Gulnter Bockle
Klaus Pohl

Frank van der Linden

A Framework for
Software Product
Line Engineering

In this chapter you will learn:
o The principles of software product line engineering subsumed by our software
product line engineering framework.

o The difference between domain engineering and application engineering,
which are the two key processes of software product line engineering.

Where variability of the product line is defined and where it is exploited.
The structure of this book, which is derived from the framework.

20

2. A Framework for Software Product Line Engineering

Platform
artefacts

Planning
for reuse

Mass customisation
through variability

Establishing
the platform

Deriving
applications

2.1 Introduction

Our framework for software product line engineering incorporates the cen-
tral concepts of traditional product line engineering, namely the use of plat-
forms and the ability to provide mass customisation.

A platform is, in the software context, a collection of reusable artefacts
(Definition 1-4). These artefacts have to be reused in a consistent and
systematic way in order to build applications. Reusable artefacts encompass
all types of software development artefacts such as requirements models,
architectural models, software components, test plans, and test designs.

The experience from reuse projects in the 1990s shows that without proper
planning the costs for reuse may be higher than for developing the artefacts
from scratch. It is therefore crucial to plan beforehand the products for which
reuse is sensible, together with the features that characterise these products.
The planning for reuse continues throughout the whole development process.

To facilitate mass customisation (Definition 1-1) the platform must provide
the means to satisfy different stakeholder requirements. For this purpose the
concept of variability is introduced in the platform. As a consequence of
applying this concept, the artefacts that can differ in the applications of the
product line are modelled using variability.

The following sections outline our software product line engineering frame-
work.

2.2 Two Development Processes

The software product line engineering paradigm separates two processes:

The software product line engineering paradigm separates two processes (see
e.g. [Weiss and Lai 1999; Boeckle et al. 2004b; Pohl et al. 2001b, V.d.
Linden 2002]):

= Domain engineering: This process is responsible for establishing the
reusable platform and thus for defining the commonality and the vari-
ability of the product line (Definition 2-1). The platform consists of all
types of software artefacts (requirements, design, realisation, tests, etc.).
Traceability links between these artefacts facilitate systematic and con-
sistent reuse.

= Application engineering: This process is responsible for deriving prod-
uct line applications from the platform established in domain engineer-
ing; see Definition 2-2. It exploits the variability of the product line and

2.3 Overview of the Framework

21

ensures the correct binding of the variability according to the applica-
tions’ specific needs.

The advantage of this split is that there is a separation of the two concerns, to
build a robust platform and to build customer-specific applications in a short
time. To be effective, the two processes must interact in a manner that is
beneficial to both. For example, the platform must be designed in such a way
that it is of use for application development, and application development
must be aided in using the platform.

The separation into two processes also indicates a separation of concerns
with respect to variability. Domain engineering is responsible for ensuring
that the available variability is appropriate for producing the applications.
This involves common mechanisms for deriving a specific application. The
platform is defined with the right amount of flexibility in many reusable
artefacts. A large part of application engineering consists of reusing the plat-
form and binding the variability as required for the different applications.

Definition 2-1: Domain Engineering

Domain engineering is the process of software product line engineer-
ing in which the commonality and the variability of the product line
are defined and realised.

Definition 2-2: Application Engineering

Application engineering is the process of software product line engin-
eering in which the applications of the product line are built by
reusing domain artefacts and exploiting the product line variability.

2.3 Overview of the Framework

Our software product line engineering framework has its roots in the ITEA
projects ESAPS, CAFE, and FAMILIES [V.d. Linden 2002; Boeckle et al.
2004b; CAFE 2004] and is based on the differentiation between the domain
and application engineering processes proposed by Weiss and Lai [Weiss
and Lai 1999]. The framework is depicted in Fig. 2-1.

The domain engineering process (depicted in the upper part of Fig. 2-1) is
composed of five key sub-processes: product management, domain require-
ments engineering, domain design, domain realisation, and domain testing.
The domain engineering process produces the platform including the com-
monality of the applications and the variability to support mass customi-

Separation of
concerns

Flexibility and
variability

ITEA
projects

Domain
engineering

22

2. A Framework for Software Product Line Engineering

Application
engineering

Domain and
application artefacts

sation. We briefly describe the domain engineering process and its sub-
processes in Section 2.4.

