
1

Introduction

This book is concerned with the challenge of mining knowledge from data.
The world is full of data. Some of the oldest written records on clay tablets
are dated back to 4000 BC. With the creation of paper, data had been stored
in myriads of books and documents. Today, with increasing use of computers,
tremendous volumes of data have filled hard disks as digitized information. In
the presence of the huge amount of data, the challenge is how to truly under-
stand, integrate, and apply various methods to discover and utilize knowledge
from data. To predict future trends and to make better decisions in science,
industry, and markets, people are starved for discovery of knowledge from this
morass of data.

Though ‘data mining’ is a new term proposed in recent decades, the tasks
of data mining, such as classification and clustering, have existed for a much
longer time. With the objective to discover unknown patterns from data,
methodologies of data mining are derived from machine learning, artificial
intelligence, and statistics, etc. Data mining techniques have begun to serve
fields outside of computer science and artificial intelligence, such as the busi-
ness world and factory assembly lines. The capability of data mining has been
proven in improving marketing campaigns, detecting fraud, predicting diseases
based on medical records, etc.

This book introduces fuzzy neural networks (FNNs), multi-layer percep-
tron neural networks (MLPs), radial basis function (RBF) neural networks,
genetic algorithms (GAs), and support vector machines (SVMs) for data min-
ing. We will focus on three main data mining tasks: data dimensionality reduc-
tion (DDR), classification, and rule extraction. For more data mining topics,
readers may consult other data mining text books, e.g., [129][130][346].

A data mining system usually enables one to collect, store, access, process,
and ultimately describe and visualize data sets. Different aspects of data min-
ing can be explored independently. Data collection and storage are sometimes
not included in data mining tasks, though they are important for data min-
ing. Redundant or irrelevant information exists in data sets, and inconsistent
formats of collected data sets may disturb the processes of data mining, even

2 1 Introduction

mislead search directions, and degrade results of data mining. This happens
because data collectors and data miners are usually not from the same group,
i.e., in most cases, data are not originally prepared for the purpose of data
mining. Data warehouse is increasingly adopted as an efficient way to store
metadata. We will not discuss data collection and storage in this book.

1.1 Data Mining Tasks

There are different ways of categorizing data mining tasks. Here we adopt the
categorization which captures the processes of a data mining activity, i.e., data
preprocessing, data mining modelling, and knowledge description. Data pre-
processing usually includes noise elimination, feature selection, data partition,
data transformation, data integration, and missing data processing, etc. This
book introduces data dimensionality reduction, which is a common technique
in data preprocessing. fuzzy neural networks, multi-layer neural networks,
RBF neural networks, and support vector machines (SVMs) are introduced
for classification and prediction. And linguistic rule extraction techniques for
decoding knowledge embedded in classifiers are presented.

1.1.1 Data Dimensionality Reduction

Data dimensionality reduction (DDR) can reduce the dimensionality of the hy-
pothesis search space, reduce data collection and storage costs, enhance data
mining performance, and simplify data mining results. Attributes or features
are variables of data samples and we consider the two terms interchangeable
in this book.

One category of DDR is feature extraction, where new features are derived
from the original features in order to increase computational efficiency and
classification accuracy. Feature extraction techniques often involve non-linear
transformation [60][289]. Sharma et al. [289] transformed features non-linearly
using a neural network which is discriminatively trained on the phonetically
labelled training data. Coggins [60] had explored various non-linear transfor-
mation methods, such as folding, gauge coordinate transformation, and non-
linear diffusion, for feature extraction. Linear discriminant analysis (LDA)
[27][168][198] and principal components analysis (PCA) [49][166] are two pop-
ular techniques for feature extraction. Non-linear transformation methods are
good in approximation and robust for dealing with practical non-linear prob-
lems. However, non-linear transformation methods can produce unexpected
and undesirable side effects in data. Non-linear methods are often not invert-
ible, and knowledge learned by applying a non-linear transformation method
in one feature space might not be transferable to the next feature space. Fea-
ture extraction creates new features, whose meanings are difficult to interpret.

The other category of DDR is feature selection. Given a set of original
features, feature selection techniques select a feature subset that performs the

1.1 Data Mining Tasks 3

best for induction systems, such as a classification system. Searching for the
optimal subset of features is usually difficult, and many problems of feature
selection have been shown to be NP-hard [21]. However, feature selection tech-
niques are widely explored because of the easy interpretability of the features
selected from the original feature set compared to new features transformed
from the original feature set. Lots of applications, including document classi-
fication, data mining tasks, object recognition, and image processing, require
aid from feature selection for data preprocessing.

Many feature selection methods have been proposed in the literature. A
number of feature selection methods include two parts: (1) a ranking criterion
for ranking the importance of each feature or subsets of features, (2) a search
algorithm, for example backward or forward search. Search methods in which
features are iteratively added (‘bottom-up’) or removed (‘top-down’) until
some termination criterion is met are referred to as sequential methods. For
instance, sequential forward selection (SFS) [345] and sequential backward se-
lection (SBS) [208] are typical sequential feature selection algorithms. Assume
that d is the number of features to be selected, and n is the number of original
features. SFS is a bottom-up approach where one feature which satisfies some
criterion function is added to the current feature subset at a time until the
number of features reaches d. SBS is a top-down approach where features are
removed from the entire feature set one by one until D−d features have been
deleted. In both the SFS algorithm and the SBS algorithm, the number of fea-
ture subsets that have to be inspected is n+(n−1)+(n−2)+ · · ·+(n−d+1).
However, the computational burden of SBS is higher than SFS, since the di-
mensionality of inspected feature subsets in SBS is greater than or equal to d.
For example, in SBS, all feature subsets with dimension n − 1 are inspected
first. The dimensionality of inspected feature subsets is at most equal to d in
SFS.

