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1.1 Introduction

The relationship between geometry and brain function presents itself as a dual
problem: on the one hand, since the basis of geometry is in brain function,
especially that of the visual system, one can ask what the brain function can
tell us about the genesis of geometry as an abstract form of human mental
activity. On the other hand, one can also ask to what extent geometry can
help us understand brain function. Because the nervous system is interfaced
to our environment by sensory and motor systems and because geometry has
been a useful language in understanding our environment, one might expect
some convergence of geometry and brain function at least at the peripheral
levels of the nervous system. Historically, there has been a close relationship
between geometry and theories of vision starting as early as Euclid. Given
light sources and an environment, one can easily calculate the corresponding
images on our retinae using basic physics and geometry. This is usually known
as the “forward problem” [41]. A straightforward approach would be then to
consider the function of the visual system as the computation of the inverse
of the transformations leading to image formation. However, this “inverse op-
tics” approach leads to ill-posed problems and necessitates the use of a priori
assumptions to reduce the number of possible solutions. The use of a priori
assumptions in turn makes the approach unsuitable for environments that
violate the assumptions. Thus, the inverse optics formulation fails to capture
the robustness of human visual perception in complex environments. On the
other hand, visual illusions, i.e. discrepancies between the physical stimuli and
the corresponding percepts, constitute examples of the limitations of the hu-
man visual system. Nevertheless, these illusions do not affect significantly the
overall performance of the system, as most people operate succesfully in the
environment without even noticing these illusions. The illusions are usually
discovered by scientists, artists, and philosophers who scrutinize deeply the re-
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lation between the physical and psychological world. These illusions are often
used by vision scientists as “singular points” to study the visual system.

How the inputs from the environment are transformed into our conscious
percepts is largely unknown. The goals of this chapter are twofold: first, it
provides a brief review of the basic neuroanatomical structure of the visual
system in primates. Second, it outlines a theory of how neural maps and
pathways can interact in a dynamic system, which operates principally in a
transient regime, to generate a spatiotemporal neural representation of visual
inputs.

1.2 The Basic Geometry of Neural Representation:
Maps and Pathways

The first stage of input representation in the visual system occurs in the
retina. The retina is itself a complex structure comprising five main neuronal
types organized in direct and lateral structures (Fig. 1). The “direct structure”
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Fig. 1.1. The general architecture of the retina. P, photoreceptor; B, bipolar cell; G,
ganglion cell; H, horizontal cell; A, amacrine cell. The arrows on top show the light
input coming from adjacent spatial locations in the environment, and the arrows at
the bottom represent the output of the retina, which preserves the two-dimensional
topography of the inputs. This gives rise to “retinotopic maps” at the subsequent
processing stages

consists of signal flow from the photoreceptors to bipolar cells, and finally to
retinal ganglion cells, whose axons constitute the output of the retina. This
direct pathway is repeated over the retina and thus constitutes an “image
plane” much like the photodetector array of a digital camera. In addition to
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the cells in the direct pathway, horizontal and amacrine cells carry out sig-
nals laterally and contribute to the spatiotemporal processing of the signals.
Overall, the three-dimensional world is projected to a two-dimensional retino-
topic map through the optics of the eye, the two-dimensional sampling by the
receptors, and the spatial organization of the post-receptor direct pathway.
The parallel fibres from the retina running to the visual cortex via the late-
ral geniculate nucleus (LGN) preserve the retinal topography, and the early
visual representation in the visual cortex maintains the retinotopic map.

In addition to this spatial coding, retinal ganglion cells can be broadly
classified into three types: P, M, and K [15, 27]. The characterization of the
K type is not fully detailed, and our discussion will focus on the M and P
types. These two cell types can be distinguished on the basis of their anato-
mical and response characteristics; for example, M cell responses have shorter
latencies and are more transient than P cell responses [16, 33, 36, 42]. Thus
the information from the retina is not carried out by a single retinotopic map,
but by three maps that form parallel pathways. Moreover, different kinds of
information are carried out along these pathways. The pathway originating
from P cells is called the parvocellular pathway, and the pathway originating
from M cells is called the magnocellular pathway.

The signals that reach the cortex are also channeled into maps and path-
ways. Two major cortical pathways, the dorsal and the ventral, have been
identified (Fig. 1.2) [35]. The dorsal pathway, also called the “where path-
way”, is specialized in processing information about the position of objects.
On the other hand, the ventral pathway, also called the “what pathway”, has
been implicated in the processing of object identities [35]. Another related
functional interpretation of these pathways is that the dorsal pathway is spe-
cialized for action, while the ventral pathway is specialized for perception
[34]. This broad functional specialization is supplemented by more speciali-
zed pathways dedicated to the processing of motion, color, and form [32, 59].
Within these pathways, the cortical organization contains maps of different
object attributes. For example, neurons in the primary visual cortex respond
preferentially to the orientations of edges. Spatially, neurons that are sensi-
tive to adjacent orientations tend to be located in adjacent locations forming
a “map of orientation” on the cortical space [30]. This is shown schematically
in Fig. 1.3. Similar maps have been observed for location (retinotopic map)
[30], spatial frequency [19], color [52, 58], and direction of motion [2].

