1 The Motivation for Differential Evolution

1.1 Introduction to Parameter Optimization

1.1.1 Overview

In simple terms, optimization is the attempt to maximize a system’s desir-
able properties while simultaneously minimizing its undesirable character-
istics. What these properties are and how effectively they can be improved
depends on the problem at hand. Tuning a radio, for example, is an attempt
to minimize the distortion in a radio station’s signal. Mathematically, the
property to be minimized, distortion, can be defined as a function of the
tuning knob angle, x:

: (1.1)
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Because their most extreme value represents the optimization goal,
functions like Eq. 1.1 are called objective functions. When its minimum is
sought, the objective function is often referred to as a cost function. In the
special case where the minimum being sought is zero, the objective func-
tion is sometimes known as an error function. By contrast, functions that
describe properties to be maximized are commonly referred to as fitness
functions. Since changing the sign of an objective function transforms its
maxima into minima, there is no generality lost by restricting the following
discussion to function minimization only.

Tuning a radio involves a single variable, but properties of more com-
plex systems typically depend on more than one variable. In general, the
objective function, fx) = f{xo, X1, ..., Xp.1), has D parameters that influence
the property being optimized. There is no unique way to classify objective
functions, but some of the objective function attributes that affect an opti-
mizer’s performance are:

e Parameter quantization. Are the objective function’s variables continu-
ous, discrete, or do they belong to a finite set? Additionally, are all vari-
ables of the same type?
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o Parameter dependence. Can the objective function’s parameters be op-
timized independently (separable function), or does the minimum of one
or more parameters depend on the value of one or more other parame-
ters (parameter dependent function)?

e Dimensionality, D. How many variables define the objective function?

e Modality. Does the objective function have just one local minimum
(uni-modal) or more than one (multi-modal)?

o Time dependency. Is the location of optimum stationary (e.g., static), or
non-stationary (dynamic)?

e Noise. Does evaluating the same vector give the same result every time
(no noise), or does it fluctuate (noisy)?

e Constraints. Is the function unconstrained, or is it subject to additional
equality and/or inequality constraints?

o Differentiability. Is the objective function differentiable at all points of
interest?

In the radio example, the tuning angle is real-valued and parameters are
continuous. Neither mixed-variable types, nor parameter dependence is an
issue because the objective function’s dimension is one, i.e., it depends on
a single parameter. The objective function’s modality, however, depends
on how the tuning knob angle is constrained. If tuning is restricted to the
vicinity of a single radio station, then the objective function is uni-modal
because it exhibits just one (local) optimum. If, however, the tuning knob
scans a wider radio band, then there will probably be several stations. If
the goal is to find the station with least distortion, then the problem be-
comes multi-modal. If the radio station frequency does not drift, then the
objective function is not time dependent, i.e., the knob position that yields
the best reception will be the same no matter when the radio is turned on.
In the real world, the objective function itself will have some added noise,
but the knob angle will not be noisy unless the radio is placed on some vi-
brating device like a washing machine. The objective function has no ob-
vious constraints, but the knob-angle parameter is certainly restricted.

Even though distortion’s definition (Eq. 1.1) provides a mathematical
description of the property being minimized, there is no computable objec-
tive function — short of simulating the radio’s circuits — to determine the
distortion for a given knob angle. The only way to estimate the distortion
at a given frequency is to tune in to it and listen. Instead of a well-defined,
computable objective function, the radio itself is the “black box” that
transforms the input (knob angle) into output (station signal). Without an
adequate computer simulation (or a sufficiently refined actuator), the ob-
jective function in the radio example is effectively non-differentiable.
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Tuning a radio is a trivial exercise primarily because it involves a single
parameter. Most real-world problems are characterized by partially non-
differentiable, nonlinear, multi-modal objective functions, defined with
both continuous and discrete parameters and upon which additional con-
straints have been placed. Below are three examples of challenging, real-
world engineering problems of the type that DE was designed to solve.
Chapter 7 explores a wide range of applications in detail.

Optimization of Radial Active Magnetic Bearings

The goal of this electrical/mechanical engineering task is to maximize the
bearing force of a radial active magnetic bearing while simultaneously
minimizing its mass (Stumberger et al. 2000). As Fig. 1.1 shows, several
constraints must be taken into account.

