14 Requirements Engineering for Agile Methods

Alberto Sillitti and Giancarlo Succi

Abstract: Collecting, understanding, and managing requirements is a critical as-
pect in all development methods. This is true for Agile Methods as well. In par-
ticular, several agile practices deal with requirements in order to implement them
correctly and satisfy the needs of the customer. These practices focus on a con-
tinuous interaction with the customer to address the requirements evolution over
time, prioritize them, and deliver the most valuable functionalities first. This chap-
ter introduces Agile Methods as the implementation of the principles of the lean
production in software development. Therefore, Agile Methods focus on continu-
ous process improvement through the identification and the removal of waste,
whatever does not add value for the customer.

Keywords: Agile methods, Lean management, Process management, Require-
ments management, Variability management.

14.1 Introduction

Agile Methods (AMs) are a family of software development processes that have
become popular during the last few years [1, 7, 14]. Their aim is to deliver prod-
ucts faster, with high quality, and satisfy customer needs through the application
of the principles of the lean production to software development [25].

Lean production [36] has been conceived during the ’50s at Toyota [23]. It in-
volves several practices that are now part of most manufacturing processes, such
as just-in-time development, total quality management, and continuous process
improvement. The principle of lean production is the constant identification and
removal of waste (muda in Japanese), that is, anything that does not add value for
the customer to the final product. Being rooted on lean production, AMs focus on:

1. Delivering value for the customer
2. Ensuring that the customer understand such value and be satisfied by the pro-
ject

Delivering value to the customer implies that the development team has to pro-
duce only what provides value and remove (or at least reduce to the minimum)
everything else. AMs pose a lot of emphasis in producing and delivering to the
customer only those features that are useful. Producing anything that is not re-
quired is considered a mistake. Adding a feature that is not needed not only con-
sumes effort without adding customer value but also creates extra code, which
may contain errors and make the code longer and more complex to maintain, to
correct and to improve. This waste includes general architectures that are used

310 Sillitti and Succi

only partially or reusable components with functionalities that are likely to be
never used [25].

To achieve such elimination of waste, AMs claim to be [7] (a) adaptive rather
than predictive, and (b) people-oriented rather than process-oriented. To ensure
customer satisfaction, a close collaboration between the development team and the
customer is sought, so that:

e Requirements are fully identified and correctly understood
o Final products reflects what the customer needs, no more and no less

Overall, requirement engineering is of paramount importance for AMs. This
chapter introduces AMs and describes their approach to requirements engineering.
It is mainly related to:

e Chapter 2: most of the techniques for requirements elicitation do not change
much in an agile environment.

e Chapter 4: the prioritization of requirements is of paramount importance, since
AMs focus on the implementation of the most valuable features for the cus-
tomer.

e Chapter 5: in order to implement only high priority features, the identification
of the interaction among features and their decoupling is extremely important.

e Chapter 7: the identification of the requirements to include in a single iteration
is based on the negotiation between the customer and the development team.

The chapter is organized as follows: Section 14.2 briefly introduces Agile
Methods. Section 14.3 identifies common problems in requirements engineering.
Section 14.4 describes the agile approach to requirements engineering. Section
14.5 deals with the role and responsibility of customers, managers, and developers
in an Agile environment. Section 14.6 briefly introduces tools for requirements
management in Agile Methods. Section 14.7 draws the conclusions.

14.2 Agile Methods

AMs are a family of development techniques designed to deliver products on time,
on budget, and with high quality and customer satisfaction. This family includes
several and very different methods. The most popular include:

eXtreme Programming (XP) [6]

Scrum [28]

Dynamic Systems Development Method (DSDM) [32]
Adaptive Software Development (ASD) [17]

The Crystal family [12]

14 Requirements Engineering for Agile Methods 311

14.2.1 The Agile Manifesto

The promoters of AMs have realized that the wide variety of such methods may
refrain potential adopters, as they could not determine what to apply in their own
operations [9, 15].

As a results, such promoters have analyzed the root of lean management and
have defined a document containing a set of basic values common across all AMs.
Such document is called “Agile Manifesto” [7]. Being rooted in lean management,
such values focus on human resources and process management:

1. Individuals and Interactions over Process and Tools: The Agile approach
emphasizes the importance of people and their interactions rather than focusing
on structured processes and tools.

2. Customer Collaboration over Contracts: The relationship between the de-
velopment team and the customer is regulated through the involvement of the
customer in the development process rather than through detailed and fixed
contracts (usually, contracts in agile projects are variable price-variable scope
and not fixed price-fixed scope).