Maps build a relatively continuous and periodic topographical representa-
tion of stimulus properties (e.g., spatial location, orientation, color) on cortical
space. What is the goal of such a representation? In neural computation, in
addition to the processing at each neuron, a significant amount of processing
takes place at the synapses. Because synapses represent points of connec-
tion between neurons, functionally both the development and the processing
characteristics of the synapses are often specialized based on processing and
encoding characteristics of both pre- and post-synaptic cells. Consequently,
map representations in the nervous system appear to be correlated with the



6 Haluk Öğmen

LGN

V1p

M

p

M

D

V

Fig. 1.2. Schematic depiction of the parvocellular (P), magnocellular (M), and
the cortical dorsal (D), ventral (V) pathways. LGN, lateral geniculate nucleus; V1,
primary visual cortex

Fig. 1.3. Depiction of how orientation columns form an orientation map. Neurons
in a given column are tuned to a specific orientation depicted by an oriented line
segment in the figure. Neurons sensitive to similar orientations occupy neighboring
positions on the cortical surface
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geometry of synaptic development as well as with the geometry of synap-
tic patterns as part of information processing. According to this perspective,
maps represent the geometry of the fusion between structure and function in
the nervous system.

On the other hand, pathways possess more discrete, often dichotomic, re-
presentation. What is more important, pathways represent a cascade of maps
that share common functional properties. From the functional point of view,
pathways can be viewed as complementary systems adapted to conflicting but
complementary aspects of information processing. For example, the magnocel-
lular pathway is specialized for processing high-temporal low-spatial frequency
information, whereas the parvocellular system is specialized for processing
low-temporal and high-spatial frequency information. From the evolutionary
point of view, pathways can be viewed as new systems that emerge as the
interactions between the organism and the environment become more sophis-
ticated. For example, for a simple organism the localization of stimuli without
complex recognition of its figural properties can be sufficient for survival. Thus
a basic pathway akin to the primate where/action pathway would be sufficient.
On the other hand, more evolved animals may need to recognize and catego-
rize complex aspects of stimuli, and thus an additional pathway specialized
for conscious perception may develop.

In the next section, these concepts will be illustrated by considering how
the visual system can encode object boundaries in real-time.

1.3 Example: Maps and Pathways in Coding Object
Boundaries

1.3.1 The Problem of Boundary Encoding

Under visual fixation conditions, the retinal image of an object boundary is
affected by the physical properties of light, the optics of the human eye, the
neurons and blood vessels in the eye, eye movements, and the dynamics of
the accommodation system [19]. Several studies show that processing time on
the order of 100 ms is required in order to reach “optimal” form and sharp-
ness discrimination [4, 11, 29, 55] as well as more veridical perception of the
sharpness of edges [44].

A boundary consists of a change of a stimulus attribute, typically lumi-
nance, over space. Because this change can occur rapidly for sharp bounda-
ries and gradually for blurred boundaries, measurements at multiple scales
are needed to detect and code boundaries and their spatial profile. The vi-
sual system contains neurons that respond preferentially to different spatial
frequency bands. Moreover, as mentioned in the previous section, these neu-
rons are organized as a “spatial frequency map” [19, 51]. The rate of change
of a boundary’s spatial profile also depends on the contrast of the boundary
as shown in Fig. 1.4. For a fixed boundary transition width (e.g. w1 in Fig.
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Fig. 1.4. The relationship between contrast and blur for boundaries. Boundary
transition widths w1 and w2 for boundaries at a low contrast level c1 (solid lines)
and a high contrast level c2 (dashed lines)

1.4), the slope of the boundary increases with increasing contrast (c1 to c2 in
Fig. 1.4). The human visual system is capable of disambiguating the effects of
blur and contrast, thereby generating conrast-independent perception of blur
[23]. On the other hand, discrimination of edge blur depends on contrast,
suggesting that the visual system encodes the blur of boundaries at least at
two levels, one of which is contrast dependent, and one of which is contrast
independent.

1.3.2 A Theory of Visual Boundary Encoding

How does the visual system encode object boundaries and edge blur in real-
time? We will present a model of retino-cortical dynamics (RECOD) [37, 44]
to suggest (i) how maps can be used to encode the position, blur, and contrast
of boundaries; and (ii) how pathways can be used to overcome the real-time
dynamic processing limitations of encoding across the maps. The fundamental
equations of the model and their neurophysiological bases are given in the
Appendix. Detailed and specialized equations of the model can be found in
[44].