The application engineering process (depicted in the lower part of Fig. 2-1)
is composed of the sub-processes application requirements engineering,
application design, application realisation, and application testing. We
briefly describe the application engineering process and its sub-processes in
Section 2.6.

The framework differentiates between different kinds of development arte-
facts (Definition 2-3): domain artefacts and applications artefacts. The
domain artefacts (Definition 2-4) subsume the platform of the software
product line. We briefly characterise the various artefacts in Section 2.5. The
application artefacts (Definition 2-5) represent all kinds of development
artefacts of specific applications. We briefly characterise these artefacts in
Section 2.7. As the platform is used to derive more than one application,
application engineering has to maintain the application-specific artefacts for
each application separately. This is indicated in the lower part of Fig. 2-1.

Product \
Management

i Domain Domain Domain
Requirements .
Design Realisation Testing

Engmeenng

Domain Engineering

.g.g.g. — {'l_l“l_th1 — =§===o§=.o —

A4 V A4 A4
App !1cat10n Application Application Application
““ Requirements . . .
. Design Realisation Testing
Engineering

4 4 4 4

Fig. 2-1: The software product line engineering framework

2.4 Domain Engineering

23

Note that neither the sub-processes of the domain and application engineer-
ing processes, nor their activities, have to be performed in a sequential order.
We have indicated this by a loop with an arrow in Fig. 2-1 for each process.

In this book, we define the key activities that have to be part of each product
line engineering process. The order in which they are performed depends on
the particular process that is established in an organisation. Thus, the sub-
processes and their activities described in this book can be combined with
existing development methods such as RUP (Rational Unified Process, see
[Kruchten 2000]), the spiral model [Boehm 1988], or other development
processes.

When the domain engineering process and the application engineering pro-
cess are embedded into other processes of an organisation, each sub-process
depicted in Fig. 2-1 gets an organisation-specific internal structure.
Nevertheless, the activities presented in this book have to be present. An
example of an organisation-specific process is the FAST process presented
in [Weiss and Lai 1999].

Definition 2-3: Development Artefact

A development artefact is the output of a sub-process of domain or
application engineering. Development artefacts encompass require-
ments, architecture, components, and tests.

Definition 2-4: Domain Artefacts

Domain artefacts are reusable development artefacts created in the
sub-processes of domain engineering.

Definition 2-5: Application Artefacts

Application artefacts are the development artefacts of specific product
line applications.

2.4 Domain Engineering

The key goals of the domain engineering process are to:
= Define the commonality and the variability of the software product line.

= Define the set of applications the software product line is planned for,
i.e. define the scope of the software product line.

No sequential
order implied

Combination with
existing processes

Organisation-specific
adaptation

Main
goals

24

2. A Framework for Software Product Line Engineering

Five sub-
processes

Scope of the
product line

= Define and construct reusable artefacts that accomplish the desired vari-
ability.

The goals of domain engineering are accomplished by the domain engineer-
ing sub-process. Each of them has to:

= Detail and refine the variability determined by the preceding sub-
process.

= Provide feedback about the feasibility of realising the required variabil-
ity to the preceding sub-process.

The domain engineering part of the software product line engineering
framework is highlighted in Fig. 2-2. We briefly explain the domain
engineering sub-processes in this section, whereas domain artefacts are
explained separately in Section 2.5.

Product |
Management
Domain Domain Domain Domain
————— Requirements R
X Design Realisation Testing
Engineering

Domain Artefacts incl. Variability Model

Domain Engineering
[

0 (O gg
. |

I I 1 N
App!lcatlon Application Application Application
Requirements R .. .
. . Design Realisation Testing
Engineering

4 4 4 U

Application N — Artefacts incl. Variability Model
Application 1 — Artefacts incl. Variability Model

Application Engineering

-, g,
& TS o
Requirements Architecture Components Tests

Fig. 2-2: The domain engineering process

241 Product Management

Product management deals with the economic aspects of the software prod-
uct line and in particular with the market strategy. Its main concern is the
management of the product portfolio of the company or business unit. In

2.4 Domain Engineering

25

product line engineering, product management employs scoping techniques
to define what is within the scope of the product line and what is outside.