3. Working Software over Documentation: The goal of the development team
is delivering working code, which is the artifact that provides value to the cus-
tomer. Well-written code is self-documented and formal documentation is re-
duced to the minimum.

4. Responding to Change over Planning: The development team has to react
quickly to requirements variability. Binding decisions affecting this ability are
delayed as long as possible and the time spent in the planning activity is limited
to what the customer needs. Any attempts to forecast future needs are forbid-
den.

From such values, a set of common practices and behaviors are identifies. The
underlying claim is that they are not inventions of the Agile Community, but that
they are the results of rationalizing the experience of successes and failures in
software development. Some of these practices and behaviors are listed here be-
low:

e Adaptability: Practices have to be adapted to the specific needs of both the de-
velopment team and the customer. There is no one size fits all solution.

e Incremental Development: The different phases of software development
(analysis, design, code, and testing) are compressed in very short iterations
(from 2 weeks to 2 months) in order to focus on a few, well-defined problems
that provide real value to the customer (Fig.14.1).

¢ Frequent Releases: At the end of every iteration, the application is released to
the customer that tests it and provides feedback. This approach produces sev-
eral benefits such as: (1) the customer can use the application very early, allow-
ing the identification of potential problems in time for improving the product
limiting the effect on the schedule; (2) the customer feels in control of the de-
velopment process, since progresses are always visible; (3) the trust between

312 Sillitti and Succi

the customer and the development team increases, since the team is considered
reliable because it able to deliver working versions of the application early.

e Requirements Prioritization Before Every Iteration: Before every iteration,
the customer and the development team identify new requirements and reassign
priorities to the old ones on the base of the customer actual needs.

e High Customer Involvement: The customer is involved in the development
process through a continuous request of feedback in order to identify potential
problems early in the development. In some cases, the customer is even a
member of the development team (customer on site practice) and is always
available to interact with the team and clarify requirements-related issues.

Development
Team

\
Analysis
e Design

—~— >

Coding
Testing

7

Constant feedback

Customer

Fig. 14.1 Agile development cycle

As mentioned, the basic values and practices of all the AMs are very similar.
Still, by “Agile Methods” we identify a diverse family of development method-
ologies with different focuses and related strengths and weaknesses. There are dif-
ferent levels of “agility” in AMs. A development methodology is more “agile”
than another one if it requires less overhead, which is whatever does not produce
value for the customer [12].

14 Requirements Engineering for Agile Methods 313

In each methodology, the development team has different priorities, processes,
levels of overhead for the interaction of the team members, etc. Therefore, there is
no single solution for all the contexts. AMs provide only guidelines and a basic
background of practices and behaviors that have to be adapted to the specific
problem [6, 9]. The applicability of the AMs is still a matter of research [4, 34].
Issues currently being discussed include:

1. The size of the problem that can be addressed
2. How people are managed in AMs
3. The application domains in which AMs are profitable.

14.2.2 Team Size in Agile Methods

Most AMs are specifically targeted to small teams, with up to 16 developers (e.g.,
eXtreme Programming). However, there are AMs supporting a wider range of
team size (e.g. the Crystal family), but there are many problems under investiga-
tion, including the use of such methods and practices in a distributed environment
[14].

The level of agility is often related to the size of the development team. Direct
communication and limited documentation is possible only in small teams. On the
contrary, when the team grows, the level of overhead grows as well. This over-
head includes: (1) documentation and (2) mediated communication. More docu-
mentation is required to share knowledge and trace the status of the project be-
cause direct, many-to-many interaction is not possible anymore [12]. Therefore,
the importance of the documentation increases and it becomes a way to improve
knowledge sharing. In this case, the code itself is not enough and the direct com-
munication between the development team and the customer is not possible with a
large team.

Table 14.1 The Crystal family

Methodology Team (Number of people)
Crystal Clear 2-6

Crystal Yellow 6-20

Crystal Orange 20-40

Crystal Red 40-80

For these reasons, small teams are more agile than large teams. However, the
basic principles of the lean management are still valid and most of them can scale.
One of these is the continuous process improvement through the reduction of
waste. This principle is useful regardless the size of the development team. The
Crystal family of AMs points out this concept [12]. Crystal includes different
AMs fitting the needs of teams with different sizes (Table 14.1). The different lev-
els of the Crystal family focus on different practices in order to manage the scal-
ability. A limited scalability is achieved reducing the level of agility.