Many feature selection methods have been developed based on traditional
SBS and SFS methods. Different criterion functions including or excluding a
subset of features to the selected feature set are explored. By ranking each
feature’s importance level in separating classes, only n feature subsets are
inspected for selecting the final feature subset. Compared to evaluating all
feature combinations, ranking individual feature importance can reduce com-
putational cost, though better feature combinations might be missed in this
kind of approach. When computational cost is too heavy to stand, feature
selection based on ranking individual feature importance is a preference.

Based on an entropy attribute ranking criterion, Dash et al. [71] removed
attributes from the original feature set one by one. Thus only n feature sub-
sets have to be inspected in order to select a feature subset, which leads to
a high classification accuracy. And, there is no need to determine the num-
ber of features selected in advance. However, the class label information is
not utilized in Dash et al.’s method. The entropy measure was used in [71] for
ranking attribute importance. The class label information is critical for detect-
ing irrelevant or redundant attributes. It motivates us to utilize the class label

4 1 Introduction

information for feature selection, which may lead to better feature selection
results, i.e., smaller feature subsets with higher classification accuracy.

Genetic algorithms (GAs) are used widely in feature selection [44][322][351].
In a GA feature selection method, a feature subset is represented by a binary
string with length n. A zero or one in position i indicates the absence or
presence of feature i in the feature subset. In the literature, most feature se-
lection algorithms select a general feature subset (class-independent features)
[44][123][322] for all classes. Actually, a feature may have different discrim-
inatory capability for distinguishing different classes from other classes. For
discriminating patterns of a certain class from other patterns, a multi-class
data set can be considered as a two-class data set, in which all the other
classes are treated as one class against the current processed class. For exam-
ple, there is a data set containing the information of ostriches, parrots, and
ducks. The information of the three kinds of birds includes weight, feather
color (colorful or not), shape of mouth, swimming capability (whether it can
swim or not), flying capability (whether it can fly or not), etc. According to
the characteristics of each bird, the feature ‘weight’ is sufficient for separating
ostriches from the other birds, the feature ‘feather color’ can be used to dis-
tinguish parrots from the other birds, and the feature ‘swimming capability’
can separate ducks from the other birds.

Thus, it is desirable to obtain individual feature subsets for the three
kinds of birds by class-dependent feature selection, which separates each one
from others better than using a general feature subset. The individual char-
acteristics of each class can be highlighted by class-dependent features. Class-
dependent feature selection can also facilitate rule extraction, since lower di-
mensionality leads to more compact rules.

1.1.2 Classification and Clustering

Classification and clustering are two data mining tasks with close relation-
ships. A class is a set of data samples with some similarity or relationship
and all samples in this class are assigned the same class label to distinguish
them from samples in other classes. A cluster is a collection of objects which
are similar locally. Clusters are usually generated in order to further classify
objects into relatively larger and meaningful categories.

Given a data set with class labels, data analysts build classifiers as predic-
tors for future unknown objects. A classification model is formed first based on
available data. Future trends are predicted using the learned model. For exam-
ple, in banks, individuals’ personal information and historical credit records
are collected to build a model which can be used to classify new credit appli-
cants into categories of low, medium, or high credit risks. In other cases, with
only personal information of potential customers, for example, age, education
levels, and range of salary, data miners employ clustering techniques to group
the clusters according to some similarities and further label the customers
into low, medium, or high levels for later targeted sales.

1.1 Data Mining Tasks 5

In general, clustering can be employed for dealing with data without class
labels. Some classification methods cluster data into small groups first before
proceeding to classification, e.g. in the RBF neural network. This will be
further discussed in Chap. 4.

1.1.3 Rule Extraction

Rule extraction [28][150][154][200] seeks to present data in such a way that
interpretations are actionable and decisions can be made based on the knowl-
edge gained from the data. For data mining clients, they expect a simple
explanation of why there are certain classification results: what is going on
in a high-dimensional database, and which feature affects data mining results
significantly, etc. For example, a succinct description of a market behavior
is useful for making decisions in investment. A classifier learns from training
data and stores learned knowledge into the classifier parameters, such as the
weights of a neural network classifier. However, it is difficult to interpret the
knowledge in an understandable format by the classifier parameters. Hence,
it is desirable to extract IF–THEN rules to represent valuable information in
data.

Rule extraction can be categorized into two major types. One is concerned
with the relationship between input attributes and output class labels in la-
belled data sets. The other is association rule mining, which extracts rela-
tionships between attributes in data sets which may not have class labels.
Association rule extraction techniques are usually used to discover relation-
ships between items in transaction data. An association rule is expressed as
‘X ⇒ Z’, where X and Z are two sets of items. ‘X ⇒ Z’ represents that if a
transaction T ∈ D contains X, then the transaction also contains Z, where D
is the transaction data set. A confidence parameter, which is the conditional
probability p(Z ∈ T | X ∈ T) [137], is used to evaluate the rule accuracy.
The association rule mining can be applied for analyzing supermarket trans-
actions. For example, ‘A customer who buys butter will also buy bread with a
certain probability’. Thus, the two associated items can be arranged in close
proximity to improve sales according to this discovered association rule. In
the rule extraction part of this book, we focus on the first type of rule extrac-
tion, i.e., rule extraction based on classification models. Usually, association
rule extraction can be treated as the first category of rule extraction, which is
based on classification. For example, if an association rule task is to inspect
what items are apt to be bought together with a particular item set X, the
item set X can be used as class labels. The other items in a transaction T
are treated as attributes. If X occurs in T , the class label is 1, otherwise it
is labelled 0. Then, we could discover the items associated with the occur-
rence of X, and also the non-occurrence of X. The association rules can be
equally extracted based on classification. The classification accuracy can be
considered as the rule confidence.