The input for product management consists of the company goals defined by
top management. The output of product management is a product roadmap
that determines the major common and variable features’ of future products
as well as a schedule with their planned release dates. In addition, product
management provides a list of existing products and/or development arte-
facts that can be reused for establishing the platform.

Product management for software product lines differs from product man-
agement for single systems for the following reasons:

= The platform has an essential strategic meaning for the company. The
introduction and elimination of an entire platform have a strong influ-
ence on entrepreneurial success.

= A major strength of software product line engineering is the generation
of a multitude of product variants at reasonable cost.

= The products in the product portfolio are closely related as they are
based on a common platform.

* Product management anticipates prospective changes in features, legal
constraints, and standards for the future applications of the software
product line and formulates (models) the features accordingly. This
means that the evolution of market needs, of technology, and of con-
straints for future applications is taken into account.

We deal with the principles of product management, activities, and artefacts
in Chapter 9.

2.4.2 Domain Requirements Engineering

The domain requirements engineering sub-process encompasses all activities
for eliciting and documenting the common and variable requirements of the
product line.

The input for this sub-process consists of the product roadmap. The output
comprises reusable, textual and model-based requirements and, in particular,
the variability model of the product line. Hence, the output does not include
the requirements specification of a particular application, but the common
and variable requirements for all foreseeable applications of the product line.

® A feature is an abstract requirement (see Definition 5-4 for the definition of “feature” by Kang et al.).

Input and
output

Differences from
single-system
engineering

Elicitation and
documentation

Input and
output

26

2. A Framework for Software Product Line Engineering

Differences from
single-system
engineering

Definition of
reference architecture

Input and
output

Differences from
single-system
engineering

Domain requirements engineering differs from requirements engineering for
single systems because:

= The requirements are analysed to identify those that are common to all
applications and those that are specific for particular applications (i.e.
that differ among several applications).

= The possible choices with regard to requirements are explicitly docu-
mented in the variability model, which is an abstraction of the variabil-
ity of the domain requirements.

= Based on the input from product management, domain requirements
engineering anticipates prospective changes in requirements, such as
laws, standards, technology changes, and market needs for future appli-
cations.

The artefacts and activities of domain requirements engineering are de-
scribed in detail in Chapter 5 and Chapter 10.

243 Domain Design

The domain design sub-process encompasses all activities for defining the
reference architecture of the product line. The reference architecture pro-
vides a common, high-level structure for all product line applications.

The input for this sub-process consists of the domain requirements and the
variability model from domain requirements engineering. The output encom-
passes the reference architecture and a refined variability model that includes
so-called internal variability (e.g. variability that is necessary for technical
reasons).

Domain design differs from design for single systems because:

= Domain design incorporates configuration mechanisms into the refer-
ence architecture to support the variability of the product line.

= Domain design considers flexibility from the very first, so that the refer-
ence architecture can be adapted to the requirements of future applica-
tions.

* Domain design defines common rules for the development of specific
applications based on the reference architecture.

= Domain design designates reusable parts, which are developed and
tested in domain engineering, as well as application-specific parts,
which are developed and tested in application engineering.

The artefacts and activities of domain design are described in detail in
Chapter 6 and Chapter 11.

2.4 Domain Engineering

27

2.4.4 Domain Realisation

The domain realisation sub-process deals with the detailed design and the
implementation of reusable software components.

The input for this sub-process consists of the reference architecture including
a list of reusable software artefacts to be developed in domain realisation.
The output of domain realisation encompasses the detailed design and imple-
mentation assets of reusable software components.

Domain realisation differs from the realisation of single systems because:

= The result of domain realisation consists of loosely coupled, configur-
able components, not of a running application.