314 Sillitti and Succi

Developing large systems using AMs is difficult or even impossible. At pre-
sent, the research effort in AMs focuses on small and medium size projects, since
even in this area their effectiveness is sill under investigation. Many agile prac-
tices simply do not scale, others can. AMs are adaptive [7], therefore project man-
agers have to identify the practices to use according to the specific environment.
This decision is highly affected by the size and the domain of the problem.

14.2.3 Managing People in Agile Methods

AMs focus on the value of people to solve problems and share information [11],
not on the process and a massive amount of documentation [2]. However, the peo-
ple-orientation can represent a main weakness for AMs since skills required to
build good agile teams are not common [11].

Team members have to be excellent developers, able to work in teams, com-
municate and interact with colleagues and customers, etc. All these skills are re-
quired, since the team is self-organizing and cannot refer to a predefined and de-
tailed process to solve problems and share knowledge [10].

14.2.4 Applicability of Agile Methods across Application Domains

A key question is whether AMs can be applied in all application domains. This
problem is still under investigation [4, 9, 34]. In particular, how and when using
specific practices results in benefits [2, 8, 27]. In general, it seems that AMs are
valuable for building applications that are not mission-critical and with a limited
size. Researchers are studying other areas such as the embedded systems (e.g.,
mobile phones and PDAs) where performances, real-time behavior, and memory
constraints are common problems.

AMs focus on producing only what provides value to the customer, which does
not mean that building reusable artifact such as components. If the goal of the pro-
ject is to develop a reusable artifact, the development team focuses on this prob-
lem and use AMs to address it. Reusable artifacts are not developed in projects
with a different aim because developers have to include features that are not useful
for the ongoing project. This approach is compliant to the principles of the AMs
[7]. AMs are not the solution for developing every product. Their application is
extremely hard or even impossible in many areas, such as safety-critical or very
large and complex applications.

Several areas that have been analyzed in deep in traditional environments are
not well understood in AMs. Often, there is a lack of research effort, especially in
the area of requirements engineering [24, 34].

14 Requirements Engineering for Agile Methods 315

14.3 Traditional and Agile Requirement Engineering

Requirements are the base of all software products and their elicitation, manage-
ment, and understanding are very common problems for all development method-
ologies. In particular, the requirements variability is a major challenge for all
commercial software projects [29]. According to a study of the Standish Group
[31], five of the eight main factors for project failure deal with requirements (Ta-
ble 14.2) which are incomplete requirements, low customer involvement, unrealis-
tic expectations, changes in the requirements and useless requirements.

Table 14.1 Main causes of project failure

Problem %
Incomplete requirements 13.1
Low customer involvement 12.4
Lack of resources 10.6
Unrealistic expectations 9.9
Lack of management support 9.3
Changes in the requirements 8.7
Lack of planning 8.1
Useless requirements 7.5

Engineering requirements for software systems has been perceived as one of
the key steps in a successful software development endeavor, since the early days
of software engineering. As a result, traditional development processes have
elaborated several standards, including:

e IEEE Standard 830: Recommended Practice for Software Requirements Speci-
fications [18]

o IEEE Standard 1233: Guide for Developing System Requirements Specifica-
tions [19]

e [EEE Standard 1362: Guide for Information Technology — System Definition —
Concept of Operations Document [20]

A detailed discussion of this topic is in Chap. 8. AMs do not rely on these stan-
dards for requirements elicitation and management but they have adapted many of
the basic ideas to the new environment [3, 13, 16, 21, 24, 30, 37]. For instance, in
AMs the whole development team is involved in requirements elicitation and
management, while in traditional approaches often only a subset of the develop-
ment team is involved.

This approach is feasible only if the size of the problem is limited. Only a small
development team can interact directly with the customer. If the problem is bigger,
the team can use other techniques for eliciting and managing requirements, as de-
scribed in Chaps. 2 and 8. This is a strong limitation of AMs.

AMs are aware that requirements variability is a constant problem in nearly all
software projects; therefore, the support to such changes is included in the process

316 Sillitti and Succi

as a key strength [33]. Moreover, AMs do not try to forecast changes or future
needs, they focus only on the features for which the customer is paying. This ap-
proach avoids the development of a too general architecture that requires addi-
tional effort [6]. The understanding of requirements variability has a strong impact
on the ability of AMs to be “lean”. Often, a larger and more comprehensive archi-
tecture is expected to handle better the variability of requirements that can be fore-
casted in advance. However, a more complex architecture costs more not only for
the development but also for the maintenance and bug fixing. Therefore, such lar-
ger architecture may end up being an inhibitor of handling the variability in re-
quirements that cannot be forecasted in advance. Not to mention that it is usually
difficult to make correct predictions, therefore many features included in the early
stages of the project are not used in the final product and new ones, not identified
at the beginning, are required. This approach is likely to generate useless features
that are waste and generate additional waste due to the increased complexity of the
code and the additional effort required to the maintenance [6, 17]. AMs focus on
the development of the minimal application able to satisfy all the needs of a spe-
cific customer. Developing reusable components or framework including func-
tionalities that are not used in the current project is considered a mistake [6].