6 1 Introduction

RBF neural networks are functionally equivalent to fuzzy inference systems
under some restrictions [160]. Each hidden neuron could be considered as a
fuzzy rule. In addition, fuzzy rules could be obtained by combining fuzzy logic
with our crisp rule extraction system. In Chap. 3, fuzzy rules are presented. For
crisp rules, there are three kinds of rule decision boundaries found in the liter-
ature [150][154][200][214]: hyper-plane, hyper-ellipse, and hyper-rectangular.
Compared to the other two rule decision boundaries, a hyper-rectangular de-
cision boundary is simpler and easier to understand. Take a simple example;
when judging whether a patient gets a high fever, his body temperature is
measured and a given temperature range is preferred to a complex function
of the body temperature. Rules with a hyper-rectangular decision boundary
are more understandable for data mining clients. In the RBF neural network
classifier, the input data space is separated into hyper-ellipses, which facili-
tates the extraction of rules with hyper-rectangular decision boundaries. We
also describe crisp rules in Chap. 7 and Chap. 10 of this book.

1.2 Computational Intelligence Methods for Data
Mining

1.2.1 Multi-layer Perceptron Neural Networks

Neural network classifiers are very important tools for data mining. Neural
interconnections in the brain are abstracted and implemented on digital com-
puters as neural network models. New applications and new architectures of
neural networks (NNs) are being used and further investigated in companies
and research institutes for controlling costs and deriving revenue in the mar-
ket. The resurgence of interest in neural networks has been fuelled by the
success in theory and applications.

A typical multi-layer perceptron (MLP) neural network shown in Fig. 1.1 is
most popular in classification. A hidden layer is required for MLPs to classify
linearly inseparable data sets. A hidden neuron in the hidden layer is shown
in Fig. 1.2.

The jth output of a feedforward MLP neural network is:

yj = f(
K∑

i=1

W
(2)
ij φi(x) + b

(2)
j), (1.1)

where W
(2)
ij is the weight connecting hidden neuron i with output neuron j.

K is the number of hidden neurons. b
(2)
j is the bias of output neuron j. φi(x)

is the output of hidden neuron i. x is the input vector.

φi(x) = f(W(1)
i · x + b

(1)
i), (1.2)

1.2 Computational Intelligence Methods for Data Mining 7

1
i

x

2
i

x
 1
,

m
i

x

im

x

. . .

...
 ...

...
 ...

1

y

k

y

M

y

Fig. 1.1. A two-layer MLP neural network with a hidden layer and an output layer.
The input nodes do not carry out any processing.

1
i

x

2
i

x

1
,

m
i

x

im

x

.

.

.

m

w

1

m

w

2

w

1
w

Fig. 1.2. A hidden neuron of the MLP.

where W(1)
i is the weight vector connecting the input vector with hidden

neuron i. b
(1)
i is the bias of hidden neuron i.

A common activation function f is a sigmoid function. The most common
of the sigmoid functions is the logistic function:

f(z) =
1

1 + e−βz
. (1.3)

where β is the gain.
Another sigmoid function often used in MLP neural networks is the hy-

perbolic tangent function that takes on values between −1 and 1:

8 1 Introduction

f(z) =
eβz − e−βz

eβz + e−βz
, (1.4)

There are many training algorithms for MLP neural networks. As sum-
marized in [63][133], the training algorithms include: (1) gradient descent er-
ror back-propagation, (2) gradient descent with adaptive learning rate back-
propagation, (3) gradient descent with momentum and adaptive learning
rate back-propagation, (4) Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-
Newton back-propagation, (5) bayesian regularization back-propagation, (6)
conjugate gradient back-propagation with Powell–Beale restarts, (7) conjugate
gradient back-propagation with Fletcher–Reeves updates, (8) conjugate gra-
dient back-propagation with Polak–Ribiere updates, (9) scaled conjugate gra-
dient back-propagation, (10) the Levenberg–Marquardt algorithm, and (11)
one–step secant back-propagation.

1.2.2 Fuzzy Neural Networks

Symbolic techniques and crisp (non-fuzzy) neural networks have been widely
used for data mining. Symbolic models are represented as either sets of ‘IF–
THEN’ rules or decision trees generated through symbolic inductive algo-
rithms [30][251]. A crisp neural model is represented as an architecture of
threshold elements connected by adaptive weights. There have been exten-
sive research results on extracting rules from trained crisp neural networks
[110][116][200][297][313][356]. For most noisy data, crisp neural networks lead
to more accurate classification results.

Fuzzy neural networks (FNNs) combine the learning and computational
power of crisp neural networks with human-like descriptions and reasoning of
fuzzy systems [174][218][235][268][336][338]. Since fuzzy logic has an affinity
with human knowledge representation, it should become a key component of
data mining systems. A clear advantage of using fuzzy logic is that we can
express knowledge about a database in a manner that is natural for people
to comprehend. Recently, there has been much research attention devoted to
rule generation using various FNNs. Rather than attempting an exhaustive
literature survey in this area, we will concentrate below on some work directly
related to ours, and refer readers to a recent review by Mitra and Hayashi [218]
for more references.