= Each component is planned, designed, and implemented for the reuse in
different contexts, i.e. the applications of the product line. The interface
of a reusable component has to support the different contexts.

= Domain realisation incorporates configuration mechanisms into the
components (as defined by the reference architecture) to realise the
variability of the software product line.

The artefacts and activities of domain realisation are described in detail in
Chapter 7 and Chapter 12.

2.4.5 Domain Testing

Domain testing is responsible for the validation and verification of reusable
components. Domain testing tests the components against their specification,
i.e. requirements, architecture, and design artefacts. In addition, domain
testing develops reusable test artefacts to reduce the effort for application
testing.

The input for domain testing comprises domain requirements, the reference
architecture, component and interface designs, and the implemented reusable
components. The output encompasses the test results of the tests performed
in domain testing as well as reusable test artefacts.

Domain testing differs from testing in single-system engineering, because:

= There is no running application to be tested in domain testing. Indeed,
product management defines such applications, but the applications are
available only in application testing. At first glance, only single compo-
nents and integrated chunks composed of common parts can be tested in
domain testing.

= Domain testing can embark on different strategies with regard to testing
integrated chunks that contain variable parts. It is possible to create a

Detailed design and
implementation

Input and
output

Differences from
single-system
engineering

Validation of reusable
components

Input and
output

Differences from
single-system
engineering

28

2. A Framework for Software Product Line Engineering

Inspections, reviews,
and walkthroughs

Techniques for
single systems

Common
platform

Major features of
all applications

sample application, to predefine variable test artefacts and apply them
in application testing, or to apply a mixture of the former two strategies.

We describe the artefacts produced by domain testing in Chapter 8 and deal
with product line test strategies and techniques in Chapter 13.

2.4.6 Other Software Quality Assurance Techniques

Besides testing, other software quality assurance techniques are also applica-
ble to software product line engineering, most notably inspections, reviews,
and walkthroughs. These techniques have to be integrated into the domain
and application engineering processes.

To our knowledge, specialised techniques for software product line inspec-
tions, reviews, or walkthroughs have not been proposed. There is also a lack
of experience reports identifying required adaptations of inspection, review,
and walkthrough techniques known from the development of single software
systems. We thus refer the interested reader to the standard literature on soft-
ware inspections, reviews, and walkthroughs such as [Fagan 1976; Fagan
1986; Freedman and Weinberg 1990; Gilb and Graham 1993; Yourdon
1989].

2.5 Domain Artefacts

Domain artefacts (or domain assets; see Definition 2-4) compose the plat-
form of the software product line and are stored in a common repository.
They are produced by the sub-processes described in Section 2.4. The arte-
facts are interrelated by traceability links to ensure the consistent definition
of the commonality and the variability of the software product line through-
out all artefacts. In the following, we briefly characterise each kind of arte-
fact including the variability model.

2.5.1 Product Roadmap

The product roadmap describes the features of all applications of the soft-
ware product line and categorises the feature into common features that are
part of each application and variable features that are only part of some
applications. In addition, the roadmap defines a schedule for market intro-
duction. The product roadmap is a plan for the future development of the
product portfolio. Its role in domain engineering is to outline the scope of the
platform and to sketch the required variability of the product line. Its role in
application engineering is to capture the feature mix of each planned appli-
cation.

2.5 Domain Artefacts

29

Note that the output of product management (the product roadmap) is not
contained in the framework picture. The main reason for this is that the
product roadmap is not a software development artefact in the common
sense. Moreover, it guides both domain and application engineering, and is
not an artefact to be reused in application engineering. In domain engineer-
ing, it guides the definition of the commonality and the variability of the
software product line. In application engineering it guides the development
of the specific products. We thus decided to define the product roadmap
neither as a domain nor as an application artefact. We deal with the essential
techniques for defining the product roadmap in Chapter 9.