Objectives: ® maximal bearing force
® minimum mass

Parameters: o stator yoke sy, >0

® rotor yoke width r,>0

v ® pole width w, >0
” o axial length 1>0
Constraints: air gap 3¢ =0.4mm

stator radius rg =52.5mm
shaft radius rg, = 35mm
rs=rsh+r, +3+ I, +s,

8

Fig. 1.1. Optimizing a radial active magnetic bearing

Capacity Assignment Problem

Figure 1.2 shows a computer network that connects terminals to concentra-
tors, which in turn connect to a large mainframe computer. The cost of a
line depends nonlinearly on the capacity. The goal is to satisfy the data de-
lay constraint of 4 ms while minimizing the cost of the network. A more
detailed discussion appears in Schwartz (1977).
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Objectives: ® minimize network cost
Parameters: o line capacities

e average data delay between terminals < 4s

e line capacities > 0

e cost of line nonlinearly depending on capacity
o Terminals transmit at 64kbps on average

e Average message length is 1000 bits long

Constraints:

Fig. 1.2. Optimizing a computer network

Filter Design Problem

The goal here is to design an electronic filter consisting of resistors, ca-
pacitors and an operational amplifier so that the magnitude of the ratio of
output to input voltages, |V,(®)/V(®)| (a function of frequency ), satis-
fies the tolerance scheme depicted in the lower half of Fig. 1.3.

Classifying Optimizers

Once a task has been transformed into an objective function minimization
problem, the next step is to choose an appropriate optimizer. Table 1.1
classifies optimizers based, in part, on the number of points (vectors) that
they track through the D-dimensional problem space. This classification
does not distinguish between multi-point optimizers that operate on many
points in parallel and multi-start algorithms that visit many points in se-
quence. The second criterion in Table 1.1 classifies algorithms by their re-
liance on objective function derivatives.
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Fig. 1.3. Optimizing an electronic filter

Table 1.1. A classification of optimization approaches and some of their represen-

tatives
Single-point Multi-point
Steepest descent Multi-start and
Derivative-based Conjugate gradient clustering techniques
Quasi-Newton
Derivative-free Random walk N.elder—Mead.
. Evolutionary algorithms
(direct search) Hooke—Jeeves . . .
Differential evolution
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Not all optimizers neatly fit into these categories. Simulated annealing
(Kirkpartick et al. 1983; Press et al. 1992) does not appear in this classifi-
cation scheme because it is a meta-strategy that can be applied to any de-
rivative-free search method. Similarly, clustering techniques are general
strategies, but because they are usually combined with derivative-based
optimizers (Janka 1999) they have been assigned to the derivative-based,
multi-point category. As Table 1.1 indicates, differential evolution (DE) is
a multi-point, derivative-free optimizer.

The following section outlines some of the traditional optimization algo-
rithms that motivated DE’s development. Methods from each class in Ta-
ble 1.1 are discussed, but their many variants and the existence of other
novel methods (Corne et al. 1999; Onwubolu and Babu 2004) make it im-
possible to survey all techniques. The following discussion is primarily fo-
cused on optimizers designed for objective functions with continuous
and/or discrete parameters. With a few exceptions, combinatorial optimi-
zation problems are not considered.

1.1.2 Single-Point, Derivative-Based Optimization

Derivative-based methods embody the classical approach to optimization.
Before elaborating, a few details on notation are in order. First, a D-
dimensional parameter vector is defined as:

%o (1.2)

Letters in lowercase italic symbolize individual parameters; bold lower-
case letters denote vectors, while bold uppercase letters represent matrices.
Introducing several special operator symbols further simplifies formulation
of the classical approach. For example, the nabla operator is defined as

d/0x, (1.3)
Ve d/0x,

d/dxp,

in order to simplify the expression for the gradient vector:
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¥#(x) (1.4)

ox,
U (x)

g(x)=V-f(x)=| oy,

of(x)

ox,

It is also convenient to define the Hessian matrix:

of /0xy0x,  Of /0x,0x; ... Of /9x,0xp_, (1.5)
G(x)= V2 f(x)= of / 0x,0x,
of /0xp_,0x, . Of /10X, 0xp_,