14.4 Agile Approaches to Requirements Engineering

AMs include practices focused on the key factors listed in Table 14.2 to reduce the
risk of failure. In particular, the aim of incremental development, frequent re-
leases, requirements prioritization before every iteration, and customer involve-
ment is to address the main risk factors.

14.4.1 The Customer

In AMs, the customer assumes a paramount role. Usually, the term “customer”
identifies a set of stakeholders that belongs to the organization that is paying for
the development of a software product. In this case, the interaction between the
development team and the stakeholders is complex due to the different perceptions
of the problem that the stakeholders have [5].

In AMs, the problem of multiple stakeholders is solved reducing their number
to one, a single person that represents all the stakeholders involved in the project.
This customer should be a domain expert and able to make important decisions
such as accepting the product, prioritize requirements, etc. In the case of mass-
products for which there are no organizations paying directly for the product, the
development team has to identify an expert in the area (e.g., a marketing expert)
that is able to act as the customer and participate in the development of the prod-
uct. This approach is feasible only if the size of the problem is limited and a single
person can act as customer, representing all the stakeholders. If the size of the
problem does not allow this approach, the team has to use other techniques to

14 Requirements Engineering for Agile Methods 317

elicit and manage requirements, as described in Chaps. 2 and 8. In some AMs, the
customer on site practice is common. This means that the customer is a member of
the development team, is co-located with the team, and is always available to dis-
cuss issues related to the project with any team member [6]. The customer-on-site
practice defines some specific requirements for the customer:

1. Availability: The customer has to be always available to answer questions
coming from the development team. Any delay in the answer delays the devel-
opment of the product.

2. Complete Knowledge: The customer is the representative for all the stake-
holders. Therefore, he is able to answer all questions, since he is the domain
expert and knows how the application should work and the input/output data
required. Again, this is possible if the size of the project is limited.

3. Decision Power: The customer is able to make final decisions and commit-
ments. Changes in requirements, acceptance of the features implemented, etc.
can be decided directly by the customer, allowing a fast decision making proc-
ess.

Having access to a customer able to satisfy all these requirements is not easy
[26], since he has to be a very valuable member of staff. The availability of this
kind of customer is of paramount importance in AMs, since most of their benefits
(e.g., reduction of documentation, incremental delivery, etc.) are tightly coupled
with the customer involvement [35]. However, there are attempts to extend re-
quirements collection to involve more customers [22].

14.4.2 Waste in Requirements

AMs focus on the identification and reduction of waste in the development proc-
ess [25]. In particular, identifying and reducing the waste from requirements as-
sume a paramount role to avoid the creation of waste later in the process. In lean
practices, the reduction of waste is extremely important because waste always
generates further waste [23, 36]. For instance, if a factory produces more goods
than required by the customers (first piece of waste) the system produces the fol-
lowing further waste:

e A warehouse

e People and processes to manage the warehouse

e People and processes to manage the interaction between the factory and the
warehouse, etc

The introduction of waste in the early phases of the process causes the creation
of further waste later on, the increment of the complexity, and the drain of re-
sources available for the core business of the company. For this reasons, the opti-
mization of a single activity produces more savings than the direct saving from the
activity itself and contributes to the optimization of the whole process. Require-
ments engineering in AMs focuses on [7]:

318 Sillitti and Succi

1. Reduction of waste from requirements
2. Managing the requirements evolution

Waste in requirements deeply affects the development process and the ability to
deliver a product able to satisfy the real needs of the customer. The main effects of
waste in this area include:

More source code to write and higher cost

Increased complexity of the source code

Delayed delivery of the final version of the application with all functionalities

More complex and costly maintenance

More resources required by the application, including: memory usage, process-

ing power, network usage, etc

e Increased complexity of the application from the point of view of the customer
(e.g., more complex user interface, more effort to learn how to use the applica-
tion, etc.)