In the literature, crisp neural networks often have a fixed architecture, i.e.,
a predetermined number of layers with predetermined numbers of neurons.
The weights are usually initialized to small random values. Knowledge-based
networks [109][314] use crude domain knowledge to generate the initial net-
work architecture. This helps in reducing the search space and time required
for the network to find an optimal solution. There have also been mechanisms
to generate crisp neural networks from scratch, i.e., initially there are no neu-
rons or weights, which are generated and then refined during training. For
example, Mezard and Nadal’s tiling algorithm [216], Fahlman and Lebiere’s

1.2 Computational Intelligence Methods for Data Mining 9

cascade correlation [88], and Giles et al.’s constructive learning of recurrent
networks [118] are very useful.

For FNNs, it is also desirable to shift from the traditional fixed architecture
design methodology [143][151][171] to self-generating approaches. Higgins and
Goodman [135] proposed an algorithm to create a FNN according to input
data. New membership functions are added at the point of maximum error
on an as-needed basis, which will be adopted in this book. They then used
an information-theoretic approach to simplify the rules. In contrast, we will
combine rules using a computationally more efficient approach, i.e., a fuzzy
similarity measure.

Juang and Lin [165] also proposed a self-constructing FNN with online
learning. New membership functions are added based on input–output space
partitioning using a self-organizing clustering algorithm. This membership
creation mechanism is not directly aimed at minimizing the output error as
in Higgins and Goodman [135]. A back-propagation-type learning procedure
was used to train network parameters. There were no rule combination, rule
pruning, or eliminations of irrelevant inputs.

Wang and Langari [335] and Cai and Kwan [41] used self-organizing clus-
tering approaches [267] to partition the input/output space, in order to deter-
mine the number of rules and their membership functions in a FNN through
batch training. A back-propagation-type error-minimizing algorithm is often
used to train network parameters in various FNNs with batch training [160],
[151].

Liu and Li [197] applied back-propagation and conjugate gradient methods
for the learning of a three-layer regular feedforward FNN [37]. They developed
a theory for differentiating the input–output relationship of the regular FNN
and approximately realized a family of fuzzy inference rules and some given
fuzzy functions.

Frayman and Wang [95][96] proposed a FNN based on the Higgins-
Goodman model [135]. This FNN has been successfully applied to a variety of
data mining [97] and control problems [94][98][99]. We will describe this FNN
in detail later in this book.

1.2.3 RBF Neural Networks

The RBF neural network [91][219] is widely used for function approximation,
interpolation, density estimation, classification, etc. For detailed theory and
applications of other types of neural networks, readers may consult various
textbooks on neural networks, e.g., [133][339].

RBF neural networks were first proposed in [33][245]. RBF neural networks
[22] are a special class of neural networks in which the activation of a hidden
neuron (hidden unit) is determined by the distance between the input vector
and a prototype vector. Prototype vectors refer to centers of clusters obtained
during RBF training. Usually, three kinds of distance metrics can be used in

10 1 Introduction

RBF neural networks, such as Euclidean, Manhattan, and Mahalanobis dis-
tances. Euclidean distance is used in this book. In comparison, the activation
of an MLP neuron is determined by a dot-product between the input pat-
tern and the weight vector of the neuron. The dot-product is equivalent to
the Euclidean distance only when the weight vector and all input vectors are
normalized, which is not the case in most applications.

Usually, the RBF neural network consists of three layers, i.e., the in-
put layer, the hidden layer with Gaussian activation functions, and the out-
put layer. The architecture of the RBF neural network is shown in Fig.
1.3. The RBF neural network provides a function Y : Rn → RM , which
maps n-dimensional input patterns to M -dimensional outputs ({(Xi, Yi) ∈
Rn × RM , i = 1, 2, ..., N}). Assume that there are M classes in the data set.
The mth output of the network is as follows:

ym(X) =
K∑

j=1

wmjøj(X) + wm0bm. (1.5)

Here X is the n-dimensional input pattern vector, m = 1, 2, ..., M , and K is
the number of hidden units. M is the number of classes (outputs). wmj is the
weight connecting the jth hidden unit to the mth output node. bm is the bias.
wm0 is the weight connecting the bias and the mth output node.

input
 Output

.

.

.

.

x
n

.
 y
M

x
1

x
k

.

.

.

y
1

.

.

.

.

.

.

.

.

.

.

Fig. 1.3. Architecture of an RBF neural network. (c© 2005 IEEE) We thank the
IEEE for allowing the reproduction of this figure, first appeared in [104].

1.2 Computational Intelligence Methods for Data Mining 11

The radial basis activation function ø(x) of the RBF neural network dis-
tinguishes it from other types of neural networks. Several forms of activation
functions have been used in applications:

1.
ø(x) = e−x2/2σ2

, (1.6)

2.
ø(x) = (x2 + σ2)

−β
, β > 0, (1.7)

3.
ø(x) = (x2 + σ2)

β
, β > 0, (1.8)

4.
ø(x) = x2ln(x); (1.9)

here σ is a parameter that determines the smoothness properties of the inter-
polating function.

The Gaussian kernel function and the function (Eq. (1.7)) are localized
functions with the property that ø → 0 as |x| → ∞. One-dimensional Gaussian
function is shown in Fig. 1.4. The other two functions (Eq. (1.8), Eq. (1.9))
have the property that ø →∞ as |x| → ∞.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

exp(−(x−5) 2/4)

x

Fig. 1.4. Bell-shaped Gaussian Profile: The kernel possesses the highest response
at the center x = 5 and degrades to zero quickly

In this book, the activation function of RBF neural networks is the
Gaussian kernel function. øj(X) is the activation function of the jth hidden
unit:

øj(X) = e−||X−Cj||2/2σj
2
, (1.10)

12 1 Introduction

where Cj and σj are the center and the width for the jth hidden unit, re-
spectively, which are adjusted during learning. When calculating the distance
between input patterns and centers of hidden units, Euclidean distance mea-
sure is employed in most RBF neural networks.