The symbol V* is meant to imply second-order (partial) differentiation, not
that the nabla operator, V , is squared.
Using these notational conveniences, the Taylor series for an arbitrary
objective function becomes
Vfi (Xo)

109= s L0 (s ) e VL)

= 1)+l (x =3, )+ (x =3 )2 Gl - (s,

(ex)e. 1O

where X is the point around which the function f(x) is developed. For a
point to be a minimum, elementary calculus (Rade and Westergren 1990)
demands that

g(xextr ) = 09 (1 7)

i.e., all partial derivatives at X = Xy, must be zero. In the third term on the
right-hand side of Eq. 1.6, the difference between x and X, is squared, so in
order to avoid a negative contribution from the Hessian matrix, G(x() must
be positive semi-definite (Scales 1985). In the immediate neighborhood
about x,, higher terms of the Taylor series expansion make a negligible
contribution and need not be considered.

Applying the chain rule for differentiation to the first three terms of the
Taylor expansion in Eq. 1.6 allows the gradient about the arbitrary point xq
to be expressed as
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Vf(xextr)zg(x0)+G(X0).(xem—xo): 0, (1.8)
which reduces to
Xextr :_g(XO).(;_1 (X0)+XO' (19)

where G™' is the inverse of the Hessian matrix.

If the objective function, f(x), is quadratic, then Eq. 1.9 can be applied
directly to obtain its true minimum. Figure 1.4 shows how Eq. 1.9 com-
putes the optimum of a (uni-modal) quadratic function independent of
where the starting point, X, is located.

X2
A

of f(x1,%)

\ 4

X1

Fig. 1.4. If the objective function is quadratic and differentiable, then Eq. 1.9 can
determine its optimum.

Even though there are applications, e.g., acoustical echo cancellation in
speakerphones, where the objective function is a simple quadratic (Glentis
et al. 1999), the majority of optimization tasks lack this favorable property.
Even so, classical derivative-based optimization can be effective as long
the objective function fulfills two requirements:

R1 The objective function must be two-times differentiable.

R2 The objective function must be uni-modal, i.e., have a single mini-
mum.
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A simple example of a differentiable and uni-modal objective function is

f(xl,x2)=10—e*(xlz+3x5), (1.10)

Figure 1.5 graphs the function defined in Eq. 1.10.

58
85
(]

Z94.

god

Fig. 1.5. An example of a uni-modal objective function

The method of steepest descent is one of the simplest gradient-based
techniques for finding the minimum of a uni-modal and differentiable
function. Based on Eq. 1.9, this approach assumes that G™'(xo) can be re-
placed with the identity matrix:

1 0 ... 0 (1.11)
0 1 0

I=
0 O 1

This crude replacement does not lead directly to the minimum, but to the
point

X, zxo—g(xo). (1.12)
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Since the negative gradient points downhill, x; will be closer to the
minimum than X, unless the step was too large. Adding a step size, 7, to the
general recursion relation that defines the direction of steepest descent
provides a measure of control:

X, =X, -7 g(x,) (1.13)

Figure 1.6 shows a typical pathway from the starting point, Xo, to the opti-
mum X Additional details of the classical approach to optimization can
be found in Bunday and Garside (1987), Pierre (1986), Scales (1985) and
Press et al. (1992). The point relevant to DE is that the classical approach
reveals the existence of a step size problem in which the best step size de-
pends on the objective function.

——— contour lines
of f(x1,x2)

v

X1

Fig. 1.6. The method of steepest descent first computes the negative gradient, then
takes a step in the direction indicated.

Replacing the inverse Hessian, G™'(xo), with the identity matrix intro-
duces its own set of problems and more elaborate techniques like Gauss—
Newton, Fletcher—Reeves, Davidon—Fletcher—Powell, Broyden—Fletcher—
Goldfarb—Shanno and Levenberg—Marquardt (Scales 1985; Pierre 1986)
have been developed in response. These methods roughly fall into two
categories. Quasi-Newton methods approximate the inverse Hessian by a
variety of schemes, most of which require extensive matrix computations.
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By contrast, conjugate gradient methods dispense with the Hessian matrix
altogether, opting instead to use line optimizations in conjugate directions
to avoid computing second-order derivatives. In addition to Quasi-Newton
and conjugate gradient methods, mixtures of the two approaches also exist.
Even so, all these methods require the objective function to be one-time or
two-times differentiable. In addition, their fast convergence on quadratic
objective functions does not necessarily transfer to non-quadratic func-
tions. Numerical errors are also an issue if the objective function exhibits
singularities or large gradients. Methods that do not require the objective
function to be differentiable provide greater flexibility.