e Savings produced by the application in the production process of the customer

are delayed

At the end, all the waste generated is a cost for the customer both directly and
indirectly. Such costs are likely to generate further waste inside the customer or-
ganization due to the reduced amount of money available to its core business and
the reduced revenues. Waste in requirements includes both wrong and useless re-
quirements. A misunderstanding between the customer and the development team
causes wrong requirements. In order to reduce the probability of such misunder-
standing, AMs adopt several techniques focused on the interaction between the
customer and the development team:

e The whole Development Team Collects Requirements from the Customer:
Requirements elicitation (Chap. 2) is an activity in which the whole team is in-
volved. In this way, the usage of documents to share the knowledge is reduced
to a minimum and the probability of misunderstandings decreases.

e Requirements are Collected using a Common Language: Requirements are
collected using the language of the customer, not a formal language for re-
quirements specification. This means that developers have to be introduced to
the domain of the customer in order to understand him/her.

¢ Direct Interaction Between the Development Team and the Customer:
There are no intermediaries between the development team and the customer.
This approach reduces both the number of documents required and the prob-
ability of misunderstanding due to unnecessary communication layers.

e Requirements Splitting: If the development team considers a requirement too
complex, this technique helps the customer to split it in simpler ones. This split-
ting helps developers to understand better the functionalities requested by the
customer (Chap. 5).

This approach does not scale, it is feasible only if the size of the development
team is limited. Otherwise, the introduction of a representative and additional
documentation is required. This means that if the team size grows, some agile

14 Requirements Engineering for Agile Methods 319

practices cannot be used anymore while others are still useful. In case of large pro-

jects, AMs do not provide any specific solution. Even if the customer is an expert

in its own domain, identifying the features that he really needs is not easy. Often,

customers over specify the application, including a wide range of features that are

not providing a real benefit for their business. Such requirements are useless,

therefore, they are a source of waste. In order to reduce this kind of waste, AMs

use the following techniques:

¢ Requirements Prioritization: The customer and the development team assign
priorities to each requirement in order to identify more important features that
have to be implemented first (Chaps. 4 and 7).

e Incremental Releases: Functionalities are released in small but frequent
bunches (from 2 weeks to 2 months), in order to collect feedback from the cus-
tomer.

After the identification of the functionalities to include into the system, the cus-
tomer and the development team assign priorities to them. The prioritization activ-
ity is performed in four steps:

1. The development team estimates the time required to implement each function-
ality. If the effort required is too high, the requirement is split into simpler ones
that can be implemented with less effort.

2. The customer specifies business priorities for each functionality.

3. According to the business priorities, the development team assign a risk factor
to the functionalities.

4. The customer and the development team identify the functionalities to imple-
ment in the iteration.

The development team and the customer repeat requirements elicitation and
these four steps at the beginning of every iteration. In this way, it is possible to
identify requirements that do not provide enough value to the customer in order to
discard them and focus on the most important ones.

14.4.3 Requirements Evolution

AMs assume that it is very hard to elicit all the requirements from the user up-
front, at the beginning of a development project. They also assume that such re-
quirements evolve in time as the customer may change its mind or the overall
technical and socio-economical environment may evolve. Therefore, Agile com-
panies are aware that changes are inevitable and they include the management of
variability into the development process. AMs base the requirements collection
and management on three main hypotheses [6]:

e Requirements are not well known at the beginning of the project
e Requirements change
e Making changes is not expensive

320 Sillitti and Succi

In particular, AMs assume that the cost of introducing changes in a product is
nearly constant over the time (Fig. 14.2), but this hypothesis is not true in every
context. Usually, the cost of implementing changes grows exponentially over the
time. On the other hand, if development phases are grouped together in very short
iterations (Fig. 14.1) and binding decisions are taken as late as possible, the grow-
ing of the costs is limited [6].

A
Cost

\ 4

Time
Fig. 14.2 Cost of changes

In order to manage requirements evolution, AMs use variable scope-variable
price contracts [25]. This means that the features really implemented into the sys-
tem and its cost evolve as well. Therefore, requirements are not specified in details
at contract level but defined step by step during the project through a negotiation
process between the customer and the development team. Managing variability is
a challenge that AMs approach in two ways:

1. Decoupling Requirements: Requirements have to be as independent as possi-
ble in order to clearly identify what to implement and make the order of their
implementation irrelevant.

