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Introduction

To doubt everything or to believe everything –

these are two equally easy solutions,

because both of them relieve us of the necessity of thinking.

Jules Henri Poincaré

1.1 What Is Randomness and Does There Exist

True Randomness?

The notion of “randomness” is one of the most fundamental and most dis-
cussed terms in science. Following the definition used in dictionaries, an event
is considered to be random when it happens unpredictably. An object is called
random, when it is created without any plan. The fundamental question is
whether randomness really exists, or whether we use this term only to model
objects and events with unknown lawfulness. Philosophers and scientists have
disputed the answer to this question since ancient times. Democritos believed
that

the randomness is the unknown,
and that the nature is determined
in its fundamentals.

Thus, Democritos asserted that order conquers the world and this order is
governed by unambiguous laws. Following Democritos’s opinion, one uses the
notion of “randomness” only in the subjective sense in order to veil one’s
inability to truly understand the nature of events and things. Hence the exis-
tence of the notion of randomness is only a consequence of the incompleteness
of our knowledge. To present his opinion transparently, Democritos liked to
use the following example. Two men agreed on sending their slaves to bring
water at the same time in order to cause the slaves to meet. The slaves really
met at the source and said, “Oh, this is randomness that we have met.”

In contrast to Democritos, Epikurus claimed that

the randomness is objective,
it is the proper nature of events.

Thus, Epikurus claimed that there exists a true randomness that is com-
pletely independent of our knowledge. Epikurus’s opinion was that there exist
processes whose development is ambiguous rather than unambiguous, and an
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unpredictable choice from the existing possibilities is what we call random-
ness.

One could simply say, “Epikurus was right because there are games of
chance, such as rolling dice or roulette, that can have different outcomes,
and the results are determined by chance. Unfortunately, the story is not
so simple, and discussing gambling one gets the support for the opinion of
Democritos rather than for Epikurus’s view on the nature of events. Rolling
dice is a very complex activity, but if one knows the direction, the speed
and the surface on which a die is tossed, then it may be possible to compute
and predict the result. Obviously, the movement of the hand controlled by
the human brain is too complex to allow us to estimate the values of all
important parameters. But we may not consider the process of rolling a die as
an objectively random process only because it is too complex for us to predict
the outcome. The same is true of roulette and other games of chance. Physics
also often uses random models to describe and analyze physical processes
that are not inherently or necessarily random (and are sometimes clearly
deterministic), but which are too complex to have a realistic possibility of
modeling them in a fully deterministic way. It is interesting to note that based
on this observation even Albert Einstein accepted the notion of randomness
only in relation to an incomplete knowledge, and strongly believed in the
existence of clear, deterministic laws for all processes in nature.1

Before the 20th century, the world view of people was based on causal-
ity and determinism. The reasons for that were, first, religion, which did not
accept the existence of randomness in a world created by God2, and, later,
the optimism created by the success of natural sciences and mechanical en-
gineering in the 19th century, which gave people hope that everything could
be discovered, and everything discovered could be explained by deterministic
causalities of cause and resulting effect.3

This belief in determinism also had emotional roots, because people con-
nected randomness (and even identified it) with chaos, uncertainty, and un-
predictability, which were always related to fear; and so the possibility of
random events was not accepted. To express the strongly negative connota-
tion of randomness in the past, one can consider the following quotation of
Marcus Aurelius:

There are only two possibilities,
either a big chaos conquers the world,
or order and law.

1“God does not roll dice” is a famous quotation of Albert Einstein. The equally
famous reply of Niels Bohr is, “The true God does not allow anybody to prescribe
what He has to do.”

2Today we know that this strong interpretation is wrong and that the existence
of true randomness does not contradict the existence of God.