1.1.3 One-Point, Derivative-Free Optimization and the Step Size
Problem

There are many reasons why an objective function might not be differenti-
able. For example, the “floor” operation in Eq. 1.14 quantizes the function
in Eq. 1.10, transforming Fig. 1.5 into the stepped shape seen in Fig. 1.7.
At each step’s edge, the objective function is non-differentiable:

f(x,x,)= ﬂoor(lO- (10— exp(— x? —3x3 )))/10 (1.14)
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Fig. 1.7. A non-differentiable, quantized, uni-modal function
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There are other reasons in addition to function quantization why an ob-
jective function might not be differentiable:

¢ Constraining the objective function may create regions that are non-
differentiable or even forbidden altogether.

e If the objective function is a computer program, conditional branches
make it non-differentiable, at least for certain points or regions.

e Sometimes the objective function is the result of a physical experiment
(Rechenberg 1973) and the unavailability of a sufficiently precise actua-
tor can make computing derivatives impractical.

e If, as is the case in evolutionary art (Bentley and Corne 2002), the ob-
jective function is “subjective”, an analytic formula is not possible.

e In co-evolutionary environments, individuals are evaluated by how ef-
fectively they compete against other individuals. The objective function
is not explicit.

When the lack of a computable derivative causes gradient-based opti-
mizers to fail, reliance on derivative-free techniques known as direct
search algorithms becomes essential. Direct search methods are “generate-
and-test” algorithms that rely less on calculus than they do on heuristics
and conditional branches. The meta-algorithm in Fig. 1.8 summarizes the
direct search approach.

Initialization(); //choose the initial base point
// (introduces starting-point problem)
while (not converged) //decide the number of iterations
{ // (dimensionality problem)
vector generation(); //choose a new point
// (introduces step size problem)
selection() ; //determine new base point
}

Fig. 1.8. Meta-algorithm for the direct search approach

The meta-algorithm in Fig. 1.8 reveals that the direct search has a selec-
tion phase during which a proposed move is either accepted or rejected.
Selection is an acknowledgment that in all but the simplest cases, not all
proposed moves are beneficial. By contrast, most gradient-based optimiz-
ers accept each point they generate because base vectors are iterates of a
recursive equation. Points are rejected only when, for example, a line
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search concludes. For direct search methods, however, selection is a cen-
tral component that can affect the algorithm’s next action.

Enumeration or Brute Force Search

As their name implies, one-point, direct search methods are initialized with
a single starting point. Perhaps the simplest one-point direct search is the
brute force method. Also known as enumeration, the brute force method
visits all grid points in a bounded region while storing the current best
point in memory (see Fig. 1.9). Even though generating a sequence of grid
points is trivial, the enumerative method still faces a step size problem be-
cause if nothing is known about the objective function, it is hard to decide
how fine the grid should be. If the grid is too coarse, then the optimum
may be missed. If the grid becomes too small, computing time explodes
exponentially because a grid with N points in one dimension will have N”
points in D dimensions. Because of this “curse of dimensionality”, the
brute force method is very rarely used to optimize objective functions with
a significant number of continuous parameters. The curse of dimensional-
ity demonstrates that better sampling strategies are needed to keep a search
productive.

X
y N

X2, high

)

evaluation path
_—" of the brute force
search

~_J)

AN

contour lines
] of f{x1,x2)

x2,10w ] o

\ 4

| T X1
X1,low X1,high

Fig. 1.9. The brute force search tries all grid points in a given region.
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Random Walk

The random walk (Gross and Harris 1985) circumvents the curse of di-
mensionality inherent in the brute force method by sampling the objective
function value at randomly generated points. New points are generated by
adding a random deviation, Ax, to a given base point, X,. In general, each
coordinate, Ax;, of the random deviation follows a Gaussian distribution

R (1.15)
_0‘5.(Axi ﬂi) }

1
Ax. )= —————
p( 1) O_i.\/gexp( O_iz

where o; and 4 are the standard deviation and the mean value, respec-
tively, for coordinate i. The random walk’s selection criterion is “greedy”
in the sense that a trial point with a lower objective function value than
that of the base point is always accepted. In other words, if f{xo + Ax) <
f(xp), then x¢+ Ax becomes the new base point; otherwise the old point, X,
is retained and a new deviation is applied to it. Figure 1.10 illustrates how
the random walk operates.

