
7.4 Wiles’ Main Theorem and Isomorphism Criteria for
Local Rings

7.4.1 Strategy of the proof of the Main Theorem 7.33

Let us consider again a local O–algebra A with maximal ideal mA, where
O ⊃ Zp denotes (as in section 7.2) the ring of integers of a finite extension
K ⊃ Qp; O is a dicrete valuation ring (DVR), and λ denotes the maximal
ideal of O. We always assume that

A/mA
∼= O/λ = k ⊃ Fp,

and we fix a two-dimensional representation ρ0 : GQ → GL2(k) over the finite
field k, together with sets S and Σ as described above.

Recall that Ribet’s modular Galois representation

ρ̃ = ρf,λ : GQ → GL2(O)

of minimal level N0 given by Theorem 7.30 belongs to the (non–empty) set
DM∅(O). This gives a distinguished element of each of the sets DMΣ(A) ⊂
DAΣ(A). This representation ρ̃ is used in an explicit construction of the mod-
ular universal deformation ring TΣ , see [CSS95].

Surjectivity of the map ϕΣ : RΣ → TΣ (7.3.2) can be easily deduced from the
fact (see 7.32) that the universal deformation rings RΣ and TΣ are topologi-
cally generated by the elements tr(ρuniv

Σ (Frobl)) ∈ RΣ for primes l 
∈ ΣS , see
below §7.4.2.

Injectivity of ϕΣ : RΣ → TΣ was proved by A.Wiles by an induction argument
on Σ. For a prime l not in ΣS , we let Σ′ = Σ ∪ {l}. Wiles deduced the
bijectivity of ϕΣ′ from the bijectivity of ϕΣ using an isomorphism criterion
for local rings. This criterion was formulated in terms of certain invariants
(discovered by Wiles earlier, in spring 1991, see the introduction of his paper
[Wi]). However, in order to start the induction one needed the case Σ = ∅
(the base of induction). This was the point which caused a problem in 1993,
after the announcement of a complete proof of FLT, and which was repaired
in 1994 by A.Wiles and R.Taylor using a horizontal version of Iwasawa theory
together with a second isomorphism criterion for local rings. In this section
we describe these criteria and give explicit constructions (due to H.Lenstra
and B.Mazur) of the universal deformation ring RΣ .

7.4.2 Surjectivity of ϕΣ

In order to prove the surjectivity, we assume the existence of the universal
deformation rings RΣ ,TΣ ∈ CO. Thus for any A ∈ CO we have

DAΣ(A) = HomCO (RΣ , A) ⊃ DMΣ(A) = HomCO (TΣ , A),
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implying the existence of a canonical morphism (7.3.2)

ϕΣ : RΣ → TΣ .

Lemma 7.34. Let A = RΣ (resp. A = TΣ), and denote by A0 subring
of A which is the topological closure of the O-subalgebra in A generated by
all elements tr(ρuniv

Σ (Frobl)) ∈ RΣ (resp. tr(ρuniv.mod.
Σ (Frobl)) ∈ TΣ). Then

A0 = A.

This lemma can be deduced from the following:

Proposition 7.35. Let A0 ⊂ A be two local rings with maximal ideals satis-
fying

mA0 = mA ∩A0

and with the same finite residue field k. Suppose

ρ : G→ GLm(A)

is a representation of a group over A such that

1) ρ = ρ mod mA is absolutely irreducible;
2) trρ(σ) ∈ A0 for all σ ∈ G.

Then ρ is conjugate over A to a representation

ρ0 : G→ GLm(A0)

Proof of Proposition 7.35.
Let B denote the A0-subalgebra in Mm(A) generated by ρ(G). The image

of B in Mm(k) is a central simple algebra over the finite field k. It follows from
the triviality of the Brauer group (see §5.5.5) of the finite fieldk that the image
of B in Mm(k) is the whole of Mm(k). Let e1, · · · , em2 be elements of B whose
reductions modulo mA form the standard basis of Mm(k) = B mod mA. We
shall show that e1, · · · , em2 is a basis for B over A0. By Nakayama’s lemma
elements of B may be expressed in the form:

b =
m2∑

i=1

aiei, with ai ∈ A.

Hence

tr(b · tej) =
m2∑

i=1

aitr(ei · tej), with j = 1, · · · ,m2. (7.4.1)

Let us define

cij = tr(ei
tej) ∈ A⇒ (cij) ≡ Im2 mod mA.

Hence the system (7.4.1) is solvable over the local ring A0. One defines V ⊂
Am to be the submodule generated by the columns of elements in B. Thus V ∼=
(A0)m is free, and we deduce that B ∼→ End(V ) ∼= Mm(A0) by Nakayama’s
lemma.
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7.4.3 Constructions of the universal deformation ring RΣ

We assume that ρ0 is absolutely irreducible.
To prove the existence of RΣ one can either appeal to a general criterion

of Schlessinger (cf. Mazur’s paper in [CSS95]), or instead use a more explicit
method of H.Lenstra (cf. the paper of Bart de Smit and H.W.Lenstra in
[CSS95]).