3Take away the cause, and the effect must cease.
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Because randomness was undesirable, it may not be surprising that philoso-
phers and researchers performed their investigations without allowing the ex-
istence of random events in their concepts or even tried to prove the nonexis-
tence of randomness by focusing on deterministic causalities. Randomness was
in a similarly poor situation with Galileo Galilei, who claimed that the earth
is not a fixed center of the whole universe. Though he was able to prove his
claim by experimental observations, he did not have any chance to convince
people about it because they were very afraid of such a reality. Life in the
medieval world was very hard, and so people clung desperately to the very
few assurances they had. And the central position of the earth in the universe
supported the belief that the poor man is at the center of God’s attention.
The terrible fear of losing this assurance was the main reason for the situa-
tion, with nobody willing to verify the observations of Galileo Galilei. And
the “poor” randomness had the same trouble gaining acceptance4.

Finally, scientific discoveries in the 20th century (especially in physics and
biology) returned the world to Epikurus’s view on randomness. The mathe-
matical models of evolutionary biology show that random mutations of DNA
have to be considered a crucial instrument of evolution. The essential reason
for accepting the existence of randomness was one of the deepest discoveries
in the history of science: the theory of quantum mechanics. The mathemat-
ical model of the behavior of particles is related to ambiguity, which can be
described in terms of random events. All important predictions of this the-
ory were proved experimentally, and so some events in the world of particles
are considered as truly random events. For accepting randomness (or random
events) it was very important to overcome the restricted interpretation of ran-
domness, identifying it with chaos and uncertainty. A very elegant, modern
view on randomness is given by the Hungarian mathematician Alfréd Rényi:

Randomness and order do not contradict each other;
more or less both may be true at once.
The randomness controls the world
and due to this in the world there are order and law,
which can be expressed in measures of random events
that follow the laws of probability theory.

For us, as computer scientists, it is important to realize that there is also
another reason to deal with randomness than “only” the modeling of natural
processes. Surprisingly, this reason was already formulated 200 years ago by
the great German poet Johann Wolfgang von Goethe as follows:

The tissue of the world
is built from necessities and randomness;
the intellect of men places itself between both

4One does not like to speak about emotions in the so-called exact (hard) sciences,
but this is a denial of the fact that the emotions of researchers (the subjects in the
research) are the aggregates of the development and the progress.
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and can control them;
it considers the necessity
as the reason of its existence;
it knows how randomness can be
managed, controlled, and used...

In this context Johann Wolfgang von Goethe is the first “computer scientist”,
who recognized randomness as a useful source for performing some activi-
ties. The use of randomness as a resource of an unbelievable, phenomenal
efficiency is the topic of this book. We aim to convince the reader that it
can be very profitable to design and implement randomized algorithms and
systems instead of completely deterministic ones. This realization is nothing
other than the acceptance of nature as teacher. It seems to be the case that
nature always uses the most efficient and simplest way to achieve its goal,
and that randomization of a part of the control is an essential concept of
nature’s strategy. Computer science practice confirms this point of view. In
many everyday applications, simple randomized systems and algorithms do
their work efficiently with a high degree of reliability, and we do not know
any deterministic algorithms that would do the same with a comparable effi-
ciency. We even know of examples where the design and use of deterministic
counterparts of some randomized algorithms is beyond physical limits. This
is also the reason why currently one does not relate tractability (practical
solvability) with the efficiency of deterministic algorithms, but with efficient
randomized algorithms.

To convince the reader of the enormous usefulness of randomization, the
next section presents a randomized protocol that solves a concrete commu-
nication task within communication complexity that is substantially smaller
than the complexity of the best possible deterministic protocol.

We close this section by calling attention to the fact that we did not give
a final answer to the question of whether or not true randomness exists, and
it is very improbable that science will be able to answer this question in the
near future. The reason for this pessimism is that the question about the
existence of randomness lies in the very fundamentals of science, i.e., on the
level of axioms, and not on the level of results. And, on the level of axioms
(basic assumptions), even the exact sciences like mathematics and physics
do not have any generally valid assertion, but only assumptions expressed
in the form of axioms. The only reason to believe in axioms is that they
fully correspond to our experience and knowledge. An example of an axiom
of mathematics (viewed as a formal language of science) is that our way of
thinking is correct, and so all our formal arguments are reliable. Starting with
the axioms, one builds the building of science very carefully, in such a way
that all results achieved are true provided the axioms are valid. If an axiom
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is shown to be not generally valid, one has to revise the entire theory built
upon it5.