X, A
—>— : successful move

—— :unsuccessful move

——— contour lines
of f{x1,x,)

\ 4

X

Fig. 1.10. The random walk samples the objective function by taking randomly
generated steps from the last accepted point.

The stopping criterion for a random walk might be a preset maximum
number of iterations or some other problem-dependent criterion. With
luck, a random walk will find the minimum quicker than can be done with
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a brute force search. Like both the classical and the brute force methods,
the random walk suffers from the step size problem because it is very dif-
ficult to choose the right standard deviations when the objective function is
not sufficiently well known.

Hooke and Jeeves

The Hooke—Jeeves method is a one-point direct search that attacks the step
size problem (Hooke and Jeeves 1961; Pierre 1986; Bunday and Garside
1987; Schwefel 1994). Also known as a direction or pattern search, the
Hooke—Jeeves algorithm starts from an initial base point, x,, and explores
each coordinate axis with its own step size. Trial points in all D positive
and negative coordinate directions are compared and the best point, xy, is
found. If the best new trial point is better than the base point, then an at-
tempt is made to make another move in the same direction, since the step
from x, to x; was a good one. If, however, none of the trial points improve
on X, the step is presumed to have been too large, so the procedure repeats
with smaller step sizes. The pseudo-code in Fig. 1.11 summarizes the
Hooke—-Jeeves method. Figure 1.12 plots the resulting search path.

while (h > h,;,) //as long as step length is still not small enough
{
x, = explore(x,,h); //explore the parameter space
if (f(x,) < £(x,)) //if improvement could be made
{
X, = X + (%X, - Xq); //make differential pattern move
if (f(x,) < £(x,)) %, = x5
else Xy = Xpj
}

else h = h*reduction_ factor;

function explore(vector x,, vector h)
{ //---note that e; is the unit vector for coordinate i---
for (i=0; i<D; i++) //for all D dimensions

{

if (f(xo+e;*h) < f(x,)) %, = x5 + e;*h; //check coordinate i
else if (f(xy-e;*h) < f(xq)) %X, = x, - e;*h;

}

return(x,) ;

}

Fig. 1.11. Pseudo-code for the Hooke—Jeeves method
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X
A —>— : successful move

—— : unsuccessful move

pattern move

——— contour lines
of f{x1,x,)

pattern move

\ 4

X1

Fig. 1.12. A search guided by the Hooke—Jeeves method. Positive axis directions
are always tried first.

On many functions, its adaptive step sizes make the Hooke—Jeeves
search much more effective than either the brute force or random walk al-
gorithms, but step sizes that shrink and never increase can be a drawback.
For example, if steps are forced to become small because the objective
function contains a “valley”, then they will be unable to expand to the ap-
propriate magnitude once the valley ends.

1.2 Local Versus Global Optimization

Both the step size problem and objective function non-differentiability can
make even uni-modal functions a challenge to optimize. Additional obsta-
cles arise once requirement R2 is dropped and the objective function is al-
lowed to be multi-modal. Equation 1.16 is an example of a multi-modal
function. As Fig. 1.13 shows, the “peaks” function in Eq. 1.16 has more
than one local minimum:
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f(xl’x2)=3(l_x1)2'eXp(xlz+(x2+1)2)_10(x_51_x13_x§j_ (1.16)

. exp(x12 +X; )—% exp((x1 +1) +x§)

fix1 x2)

Fig. 1.13. The “peaks” function defined by Eq. 1.16 is multi-modal.