Figure 1.5 shows a diagrammatic representation of the general structure of
RECOD. The lower two populations of neurons correspond to retinal ganglion
cells with slow-sustained (parvo) and fast-transient (magno) response proper-
ties [16, 33, 36, 42]. Each of these populations contains cells sampling different
retinal positions and thus contains a spatial (retinotopic) map. Two pathways,
parvocellular (P pathway) and magnocellular (M pathway), emerge from these
populations. These pathways provide inputs to post-retinal areas. The model
also contains reciprocal inhibitory connections between post-retinal areas that
receive their main inputs from P and M pathways. Figure 1.6 shows a more
detailed depiction of the model. Here, circular symbols depict neurons whose
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Fig. 1.5. Schematic representation of the major pathways in the RECOD model.
Filled and open synaptic symbols depict excitatory and inhibitory connections, re-
spectively

spatial relationship follows a retinotopic map. In this figure, the post-retinal
area that receives its major input from the P pathway is decomposed into two
layers. Both layers preserve the retinotopic map and add a spatial-frequency
map (composed of the spatial-frequency channels). For simplicity, only three
elements of the spatial-frequency map ranging from the highest spatial fre-
quency class (H) to the lowest spatial frequency class (L) are shown. The
M pathway sends a retinotopically organized inhibitory signal to cells in the
first post-retinal layer. The direct inhibitory connection from retinal transient
cells to post-retinal layers is only for illustrative purpose; in vivo the actual
connections are carried out by local inhibitory networks. The first post-retinal
layer cells receive center-surround connections from the sustained cells (par-
vocellular pathway). The rows indicated by H, M, and L represent elements
with high, medium, and low spatial frequency tuning in the spatial frequency
map, respectively. Each of the H, M, and L rows in the first post-retinal
layer receive independent connections from the retinal cells, and there are no
interactions between the rows. Cells in the second post-retinal layer receive
center-surround connections from the H, M, and L rows of the first post-retinal
layer. They also receive center-surround feedback. Sample responses of model
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Fig. 1.6. A more detailed depiction of the RECOD model. Filled and open synaptic
symbols depict excitatory and inhibitory connections, respectively. To avoid clutter,
only a representative set of neurons and connections are shown. From [44]

neurons tuned to low spatial frequencies and to high spatial frequencies are
shown for sharp and blurred edge stimuli in Fig. 1.7. As one can see in the
left panel of this figure, for a sharp edge neurons in the high spatial-frequency
channel respond more strongly (dashed curve) compared to neurons in the
low spatial-frequency channel (solid curve). Moreover, neurons tuned to low
spatial-frequencies tend to blur sharp edges. This can be seen by comparing
the spread of activity shown by the dashed and solid curves in the left panel.
The right panel of the figure shows the responses of these two channels to
a blurred edge. In this case, neurons in the low spatial-frequency channel
respond more strongly (solid curve) compared to neurons in the high spatial-
frequency channel. Overall, the peak of activity across the spatial-frequency
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Fig. 1.7. Effect of edge blur on model responses: model responses in the first post-
retinal layer for sharp (left) and blurred (right) edges at high spatial-frequency (dot-
ted line) and low spatial-frequency (continuous line) loci of the spatial-frequency
map. From [44]

map will indicate which neuron’s spatial frequency matches best the sharp-
ness of the input edge, and the level of activity for each neuron for a given
edge will provide a measure of the level of match. Thus the distribution of ac-
tivity across the spatial-frequency map provides a measure of edge blur. Even
though the map is discrete in the sense that it contains a finite set of neurons,
the distribution of activity in the map can provide the basis for a fine discri-
mination and perception of edge blur. This is similar to the encoding of color,
where the distributed activities of only three primary components provide the
basis for a fine discrimination and perception of color.

The model achieves the spatial-frequency selectivity by the strength and
spatial distribution of synaptic connections from the retinal network to the
first layer of the post-retinal network. A neuron tuned to high spatial fre-
quencies receives excitatory and inhibitory inputs from a small retinotopic
neighborhood, while a neuron tuned to low spatial frequencies receives exci-
tatory and inhibitory inputs from a large retinotopic neighborhood (Fig. 1.8).
Thus the retinotopic map allows the simple geometry of neighborhood and
the resulting connectivity pattern to give rise to spatial-frequency selectivity.
By smoothly changing this connectivity pattern across cortical space, one ob-
tains a spatial-frequency map (e.g. L, M, and H in Fig. 1.6), which in turn,
as mentioned above, can relate the geometry of neural activities to the fine
coding of edge blur.