RBF neural networks are able to make an exact interpolation by pass-
ing through every data point {Xi, Yi}. In practice, noise is often present in
data sets and an exact interpolation may not be desirable. Proomhead and
Lowe [33] proposed a new RBF neural network model to reduce computational
complexity, i.e., the number of radial basis functions. In [219], a smooth in-
terpolating function is generated by the RBF network with a reduced number
of radial basis functions.

Consider the following two major function approximation problems:
(a) target functions are known. The task is to approximate the known

function by simpler functions, such as Gaussian functions,
(b) target functions are unknown but a set of samples {x, y(x)} are given.

The task is to approximate the function y.
RBF neural networks with free adjustable radial basis functions or proto-

type vectors are universal approximators, which can approximate any contin-
uous function with arbitrary precision if there are sufficient hidden neurons
[237][282]. The domain of y can be a finite set or an infinite set. If the domain
of y is a finite set, RBF neural networks deal with classification problems
[241].

The RBF neural network as a classifier differs from the RBF neural net-
work as an interpolation tool in the following aspects [282]:

1. The number of kernel functions in an RBF classifier model is usually much
fewer than the number of input patterns. The kernel functions are located
in the centers of clusters of RBF classifiers. The clusters separate the input
space into subspaces with hyper-ellipse boundaries.

2. In the approximation task, a global scaling parameter σ is used for all
kernel functions. However, in the classification task, different σ’s are em-
ployed for different radial basis kernel functions.

3. In RBF network classifier models, three types of distances are often used.
The Euclidean distance is usually employed in function approximation.

Generalization and the learning abilities are important issues in both func-
tion approximation and classification tasks. An RBF neural network can attain
no errors for a given training data set if the RBF network has as many hidden
neurons as the training patterns. However, the size of the network may be
too large when tackling large data sets and the generalization ability of such
a large RBF network may be poor. Smaller RBF networks may have better
generalization ability; however, too small a RBF neural network will perform
poorly on both training and test data sets. It is desirable to determine a train-
ing method which takes the learning ability and the generalization ability into
consideration at the same time.

Three training schemes for RBF networks [282] are as follows:

1.2 Computational Intelligence Methods for Data Mining 13

• One-stage training
In this training procedure, only the weights connecting the hidden layer
and the output layer are adjusted through some kind of supervised meth-
ods, e.g., minimizing the squared difference between the RBF neural net-
work’s output and the target output. The centers of hidden neurons are
subsampled from the set of input vectors (or all data points are used as
centers) and, typically, all scaling parameters of hidden neurons are fixed
at a predefined real value [282] typically.

• Two-stage training
Two-stage training [17][22][36][264] is often used for constructing RBF
neural networks. At the first stage, the hidden layer is constructed by
selecting the center and the width for each hidden neuron using various
clustering algorithms. At the second stage, the weights between hidden
neurons and output neurons are determined, for example by using the lin-
ear least square (LLS) method [22]. For example, in [177][280], Kohonen’s
learning vector quantization (LVQ) was used to determine the centers of
hidden units. In [219][281], the k-means clustering algorithm with the se-
lected data points as seeds was used to incrementally generate centers for
RBF neural networks. Kubat [183] used C.4.5 to determine the centers
of RBF neural networks. The width of a kernel function can be chosen
as the standard deviation of the samples in a cluster. Murata et al. [221]
started with a sufficient number of hidden units and then merged them to
reduce the size of an RBF neural network. Chen et al. [48][49] proposed
a constructive method in which new RBF kernel functions were added
gradually using an orthogonal least square learning algorithm (OLS). The
weight matrix is solved subsequently [48][49].

• Three-stage training
In a three-stage training procedure [282], RBF neural networks are ad-
justed through a further optimization after being trained using a two-
stage learning scheme. In [73], the conventional learning method was used
to generate the initial RBF architecture, and then the conjugate gradi-
ent method was used to tune the architecture based on the quadratic loss
function.

An RBF neural network with more than one hidden layer is also presented
in the literature. It is called the multi-layer RBF neural network [45]. However,
an RBF neural network with multiple layers offers little improvement over the
RBF neural network with one hidden layer. The inputs pass through an RBF
neural network and form subspaces of a local nature. Putting a second hidden
layer after the first hidden layer will lead to the increase of the localization
and the decrease of the valid input signal paths accordingly [138]. Hirasawa
et al. [138] showed that it was better to use the one-hidden-layer RBF neural
network than using the multi-layer RBF neural network.

Given N patterns as a training data set, the RBF neural network classifier
may obtain 100% accuracy by forming a network with N hidden units, each of

14 1 Introduction

which corresponds to a training pattern. However, the 100% accuracy in the
training set usually cannot lead to a high classification accuracy in the test
data set (the unknown data set). This is called the generalization problem. An
important question is: ‘how do we generate an RBF neural network classifier
for a data set with the fewest possible number of hidden units and with the
highest possible generalization ability?’.