2. Requirement Elicitation and Prioritization: At the beginning of every itera-
tion, there is a requirements collection and prioritization activity. During that,
new requirements are identified and prioritized. This approach helps to identify
the most important features inside the ongoing project. Typically, if a require-
ment is very important is scheduled for the implementation in the upcoming it-
eration, otherwise it is kept on hold. At the following iteration, the requirements
on hold are evaluated and, if they are still valid, they are included in the list of
the candidate requirements together with the new ones. Then, the new list is
prioritized to identify the features that will be implemented. If a requirement is
not important enough, it is kept on hold indefinitely.

This approach is able to identify the most important requirements during the
whole project, not just at the beginning. Requirements that are not considered very
important at the beginning may become relevant at some stage of the project.
Moreover, the decoupling of the requirements allows the implementation of the

14 Requirements Engineering for Agile Methods 321

features in nearly any order; therefore, features are implemented mainly according
to their prioritization, not to their functional dependences.

14.4.4 Non-Functional Requirements

AMs do not provide any widely accepted technique for eliciting and managing
non-functional requirements [24]. Such requirements are collected implicitly dur-
ing the requirements collection activity. The need of specifying non-functional re-
quirements is less important than in other context due to the continuous interaction
with the customer. After every iteration, the product is released and the customer
is able to test the product. If he identifies problems related to non-functional quali-
ties, the team can adapt the system to meet such requirements in the subsequent it-
eration without affecting the schedule too much.

Often, the customer does not perceive as high impact many non-functional re-
quirements (e.g., scalability, security, etc.). This may affect deeply the release of
the final version of the application, therefore the development team has to guide
the customer in order to identify such hidden needs. This approach to non-
functional requirements may represent a major risk for AMs, since they lack spe-
cific techniques for their management.

14.5 Role and Responsibility of Customers, Developers, and
Managers

AMs require a high level of interaction among customers, managers, and develop-
ers. Usually, such interaction is unmediated and all the stakeholders meet fre-
quently in working sessions to improve the mutual understanding, the quality of
the final product, and keep the project under control (on time and on budget).

Roles and responsibilities of customers, managers, and developers assume a
paramount importance and have a broad impact on the evolution of a software
project.

14.5.1 The Customer

The customer is highly involved in the development process and often a member
of the development team. The customer’s presence is extremely important in
AMs, since the amount of documentation is reduced to the minimum and the de-
velopment team often asks for clarification regarding requirements. The constant
presence of the customer replaces most of the documentation required to describe
requirements in details and his/her contribution is a key factor for the success of
the project. The customer provides feedback to the development team in order to
identify potential problems early in the development and avoid a major impact on
the project schedule.

322 Sillitti and Succi

As stated in Sect. 14.4.1, the customer-on-site practice has several benefits, but
it is very difficult to implement. A poor implementation of this practice may re-
duce the effectiveness of several AMs, since many of them are tightly coupled
with the involvement of the customer.

14.5.2 Developers

The whole development team is highly involved in the customer management col-
lecting and negotiating requirements. Developers have to interact closely with the
customer providing working software and collecting valuable feedback. For these
reasons, the skills required by developers in agile teams are not common. They
have to be very good developers, be able to work in teams, and interact with the
customer using his/her own language [11]. Since AMs focus on this interaction,
the development team has the responsibility to educate the customer. AMs require
a high commitment of the customer in the project due to the frequent feedback re-
quired.

The trust between the development team and the customer assumes a para-
mount role. The team has to provide working and high quality software to the cus-
tomer at every iteration in order to collect valuable feedback. This approach is
valuable for both developers and customers. Developers can collect useful infor-
mation to avoid the implementation of useless features that increase the level of
waste; customers can use (or at least test) the product a few weeks after the project
start.

14.5.3 Managers

In AMs, managers have to create and sustain a framework for the establishment of
a productive interaction between the development team and the customer. They
can achieve this goal identifying the best people to be included in an agile team,
promoting collaboration, and negotiating contracts with the customer.

Usually, agile teams work with variable scope-variable price contracts rather
than fixed price-fixed scope ones. This approach relies on the ability of the man-
ager in the contracts definition in order to satisfy the customer and allow the
maximum flexibility in the development process, as required by AMs.

14.6 Tools for Requirements Management in AMs

The most popular tools for requirements engineering in several AMs are paper,
pencil, and a pin board. For instance, in Extreme Programming (XP) requirements
are collected through user stories. User stories are extremely short descriptions of
a single functionality that the development team has to implement. They are writ-
ten on small pieces of paper with the size of a postcard and hang on a pin board.