The left panel of Fig. 1.9 shows the activities in the first post-retinal layer
of the model for a low (dashed curve) and a high (solid curve) contrast input.
The response to the high contrast input is stronger. The first post-retinal
layer in the model encodes edge blur in a contrast-dependent manner. The
second post-retinal layer of cells achieves contrast-independent encoding of
edge blur. Contrast independence is produced through connectivity patterns
that exploit retinotopic and spatial-frequency maps. The second post-retinal
layer implements retinotopic center-surround shunting between the cells in
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Fig. 1.8. The connectivity pattern on the left produces low spatial-frequency se-
lectivity because of the convergence of inputs from an extended retinotopic area.
The connectivity pattern on the right produces a relatively higher spatial frequency
selectivity

the spatial frequency map. Each cell in this layer receives center excitation
from the cell at its retinotopic location and only one of the elements in the
map below it. However, it receives surround inhibition from all the elements
in the map in a retinotopic manner, from a neighborhood of cells around its
retinotopic location [12, 18, 20, 49, 50]. In other words, excitation from the
bottom layer is one-to-one whereas inhibition is many-to-one pooled activity.
This shunting interaction transforms the input activity p1i for the ith element
in the spatial frequency map into an output activity p2i = p1i/(A1+

∑
i p1i),

where A1 is the time constant of the response [12, 25]. Therefore, when the
total input

∑
i p1i is large compared to to A1, the response of each element in

the spatial frequency map is contrast-normalized across the retinotopic map,
resulting in contrast-constancy. This is shown in the right panel of Fig. 1.9:
the responses to low contrast (dashed curve) and high contrast (solid curve)
are identical.

In order to compensate the blurring effects introduced at the retinal level,
the RECOD model uses a connectivity pattern across retinotopic maps, but
instead of being feedforward as those giving rise to spatial-frequency selec-
tivity, these connections are feedback (or re-entrant), as illustrated at the
top of Fig. 1.6. Note that, for simplicity, in this figure only the connections
for the medium spatial frequencies (M) are shown. Because of these feedback
connections and the dynamic properties of the network, the activity pattern
is “sharpened” in time to compensate for the early blurring effects. [25, 37]. In
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Fig. 1.9. Effect of contrast on model responses: Model responses for a high-contrast
edge (solid curve) and a low-contrast edge (dashed curve) of 2 arcmin blur in the
first post-retinal layer (left) and the second post-retinal layer (right). From [44]
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Fig. 1.10. Temporal sharpening of model responses to a blurred edge in the second
post-retinal layer: responses at 40 ms (continuous line) and 120 ms (dashed line) are
shown superimposed. From [44]

Fig. 1.10, the response of the model neurons in the second post-retinal layer
to an edge stimulus with 2 arcmin base blur at 40 ms after stimulus onset is
shown by the dashed curve. The response at 120 ms after stimulus onset is
shown by the solid curve. Comparing the width of these activities, one can
see that the neural encoding of the edge is initially (at 40 ms) blurred but
becomes sharper with more processing time (at 120 ms).

1.3.3 Perception and Discrimination of Edge Blur

The proposed encoding scheme across retinotopic and spatial-frequency maps
has been tested by comparing model predictions to a wide range of expe-
rimental data [44]. For example, Fig. 1.11 provides a comparison of model
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predictions to experimental data on the effect of exposure duration on per-
ceived blur for base blurs of 0, 2, and 4 arcmin. The model has been also

200 400 600 800 1000

0

1

2

3

4

5

6
Model 

Data 

Exposure Duration (msec) 

P
er

ce
iv

ed
 B

lu
r 

(a
rc

m
in

) 

0 arcmin 

2 arcmin 

4 arcmin 

Fig. 1.11. Model predictions (solid lines) and data (dashed lines) for the effect of
exposure duration on perceived blur for base blurs of 0, 2, and 4 arcmin. From [44]

Fig. 1.12. To measure the blur discrimination threshold, first a base blur is chosen
(solid curve). The ability of the observer to tell apart slightly more blurred edges
(dashed line) in comparison to this base blur is quantified by psychophysical methods

tested for blur discrimination thresholds, i.e. the ability of the observer to
tell apart two slightly different amounts of edge blur. As shown in Fig. 1.12,
first a base blur (solid curve) is chosen, and the ability of the observer to tell
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apart slightly more blurred edges (dashed line) in comparison to this base
blur is quantified by psychophysical methods. Figure 1.13 compares model
predictions and data from [55] for the effect of exposure duration on blur
discrimination thresholds. For both blur perception and discrimination, one
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Fig. 1.13. Model predictions (solid line) and data (dashed lines) of three observers
from [55] for blur discrimination threshold as a function of exposure duration. From
[44]

observes that an exposure duration on the order of 100 ms is required to reach
veridical perception and optimal discrimination of edge blur, and that a good
agreement between experimental data and model predictions is found.