Consider first a finite group G, and let us define an O-algebra O[G,m]
with generators: {

Xg
ij | i, j = 1, · · ·m; g ∈ G

}
,

and the following relations:

Xe
ij = δij , Xgh

ij =
m∑

l=1

Xg
ilX

h
lj i, j = 1, · · ·m; g, h ∈ G

As these relations mimic the relations satisfied by matrix coefficients of a
representation of G, it follows that for any A ∈ CO there is a canonical iden-
tification

HomO−alg(O[G,m], A) = Hom(G,GLm(A)). (7.4.2)

Substituting A = O/λ = k in the above formula, we obtain a homomorphism
π0 of O–algebras corresponding to ρ0:

HomO−alg(O[G,m], k) = Hom(G,GLm(k))
l∪ l∪
π0 ←− ρ0.

Let m0 = Ker π0; we define the O-algebra RG to be the completion of O[G,m]
with respect to m0:

RG = lim
←−
n

O[G,m]/mn
0 .

Now suppose we have a profinite group:

GΣ = lim
←−

j

Gj .

Then we put
Rj = RGj , RΣ = lim

←−
j

Rj .

It may be verified that

a)

Homρ0(G,GLm(A)) = HomO−alg(RΣ , A). (7.4.3)

b) RΣ is a local Noetherian O-algebra (to show this, one uses a universal
bound for the dimension of the tangent space of Rj , and the absolute
irreducibility of ρ0).
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7.4.4 A sketch of a construction of the universal modular
deformation ring TΣ

Let us again fix a two-dimensional modular representation ρ0 : GQ → GL2(k)
over the finite field k, together with sets S and Σ as above.

We shall consider a slightly different Hecke algebra than in 7.3, Definition
7.24, namely,

T(Σ) = O[Tl, Uq, 〈d〉 | l � NΣ , d ∈ (Z/NZ)×, q ∈ S ∪Σ].

We shall regard T(NΣ) as a subalgebra of EndOS2(NΣ ,O). In the above we
have

NΣ = p
∏

q̃∈S

q̃
∏

l̃∈Σ

l̃2.

Furthermore S2(NΣ ,O) denotes the O–submodule of O[[q]], generated by all
formal q–expansions of the form

∑

n≥1

ip(an)qn ∈ O[[q]],

such that
f =

∑

n≥1

anq
n ∈ S2(NΣ ; Q)

is a cusp form with coefficients an ∈ Q ∪ i−1
p (O).

Let
f̃ = f∅ =

∑

n≥1

ãnq
n

denote Ribet’s modular form of Theorem 7.30, attached to a two-dimensional
modular representation ρ0 : GQ → GL2(k) over the finite field k.

Recall that Ribet’s modular Galois representation

ρ̃ = ρf,λ : GQ → GL2(O)

of minimal level N0 given by Theorem 7.30 belongs to the (non–empty) set
DM∅(O). For any Σ as above, we define

fΣ =
∑

n≥1

ãn(fΣ)qn

by removing from the Mellin transform of f̃ the Euler factors at l̃ ∈ Σ:

L(fΣ , s) =
∑

n≥1

ãn(fΣ)n−s (7.4.4)

=
∏

q̃∈S

(1− ãq̃ q̃
−s)−1

∏

l�NΣ

(1− ãll
−s + l1−2s)−1.
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Now consider the following ideal of the Hecke algebra:

MΣ = (λ, Tl − ãl, Uq̃ − ãq̃, Tl̃)l �∈Σ∪S∪{p}, q̃∈S,l̃∈Σ . (7.4.5)

This ideal is actually prime, since

MΣ = Ker(T(Σ)
πfΣ−→k[[q]]), (7.4.6)

Tl �→ al mod λ,
Uq̃ �→ aq̃ mod λ,
Tl̃ �→ 0

(l 
∈ Σ ∪ S ∪ {p}, q̃ ∈ S, l̃ ∈ Σ),

and the ring k[[q]] is an integral domain.
We define TΣ to be the completion of T(Σ) with respect to the ideal MΣ :

TΣ = lim
←−
n

T(Σ)/Mn
Σ .

One can check that TΣ is a finite flat local Noetherian O-algebra (i.e. it is a
free O-module of finite rank), and one defines an augmentation map TΣ → O
using f̃ .

Theorem 7.36. There exists, up to isomorphism, a unique admissible Galois
representation

ρuniv.mod.
Σ : GQ → GL2(TΣ), (7.4.7)

with the following properties:

tr(ρuniv.mod.
Σ (Frobl)) = Tl, (7.4.8)

det(ρuniv.mod.
Σ (Frobl)) = l(l 
∈ Σ ∪ S ∪ {p}).

The construction by A.Wiles of the universal representation ρuniv.mod.
Σ was

obtained from the Eichler–Shimura Theorem 7.26 by patching together all
the modular deformations of type DΣ . To achieve this he used of the the-
ory of pseudo–representations. The strong absolute irreducibility condition of
theorem 7.28, concerning the restriction

ρ0|G
Q

⎛

⎝

√

(−1)
p−1
2 p

⎞

⎠
,

was essential in this construction.

