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Introduction

1.1 Objectives of Analyzing Multiple Time Series

In making choices between alternative courses of action, decision makers at
all structural levels often need predictions of economic variables. If time series
observations are available for a variable of interest and the data from the
past contain information about the future developiment of a variable, it is
plausible to use as forecast some function of the data collected in the past. For
instance. in forecasting the monthly unemployment rate, from past experience
a forecaster may know that in some country or region a high unemployment
rate in one month tends to be followed by a high rate in the next month.
In other words. the rate changes ouly gradually. Assuming that the tendency
prevails in future periods, forecasts can be based on current and past data.

Formally, this approach to forecasting may be expressed as follows. Let y,
denote the value of the variable of interest in period t. Then a forecast for
period T + h, made at the end of period T', may have the form

Yren = FUT YT-15--2)s (1.1.1)

where f(-) denotes some suitable function of the past observations yr. yr-1.
.... For the moment it is left open how many past observations enter into
the forecast. One major goal of univariate time series analysis is to specify
sensible forms of functions f(-). In many applications, linear functions have
been used so that. for example.

Yren =V +aiyr +a2yr—1+ - .

In dealing with economic variables. often the value of one variable is not
only related to its predecessors in time but, in addition, it depends on past
values of other variables. For instance, household consumption expenditures
may depend on variables such as income, interest rates, and investment ex-
penditures. If all these variables are related to the consumption expenditures
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it makes sense to use their possible additional information content in forecast-
ing consumption expenditures. In other words, denoting the related variables
by yit.Yot, - - .. Yk, the forecast of yy 74y at the end of period T may be of
the form

§1,1'+h = fl(yl.T: Yo, 1. YKL T-1:Y2,7—1 - - YK, T-1- Y1, T2 . - )

Similarly, a forecast for the second variable may be based on past values of
all variables in the system. More generally. a forecast of the k-th variable may
be expressed as

Uk T+h = Fe(UL,Te o YK T UL T4 o YK T—1s- - ) (1.1.2)

Asectof timeseriesyp, k=1,.... K, ¢t =1....,T, is called a multiple time
series and the previous formula expresses the forecast gi. r4n as a function
of a multiple time series. In analogy with the univariate case, it is one ma-
jor objective of multiple time series analysis to determine suitable functions
fi1..... fx that may be used to obtain forecasts with good properties for the
variables of the system.

It is also often of interest to learn about the dynamic interrelationships
between a number of variables. For instance, in a systemn consisting of invest-
ment, income, and consumption one may want to know about the likely impact
of a change in income. What will be the present and future implications of
such an event for consumption and for investment? Under what conditions
can the effect of an increase in income be isolated and traced through the sys-
tem? Alternatively. given a particular subject matter theory, is it consistent
with the relations implied by a multiple time series model which is developed
with the help of statistical tools? These and other questions regarding the
structure of the relationships between the variables involved are occasionally
investigated in the context of multiple time series analysis. Thus, obtaining
insight into the dynamic structure of a system is a further objective of multiple
time scries analysis.

1.2 Some Basics

In the following chapters, we will regard the values that a particular economic
variable has assumed in a specific period as realizations of random variables. A
time series will be assumed to be generated by a stochastic process. Although
the reader is assumed to be familiar with these terms. it may be useful to
briefly review some of the basic definitions and expressions at this point, in
order to make the underlying concepts precise.

Let (£2, F, Pr) be a probability space, where (2 is the set of all elementary
events (sample space), F is a sigma-algebra of events or subsets of 2 and Pr
is a probability measure defined on F. A random variable y is a real valued
function defined on 2 such that for each real number ¢, 4, = {w € 2y(w) <
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¢} € F. In other words. A, is an event for which the probability is defined in
terms of Pr. The function F : R — [0,1], defined by F(c) = Pr(4.). is the
distribution function of y.

A K-dimensional random vector or a K-dimensional vector of random
variables is a function y from (2 into the K-dimensional Euclidean space R,
that is, ¥y maps w € 2 on y(w) = (y1(w)..... Yk (w))’ such that for each
c=(cy..... ck) € RK,

Ac=Hwpiw) <er.... yx(w) <ex} € F.

The function F' : RX — [0,1] defined by F(c) = Pr(A,) is the joint distribution
function of y.

Suppose Z is some index set with at most countably many elements like, for
instance, the set of all integers or all positive integers. A (discrete) stochastic
process is a real valued function

y:Zx2-R

such that for each fixed ¢t € Z, y(t,«) is a random variable. The random
variable corresponding to a fixed t is usually denoted by y; in the following.
The underlying probability space will usually not even be mentioned. In that
case, it is understood that all the members y, of a stochastic process are
defined on the same probability space. Usually the stochastic process will also
be denoted by y; if the meaning of the symbol is clear from the context.