Here, we allow ourselves to believe in the existence of randomness, and not
only because the experience and knowledge of physics and evolutionary theory
support this belief. For us as computer scientists, the main reason to believe
in randomness is that randomness can be a source of efficiency. Randomness
enables us to reach aims incomparably faster, and it would be very surprising
for us if nature left this great possibility unnoticed.

1.2 Randomness as a Source of Efficiency –

an Exemplary Application

The aim of this section is to show that randomized algorithms can be essen-
tially more efficient than their deterministic counterparts.

Let us consider the following scenario. We have two computers RI and RII

(Figure 1.1) that are very far apart6. At the beginning both have a database
with the same content. In the meantime the contents of these databases dy-
namically developed in such a way that one now tries to perform all changes
simultaneously in both databases with the aim of getting the same database,
with complete information about the database subject (for instance, genome
sequences), in both locations. After some time, we want to check whether this
process is successful, i.e., whether RI and RII contain the same data.

RI RII

communication
x = x1 . . . xn y = y1 . . . yn

Fig. 1.1.

Let n be the size of the database in bits. For instance, n can be approx-
imately n = 1016, which is realistic for biological applications. Our goal is
to design a communication protocol between RI and RII that is able to de-
termine whether the data saved on both computers is the same or not. The
complexity of the communication protocol is the number of bits that have to

5Disproving the general validity of an axiom should not be considered a
“tragedy.” Such events are part of the development of science and they are often
responsible for the greatest discoveries. The results built upon the old, disproved ax-
iom usually need not be rejected; it is sufficient to relativize their validity, because
they are true in frameworks where the old axiom is valid.

6For instance, one in Europe and one in America.
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be exchanged between RI and RII in order to solve this decision problem, and
we obviously try to minimize this complexity.

One can prove that every deterministic communication protocol solving
this task must exchange at least n bits7 between RI and RII, i.e., there exists
no deterministic protocol that solves this task by communicating n−1 or lower
bits. Sending n = 1016 bits and additionally assuring that all arrive safely8 at
the other side is a practically nontrivial task, so one would probably not do
it in this way.

A reasonable solution can be given by the following randomized protocol.
Let x = x1x2 . . . xn ∈ {0, 1}∗, xi ∈ {0, 1} for all i = 1, . . . , n. We denote by

Number(x) =

n∑

i=1

2n−i · xi

the natural number whose binary representation is the string x.

R = (RI, RII) (Randomized Protocol for Equality)

Initial situation: RI has a sequence x of n bits, x = x1 . . . xn, and RII has a
sequence y of n bits y = y1 . . . yn.

Phase 1: RI chooses uniformly9 a prime p from the interval [2, n2] at random.
Phase 2: RI computes the integer

s = Number(x) mod p

and sends the binary representations of s and p to RII.
{Observe that s ≤ p < n2 and so each of these integers can be
represented by

⌈
log2 n2

⌉
bits.}

Phase 3: After reading s and p, RII computes the number

q = Number(y) mod p.

If q 6= s, then RII outputs “x 6= y”.
If q = s, then RII outputs “x = y”.

Now we analyze the work of R = (RI, RII). First, we look at the complexity
measured in the number of communication bits, and then we analyze the
reliability (error probability) of the randomized protocol R = (RI, RII).

The only communication of the protocol involves submitting the binary
representations of the positive integers s and p. As we have already observed,
s ≤ p < n2; hence the length of the message is at most10

7This means that sending all data of RI to RII for the comparison is an optimal
communication strategy.

8without flipping a bit
9This means that every prime from the interval [2, n2] has the same probability

of being chosen.
10Every positive integer m can be represented by dlog2(m + 1)e bits.
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2 · dlog2 n2e ≤ 4 · dlog2 ne.

For n = 1016, the binary length of the message is at most 4·16·dlog2 10e = 256.
This is a very short message that can be safely transferred.

Now we show not only that for most inputs (initial situations) the ran-
domized strategy works, but also show that the probability of providing the
right answer is high for every input. Let us first recognize that the random-
ized protocol may err11. For instance, if x = 01111 and y = 10110, i.e.,
Number(x) = 15 and Number(y) = 22, then the choice of the prime 7 from
the set {2, 3, 5, 7, 11, 13, 17, 19, 23} yields the wrong answer, because

15 mod 7 = 1 = 22 mod 7.

