7.4 Wiles’ Main Theorem and Isomorphism Criteria for
Local Rings

7.4.1 Strategy of the proof of the Main Theorem 7.33

Let us consider again a local O—-algebra A with maximal ideal m,4, where
O D Z, denotes (as in section 7.2) the ring of integers of a finite extension
K D Qp; O is a dicrete valuation ring (DVR), and A denotes the maximal
ideal of O. We always assume that

A/ms=O/N=kDF,,

and we fix a two-dimensional representation pg : Gg — GLa(k) over the finite
field k, together with sets S and X' as described above.
Recall that Ribet’s modular Galois representation

p=prx: Go — GL2(0)

of minimal level Ny given by Theorem 7.30 belongs to the (non—empty) set
DMy(0O). This gives a distinguished element of each of the sets DM (A) C
DAx(A). This representation  is used in an explicit construction of the mod-
ular universal deformation ring T, see [CSS95].

Surjectivity of the map ¢5 : Ry — Ty (7.3.2) can be easily deduced from the
fact (see 7.32) that the universal deformation rings Ry and Ty are topologi-
cally generated by the elements tr(p{2*"*(Frob;)) € Ry for primes | ¢ Y, see
below §7.4.2.

Injectivity of o5 : Ry — Ty was proved by A.Wiles by an induction argument
on X. For a prime ! not in Xg, we let X' = X U {l}. Wiles deduced the
bijectivity of ¢y from the bijectivity of ¢ 5 using an isomorphism criterion
for local rings. This criterion was formulated in terms of certain invariants
(discovered by Wiles earlier, in spring 1991, see the introduction of his paper
[Wi]). However, in order to start the induction one needed the case X = 0)
(the base of induction). This was the point which caused a problem in 1993,
after the announcement of a complete proof of FLT, and which was repaired
in 1994 by A.Wiles and R.Taylor using a horizontal version of Iwasawa theory
together with a second isomorphism criterion for local rings. In this section
we describe these criteria and give explicit constructions (due to H.Lenstra
and B.Mazur) of the universal deformation ring Rx.

7.4.2 Surjectivity of px

In order to prove the surjectivity, we assume the existence of the universal
deformation rings Ry, Ts € Cn. Thus for any A € C» we have

DAZ(A) = HOmGO(RE,A) D) DMZ(A) = HOII]@O (TZ‘,A),
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implying the existence of a canonical morphism (7.3.2)
(Y25 i RE — T2~

Lemma 7.34. Let A = Ry (resp. A = Tx), and denote by A° subring
of A which is the topological closure of the O-subalgebra in A generated by
all elements tr(p¥ (Frob;)) € Ry (resp. tr(p@v-mod-(Froby)) € Ts). Then
AV = A,

This lemma can be deduced from the following:

Proposition 7.35. Let A° C A be two local rings with mazximal ideals satis-
fying
myo =my N A0
and with the same finite residue field k. Suppose
p:G— GL,(4)
is a representation of a group over A such that

1) p=pmod my is absolutely irreducible;
2) trp(c) € A° for allo € G.

Then p is conjugate over A to a representation

po G — GLm(AO)

Proof of Proposition 7.35.

Let B denote the A%-subalgebra in M,,(A) generated by p(G). The image
of B in M,, (k) is a central simple algebra over the finite field k. It follows from
the triviality of the Brauer group (see §5.5.5) of the finite fieldk that the image
of B in My, (k) is the whole of M,,(k). Let e1,- - , e,z be elements of B whose
reductions modulo m,4 form the standard basis of M,, (k) = B mod m4. We
shall show that ej,--- , e, is a basis for B over A°. By Nakayama’s lemma
elements of B may be expressed in the form:

m2

b= Zaiei, with a; € A.
i=1

Hence
r(b-e;) Za itr(e , with j =1,--- ,m?. (7.4.1)

Let us define
Cij = tr(eitej) € A= (¢;j) =12 mod my.

Hence the system (7.4.1) is solvable over the local ring A°. One defines V' C
A™ to be the submodule generated by the columns of elements in B. Thus V' &2
(A%Y™ is free, and we deduce that B = End(V) = M,,(A%) by Nakayama’s
lemma.
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7.4.3 Constructions of the universal deformation ring Ry

We assume that pg is absolutely irreducible.