2.5.2 Domain Variability Model

The domain variability model defines the variability of the software product
line. It defines what can vary, i.e. it introduces variation points for the prod-
uct line. It also defines the types of variation offered for a particular vari-
ation point, i.e. it defines the variants offered by the product line. Moreover,
the domain variability model defines variability dependencies and variability
constraints which have to be considered when deriving product line applica-
tions. Last but not least, the domain variability model interrelates the vari-
ability that exists in the various development artefacts such as variability in
requirements artefacts, variability in design artefacts, variability in compo-
nents, and variability in test artefacts. It thus supports the consistent defini-
tion of variability in all domain artefacts.

We describe the variability model in greater detail in Chapter 4. To distin-
guish our variability model from the definition of variability within other
development artefacts, we call it the “orthogonal variability model”.

2.5.3 Domain Requirements

Domain requirements encompass requirements that are common to all
applications of the software product line as well as variable requirements
that enable the derivation of customised requirements for different applica-
tions. Requirements are documented in natural language (textual require-
ments) or by conceptual models (model-based requirements). Variability
occurs in functional as well as in quality requirements. In Chapter 5, we
elaborate on modelling variability in requirements using the orthogonal vari-
ability model.

2.5.4 Domain Architecture

The domain architecture or reference architecture determines the structure
and the texture of the applications in the software product line. The structure
determines the static and dynamic decomposition that is valid for all appli-

Product roadmap not
in framework picture

Product line
variability

Orthogonal
variability model

Reusable
requirements
artefacts

Core structure and
common texture

30

2. A Framework for Software Product Line Engineering

Detailed design and
implementation

Reusable test
designs

Main
goals

cations of the product line. The texture is the collection of common rules
guiding the design and realisation of the parts, and how they are combined to
form applications. Variability in the architecture is documented by refining
the orthogonal variability model and adding internal variability (i.e. variabil-
ity that is only visible to the engineers). The architectural texture defines
common ways to deal with variability in domain realisation as well as in
application design and application realisation. Chapter 6 elaborates on the
documentation of variability in design artefacts using the orthogonal vari-
ability model.

2.5.5 Domain Realisation Artefacts

Domain realisation artefacts comprise the design and implementation arte-
facts of reusable software components and interfaces. The design artefacts
encompass different kinds of models that capture the static and the dynamic
structure of each component. The implementation artefacts include source
code files, configuration files, and makefiles. Components realise variability
by providing suitable configuration parameters in their interface. In addition
to being configurable, each component may exist in different variants to
realise large differences in functionality and/or quality. We elaborate on
variability in domain realisation artefacts in Chapter 7.

2.5.6 Domain Test Artefacts

Domain test artefacts include the domain test plan, the domain test cases,
and the domain test case scenarios. The domain test plan defines the test
strategy for domain testing, the test artefacts to be created, and the test cases
to be executed. It also defines the schedule and the allocation of resources
for domain test activities. The test cases and test case scenarios provide
detailed instructions for the test engineer who performs a test and thus make
testing traceable and repeatable. We include variability definitions in domain
test artefacts to enable the large-scale reuse of test artefacts in application
testing. We deal with the documentation of variability in test artefacts in
Chapter 8.

2.6 Application Engineering

The key goals of the application engineering process are to:
= Achieve an as high as possible reuse of the domain assets when defining
and developing a product line application.

= Exploit the commonality and the variability of the software product line
during the development of a product line application.

2.6 Application Engineering

31

= Document the application artefacts, i.e. application requirements, archi-
tecture, components, and tests, and relate them to the domain artefacts.

= Bind the variability according to the application needs from require-
ments over architecture, to components, and test cases.

= FEstimate the impacts of the differences between application and domain
requirements on architecture, components, and tests.

Product
Management
=4 Domain . . .
£ . Domain Domain Domain
5} Requirements R . .
3 . . Design Realisation Testing
£ Engineering
oo
£
: iy I]
&
E Domain Artefacts incl. Variability Model
=4
: = = o B0
. ShighiELE—Tstinite
Requirements Architecture Components Tests
App!lcatlon Application Application Application
= Requirements R . R
. Design Realisation Testing
Engineering

4 4 J J

Fig. 2-3: Application engineering

The framework introduces four application engineering sub-processes:
application requirements engineering, application design, application realisa-
tion, and application test. Each of the sub-processes uses domain artefacts
and produces application artefacts. Figure 2-3 highlights the application
engineering part of the software product line engineering framework. We
characterise the application engineering sub-processes in this section. Appli-
cation artefacts are described in Section 2.7.