To analyze the error probability for any input (x, y), with x = x1 . . . xn, and
y = y1 . . . yn, we partition the set

PRIM
(
n2
)

= {p is a prime | p ≤ n2}

into two subsets (Figure 1.2). The first subset contains the bad primes, where
a prime p is bad for (x, y) if the random choice of p results in the wrong
output of the protocol R. The second subset of PRIM

(
n2
)

is the complemen-
tary subset to the subset of bad primes and we call the primes in this subset
good for (x, y) because the choice of any of them results in the right answer
for the input (x, y).

bad
primes

for (x, y)

good primes for

the input (x, y)

all primes ≤ n2

Fig. 1.2.

Since every prime in PRIM
(
n2
)

has the same probability of being chosen,
the error probability12 for the input (x, y) is

the number of bad primes for (x, y)

Prim (n2)
,

11In the sense that the randomized protocol outputs “x = y” for different x and
y.

12Here we work with an informal understanding of the notion of probability. The
exact definition of probability and related notions will be presented in the next
chapter, and we will then repeat this argument formally.
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where Prim
(
n2
)

denotes the cardinality of Prim
(
n2
)
. The famous Prime

Number Theorem says that

lim
m→∞

Prim (m)

m/ lnm
= 1,

and we know that
Prim (m) >

m

lnm

for all positive integers m > 67. Hence, we have

Prim
(
n2
)

>
n2

2 lnn

for all n ≥ 9. Our aim is now to show that

for any input (x, y), the number of bad primes for (x, y) is at most
n − 1,

i.e., that the number of primes that are bad for (x, y) is essentially smaller
than n2/2 lnn.

Analyzing the error probability, we distinguish two possibilities with re-
spect to the real relation between x and y.

(i) Let x = y.
Then one has

Number(x) mod p = Number(y) mod p

for all primes p, i.e., these are no bad primes for the input (x, y). Therefore
RII outputs “x = y” with certainty, i.e., the error probability is equal to
0 in this case.

(ii) Let x 6= y.
One gets the wrong answer “x = y” only if RI has chosen a prime p such
that

s = Number(x) mod p = Number(y) mod p.

In other words, p is a bad prime for (x, y) when

Number(x) = x′ · p + s and Number(y) = y′ · p + s

for some nonnegative integers x′ and y′.
A consequence is that

Number(x) − Number(y) = x′ · p − y′ · p = (x′ − y′) · p,

i.e., that

p divides the number |Number(x) − Number(y)|.
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Thus, the protocol R outputs the wrong answer “x = y” only if the chosen
prime p divides the number |Number(x)−Number(y)|. This way, we have
the following new definition of bad primes:

a prime p is bad for (x, y) iff

p divides the number w = |Number(x) − Number(y)|.
Thus, to estimate the error probability, it is sufficient to estimate how
many primes from the Prim

(
n2
)
∼ n2/ lnn2 primes divide the number

w. Since the length of the binary representations of x and y is equal to n,

w = |Number(x) − Number(y)| < 2n.

Obviously13, we can factorize w to get

w = pi1
1 · pi2

2 · . . . · pik

k ,

where p1 < p2 < . . . < pk are primes and i1, i2, . . . , ik are positive integers.
Our aim is to prove that

k ≤ n − 1.

We prove it by contradiction. Assume k ≥ n. Then,

w = pi1
1 · pi2

2 · . . . · pik

k ≥ p1 · p2 · . . . · pn > 1 · 2 · 3 · . . . · n = n! > 2n,

which contradicts the fact that w < 2n. In this way we have proved
that w has at most n − 1 different prime factors. Since every prime in
{2, 3, . . . , n2} has the same probability of being chosen, the probability of
choosing a bad prime p dividing w is at most

n − 1

Prim (n2)
≤ n − 1

n2/ lnn2
≤ lnn2

n

for all n ≥ 9.
Thus the error probability of R for an input (x, y) with x 6= y is at most

lnn2

n
,

which is at most
0.36892 · 10−14

for n = 1016.