To prove the existence of Ry one can either appeal to a general criterion
of Schlessinger (cf. Mazur’s paper in [CSS95]), or instead use a more explicit
method of H.Lenstra (cf. the paper of Bart de Smit and H.W.Lenstra in
[CSS95]).

Consider first a finite group G, and let us define an O-algebra O[G, m|
with generators:

{ij | 4,5 = 1,~--m;g€G},
and the following relations:

m

e h .o
X5 =0y, XJ; ZX XZJ ,j=1,---m;g,h € G

As these relations mimic the relations satisfied by matrix coefficients of a
representation of G, it follows that for any A € Cp there is a canonical iden-
tification

Homo—aig (O[G, m], A) = Hom(G, GLy, (A)). (7.4.2)

Substituting A = O/A = k in the above formula, we obtain a homomorphism
mo of O—algebras corresponding to py:

Homp_q14(O|G,m], k) = Hom(G, GL,,(k))
W w
To — Po-
Let mg = Ker m; we define the O-algebra R¢ to be the completion of O[G, m)|
with respect to mg:

Rg = 1lim O[G, m]/mg.

n

Now suppose we have a profinite group:

Gz‘ = ILIII Gj.
J

Then we put
RJ - RGja RZ = 141_111R]
It may be verified that
a)
Hom,,, (G, GL,,(A)) = Homo_q4(Rx, A). (7.4.3)

b) Ry is a local Noetherian O-algebra (to show this, one uses a universal
bound for the dimension of the tangent space of R;, and the absolute
irreducibility of po).
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7.4.4 A sketch of a construction of the universal modular
deformation ring Tx

Let us again fix a two-dimensional modular representation pg : Gg — GL2(k)
over the finite field k, together with sets S and X' as above.

We shall consider a slightly different Hecke algebra than in 7.3, Definition
7.24, namely,

T(X) = O[T}, Ug, (d) | L{ Ny, d € (Z/NZ)*,q € SU X].
We shall regard T(Nx) as a subalgebra of EndpSa2(Ny, ©O). In the above we
have ~
No=p[[a]] ™
i€s Jex
Furthermore S3(Nyx, Q) denotes the O—submodule of O[[¢]], generated by all
formal g—expansions of the form

Z ip(“?b)qn € O[[Q]L

n>1

such that o
f=Y ang" € S2(Ng; Q)

n>1
is a cusp form with coefficients a,, € Q Ui, *(O).
Let ~
F=f=) anq"
'nzl

denote Ribet’s modular form of Theorem 7.30, attached to a two-dimensional
modular representation pg : Gg — GLa(k) over the finite field k.
Recall that Ribet’s modular Galois representation

p=psx:Gg — GL2(O)

of minimal level Ny given by Theorem 7.30 belongs to the (non—empty) set
DMgy(0O). For any X as above, we define

fo =) an(f2)q"

’nz 1
by removing from the Mellin transform of f the Euler factors at [ € X

L(fs,s) =Y an(fs)n* (7.4.4)

’nzl

= H(l —agq*)7! H (1 —al=% + 1172571,

Gges N
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Now consider the following ideal of the Hecke algebra:
Mg =T - a, Ug — &évTZ)zgzuSu{p}, ges,lex- (7.4.5)

This ideal is actually prime, since

My = Ker(T(2) 2 k[[q]), (7.4.6)
Ty — a; mod A,
U — ag mod A,
7 —0
(g XxuSu{p},geS,ieX),

and the ring k[[¢]] is an integral domain.
We define T's; to be the completion of T(X) with respect to the ideal Myx:

Ty = lim T(Z) /M.

n

One can check that Ty is a finite flat local Noetherian O-algebra (i.e. it is a
free O-module of finite rank), and one defines an augmentation map Ty, — O

using f .

Theorem 7.36. There exists, up to isomorphism, a unique admissible Galois
representation

piivmod s Gy — GLa(Tx), (7.4.7)
with the following properties:

tr(pirv-mod-(Froby)) = T, (7.4.8)
det(privmod: (Froby)) = 1(1 ¢ XU S U {p}).

The construction by A.Wiles of the universal representation p'iv-mod- was

obtained from the Eichler—Shimura Theorem 7.26 by patching together all
the modular deformations of type Dy. To achieve this he used of the the-
ory of pseudo-representations. The strong absolute irreducibility condition of
theorem 7.28, concerning the restriction

£o | G =1\’
Q (V (-1) 2 p)
was essential in this construction.