2.6.1 Application Requirements Engineering

The application requirements engineering sub-process encompasses all
activities for developing the application requirements specification. The
achievable amount of domain artefact reuse depends heavily on the applica-

Four sub-
processes

Specification of
applications

32

2. A Framework for Software Product Line Engineering

Input and
output

Differences from
single-system
engineering

Specialisation of
reference architecture

Input and
output

Differences from
single-system
engineering

tion requirements. Hence, a major concern of application requirements
engineering is the detection of deltas between application requirements and
the available capabilities of the platform.

The input to this sub-process comprises the domain requirements and the
product roadmap with the major features of the corresponding application.
Additionally, there may be specific requirements (e.g. from a customer) for
the particular application that have not been captured during domain
requirements engineering. The output is the requirements specification for
the particular application.

Application requirements engineering differs from requirements engineering
for single systems for the following reasons:

= Requirements elicitation is based on the communication of the available
commonality and variability of the software product line. Most of the
requirements are not elicited anew, but are derived from the domain
requirements.

= During elicitation, deltas between application requirements and domain
requirements must be detected, evaluated with regard to the required
adaptation effort, and documented suitably. If the required adaptation
effort is known early, trade-off decisions concerning the application
requirements are possible to reduce the effort and to increase the
amount of domain artefact reuse.

We deal with the specific activities of application requirements engineering
in Chapter 15.

2.6.2 Application Design

The application design sub-process encompasses the activities for producing
the application architecture. Application design uses the reference architec-
ture to instantiate the application architecture. It selects and configures the
required parts of the reference architecture and incorporates application-
specific adaptations. The variability bound in application design relates to
the overall structure of the considered system (e.g. the specific hardware
devices available in the system).

The input for application design consists of the reference architecture and the
application requirements specification. The output comprises the application
architecture for the application at hand.

Application design differs from the design process for single systems for the
following reasons:

= Application design does not develop the application architecture from
scratch, but derives it from the reference architecture by binding vari-

2.6 Application Engineering

33

ability, i.e. making specific choices at places where the reference archi-
tecture offers different variants to choose from.

= Application design has to comply with the rules defined in the texture of
the reference architecture. The rules cover the binding of variability as
well as the incorporation of application-specific adaptations.

= Application design must evaluate the realisation effort for each required
adaptation and may reject structural changes that would require a simi-
lar effort as for developing the application from scratch.

We elaborate on the key problems and solutions of application design in
Chapter 16.

2.6.3 Application Realisation

The application realisation sub-process creates the considered application.
The main concerns are the selection and configuration of reusable software
components as well as the realisation of application-specific assets. Reusable
and application-specific assets are assembled to form the application.

The input consists of the application architecture and the reusable realisation
artefacts from the platform. The oufput consists of a running application
together with the detailed design artefacts.

Application realisation differs from the realisation of single systems because:

= Many components, interfaces, and other software assets are not created
anew. Instead, they are derived from the platform by binding variability.
Variability is bound, e.g. by providing specific values for component-
internal configuration parameters.

= Application-specific realisations must fit into the overall structure, e.g.
they must conform to the reusable interfaces. Many detailed design
options are predetermined by the architectural texture. Application-
specific components can often be realised as variants of existing compo-
nents that are already contained in the platform.

We deal with the challenges of application realisation in Chapter 17.

2.6.4 Application Testing

The application testing sub-process comprises the activities necessary to
validate and verify an application against its specification.

Component
configuration and
development

Input and output

Differences from
single-system
engineering

Complete
application test

34

2. A Framework for Software Product Line Engineering

Input and
output

Differences from
single-system
engineering

Traceability between
application artefacts

Traceability
between domain and
application

The input for application testing comprises all kinds of application artefacts
to be used as a test reference,' the implemented application, and the
reusable test artefacts provided by domain testing. The oufput comprises a
test report with the results of all tests that have been performed. Addition-
ally, the detected defects are documented in more detail in problem reports.