Figure 1.14 compares model predictions and data for blur discrimination as
a function of base blur. Discrimination thresholds follow a U-shaped function
with a minimum value around 1 arcmin. The optics of the eye limits perfor-
mance for base blurs less than 1 arcmin. For base blurs larger than 1 arcmin,
neural factors limit performance.

1.3.4 On and Off Pathways and Edge Localization

Receptive fields of retinal ganglion cells can also be classified as on-center off-
surround (Fig. 1.15, left) and off-center on-surround (Fig. 1.15, right). These
receptive fields contain two concentric circular regions, called the center and
the surround. If a stimulus placed in the center of the receptive field excites the
neuron, then a stimulus placed in the surround will inhibit the neuron. Thus
the center and the surround of the receptive field have antagonistic effects
on the neuron. A receptive field whose center is excitatory is called on-center
off-surround. Similarly, a receptive field whose center is inhibitory is called
off-center on-surround. The outputs of the on-center off-surround cells give
rise to the on pathway, and the outputs of the off-center on-surround cells
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Fig. 1.14. Model predictions and data from [26] (for observers JH and CD) and
from [40] (for observer RO) plotting blur discrimination thresholds as a function of
base blur. From [44]

give rise to the off pathway. Because the spatial integration of inputs for the
P cells is linear, the signals generated by an edge in the on and off pathways
will exhibit an odd-symmetry; and their point of balance would correspond
to the location of the edge. It has been shown that a contrast-dependent
asymmetry exists between the on and off pathways in the human visual system
[53]. An implication of this asymmetry is that, if edges are localized based
on a comparison of activities in the on and off channels then a systematic
mislocalization of the edge should be observed as the contrast of the edge is
increased. Indeed, Bex and Edgar [5] showed that the perceived location of
an edge shifts towards the darker side of the edge as the contrast is increased.
Their data are shown in Fig. 1.16. Negative values on the y-axis indicate that
the perceived edge location is shifted towards the darker side of the edge. For a
sharp edge (0 arcmin blur), no mislocalization is observed for contrasts ranging
from 0.1 to 0.55. However, as the edge blur is increased a systematic shift
towards the darker side of the edge is observed. To estimate quantitatively this
effect in the model, we introduced an off pathway whose activities consisted
of negatively scaled version of the activities in the on pathway. This scaling
took into account the aforementioned asymmetry. As a result, as contrast is
increased above approximately 0.2, the activities in the off pathway increased
slightly more than those in the on pathway. The quantitative predictions of
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Fig. 1.15. Left: On-center off-surround receptive field; right: off-center on-surround
receptive field. Plus and minus symbols indicate excitatory and inhibitory regions of
the receptive field, respectively

the model are superimposed on the data in Fig. 1.16. Overall, one can see a
good quantitative agreement between the model and the data.

1.3.5 Trade-off Between Spatial and Temporal Deblurring

The aforementioned simulations studied model behavior under the conditions
of visual fixation for a static boundary, i.e. when the position of the bounda-
ry remains fixed over retinotopic maps. Under these conditions, feedforward
retino-cortical signals send blurred boundary information, and gradually post-
retinal feedback signals become dominant and construct sharpened represen-
tation of boundaries. However, because post-retinal signalling involves positive
feedback, at least two major problems need to be taken into consideration:

1) When the positive feedback signals become dominant, the system loses
its sensitivity to changes in the input. For example, if the input moves spa-
tially, the signals at the previous location of the input will persist through
positive feedback loops and the resulting perception would be highly smeared,
similar to pictures of moving objects taken by a camera at long exposure du-
ration. Thus, within a single pathway spatial sharpening comes at the cost of
temporal blurring.

2) If left uncontrolled, positive feedback can make the system unstable.
We suggest that the complementary magnocellular pathway solves these

problems by rapidly “resetting” the parts of retinotopic map where changes in
the input are registered. Accordingly, the real-time operation of the RECOD
model unfolds in three phases:

(i) Reset phase: Assume that the post-retinal network has some residual
persistent activity due to a previous input. When a new input is applied to
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Fig. 1.16. Model predictions and data showing the effect of contrast on the per-
ceived mislocalization of edges with different amounts of blur. The data points are
digitized from [5] and represent the mean and the standard error of the mean com-
puted from two observers. From [44]

the RECOD model, the fast-transient neurons respond first. This transient
activity inhibits the post-retinal network and removes the persisting residual
activity.

(ii) Feedforward dominant phase: The slow-sustained neurons respond next
to the applied input and drive the post-retinal network with excitatory inputs.