7.4.5 Universality and the Chebotarev density theorem

Let us recall Theorem 4.22 in the following form:
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Theorem 7.37 (Chebotarev density theorem). Let L/K be a finite ex-
tension of number fields, and let X be a non—empty subset of G(L/K), invari-
ant under conjugation. Denote by Px the set of places v € X%, unramified
in L, such that the classes of Frobenius elements of these places belong to X :
Fr/x(Px) C X. Then the set Px is infinite and has a density, which is equal
to Card X/Card G(L/K).

Corollary 7.38. The canonical morphism (7.3.2) is compatible with the aug-
mentation maps TRy, and Ty

¢y : Ry — Ty (7.4.9)

In fact, the traces of representations mg, and 7r, o ¢x coincide on the
subset of elements Frob;(I ¢ Xg) (which is dense in the group Gyx). It fol-
lows that the corresponding universal deformations are equivalent, hence they
coincide by their universal property.

7.4.6 Isomorphism Criteria for local rings
To prove that the canonical morphism (7.3.2)
(Y25 S RZ - Tg

of universal deformation rings is an isomorphism (in the category Cp), one
argues by induction on X. Let X/ = X' U{i} for some prime [ not in Xg. Wiles
deduced the bijectivity of ¢ 5 from the bijectivity of ¢ using an isomorphism
criterion for local rings. This criterion is formulated in terms of certain invari-
ants, which will be described next. In order to start the induction, one needs
to prove the case X = (J; this is achieved by a second isomorphism criterion
for local rings.

Definition 7.39. A local Noetherian O—algebra A is called a complete inter-
section if:

a) A is a free O-module of finite rank;
b) A= O[[le T >XTLH/(f17 e 7fn)

(cf. [Mats70]).
We shall use the following invariants of a local O—algebra A:

Iy =Kermg, &4 =14/I5, na=ma(Annly) C O (7.4.10)

These are called respectively the kernel of augmentation, the tangent space
and the congruence module.

Ezample 7.40. a) A= 0 =2Z,, P4 = 14/15 = {0}
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b) A = Z,[[X,Y]]/(X(X = p),Y(Y —p)), Pa = Z/pZ x L/pL, na = (p*).
The augmentation map in this case is given by

ma(f) = f(0,0) € Z,, Ais a complete intersecton ring.

The ring A is a complete intersection.
) A=Z,[[X,Y]]/(X(X —p),Y(Y —p),XY), P4 = Z/pL X Z/DPZL, na = (p)-
The augmentation is given by
ma(f) = f(0,0) € Zy.
In this case A is not a complete intersection.

Theorem 7.41 (Criterion I). Let ¢ : A — B be a surjective morphism in
the category Co. Then the following are equivalent:

(i) @ is an isomorphism of two local complete intersection O—algebras;
(ii) #Ps < #O/np < c0;
(iii) #P 4 = #0/np < oc.

Remark 7.42. In the first version of his pI:OOf A.Wiles had made the assump-
tion that the ring B is Gorenstein (i.e. B = Hom(B, Q) is a free B-module
of rank 1). This restriction was later removed by H.Lenstra.

Corollary 7.43. An O-algebra A € Cp is a complete intersection ring if and
only if
#Pa = #0/na < co.

This is proved by applying Criterion I to the identity map ids : A — A.
7.4.7 J—structures and the second criterion of isomorphism of
local rings
Let us consider the distinguished ideals

I = (@Wm(51), -+, wm(Sn)) € O[[S1, -+, Sull,
where
W (S1) = (145" =1, wmn(Sw)=1+8)"" =1, Jo=(S1,-+,5).

Definition 7.44. Let p : A — B be a surjective morphism in Co. One says
that ¢ admits a J—structure, if there is a family of commutative diagrams,
indexed by m € N:

O[[Slv l ' 7571”
oIt T —" A, — "~ B,
A ‘ B
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with the following properties for each m:

i) &m is surjective;

i) ©m 1s surjective;

iii) A/ JoAm =2 A and B,/ JoBm = B.

iv) By /JmBm is a torsion free module of finite rank over the O-algebra

Theorem 7.45 (Criterion II).

Let o : A — B be a surjective morphism in the category Co.

If ¢ admits a J-structure then ¢ is an isomorphism of two local complete
intersection O—algebras.

Proof of both criteria belong to commutative algebra. We refer therefore
the reader to [CSS95], [Ta-Wi].
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