7.4.5 Universality and the Chebotarev density theorem

Let us recall Theorem 4.22 in the following form:
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Theorem 7.37 (Chebotarev density theorem). Let L/K be a finite ex-
tension of number fields, and let X be a non–empty subset of G(L/K), invari-
ant under conjugation. Denote by PX the set of places v ∈ Σ0

K , unramified
in L, such that the classes of Frobenius elements of these places belong to X:
FL/K(PX) ⊂ X. Then the set PX is infinite and has a density, which is equal
to CardX/Card G(L/K).

Corollary 7.38. The canonical morphism (7.3.2) is compatible with the aug-
mentation maps πRΣ

and πTΣ

ϕΣ : RΣ → TΣ (7.4.9)

In fact, the traces of representations πRΣ
and πTΣ

◦ ϕΣ coincide on the
subset of elements Frobl(l 
∈ ΣS) (which is dense in the group GΣS

). It fol-
lows that the corresponding universal deformations are equivalent, hence they
coincide by their universal property.

7.4.6 Isomorphism Criteria for local rings

To prove that the canonical morphism (7.3.2)

ϕΣ : RΣ → TΣ

of universal deformation rings is an isomorphism (in the category CO), one
argues by induction on Σ. Let Σ′ = Σ∪{l} for some prime l not in ΣS . Wiles
deduced the bijectivity of ϕΣ′ from the bijectivity of ϕΣ using an isomorphism
criterion for local rings. This criterion is formulated in terms of certain invari-
ants, which will be described next. In order to start the induction, one needs
to prove the case Σ = ∅; this is achieved by a second isomorphism criterion
for local rings.

Definition 7.39. A local Noetherian O–algebra A is called a complete inter-
section if:

a) A is a free O–module of finite rank;
b) A ∼= O[[X1, · · · , Xn]]/(f1, · · · , fn).

(cf. [Mats70]).
We shall use the following invariants of a local O–algebra A:

IA = KerπA, ΦA = IA/I
2
A, ηA = πA(AnnIA) ⊂ O (7.4.10)

These are called respectively the kernel of augmentation, the tangent space
and the congruence module.

Example 7.40. a) A = O = Zp, ΦA = IA/I
2
A = {0}
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b) A = Zp[[X,Y ]]/(X(X − p), Y (Y − p)), ΦA = Z/pZ × Z/pZ, ηA = (p2).
The augmentation map in this case is given by

πA(f) = f(0, 0) ∈ Zp, A is a complete intersecton ring.

The ring A is a complete intersection.
c) A = Zp[[X,Y ]]/(X(X − p), Y (Y − p), XY ), ΦA = Z/pZ×Z/pZ, ηA = (p).

The augmentation is given by

πA(f) = f(0, 0) ∈ Zp.

In this case A is not a complete intersection.

Theorem 7.41 (Criterion I). Let ϕ : A → B be a surjective morphism in
the category CO. Then the following are equivalent:

(i) ϕ is an isomorphism of two local complete intersection O–algebras;
(ii) #ΦA ≤ #O/ηB <∞;
(iii) #ΦA = #O/ηB <∞.

Remark 7.42. In the first version of his proof A.Wiles had made the assump-
tion that the ring B is Gorenstein (i.e. B̌ = Hom(B,O) is a free B–module
of rank 1). This restriction was later removed by H.Lenstra.

Corollary 7.43. An O-algebra A ∈ CO is a complete intersection ring if and
only if

#ΦA = #O/ηA <∞.
This is proved by applying Criterion I to the identity map idA : A→ A.

7.4.7 J–structures and the second criterion of isomorphism of
local rings

Let us consider the distinguished ideals

Jm = (ωm(S1), · · · , ωm(Sn)) ⊂ O[[S1, · · · , Sn]],

where

ωm(S1) = (1 + S1)pm

− 1, ωm(Sn) = (1 + Sn)pm

− 1, J0 = (S1, · · · , Sn).

Definition 7.44. Let ϕ : A → B be a surjective morphism in CO. One says
that ϕ admits a J–structure, if there is a family of commutative diagrams,
indexed by m ∈ N:

O[[S1, · · · , Sn]]

σm

O[[T1, · · · , Tn]]
ξm

Am
ϕm

Bm

A
ϕ

B
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with the following properties for each m:

i) ξm is surjective;
ii) ϕm is surjective;
iii)Am/J0Am

∼= A and Bm/J0Bm
∼= B.

iv) Bm/JmBm is a torsion free module of finite rank over the O-algebra
O[[S1, · · · , Sn]]/Jm.

Theorem 7.45 (Criterion II).
Let ϕ : A→ B be a surjective morphism in the category CO.
If ϕ admits a J-structure then ϕ is an isomorphism of two local complete

intersection O–algebras.

Proof of both criteria belong to commutative algebra. We refer therefore
the reader to [CSS95], [Ta-Wi].
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