An error probability of this size is no real risk, but let us assume that
a pessimist is not satisfied with this error probability and wants to have an
error probability below all physical limits. In such a case one can execute the
work of the protocol R ten times, always with an independent, new choice of
a prime.

13We know from number theory that every positive integer has a unique factor-
ization.
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Protocol R10

Initial situation: RI has n bits x = x1 . . . xn and RII has n bits y = y1 . . . yn.
Phase 1: RI chooses 10 uniformly random primes

p1, p2, . . . , p10

from {2, 3, . . . , n2}.
Phase 2: RI computes

si = Number(x) mod pi

for i = 1, 2, . . . , 10 and sends the binary representations of

p1, p2, . . . , p10, s1, s2, . . . , s10

to RII.
Phase 3: Upon receiving p1, p2, . . . , p10, s1, s2, . . . , s10 RII computes

qi = Number(y) mod pi

for i = 1, 2, . . . , 10.
If there exists an i ∈ {1, 2, . . . , 10} such that qi 6= si, then RII outputs
“x 6= y”.
Else (if qj = sj for all j ∈ {1, 2, . . . , 10}) RII outputs “x = y”.

We observe that the communication complexity of R10 is 10 times larger
than that of R. But, for n = 1016, the message consists of at most 2560 bits,
which is no issue for discussion.

What is the gain with respect to error probability?

If x = y, then we again have the situation that the protocol R10 provides
the right answer “x = y” with certainty, i.e., the error probability is equal to
0.

However, if x 6= y, R10 outputs the wrong answer “x = y” only if all
10 chosen primes belong to the maximal n − 1 bad primes that divide the
difference w = |Number(x)−Number(y)|. Since the 10 bad primes are chosen
in 10 independent experiments, the error probability is at most14

(
n − 1

Prim (n2)

)10

≤
(

lnn2

n

)10

=
210 · (lnn)10

n10
.

For n = 1016, the error probability is smaller than

0.4717 · 10−141.

14Why the probability of independently choosing two bad primes is equal to the
multiplication of the probabilities of choosing a bad prime is carefully explained in
Section 2.3.
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If one takes into account the fact that the number of microseconds since the
Big Bang is a number of 24 digits, and that the number of protons in the
known universe is a number of 79 digits, an event with a probability below
10−141 is a real wonder. Note also that in the case where a deterministic
protocol communication of 1016 bits would be executable, the costs speak
clearly in favor of the implementation of the above randomized protocol.

We can learn a lot from the construction of the protocol R10 that consists
of independent repetitions of R. We see that the error probability of a ran-
domized algorithm A can be substantially pushed down by executing several
independent runs of A. In cases such as the above communication protocol,
even a few repetitions result in an enormous decrease in error probability.

We have observed that using randomization one can gain phenomenally in
the efficiency by paying a very small price in reliability. Here we call atten-
tion to the fact that in practice randomized algorithms with very small error
probability can be even more reliable than their best deterministic counter-
parts. What do we mean by this? Theoretically, all deterministic algorithms
are absolutely correct, and randomized algorithms may err. But the nature of
the story is that deterministic programs are not absolutely reliable because
during their runs on a computer a hardware error may occur and then they
may produce wrong results. Clearly, the probability of the occurrence of a
hardware error grows proportionally with the running time of the program.
Therefore a fast randomized algorithm can be more reliable than a slow de-
terministic algorithm. For instance, if a randomized algorithm computes a
result in 10 seconds with an error probability 10−30, then it is more reliable
than a deterministic algorithm that computes the result in one week. Another
good example is our randomized protocol R for Equality. For n = 1016, the
protocol R has to communicate 256 bits only and the error probability is at
most 0.4 ·10−14. On the other hand, every deterministic protocol has to safely
communicate at least 1016 bits and the probability of flipping some of them
because of a hardware error is essentially larger than the error probability of
R.