Because they exhibit more than one local minimum, multi-modal func-
tions pose a starting point problem. Mentioned briefly in the direct search
meta-algorithm (Fig. 1.8), the starting point problem refers to the tendency
of an optimizer with a greedy selection criterion to find only the minimum
of the basin of attraction in which it was initialized. This minimum need
not be the global one, so sampling a multi-modal function in the vicinity of
the global optimum, at least eventually, is essential. Because the Gaussian
distribution is unbounded, there is a finite probability that the random walk
will eventually generate a new and better point in a basin of attraction
other than the one containing the current base point. In practice, successful
inter-basin jumps tend to be rare. One method that increases the chance
that a point will travel to another basin of attraction is simulated annealing.
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1.2.1 Simulated Annealing

Simulated annealing (SA) (Kirkpatrick et al. 1983; Press et al. 1992), thor-
oughly samples the objective function surface by modifying the greedy cri-
terion to accept some uphill moves while continuing to accept all downhill
moves. The probability of accepting a trial vector that lies uphill from the
current base point decreases as the difference in their function values in-
creases. Acceptance probability also decreases with the number of function
evaluations, i.e., after a reasonably long time, SA’s selection criterion be-
comes greedy. The random walk has traditionally been used in conjunction
with SA to generate trial vectors, but virtually any search can be modified
to incorporate SA’s selection scheme. Figure 1.14 describes the basic SA
algorithm.

fbest = f(x,);//start with some base point
T = Ty; //and some starting temperature
while (convergence criterion not yet met)

{

Ax = generate deviation(); //e.g., a Gaussian distribution
if (f(xo+Ax) < f£(x,)) //if improvement can be made

{

fbest = f (x,+Ax);

X, = Xo+Ax; //new, improved base point

}

else

{

£ (x,+Ax) -f (x,) ; //positive value
r = rand(); //generate uniformly distr. variable ex [0,1]
if (r < exp(-d*beta/T)) //Metropolis algorithm

{
}

X, = X,+Ax; //new base point derived from uphill move

}

T = T*reduction_factor;

Fig. 1.14. The basic simulated annealing algorithm. In this implementation, the
random walk generates trial points.

The term “annealing” refers to the process of slowly cooling a molten
substance so that its atoms will have the opportunity to coalesce into a
minimum energy configuration. If the substance is kept near equilibrium at
temperature 7, then atomic energies, E, are distributed according to the
Boltzmann equation
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(1.17)
k-T

)~ 15 |
where £ is the Boltzmann constant.

By equating energy with function value, SA attempts to exploit nature’s
own minimization process via the Metropolis algorithm (Metropolis et al.
1953). The Metropolis algorithm implements the Boltzmann equation as a
selection probability. While downhill moves are always accepted, uphill
moves are accepted only if a uniformly distributed random number from
the interval [0,1] is smaller than the exponential term:

@zexp(—#j. (1.18)

The variable, d, is the difference between the uphill objective function
value and the function value of the current base point, i.e., their “energy
difference”. Equation 1.18 shows that the acceptance probability, ©, de-
creases as d increases and/or as T decreases. The value, S, is a problem-
dependent control variable that must be empirically determined.

One of annealing’s drawbacks is that special effort may be required to
find an annealing schedule that lowers T at the right rate. If T is reduced
too quickly, the algorithm will behave like a local optimizer and become
trapped in the basin of attraction in which it began. If 7 is not lowered
quickly enough, computations become too time consuming. There have
been many improvements to the standard SA algorithm (Ingber 1993) and
SA has been used in place of the greedy criterion in direct search algo-
rithms like the method of Nelder—Mead (Press et al. 1992). The step size
problem remains, however, and this may be why SA is seldom used for
continuous function optimization. By contrast, SA’s applicability to virtu-
ally any direct search method has made it very popular for combinatorial
optimization, a domain where clever, but greedy, heuristics abound (Syslo
et al. 1983; Reeves 1993).

1.2.2 Multi-Point, Derivative-Based Methods

Multi-start techniques are another way to extensively sample an objective
function landscape. As their name implies, multi-start techniques restart
the optimization process from different initial points. Typically, each sam-
ple point serves as the initial point for a greedy, local optimization method
(Boender and Romeijn 1995). Often, the local search is derivative-based,
but this is not mandatory and if the objective function is non-differentiable,
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any direct search method may be used. Without detailed knowledge of the
objective function, it is difficult to know how many different starting
points will be enough, especially since many points might lead to the same
local minimum because they all initially fell within the perimeter of the
same basin of attraction.