The major differences from single-system testing are:

= Many test artefacts are not created anew, but are derived from the plat-
form. Where necessary, variability is bound by selecting the appropriate
variants.

= Application testing performs additional tests in order to detect defective
configurations and to ensure that exactly the specified variants have
been bound.

= To determine the achieved test coverage, application testing must take
into account the reused common and variable parts of the application as
well as newly developed application-specific parts.

We elaborate on the specific challenges and the activities of application
testing in Chapter 18.

2.7 Application Artefacts

Application artefacts (or application assets) comprise all development arte-
facts of a specific application including the configured and tested application
itself. They are produced by the sub-processes described in Section 2.6. The
application artefacts are interrelated by traceability links. The links between
different application artefacts are required, for instance, to ensure the correct
binding of variability throughout all application artefacts.

Many application artefacts are specific instances of reusable domain arte-
facts. The orthogonal variability model is used to bind variability in domain
artefacts consistently in the entire application. Traceability links between
application artefacts and the underlying domain artefacts are captured to
support the various activities of the application engineering sub-processes.
These links also support the consistent evolution of the product line. For
example, if a domain artefact changes, the application artefacts affected by
this change can be easily determined. In the following, we briefly character-
ise each kind of application artefact.

' The artefacts used as a test reference comprise the application requirements specification, the
application architecture, and the component and interface designs.

2.7 Application Artefacts

35

2.7.1 Application Variability Model

The application variability model documents, for a particular application, the
binding of the variability, together with the rationales for selecting those
bindings. It is restricted by the variability dependencies and constraints
defined in the domain variability model. Moreover, the application variabil-
ity model documents extensions to the domain variability model that have
been made for the application. For example, it documents if a new variant
has been introduced for the application. It also documents if existing variants
have been adapted to match the application requirements better and if new
variation points have been introduced for the application. Briefly, the appli-
cation variability model documents the variability bindings made and all
extensions and changes made for a particular application. Note that, similar
to other application artefacts, a separate application variability model is
introduced for each product line application. We deal with the definition of
the application variability model in Chapter 15.

2.7.2 Application Requirements

Application requirements constitute the complete requirements specification
of a particular application. They comprise reused requirements as well as
application-specific requirements. The reuse of domain requirements
involves the use of the orthogonal variability model to bind the available
variability. Application-specific requirements are either newly developed
requirements or reused requirements that have been adapted. Chapter 15
elaborates on how to define the application requirements specification.

2.7.3 Application Architecture

The application architecture determines the overall structure of the consid-
ered application. It is a specific instance of the reference architecture. For the
success of a product line, it is essential to reuse the reference architecture for
all applications. Its built-in variability and flexibility should support the
entire range of application architectures. The application architecture is
derived by binding the variability of the reference architecture that is docu-
mented in the orthogonal variability model. If application-specific require-
ments make it necessary to adapt the reference architecture, the stakeholders
must carefully weigh up the cost and benefit against each other. We deal
with the development of the application architecture based on application
requirements and the reference architecture in Chapter 16.

2.7.4 Application Realisation Artefacts

Application realisation artefacts encompass the component and interface
designs of a specific application as well as the configured, executable appli-
cation itself. The required values for configuration parameters can be pro-

Variability bindings
for applications

Complete
specification

Specific instance of
reference architecture

Configuration
parameters

36

2. A Framework for Software Product Line Engineering

Application-specific
realisation

Complete test
documentation

Two processes
and variability

Part 11
chapters

vided, for example, via configuration files. These parameter values are
evaluated, for example, by makefiles or the run-time system. The values can
be derived from the application variability model.

Many application realisation artefacts are created by reusing domain arte-
facts and binding the available variability. However, part of the realisation
artefacts usually has to be developed in the application realisation sub-
process for the specific application. Chapter 17 deals with the development
of an application based on reusable components.