1.3 Concept of the Book

The aim of this book is to provide an elementary course on the design and
analysis of efficient randomized algorithms. We focus not on giving an overview
of the deepest contributions to this area, but on a transparent presentation of
the most successful design methods and concepts, and we try to contribute to
understanding why randomized approaches can be essentially more efficient
than their best deterministic counterparts. In this way, we aim to contribute
to capturing formal methods as instruments for problem solving and to de-
veloping a feeling for the computer scientist’s way of thinking.

The only presumed background for reading this textbook is a basic knowl-
edge of introductory courses, such as “programming,” “algorithms and data



12 1 Introduction

structures” and introduction to the “theory of computation.” Thus, we assume
that the reader is familiar with terms such as computing task (or problem),
decision problem, optimization problem, algorithm, and complexity of algo-
rithms. We use the formal definitions of these basic terms, and the same nota-
tion as that presented in our textbook Theoretical Computer Science [Hro03].
From mathematics, we assume some elementary knowledge of combinatorics
and linear algebra. All other concepts and assertions of probability theory,
algebra, and number theory are either presented whenever they are needed or
surveyed in the Appendix.

The book is divided into eight chapters, including this introduction. In
order to support the iterative way of teaching, these chapters are organized
as follows. Every chapter opens with a section “Objectives,” in which the mo-
tivations, teaching objectives, and relations to topics of the previous chapters
are presented. The core of the chapter is dedicated to the formalization, de-
velopment, and application of the ideas presented in the “Objectives.” For
every essential development and achievement, we will pinpoint its relevance
to our objectives. We end each chapter with a short summary and outlook.
Here the major highlights of the chapter are informally summarized, and the
chapter’s relevance to other parts of the book is once again reviewed.

Chapter 2 provides the fundamentals. One learns here what randomized
algorithms are, and how to design and analyze them. The core of Chapter 2
begins with Section 2.2, with elementary fundamentals of probability theory,
reduced to a simple kernel that is sufficient for our purposes. In Section 2.4
we explain what randomized algorithms are and how to model and analyze
them by means of probability theory. Section 2.5 presents the fundamental
classification of randomized algorithms with respect to their error probabili-
ties.15 Section 2.5 shows how to model and classify randomized algorithms in
the areas of discrete optimization, where we usually do not speak about error
probability but about a probability of getting a good approximation of an op-
timal solution. From a contextual point of view Section 2.5 is central to this
textbook. Here we introduce the most successful and recognized paradigms of
the design of randomized algorithms such as “Fooling an Adversary,” “Finger-
printing,” “Amplification,” “Random Sampling,” “Abundance of Witnesses,”
and “Random Rounding.” In this way, we start not only to build the method-
ology and the machinery for the design of efficient and simple randomized
algorithms, but also to capture the nature of the fascinating computational
power of randomization in many applications. The paradigms introduced here
determine the structure of this book because each of the following chapters
(apart from the Appendix) is devoted to the study of one of these paradigms.

Chapter 3 provides a deeper insight into the application of the method of
fooling an adversary, which is also called the method of eliminating worst-case

15More precisely, with respect to the speedup of reducing the error probability
with the number of independently executed runs of the randomized algorithm on
the same input.
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problem instances. Here, one views a randomized algorithm as a probability
distribution over a set of deterministic algorithms (strategies). The crucial
point is creating a set of deterministic strategies such that, for any problem
instance, most of these strategies efficiently compute the correct result16. This
can be possible even when there does not exist any efficient deterministic
algorithm for solving the problem17 considered. First, we make this approach
transparent by presenting hashing, where universal hashing is nothing other
than an application of the method of fooling an adversary. A deeper insight
into the power of this method is given by applying it in the area of online
algorithms.

The fingerprinting method is successfully applied several times in Chap-
ter 4. The idea of this method is to solve equivalence problems in such a way
that instead of trying to compare full complex representations of given ob-
jects one compares rather their randomly chosen partial representations called
fingerprints. The design of our randomized protocol presented in Section 2.2
can also be viewed as an application of this design paradigm. In Section 4.2
we apply fingerprinting in order to solve other communication problems that
can be viewed as generalizations of the equality problem. Section 4.3 uses our
motivation example once again in order to design an efficient randomized al-
gorithm for searching for a string (pattern) in a longer string (text). Section
4.4 shows how one can apply fingerprinting in order to verify the correctness
of the multiplication of two matrices in a more efficient way than the matrix
multiplication.18 In Section 4.5 we generalize the idea of Section 4.4 in order
to develop a polynomial randomized algorithm for deciding the equivalence of
two polynomials. This application of fingerprinting is of special importance,
because a deterministic polynomial algorithm for this decision problem is not
known.