(iii) Feedback dominant phase: When the activity of the sustained neurons
decays from their peak to a plateau, the feedback becomes dominant com-
pared to the sustained feedforward input. This results in the sharpening of
the input spatial pattern. Thus, the feedforward reset mode achieves temporal
deblurring, and the feedback mode achieves spatial deblurring.

According to the three-phase operation of the model, a single continuous
presentation of a blurred edge is necessary for the feedback to sufficiently
sharpen the neural image across the retinotopic map. Multiple short expo-
sures cannot achieve the same amount of sharpening as a single long exposure
since the post-retinal feedback is reset by the retinal transients. Westheimer
[55] measured blur discrimination thresholds for an edge whose blur was tem-
porally modulated in different ways. The reference stimulus was a sharp edge.
In the first experiment, the test stimulus was a blurred edge presented alone
for durations of 30 ms and 130 ms. Next, the test stimulus was presented
as a combination of (i) a sharp edge for 100 ms and a blurred edge for the
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next 30 ms, (ii) a blurred edge for the first 30 ms and a sharp edge for the
next 30 ms, and (iii) a blurred edge for 100 ms and a sharp edge for the next
100 ms. As shown in Table 1, the RECOD model predicts lower differences in
the luminance gradients between the test and reference stimuli for conditions
(i) and (ii) above than for a 30 ms presentation of a blurred edge. This gives
higher blur discrimination thresholds. Similarly, condition (iii) above yields
a lower difference in the luminance gradients between the test and reference
stimuli than when the test stimuli is a blurred edge presented for 130 ms.

Table 1.1. Model and data from Westheimer [55] for blur discrimination thres-
holds (arcmin) obtained with hybrid presentations

30 ms 130 ms (i) (ii) (iii)
Data 3.8 1.43 7.17 8.56 2.06
Model 2.6 1.2 5.33 5.33 1.44

1.3.6 Perceived Blur for Moving Stimuli

Another way to test the proposed reset phase is to compare model predic-
tions with data on the perception of blur for moving stimuli. In normal view-
ing conditions, moving objects do not appear blurred. Psychophysical studies
showed that perceived blur for moving objects depends critically on the ex-
posure duration of stimuli. For example, moving targets appear less blurred
than predicted from the visual persistence of static targets when the exposure
duration is longer than about 40 ms [10, 28]. This reduction of perceived blur
for moving targets was named “motion deblurring” [10].

Model predictions for motion deblurring were tested using a “two-dot
paradigm”, where the stimulus consisted of two horizontally separated dots
moving in the horizontal direction, as shown in the top panel of Fig. 1.17.
The middle panel of the figure shows a space-time diagram of the dots’ tra-
jectories. The afferent short-latency-transient and long-latency-sustained sig-
nals are depicted in the bottom panel of Fig. 1.17 by dashed lines and the
gray region, respectively. The sustained activity corresponding to both dots
are highly spread over space. However, at the post-retinal level, the inter-
action between the transient activity generated by the trailing dot and the
sustained activity generated by the leading dot results in a substantial de-
crease of the spatial spread of the activity generated by the leading dot. From
Fig. 1.17, one can see that the exposure duration needs to be long enough for
the transient activity conveyed by the magnocellular pathway for the trailing
dot to spatiotemporally overlap with the sustained activity conveyed by the
parvocellular pathway for the leading dot.
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Fig. 1.17. Top: Two-dimensional representation of the input. Arrows indicate mo-
tion. Middle: spatiotemporal representation of the input. Bottom: superimposed af-
ferent transient and sustained signals

In order to compare model predictions quantitatively with data, Fig. 1.18
plots the duration of perceived blur (calculated as the ratio of the length of
perceived blur to the speed) for the leading and the trailing dot, respectively,
for two dot-to-dot separations along with the corresponding experimental data
[14].

In all cases, when the exposure duration is shorter than 60 msec, no signi-
ficant reduction of blur is observed and the curves for the leading and trailing
dots for both separations largely overlap. The mechanistic explanation of this
effect in our model is as follows: due to the relative delay between transient
and sustained activities, no spatial overlap is produced when the exposure
duration is short. When the moving dots are exposed for a longer duration,



1 Spatiotemporal Dynamics of Visual Perception 21

20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

D
u

ra
ti

o
n

 o
f 

B
lu

r 
(m

se
c)

20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

Data - Small Separation

Data - Large Separation

  Model - Small Separation

  Model - Large Separation

Leading Dot Trailing Dot 

Exposure Duration (msec) 

Fig. 1.18. Duration of blur as a function of exposure duration for the leading (left)
and trailing (right) dots in the two-dot paradigm for two dot-to-dot separations.
From [43]

these two activities overlap and the inhibitory effect of the transient activity
on the sustained one reduces the persistent activity from the leading dot. A
significant reduction of perceived blur is observed for the leading dot when the
dot-to-dot distance is small both in the model and in data. When the dot-to-
dot separation is larger, the spatiotemporal overlap of transient and sustained
activities is reduced, thereby decreasing the effect of deblurring in agreement
with data (Fig. 1.18). For the trailing dot, dot-to-dot separation has no effect
on post-retinal activities, and no significant reduction in perceived blur is
observed. Quantitatively, the model is in very good agreement with data with
the exception of some underestimation for long exposure duration in the case
of the trailing dot.