The number of radial basis kernel functions (hidden units), the centers
of the kernel functions, the widths of the kernel functions, and the weights
connecting the hidden layer and the output layer constitute the key para-
meters of an RBF classifier. The question mentioned above is equivalent to
how to optimally determine the key parameters. Prior knowledge is required
for determining the so-called ‘sufficient number of hidden units’. Though the
number of the training patterns is known in advance, it is not the only element
which affects the number of hidden units. The data distribution is another el-
ement affecting the architecture of an RBF neural network. We explore how
to construct a compact RBF neural network in the latter part of this book.

1.2.4 Support Vector Machines

Support vector machines (SVMs) [62][326][327] have been widely applied to
pattern classification problems [46][79][148][184][294] and non-linear regres-
sions [230][325]. SVMs are usually employed in pattern classification problems.
After SVM classifiers are trained, they can be used to predict future trends.
We note that the meaning of the term prediction is different from that in some
other disciplines, e.g., in time-series prediction where prediction means guess-
ing future trends from past information. Here, ‘prediction’ means supervised
classification that involves two steps. In the first step, an SVM is trained as
a classifier with a part of the data in a specific data set. In the second step
(i.e., prediction), we use the classifier trained in the first step to classify the
rest of the data in the data set.

The SVM is a statistical learning algorithm pioneered by Vapnik [326][327].
The basic idea of the SVM algorithm [29][62] is to find an optimal hyper-plane
that can maximize the margin (a precise definition of margin will be given
later) between two groups of samples. The vectors that are nearest to the
optimal hyper-plane are called support vectors (vectors with a circle in Fig.
1.5) and this algorithm is called a support vector machine. Compared with
other algorithms, SVMs have shown outstanding capabilities in dealing with
classification problems. This section briefly describes the SVM.

Linearly Separable Patterns

Given l input vectors {xi ∈ Rn, i = 1, ..., l} that belong to two classes, with
desired output yi ∈ {−1, 1}, if there exists a hyper-plane

wTx + b = 0 (1.11)

1.2 Computational Intelligence Methods for Data Mining 15X1X2
r

1x 2xa X1X2
b

Fig. 1.5. An optimal hyper-plane for classification in a two-dimensional case, for
(a) linearly separable patterns and (b) linearly non-separable patterns.

that separates the two classes, that is,

wTxi + b ≥ 0, for all i with yi = +1, (1.12)

wTxi + b < 0, for all i with yi = −1, (1.13)

then we say that these patterns are linearly separable. Here w is a weight
vector and b is a bias. By rescaling w and b properly, we can change the two
inequalities above to:

wTxi + b ≥ 1, for all i with yi = +1, (1.14)

wTxi + b ≤ −1, for all i with yi = −1. (1.15)

Or,

yi(wTxi + b) ≥ −1. (1.16)

There are two parallel hyper-planes:

H 1: wTx + b = 1, (1.17)

H 2: wTx + b = −1. (1.18)

The distance ρ between H 1 and H 2 is defined as the margin between the two
classes (Fig. 1.5a). According to the standard result of the distance between
the origin and a hyper-plane, we can figure out that the distances between
the origin and H 1 and H 2 are |b− 1|/||w|| and |b+1|/||w||, respectively. The
sum of these two distances is ρ, because H 1 and H 2 are parallel. Therefore,

ρ = 2/||w||. (1.19)

16 1 Introduction

The objective is to maximize the margin between the two classes, i.e., to
minimize ||w||. This objective is equivalent to minimizing the cost function:

ψ =
1
2
||w||2. (1.20)

Then, this optimization problem subject to the constraint (1.16) can be solved
using Lagrange multipliers. The Lagrange function is

L(w, b, α) =
1
2
||w||2 −

l∑

i=1

αi[yi(wTxi + b)− 1], (1.21)

where αi, i = 1, 2, ..., l are the Lagrange multipliers. Differentiating this La-
grange function, we obtain

∂L(w, b, α)
∂w

= 0, (1.22)

∂L(w, b, α)
∂α

= 0. (1.23)

Considering the Wolfe’s dual [89], we can obtain a dual problem of the primal
one:

maximize: Q(α) =
l∑

i=1

αi − 1
2

l∑

i=1

l∑

j=1

αiαjyiyjxTx, (1.24)

subject to:

l∑

i=1

αiyi = 0, (1.25)

αi ≥ 0. (1.26)

From this dual problem, the optimal weight vector, i.e., wo and the optimal
Lagrange multipliers, i.e., αo,i of the optimal hyper-plane can be obtained:

wo =
l∑

i=1

αo,iyixi. (1.27)

Linearly Non-separable Patterns

If the vectors {xi ∈ Rn, i = 1, ..., l} cannot be linearly separated, we would
like to slacken the constraints described by (1.16). Here we introduce a group
of slack variables, i.e., ξi:

yi(wTxi + b) ≥ 1− ξi, (1.28)

1.2 Computational Intelligence Methods for Data Mining 17

X1
X2

a
X1

X2
c X1

X2
d

X1
X2

b
Fig. 1.6. The influence of C on the performance of the classifier. (a) a classifier with
a large C (small margin); (b) an overfitting classifier; (c) a classifier with a small C
(large margin); (d) a classifier with a proper C.

ξi ≥ 0. (1.29)

In fact, ξi is the distance between the training example xi and the optimal
hyper-plane (Fig. 1.5b). For 0 ≤ ξi ≤ 1, xi falls in the region between the
two hyper-planes, i.e., H 1 and H 2, but on the correct side of the optimal
hyper-plane. However, for ξi > 1, xi falls on the wrong side of the optimal
hyper-plane.