Because amplification and random sampling are often combined, or even
indistinguishably mixed, we present them together in Chapter 5. The paradigm
of success probability amplification is common to all randomized algorithms
and it says that one can increase the success probability of any randomized
algorithm by several independent runs of the algorithm on the same input.
Section 5.2 shows a more clever application of this paradigm by repeating
only some critical parts of a computation instead of repeating all the random
runs. Random sampling enables us to create objects with some required prop-
erties by a simple random choice from a set of objects, despite the fact that
one does not know how to efficiently construct such objects in the determin-
istic way. In Section 5.3 we combine amplification with random sampling in
order to successfully attack the NP-complete satisfiability problem. Section

16This means that some of these strategies are allowed to compute wrong results
on some inputs.

17I.e., a deterministic algorithm that is correct and efficient on any input.
18I.e., one can verify whether A · B = C for three matrices A, B, and C without

computing A · B.



14 1 Introduction

5.4 shows an application of random sampling for efficiently generating non-
quadratic residua, which one does not know how to generate deterministically
in polynomial time.

Chapter 6 is devoted to the method of abundance of witnesses, which can
be viewed as the deepest paradigm of randomization. A witness is additional
information to an input, whose knowledge makes a hard problem efficiently
solvable. The idea of this method is to generate such witnesses at random.
The art of successfully applying this method lies in searching for a suitable
kind of witness for the given problem. Here we present a part of such a search
for a convenient definition of witnesses for primality testing, which results in
the design of efficient randomized primality testing algorithms.

Chapter 7 is devoted to the design of randomized approximation algo-
rithms for the NP-hard maximum satisfiability problem (MAX-SAT). We
show how one can round a real solution of the relaxed version of MAX-SAT
at random in such a way that a good approximation of an optimal solution
to the original discrete optimization problem can be expected.

Appendix A provides some fundamentals of mathematics sufficient for the
purposes of the previous chapters. The mathematics is viewed here as a formal
language and as a machinery (sets of instruments and methods) for designing,
modeling and analyzing randomized algorithms, and it is also presented in
this way. Section A.2 provides a short, concise introduction to fundamentals
of group theory and number theory. Section A.3 presents some basic facts and
methods of combinatorics.

1.4 To the Student

This textbook has been written primarily for you. The aim of this book is not
only to introduce and explain some basic methods for the design of efficient
randomized algorithms, but also to inspire you for the study of theoretical
computer science. In the previous sections of this chapter we have attempted
to convince you that randomization is a fascinating area of computer science,
because due to randomization one can efficiently perform things that were not
considered possible before, and so one can enjoy work on a topic that offers a
lot of exciting surprises.

But to teach an exciting topic is not sufficient to fill the lecture room
with many interested students. A good didactic presentation of the topic for
the success of a course is at least as important as the attractiveness of the
subject. Therefore, our presentation of this topic is based on the following
three concepts:

(i) Simplicity and transparency
We explain simple notions, concepts, and methods in simple terms. We
avoid the use of unnecessary mathematical abstractions by attempting to
be as concrete as possible. Through this we develop an introduction to the
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design of randomized algorithms on elementary mathematical knowledge.
Presenting complicated arguments or proofs, we first explain the ideas in a
simple and transparent way, and then provide the formal, detailed proofs.
Sections and theorems marked with a “∗” are more involved and technical.
Undergraduates are advised to skip these parts when reading the material
for the first time.
Clarity takes priority over the presentation of the best known results.
When a transparent argument of a weaker result can bring across the
idea succinctly, we opt for it instead of presenting a strong but technically
demanding and confusing argument of the best known result.
Throughout this book, we work systematically, taking small steps to jour-
ney from the simple to the complicated. We avoid any interruption in
thoughts.