1.3.7 Dynamic Viewing as a Succession of Transient Regimes

Under normal viewing conditions, our eyes move from one fixation point to
another, remaining at each fixation for a few hundred millisecons. Our studies
show that a few hundred milliseconds is the time required to attain an “opti-
mal” encoding of object boundaries (Figs. 1.11, 1.13, and 1.18). Therefore, the
timing of eye movements correlates well with the timing of boundary analysis.
We also suggest that these frequent changes in gaze help the visual system
remain mainly at its transient regime and thus avoid unstable behavior that
would otherwise result from extensive positive feedback loops observed in the
post-retinal areas. Within our theoretical framework, the visual and the oculo-
motor system together “reset” the activities in the positive feedback loops by
using the inhibitory fast transient signals originating from the magnocellular
pathway.
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1.3.8 Trade-off Between Reset and Persistence

If the system is reset by exogenous signals, as suggested above, one needs to
consider the problem that may arise because of internal noise: internal noise in
the M pathway could cause frequent resets of information processing in areas
that compute object boundaries and form. In addition, such rapid undesirable
reset cycles may also occur because of small involuntary eye movements as well
as because of small changes in the inputs. We suggest that the inhibition from
the P-driven system on the M-driven system prevents these resets through
a competition between the two systems (see Fig. 1.5). In our simulations re-
ported in the previous sections, for simplicity we did not include sustained
on transient inhibition, for both the inputs and the neural activities were
noise-free. The proposed competition between the M-driven and the P-driven
systems can be tested by using stimuli that activate successively in time spa-
tially nonoverlapping but adjacent regions. The perceptual correlates for such
stimuli have been studied extensively in the masking literature [3, 6, 8]. If we
label the stimulus whose perceptual and/or motor effects are measured as the
“target” stimulus and the other stimulus as the “mask” stimulus (Fig. 1.19),
then the condition where the mask is presented in time before the target
is called paracontrast. The condition where the mask is presented after the
target is called metacontrast [3, 6, 8]. Based on a broad range of masking

Fig. 1.19. A typical stimulus configuration used in masking experiments. The cen-
tral disk serves as the target stimulus and the surrounding ring serves as the mask
stimulus

data Breitmeyer [7, 6] proposed reciprocal inhibition between sustained and
transient channels, and this reciprocal inhibition is also an essential part of
the RECOD model. Consider metacontrast: here the aftercoming mask would
reset the activity related to the processing of the target. Indeed, a typical
metacontrast function is a U-shaped function suggesting that the maximum
suppression of target processing occurs when the mask is delayed so that the
fast transient activity generated by the mask overlaps in time with the slower
sustained activity generated by the target. If the transient activity generated
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by the mask can be suppressed by sustained activity, then it should be possible
to introduce a second mask (Fig. 1.20) whose sustained activity can suppress
the transient activity of the primary mask. This in turn results in the disin-
hibition of the target stimulus. In support of this prediction, several studies

time

outer ring
(secondary mask)

disk (target)

inner ring
(primary mask)

Fig. 1.20. Left: modification of the stimulus configuration shown in Fig. 1.19. The
second outer ring serves as the secondary mask. Right: The temporal order of the
stimuli

showed that the second mask allows the recovery of an otherwise suppressed
target (e.g. [17]). Furthermore, Breitmeyer et al. [9] showed that the effect of
the secondary mask in producing the disinhibition (or recovery) of the target
starts when it is presented at about 180 ms prior to the target and gradually
increases until it becomes simultaneous with the primary mask. This relatively
long range of target recovery provides a time window during which sustained
mechanisms can exert their inhibitory influence so as to prevent reset signals
generated by noise.