Since it is expected that the optimal hyper-plane can maximize the margin
between the two classes and minimize the errors, the cost function from Eq.
(1.20) is rewritten:

ψ =
1
2
||w||2 + C

l∑

i=1

ξi, (1.30)

where C is a positive factor. This cost function must satisfy the constraints
Eq. (1.28) and Eq. (1.29). There is also a dual problem:

maximize: Q(α) =
l∑

i=1

αi − 1
2

l∑

i=1

l∑

j=1

αiαjyiyjxTx, (1.31)

18 1 Introduction

subject to:

l∑

i=1

αiyi = 0, (1.32)

C ≥ αi ≥ 0. (1.33)

From this dual problem, the optimal weight vector, i.e., wo and the optimal
Lagrange multipliers, i.e., αo,i of the optimal hyper-plane can be obtained.
They are the same as their counterparts in Eq. (1.27), except that the con-
straints change to Eq. (1.32) and (1.33).

In general, C controls the trade-off between the two goals of the binary
SVM, i.e., to maximize the margin between the two classes and to separate
the two classes well. When C is small, the margin between the two classes is
large, but it may make more mistakes in training patterns. Or, alternatively,
when C is large, the SVM is likely to make fewer mistakes in training pat-
terns; however, the small margin makes the network vulnerable for overfitting.
Figure 1.6 depicts the functionality of the parameter C, which has a relatively
large impact on the performance of the SVM. Usually, it is determined exper-
imentally for a given problem.

A Binary Non-linear SVM Classifier

According to [65], if a non-linear transformation can map the input feature
space into a new feature space whose dimension is high enough, the classifica-
tion problem is more likely to be linearly solved in this new high-dimensional
space. In view of this theorem, the non-linear SVM algorithm performs such
a transformation to map the input feature space to a new space with much
higher dimension. Actually, other kernel learning algorithms, such as radial
basis function (RBF) neural networks, also perform such a transformation for
the same reason. After the transformation, the features in the new space are
classified using the optimal hyper-plane we constructed in the previous sec-
tions. Therefore, using this non-linear SVM to perform classification includes
the following two steps:

1. Mapping the input space into a much higher dimensional space with a
non-linear kernel function.

2. Performing classification in the new high-dimensional space by construct-
ing an optimal hyper-plane that is able to maximize the margin between
the two classes.

Combining the transformation and the linear optimal hyper-plane, we for-
mulate the mathematical descriptions of this non-linear SVM as follows.

It is supposed to find the optimal values of weight vector w and bias b
such that they satisfy the constraint:

1.2 Computational Intelligence Methods for Data Mining 19

yi(wTφ(xi) + b) ≥ 1− ξi, (1.34)

ξi ≥ 0. (1.35)

where φ(xi) is the function mapping the ith pattern vector to a potentially
much higher dimensional feature space. The weight vector w and the slack
variables ξi should minimize the cost function:

ψ =
1
2
||w||2 + C

l∑

i=1

ξi, (1.36)

This optimization problem is very similar to the problem we have dealt with
using a linear optimal hyper-plane. The only difference is that the input vec-
tors xi have been replaced by φ(xi).

To solve this optimization problem, a similar procedure is followed as be-
fore. Through constructing the Lagrange function and differentiating it, a dual
problem is obtained as below:

maximize: Q(α) =
l∑

i=1

αi − 1
2

l∑

i=1

l∑

j=1

αiαjyiyjK(xi,xj), (1.37)

subject to:

l∑

i=1

αiyi = 0, (1.38)

C ≥ αi ≥ 0, (1.39)

where K(xi,xj) is the kernel function:

K(xi,xj) = φ(xi)Tφ(xj). (1.40)

From this dual problem, the optimal weight vector i.e., wo and the optimal
Lagrange multipliers, i.e., αo,j of the optimal hyper-plane can be obtained:

wo =
l∑

i=1

αo,iyixi. (1.41)

The optimal hyper-plane that discriminates different classes is:

wT
o φ(x) + b = 0. (1.42)

One of the most commonly used kernel functions is the polynomial kernel:

K(x,xi) = (xTxi + 1)p, (1.43)

20 1 Introduction

where p is a constant specified by users. Another kind of widely used kernel
function is the radial basis function:

K(x,xi) = e−γ||x−xi||2 , (1.44)

where γ is also a constant specified by users. According to its mathematical
description, the structure of an SVM is shown in Fig. 1.7.

x1 x x

K(x, x1) K(x, xm)y
Input x KernelsOutputBias K(x, xj)

Fig. 1.7. The structure of an SVM.

1.2.5 Genetic Algorithms

Genetic algorithms (GAs) are motivated by the natural evolutionary process.
The basic concepts in GAs are as follows. Solutions of the problem at hand
are encoded in chromosomes or individuals. An initial population of individ-
uals is generated at random or heuristically. The operators in GAs include
selection, crossover, and mutation. To generate a new generation, chromo-
somes are selected according to their fitness scores, i.e., a predefined quality
criterion used for evaluating solutions of a problem. The selection operator
gives preference to better individuals as parents for the next generation. The
crossover operator and the mutation operator are used to generate offspring
from the parents. A crossover site is randomly chosen in the parents. The two
bit strings in the two individuals are exchanged up to the crossover site. For
example, suppose that parents I1 = 0001100 and I2 = 1110000 are selected
for generating new offspring. After applying the crossover operator, we ob-
tain I ′1 = 0010100 and I ′2 = 1101000 with two crossover points at the third

1.3 How This Book is Organized 21

and fourth bits. By exchanging portions of good individuals, crossover may
produce even better individuals. The mutation operator is used to prevent
premature convergence to local optima. It is implemented by flipping bits at
random with a mutation probability.