(ii) Less is sometimes more, or a context-sensitive presentation
Many study guides and textbooks falsely assume that the first and fore-
most aim is the delivery of a quantum of information to the reader. Hence,
they often go down the wrong track: maximum knowledge in minimum
time, presented in minimal space. This haste usually results in the presen-
tation of a great amount of individual results, thus neglecting the context
of the entire course. The philosophy behind this book is different. We
would like to build and influence the student’s way of thinking. Hence, we
are not overly concerned about the amount of information, and are pre-
pared to sacrifice 10% to 20% of the teaching material. In return we ded-
icate more time to the informal ideas, motivations, connections between
practice and theory, and, especially, to internal contexts of the presented
research area. We place special emphasis on the creation of new terms.
The notions and definitions do not appear out of the blue, as seemingly so
in some lectures using the formal language of mathematics. The formally
defined terms are always an approximation or an abstraction of intuitive
ideas. The formalization of these ideas enables us to make accurate state-
ments and conclusions about certain objects and events. They also allow
for formal and direct argumentation. We strive to explain our choice of the
formalization of terms and models used, and to point out the limitations
of their usage. To learn to work on the level of terms creation (basic defi-
nitions) is very important, because most of the essential progress happens
exactly at this level.

(iii) Support of iterative teaching
The strategy of this book is also tailored to cultivate repetitive recon-
sideration of presented concepts. As already mentioned, every chapter
opens with a section “Objectives” in which the objectives are presented
in an informal way and in the context of knowledge from the previous
chapters. Every essential development in the main body of a chapter is
accomplished with a discussion about its importance in the context of
already presented knowledge. The conclusion of each chapter informally
summarizes its major highlights and weighs its contribution on a contex-
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tual level. As usual, the learning process is supported by exercises. The
exercises are not allocated to special subsections, but are distributed in
the text, with our recommendation to work through them immediately
after you have encountered them while reading the book. They help learn
how to successfully apply presented concepts and methods and to deepen
your understanding of the material.
But the most important point is that this textbook is self-contained, with
all formal and informal details presented in the lectures, and so one can
use it for a complete review of all explanations given in the teacher’s
lecture. In fact, one can master the subject of this book by only reading
it (without attending the lecture).

1.5 To the Teacher

The aim of this textbook is to support you in creating an introductory course
on randomized algorithms. The advantage of this book is that it provides a lot
of space for informal development of concepts and ideas, which unfortunately
are often presented only orally in lectures, and are not included in the written
supporting materials. Therefore, if the teacher followed this book in her or his
lecture, the student would have the possibility to review the complete lecture,
or a part of it as many times as she or he wanted. Additionally, the students
are not required to write all technical details presented during the lecture,
and can concentrate on the explanations given by the teacher.

Finally, we allow ourselves to formulate four rules which can be very helpful
in inducting a successful course on any topic. All have been very well known
for many years (there is no original idea of ours behind them), but teachers
often forget about their consistent application, which is the main problem
with education quality.

(i) Make sure that your students can review the topic of your lectures any
time and as often as they need to. For instance, you can save the entire
presentation on the Internet or write (use) detailed supporting materials.

(ii) Provide with your lectures, especially if you have many students in the
course, one more public discussion hour per week. In this additional hour
students may ask anything related to topics already presented. Typically
they ask for more careful repetitions of some complex parts of the lecture
or for alternative explanations. Anonymous, written questions should be
allowed also.

(iii) Do not save time when one needs to develop concepts and ideas on an
informal level or to create new terms. This often underestimated part of
the lecture is at least as important as the correct, detailed presentation
of results and their proofs. Exactly telling the development of ideas in a
scientific discipline in a broad context essentially contributes to a deeper
understanding of the subject and motivates the student to deal with the
topic.
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(iv) Organize small groups for exercises. Take care in choosing exercises for
homework in order to fix and deepen the understanding of the actual topic
of your lecture. The solutions of the homework have to be made public
before meeting the students for exercises in order to prevent the exercises
from becoming a presentation of correct solutions. Alternative solutions
and the most frequent mistakes have to be discussed. All homework has
to be individually corrected and given back to the students.
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