14 Requirements Engineering for Agile Methods 323

The pin board is divided in three sections: user stories to be implemented, user
stories under implementation, and user stories completed. This layout provides a
visual representation of the project status. Even if many Agile teams do not use
computer-based tools, some of them are useful. Among these, there are standard
applications not focused on AMs and ad-hoc applications developed specifically
to support some agile practices. Among the general purpose tools there are:

e UML Modeling Tools: Such tools are used in two ways: (1) to write a high
level description of the application; (2) to reverse engineer the code to create
documentation.

¢ Requirements Negotiation Tools: This kind of tools helps developers and cus-
tomer to identify, prioritize, and manage requirements in different environ-
ments, including the Agile one (Chap. 7).

e Instant Messaging Tools: These tools are useful to keep in touch with the cus-
tomer in order to discuss requirements when he is not on-site.

Among ad-hoc applications there are:

e Project Management Tools: Such tools focus on specific practices used in
AMs and helps to store and retrieve requirements documents (e.g., user stories)
in an electronic format.

14.7 Conclusions

This chapter has presented an introduction to the AMs and to their approaches to
requirements elicitation and management. Since these methods are new, the sub-
ject is still evolving and many techniques are under investigation. AMs seem to be
a valuable approach to software development for a relevant subset of projects, but
their limits are not well defined yet.

The main difference between agile and traditional methods is the involvement
of the customer in the development process. Both approaches present benefits and
drawbacks. In particular, AMs seem to manage effectively requirements in small
projects but not in large ones. AMs focus on the production of value for the cus-
tomer reducing whatever does not add value from his point of view. Therefore, the
involvement of the customer is of paramount importance to achieve this goal. On
the contrary, traditional methods are able to manage effectively large project but
their overhead is not suitable for smaller ones. At present, the research in this area
is very active with several papers discussed in major software engineering confer-
ences and two specific conferences: XP200x and Agile Universe.

Acknowledgements

This study has been partially funded by the Italian Ministry of Education, Univer-
sity, and Research under the Program FIRB, Project MAPS.

324 Sillitti and Succi

References

1. Abrahamsson P, Salo O, Ronkainen J, Warsta J (2002) Agile software development
methods: Review and analysis. EPSOO 2002, VTT Publications 478

2. Ambler S (2001) Agile documentation. Accessed on 5th December 2004.
http://www.agilemodeling.com /essays/agileDocumentation.htm

3. Ambler S (2002) Lessons in agility from Internet-based development. IEEE Software,
19(2): 66-73

4. Ambler S (2002) When does(n’t) Agile modeling make sense? Accessed on December 5,
2004, http://www.agilemodeling.com/essays/whenDoesAMWork.htm

5. Bailey P, Ashworth N, Wallace N (2002) Challenges for stakeholders in adopting XP. In:
Proceedings of 3rd International Conference on eXtreme Programming and Agile Proc-
esses in Software Engineering (XP2002), Alghero, Italy, 26-29 May

6. Beck K (1999) Extreme programming explained: Embrace change. Addison-Wesley, UK

7. Beck K, Beedle M, Bennekum A, Cockburn A, Cunningham W, Fowler M, Grenning J,
Highsmith J, Hunt A, Jeffries R, Kern J, Marick B, Martin RC, Mellor S, Schwaber K,
Sutherland J, Thomas D (2001) Manifesto for Agile software Development. Accessed
on 5th December 2004, online at: http://www.agilemanifesto.org/

8. Cockburn A, Williams L (2000) The costs and benefits of pair programming. In: Pro-
ceedings of 1st International Conference on eXtreme Programming and Agile Processes
in Software Engineering (XP2000), Cagliari, Italy, 21-23 June

9. Cockburn A (2000) Selecting a project’s methodology. IEEE Software, 17(4): 64-71

10. Cockburn A, Highsmith J (2001) Agile software development: The business of innova-
tion. IEEE Computer, September, pp.120-122

11. Cockburn A, Highsmith J (2001) Agile software development: The people factor. IEEE
Computer, November, pp.131-133

12. Cockburn A (2002) Agile software development. Addison-Wesley, London, UK

13. Duncan R (2001) The quality of requirements in extreme programming. The Journal of
Defence Software Engineering, June 2001 issue

14. Cohen D, Lindvall M, Costa P (2003) Agile software development. DACS State-of-the-
Art Report. Accessed Sth December 2004, http://www.dacs.dtic.mil/techs/agile
/agile.pdf