2.7.5 Application Test Artefacts

Application test artefacts comprise the test documentation for a specific
application. This documentation makes application testing traceable and
repeatable. Many application test artefacts can be created by binding the
variability of domain test artefacts which is captured in the orthogonal vari-
ability model. Moreover, detailed test instructions such as the particular
input values to be used must be supplemented. For application-specific
developments, additional test artefacts must be created. We deal with the
development of application test artefacts in Chapter 18.

2.8 Role of the Framework in the Book
The book is organised according to the two key differences between soft-
ware product line engineering and single-system development:

= The need for two distinct development processes, namely the domain
engineering process and the application engineering process.

= The need to explicitly define and manage variability.

Part II elaborates on the definition of variability, which is the central concept
for realising mass customisation in software product line engineering. The
part consists of five chapters:

= Principles of Variability (Chapter 4)

= Documenting Variability in Requirements Artefacts (Chapter 5)
= Documenting Variability in Design Artefacts (Chapter 6)

= Documenting Variability in Realisation Artefacts (Chapter 7)

= Documenting Variability in Test Artefacts (Chapter 8)

2.8 Role of the Framework in the Book

37

Chapter 9
o Product
=
'E Management Chapter' 0 Chapter 11 Chapter 12 Chapter 13
54 Domain . . .
g Requirements Domain Domain Domain
= qu . Design Realisation Testing
= Engineering
= ~> ~7 ~>
‘s
E Chapter 14
] Selecting High-Level COTS Components
- = 1 b il
Requirements Architecture Components Tests
Chap.ter I g Chapter 16 Chapter 17 Chapter 18
Application N N [N
. Application Application Application
Requirements . e .
. . Design Realisation Testing
Engineering

g
Application N — Artefacts incl. Variability Model
Application 1 — Artefacts incl. Variability Model

B0 S TS & et ¢ g R0

Requirements Architecture Components Tests

Application Engineering

Fig. 2-4: Structure of Parts III and IV

Part III elaborates on the creation of the platform and thus on the definition
of the commonality and the variability of the software product line. The
chapters are shown in the upper half of Fig. 2-4. Each of the first five chap-
ters of Part III elaborates on one of the sub-processes of domain engineering
(as shown in the upper part of Fig. 2-4). The last chapter of Part III deals
with the specific problem of selecting off-the-shelf components in domain
engineering. The chapters of Part I1I are:

= Product Management (Chapter 9)

= Domain Requirements Engineering (Chapter 10)

= Domain Design (Chapter 11)

» Domain Realisation (Chapter 12)

= Domain Testing (Chapter 13)

= Selecting High-Level COTS'' Components (Chapter 14)

1" COTS is the acronym for Commercial Off-The-Shelf. A high-level COTS component provides a
significant fraction of the functionality of a software product line.

Part 11T
chapters

38

2. A Framework for Software Product Line Engineering

Part IV
chapters

PartV
chapters

Part VI
chapters

Part IV elaborates on the use of the platform to derive specific product line
applications. It shows how product line variability is exploited to develop
different applications. Each chapter explains one of the four application
engineering sub-processes (shown in the lower half of Fig. 2-4):

= Application Requirements Engineering (Chapter 15)
= Application Design (Chapter 16)

= Application Realisation (Chapter 17)

= Application Testing (Chapter 18)

Part V deals with the institutionalisation of software product line engineering
in an organisation. Its focus is on the separation between the domain and
application engineering processes. The chapters of Part V are:

= Organisation (Chapter 19)
= Transition Process (Chapter 20).

Part VI presents experiences with software product line engineering gained
in 15 organisations and briefly characterises essential fields for future
research. Whenever possible, we employ the terminology introduced in our
framework to make clear the relationships between the topics considered in
Part VI and our framework. The chapters of Part VI are:

= Experiences with Software Product Line Engineering (Chapter 21)
= Future Research (Chapter 22)

2 Springer
http://www.springer.com/978-3-540-24372-4

Software Product Line Engineering
Foundations, Principles and Techniques
Pohl, K.; Bickle, G.; van der Linden, F..
2005, XX, 467 p., Hardcowver

ISBEN: @78-3-540-24372-4