A stochastic process may be described by the joint distribution functions
of all finite subcollections of y;'s, t € § C Z. In practice, the complete system
of distributions will often be unknown. Therefore, in the following chapters. we
will often be concerned with the first and second moments of the distributions.
In other words. we will be concerned with the means E'(y;) = ;. the variances
E[(y — p¢)?] and the covariances E[(ys — p1)(ys — is)]-

A K-dimensional vector stochastic process or multivariate stochastic pro-
cess is a function

y:Zx.Q—»]R{K,

where, for each fixed ¢ € Z, y(t.w) is a K-dimensional random vector. Again
we usually use the symbol y; for the random vector corresponding to a fixed
t € Z. For simplicity, we also often denote the complete process by y;. The par-
ticular meaning of the symbol should be clear from the context. With respect
to the stochastic characteristics the same applies as for univariate processes.
That is, the stochastic characteristics are summarized in the joint distribution
functions of all finite subcollections of random vectors y;. In practice, inter-
est will often focus on the first and second moments of all random variables
involved.

A realization of a (vector) stochastic process is a sequence (of vectors)
ye(w), t € Z, for a fixed w. In other words. a realization of a stochastic process
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is a function Z — R¥ where t — y;(w). A (multiple) time series is regarded
as such a realization or possibly a finite part of such a realization, that is,
it consists. for instance, of values (vectors) y;(w),...,yr(w). The underlying
stochastic process is said to have generated the (multiple) time series or it is
called the generating or generation process of the time series or the data gen-
eration process (DGP). A time series y1(w), ..., yr(w) will usually be denoted
by y1,...,yr or simply by y; just like the underlying stochastic process, if no
confusion is possible. 'The number of observations, T, is called the sample size
or time series length. With this terminology at hand, we may now return to
the problemn of specifying forecast functions.

1.3 Vector Autoregressive Processes

Because linear functions are relatively easy to deal with, it makes sense to
begin with forecasts that are linear functions of past observations. Let us
consider a univariate time series y; and a forecast h = 1 period into the
future. If f(-) in (1.1.1) is a linear function, we have

Ur+1 =v+oyr +oyr_1+ - .

Assuming that only a finite number p. say, of past y values are used in the
prediction formula, we get

Ur+1 =v+ayr + aayr—1+ -+ QpYr_pa1. (1.3.1)

Of course, the true value yr+) will usually not be exactly equal to the forecast
Yr+1- Let us denote the forecast error by up41 := yry1 — Jre1 S0 that

YT4+1 = Yr+1 +ure1 =V +oqyr + -+ apyr_pit + ury. (1.3.2)

Now, assuming that our numbers are realizations of random variables and
that the same data generation law prevails in each period T, (1.3.2) has the
form of an autoregressive process.

Y=V+aijYy_y+- - + Qplt—p + Uy, (]33)

where the quantities y;, y¢—1,. ... ¥i—p. and u; are now random variables. To
actually get an autoregressive (AR) process we assume that the forecast errors
u; for different periods are uncorrelated. that is. u; and u, are uncorrelated
for s # t. In other words, we assume that all useful information in the past
y:'s 1s used in the forecasts so that there are no systematic forecast errors.

If a multiple time series is considered, an obvious extension of (1.3.1) would
be

U T+1 = VH oy, + ok Yo + -+ QrkAYKT
+ ok p, T—pr1 T QR PYUK,T—p41- (1.3.4)
k=1,..., K.
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To simplify the notation. let y; := (y1t,. ... ¥yxe)’s Gt := Y1ty -+, Jrct)’ s v =

Qi1 ... QUK
‘41 =
QK1 - QKK
Then (1.3.4) can be written compactly as
Yr+1 = v+ Aiyr + -+ Apyr_pp- (1.3.5)

If the y,'s are regarded as random vectors. this predictor is just the optimal
forecast obtained from a vector autoregressive model of the form

ye=v+A1y— + -+ Apep + . (1.3.6)

where the u; = (uy¢,...,uk¢) form a sequence of independently identicallv
distributed random K-vectors with zero mean vector.

Obviously such a model represents a tremendous simnplification compared
with the general form (1.1.2). Because of its simple structure. it enjoys great
popularity in applied work. We will study this particular model in the follow-
ing chapters in some detail.

1.4 Outline of the Following Chapters

In Part I of the book, consisting of the next four chapters, we will investigate
some basic properties of stationary vector autoregressive (VAR) processes such
as (1.3.6). Forecasts based on these processes are discussed and it is shown
how VAR processes may be used for analyzing the dynamic structure of a sys-
tem of variables. Throughout Chapter 2, it is assumed that the process under
study is completely known including its coefficient matrices. In practice, for
a given multiple time series. first a model of the DGP has to be specified
and its parameters have to be estimated. Then the adequacy of the model
is checked by various statistical tools and then the estimated model can be
used for forecasting and dynamic or structural analysis. The main steps of
a VAR analysis are presented in Figure 1.1 in a schematic way. Estimation
and model specification are discussed in Chapters 3 and 4, respectively. In the
former chapter the estimation of the VAR coefficients is considered and the
consequences of using estimated rather than known processes for forecasting
and economic analysis are explored. In Chapter 4, the specification and model
checking stages of an analysis are considered. Criteria for determining the or-
der p of a VAR process are given and possibilities for checking the assumptions
underlying a VAR analysis are discussed.