1.3.9 Attention: Real-time Modulation of the Balance Between
Reset and Persistence

Having a mechanism to reduce reset signals opens another possibility: mo-
dulatory mechanisms can bias the competition in favor of the sustained me-
chanisms and thereby allow a more persistent and enhanced registration and
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analysis of stimuli. We suggest that attention serves that purpose. Although a
universally adopted definition of attention does not exist, it is often defined as
a selection mechanism whereby resources are focused on certain item(s), loca-
tion(s), etc. Within the framework of the RECOD model, the reset mechanism
curtails cortical activity and therefore attention necessitates a reduction of the
reset signals for the attended locations, features, objects, and so on. Similarly,
attention can also increase the gain of reset signals for unattended locations
and objects. A simple way to achieve this in RECOD is to bias the com-
petition between transient and sustained systems in favor of the sustained
system for attended locations, features, and objects; and bias the competi-
tion in favor of the transient system for unattended locations, features, and
objects. For example, assume that attention primes part of the retinotopic
map as illustrated in Fig. 1.21. The model then predicts in agreement with
experimental data that attention should increase visible persistence [54], de-
crease temporal sensitivity [57], increase spatial sensitivity [56], and decrease
masking [21, 45, 48]. Similarly, it is predicted that attention should enhance
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Fig. 1.21. Illustration of attention in RECOD. Priming the activation of the cells
in the P pathway biases the competition between sustained and transient systems
in favor of the sustained system
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target recovery, should increase reaction times to a target in paracontrast,
and increase motion blur. These predictions have not been tested.

1.4 Summary

In this chapter we reviewed some fundamental properties of the primate vi-
sual system and highlighted maps and pathways as spatiotemporal informa-
tion encoding and processing strategies. We suggest that maps represent the
geometry of the fusion between structure and function in the nervous system,
and that the pathways represent complementary aspects of processing whose
interactions can solve conflicting requirements arising within a single proces-
sing stream. The use of retinotopic and spatial-frequency maps was illustrated
by considering the problem of object boundary encoding. The use of parallel,
complementary pathways was illustrated by considering how the interactions
between magnocellular and parvocellular pathways can resolve the trade-off
between spatial and temporal deblurring. We suggested that the interactions
between magnocellular and parvocellular pathways play a fundamental role
in keeping the system in a succession of transient regimes, thereby avoiding
unstable behavior that would result from complex feedback loops that in-
clude extensive positive feedback. Finally, we suggested that attention can
be viewed as a modulation of the dynamic balance between sustained and
transient systems.

Appendix: Fundamental Equations of the Model and Their Neuro-
physiological Bases

The first type of equation used in the model has the form of a generic
Hodgkin–Huxley equation:

dVm

dt
= −(Ep + Vm)gp + (Ed − Vm)gd − (Eh + Vm)gh, (1.1)

where Vm represents the membrane potential; gp, gd, gh are the conductances
for passive, depolarizing, and hyperpolarizing channels, respectively; with Ep,
Ed, Eh representing their Nernst potentials. This equation has been used
extensively in neural modeling to characterize the dynamics of membrane
patches, single cells, as well as networks of cells (rev. [25, 31]). For simplicity,
we will assume Ep = 0 and use the symbols B, D, and A for Ed, Eh, gp,
respectively, to obtain the generic form for multiplicative or shunting equation
(rev. [25]):

dVm

dt
= −AVm + (B − Vm)gd − (D + Vm)gh. (1.2)
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The depolarizing and hyperpolarizing conductances are used to represent
the excitatory and inhibitory inputs, respectively. The second type of equa-
tion is a simplified version of Eq. (2), called the additive model, or the leaky-
integrator model, where the external inputs influence the activity of the cell
not through conductance changes but directly as depolarizing Id and hyper-
polarizing Ih currents yielding the form:

dVm

dt
= −AVm + Id − Ih. (1.3)

Mathematical analyses showed that, with appropriate connectivity pat-
terns, shunting networks can automatically adjust their dynamic range to
process small and large inputs (rev. [25]). Accordingly, we use shunting equa-
tions when we have interactions among a large number of neurons so that a
given neuron can maintain its sensitivity to a small subset of its inputs with-
out running into saturation when a large number of inputs become active. We
use the simplified additive equations when the interactions involve few neu-
rons. Finally, a third type of equation is used to express biochemical reactions
of the form

S + Z → Y → X → S + Z, (1.4)

where a biochemical agent S, activated by the input, interacts with a trans-
ducing agent Z (e.g. a neurotransmitter) to produce an active complex Y that
carries the signal to the next processing stage. This active complex decays to
an inactive state X, which in turn dissociates back into S and Z. It can be
shown that (see Appendix in Sarikaya et al. [47]), when the active state X
decays very fast, the dynamics of this system can be written as:

1
τ

dz
dt

= α(β − z)γSz, (1.5)

with the output given by y(t) = γ
δ S(t)z(t), where s, z, y represent the con-

centrations of S, Z, and Y, respectively, and γ, δ, α denote rates of complex
formation, decay to inactive state, and dissociation, respectively. This equa-
tion has been used in a variety of neural models, in particular to represent
temporal adaptation, or gain control property, occurring, for example, through
synaptic depression (e.g. [1, 13, 22, 24, 37, 38]).
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