2005, VIll, 222 p., Hardcover

ISBEN: 978-3-540-24518-6