In systems with many variables and/or large VAR order p, the number
of coeflicients is quite substantial. As a result the estimation precision will
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Fig. 1.1. VAR analysis.

be low if estimation is based on time series of the size typically available
in economic applications. In order to improve the estimation precision, it is
useful to place restrictions from nonsample sources on the parameters and
thereby reduce the number of coeflicients to be estimated. In Chapter 5, VAR
processes with parameter constraints and restricted estimation are discussed.
Zero restrictions, nonlinear constraints, and Bayesian estimation are treated.
In Part I. stationary processes are considered which have time invariant
expected values, variances, and covariances. In other words, the first and sec-
ond moments of the random variables do not change over time. In practice
many time series have a trending behavior which is not compatible with such
an assumption. This fact is recognized in Part II, where VAR processes with
stochastic and deterministic trends are considered. Processes with stochastic
trends are often called integrated and if two or more variables are driven by
the same stochastic trend, they are called cointegrated. Cointegrated VAR
processes have quite different properties from stationary ones and this has
to be taken into account in the statistical analysis. The specific estimation.
specification, and model checking procedures are discussed in Chapters 6-8.
The models discussed in Parts I and II are essentially reduced form models
which capture the dynamic properties of the variables and are useful forecast-
ing tools. For structural economic analysis, these models are often insuflicient
because different economic theories may be compatible with the same sta-
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tistical reduced form model. In Chapter 9, it is discussed how to integrate
structural information in stationary and cointegrated VAR models. In many
econometric applications it is assumed that some of the variables are de-
termined outside the system under consideration. In other words, they are
exogenous or unmodelled variables. VAR processes with exogenous variables
are considered in Chapter 10. In the econometrics literature such systems
are often called systems of dynamic simultaneous equations. In the time se-
ries literature they are sometimes referred to as multivariate transfer function
models. Together Chapters 9 and 10 constitute Part 111 of this volume.

In Part IV of the book, it is recognized that an upper bound p for the VAR
order is often not known with certainty. In such a case, one may not want
to impose any upper bound and allow for an infinite VAR order. There are
two ways to make the estimation problem for the potentially infinite number
of parameters tractable. First, it may be assumed that they depend on a
finite set of parameters. This assumption leads to vector autoregressive moving
average (VARMA) processes. Some properties of these processes, parameter
estimation and model specification are discussed in Chapters 11-13 for the
stationary case and in Chapter 14 for cointegrated systems. In the second
approach for dealing with infinite order VAR processes. it is assumed that
finite order VAR processes are fitted and that the VAR order goes to infinity
with the sample size. This approach and its consequences for the estimators.
forecasts, and structural analysis are discussed in Chapter 15 for both the
stationary and the cointegrated cases.

In Part V. some special models and issues for multiple time series are
studied. In Chapter 16, models for conditionally heteroskedastic serics are
considered and, in particular, multivariate generalized autoregressive condi-
tionally heteroskedastic (MGARCH) processes are presented and analyzed.
In Chapter 17. VAR processes with time varying coeflicients are considered.
The coefficient variability may be due to a one-time intervention from out-
side the system or it may result from seasonal variation. Finally, in Chapter
18, so-called state space models are introduced. The models represent a very
general class which encompasses most of the models previously discussed and
includes in addition VAR models with stochastically varying coefficients. A
brief review of these and other important models for multiple time series is
given. The Kalman filter is presented as an important tool for dealing with
state space models.

The reader is assumed to be familiar with vectors and matrices. The rules
used in the text are summarized in Appendix A. Some results on the multivari-
ate normal and related distributions are listed in Appendix B and stochastic
convergence and some asymptotic distribution theory are reviewed in Ap-
pendix C. In Appendix D. a brief outline is given of the use of simulation
techniques in evaluating properties of estimators and test statistics. Although
it is not necessary for the reader to be familiar with all the particular rules and
propositions listed in the appendices, it is implicitly assumed in the following
chapters that the reader has knowledge of the basic terms and results.
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Finite Order Vector Autoregressive Processes
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In the four chapters of this part. finite order, stationary vector autoregres-
sive (VAR) processes and their uses are discussed. Chapter 2 is dedicated to
processes with known coefficients. Some of their basic properties are derived,
their use for prediction and analysis purposes is considered. Unconstrained
estimation is discussed in Chapter 3, model specification and checking the
model adequacy are treated in Chapter 4, and estimation with parameter
restrictions is the subject of Chapter 5.
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