GAs are specially useful under the following circumstances:

• the problem space is large, complex;
• prior knowledge is scarce;
• it is difficult to determine a machine learning model to solve the problem

due to complexities in constraints and objectives;
• traditional search methods perform badly.

The steps to apply the basic GA as a problem-solving model are as follows:

1. figure out a way to encode solutions of the problem according to domain
knowledge and required solution quality;

2. randomly generate an initial population of chromosomes which corre-
sponds to solutions of the problem;

3. calculate the fitness of each chromosome in the population pool;
4. select two parental chromosomes from the population pool to produce

offspring by crossover and mutation operators;
5. go to step 3, and iterate until an optimal solution is found.

The basic genetic algorithm is simple but powerful in solving problems in var-
ious areas. In addition, the basic GA could be modified to meet requirements
of diverse problems by tuning the basic operators. For a detailed discussion of
variations of the basic GA, as well as other techniques in a broader category
called evolutionary computation, see text books, such as [10][86].

1.3 How This Book is Organized

In Chap. 1, data mining tasks and conventional data mining methods are
introduced. Classification and clustering tasks are explained, with emphasis on
the classification task. An introduction to data mining methods is presented.

In Chap. 2, a wavelet multi-layer perceptron neural network is described
for predicting temporal sequences. The multi-layer perceptron neural network
has its input signal decomposed to various resolutions using a wavelet trans-
formation. The time frequency information which is normally hidden is ex-
posed by the wavelet transformation. Based on the wavelet transformation,
less important wavelets are eliminated. Compared with the conventional MLP
network, the wavelet MLP neural network has less performance swing sensi-
tivity to weight initialization. In addition, we describe a cost-sensitive MLP
in which errors in prediction are biased towards ‘important’ classes. Since dif-
ferent prediction errors in different classes usually lead to different costs, it
is worthwhile discussing the cost-sensitive problem. In experimental results,

22 1 Introduction

it is shown that the recognition rates for the ‘important’ classes (with higher
cost) are higher than the recognition rates for the ‘less important’ classes.

In Chap. 3, the FNN is described. This FNN that we proposed earlier com-
bines the powerful features of initial fuzzy model self-generation, fast input
selection, partition validation, parameter optimization, and rule-base simpli-
fication. The structure and learning procedure are introduced first. Then, we
describe the implementation and functionality of the FNN. Synthetic data-
bases and microarray data are used to demonstrate the fuzzy neural network
proposed earlier [59][349]. Experimental results are compared with the pruned
feedforward crisp neural network and decision tree approaches.

Chapter 4 describes how to construct an RBF neural network that allows
for large overlaps between clusters with the same class label, which reduces
the number of hidden units without degrading the accuracy of the RBF neural
network. In addition, we describe a new method dealing with unbalanced data.
The method is based on the modified RBF neural network. Weights inversely
proportional to the number of patterns of classes are given to each class in
the mean squared error (MSE) function.

In Chap. 5, DDR methods, including feature selection and feature extrac-
tion techniques, are reviewed first. A novel algorithm for attribute impor-
tance ranking, i.e., the separability and correlation measure (SCM), is then
presented. Class-separability measure and attribute-correlation measure are
weighted to produce a combined evaluation for relative attribute importance.
The top-down search and the bottom-up search are explored, and their differ-
ence in attribute ranking is presented. The attribute ranking algorithm with
class information is compared with other attribute ranking methods. Data
dimensionality is reduced based on attribute ranking results.

Data dimensionality reduction is then performed by combining the SCM
method and RBF classifiers. In the DDR method, there are a fewer number
of candidate feature subsets to be inspected compared with other methods,
since attribute importance is ranked first by the SCM method. The size of
a data set is reduced and the architecture of the RBF classifier is simplified.
Experimental results show the advantages of the DDR method.

In Chap. 6, reviews of existing class-dependent feature selection tech-
niques are presented first. The fact that different features might have different
discrimination capabilities for separating one class from the other classes is
adopted. For a multi-class classification problem, each class has its own spe-
cific feature subset as inputs of the RBF neural network classifier. The novel
class-dependent feature selection algorithm is based on RBF neural networks
and the genetic algorithm (GA).

In Chap. 7, reviews of rule extraction work in the literature are presented
first. Several new rule extraction methods are described based on the simplified
RBF neural network classifier in which large overlaps between clusters of the
same class are allowed. In the first algorithm, A GA combined with an RBF
neural network is used to extract rules. The GA is used to determine the
intervals of each attribute as the premise of the rules. In the second algorithm,

1.3 How This Book is Organized 23

rules are extracted directly based on simplified RBF neural networks using
gradient descent. In the third algorithm, the DDR technique is combined with
rule extraction. Rules with a fewer number of premises (attributes) and higher
rule accuracy are obtained. In the fourth algorithm, class-dependent feature
selection is used as a preprocessing procedure of rule extraction. The results
from the four algorithms are compared with other algorithms.

In Chap. 8, a hybrid neural network predictor is described for protein
secondary structure prediction (PSSP). The hybrid network is composed of
the RBF neural network and the MLP neural network. Experiments show that
the performance of the hybrid network has reached a comparable performance
with the existing leading method.

In Chap. 9, support vector machine classifiers are used to deal with two
bioinformatics problems, i.e., cancer diagnosis based on gene expression data
and protein secondary structure prediction.

Chapter 10 describes a rule extraction algorithm RulExSVM that we pro-
posed earlier [108]. Decisions made by a non-linear SVM classifier are decoded
into linguistic rules based on the support vectors and decision functions ac-
cording to a geometrical relationship.

http://www.springer.com/978-3-540-24522-3