15. Cohn M, Ford D (2002) Introducing an Agile process to an organization. Access on 5th
December 2004 http://www.mountaingoatsoftware.com/articles/Introducing A-
nAgileProcess.pdf

16. Glass R (2001) Agile versus traditional: Make love, not war. Cutter IT Journal, Decem-
ber, 6(1): 12—-18

17. Highsmith JA (1996) Adaptive software development. Dorset House Publishing, UK

18. IEEE Standard 830 (1998) IEEE recommended practice for software requirements

19. IEEE Standard 1233 (1998) IEEE guide for developing system requirements specifica-
tions

20. IEEE Standard 1362 (1998) IEEE guide for information technology: System definition,
concept of operations document

21. Lee C, Guadagno L, Jia X (2003) An Agile approach to capturing requirements and
traceability. In: Proceedings of 2nd International Workshop on Traceability in Emerg-
ing Forms of Software Engineering, Montreal, Canada, 7 October

22.

23.

24.

25.

26.

27.

28.

29.

30.

14 Requirements Engineering for Agile Methods 325

Nawrocki J, Jasinski M, Walter B, Wojciechowski A (2002) Extreme programming
modified: Embrace requirements engineering practices. In: Proceedings of International
Conference on Requirements Engineering, 9-13 September, Essen, Germany

Ohno T (1988) Toyota production system: Beyond large-scale production. Productivity
Press Cambridge, Mass

Paetsch F, Eberlein A, Maurer F (2003) Requirements engineering and Agile software
development. In Proceedings of 8th International Workshop on Enterprise Security,
Linz, Austria, 9-11 June

Poppendieck T, Poppendieck M (2003) Lean software development: An agile toolkit for
software development managers. Addison-Wesley, London UK

Rasmusson J (2003) Introducing XP into Greenfield projects: Lessons learned. IEEE
Software, May/June, 20(3): 21-28

Ronkainen J, Abrahamsson P (2003) Software development under stringent hardware
constraints: Do Agile methods have a chance. In: Proceedings of 4th International Con-
ference on eXtreme Programming and Agile Processes in Software Engineering
(XP2003), Genoa, Italy, May 2003, pp.25-29

Schwaber K, Beedle M (2001) Agile software development with scrum. Prentice Hall
PTR, Australia

Sommerville I, Sawyer P, (2000) Requirements engineering: A good practice guide.
John Wiley & Sons, UK

Smith J. (2001) A comparison of RUP and XP. Rational software white paper. Ac-
cessed 5th December 2005 http://www.isk.kth.se/proj/2003/6b3403/sa3/www/Ration-
alUnifiedProcess/papers/rupxp.htm

31. Standish Group, CHAOS Report 1994. Accessed 5th December 2004.
http://www .standishgroup.com/sample_research/chaos_1994_1.php

32. Stapleton J (1995) DSDM —Dynamic system development method. Addison-Wesley,
UK

33. Tomayko JE (2002) Engineering of unstable requirements using Agile methods. In:
Proceedings of International Conference on Time-Constrained Requirements Engineer-
ing, Essen, Germany, 9-13 September

34. Turk D, France R, Rumpe B (2002) Limitations of Agile software processes. In: Pro-
ceedings of 3rd International Conference on eXtreme Programming and Agile Proc-
esses in Software Engineering (XP2002), Alghero, Italy, 26 - 29 May

35. Wells D (2003) Don’t solve a problem before you get to it. IEEE Software, May/June,
20(3): 44-47

36. Womack JP, Jones DT (1998) Lean thinking: Banish waste and create wealth in your
corporation, Simon & Schuster.

37. Young R (2002) Recommended requirements gathering practices, Accessed 5th De-
cember 2004, http://www.stsc.hill.af.mil/crosstalk/2002/04/young

Author Biography

Alberto Sillitti is Assistant Professor at the Free University of Bozen, Italy. His re-
search areas include empirical software engineering, component-based software
engineering, integration and measures of web services, and agile methods.

326 Sillitti and Succi

Giancarlo Succi, Ph.D., PEng is Professor of Software Engineering and Director
of the Center for Applied Software Engineering at the Free University of Bozen.
His research areas include agile methods, open source development, empirical
software engineering, software product lines, software reuse, and software engi-
neering over the Internet. He is author of more than 100 papers published in inter-
national conferences and journals, and of one book.

2 Springer
http://www.springer.com/978-3-540-25043-2

Engineering and Managing Software Requirements
Aurum, A.; Wohlin, C. (Eds.)

2005, XV, 478 p., Hardcover

ISEM: 978-3-540-25043-2