Clustering methods (Torn and Zelinkas 1989; Janka 1999) refine the
multi-start method by applying a clustering algorithm to identify those
sample points that belong to the same basin of attraction, i.e., to the same
cluster. Ideally, each cluster yields just one point to serve as the base point
for a local optimization routine. Density clustering (Boender and Romeijn
1995; Janka 1999) is based on the assumption that clusters are shaped like
hyper-ellipsoids and that the objective function is quadratic in the
neighborhood of a minimum. Other methods, like the one described in Lo-
catelli and Schoen (1996), use a proximity criterion to decide if a local
search is justified. Because this determination often requires that all previ-
ously visited points be stored, highly multi-modal functions of high dimen-
sion can strain computer memory capacity. As a result, clustering algo-
rithms are typically limited to problems with a relatively small number of
parameters.

1.2.3 Multi-Point, Derivative-Free Methods

Evolution Strategies and Genetic Algorithms

Evolution strategies (ESs) were developed by Rechenberg (1973) and
Schwefel (1994), while genetic algorithms (GAs) are attributed to Holland
(1962) and Goldberg (1989). Both approaches attempt to evolve better so-
lutions through recombination, mutation and survival of the fittest. Be-
cause they mimic Darwinian evolution, ESs, GAs, DE and their ilk are of-
ten collectively referred to as evolutionary algorithms, or EAs.
Distinctions, however, do exist. An ES, for example, is an effective con-
tinuous function optimizer, in part because it encodes parameters as float-
ing-point numbers and manipulates them with arithmetic operators. By
contrast, GAs are often better suited for combinatorial optimization be-
cause they encode parameters as bit strings and modify them with logical
operators. Modifying a GA to use floating-point formats for continuous pa-
rameter optimization typically transforms it into an ES-type algorithm
(Miihlenbein and Schlierkamp-Vosen 1993; Salomon 1996). There are
many variants to both approaches (Béack 1996; Michalewicz 1996), but be-
cause DE is primarily a numerical optimizer, the following discussion is
limited to ESs.
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Like a multi-start algorithm, an ES samples the objective function land-
scape at many different points, but unlike the multi-start approach where
each base point evolves in isolation, points in an ES population influence
one another by means of recombination. Beginning with a population of u
parent vectors, the ES creates a child population of 4 = u vectors by re-
combining randomly chosen parent vectors. Recombination can be discrete
(some parameters are from one parent, some are from the other parent) or
intermediate (e.g., averaging the parameters of both parents) (Bick et al.
1997; Back 1996). Once parents have been recombined, each of their chil-
dren is “mutated” by the addition of a random deviation, Ax, that is typi-
cally a zero mean Gaussian distributed random variable (Eq. 1.15).

After mutating and evaluating all A children, the (&, 4)-ES selects the
best & children to become the next generation’s parents. Alternatively, the
(u+ A)-ES populates the next generation with the best & vectors from the
combined parent and child populations. In both cases, selection is greedy
within the prescribed selection pool, but this is not a major drawback be-
cause the vector population is distributed. Figure 1.15 summarizes the
meta-algorithm for an ES.

Initialization() ; //choose starting population of U members
while (not converged) //decide the number of iterations

{

for (i=0; i<A; i++) //child vector generation: A>U

{

p, (1) = rand(u); //pick a random parent from | parents
p, (i) = rand(u); //pick another random parent p,(i) != p, (i)
c, (i) = recombine(p,(i),p,(i)); //recombine parents
c, (i) = mutate(e;(i)); //mutate child
save (e, (1)) ; //save child in an intermediate population
}
selection() ; //MWnew parents out of either A, or A+u

}

Fig. 1.15. Meta-algorithm for evolution strategies (ESs)

While ESs are among the best global optimizers, their simplest imple-
mentations still do not solve the step size problem. Schwefel addressed this
issue in Schwefel (1981) where he proposed modifying the Gaussian muta-
tion distribution with a matrix of adaptive covariances, an idea that Re-
chenberg suggested in 1967 (Fogel 1994). Equation 1.19 generalizes the
multi-dimensional Gaussian distribution to include a covariance matrix, C
(Papoulis 1965):
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plax)=——explos(ax—p) o (ax-w)
det(©)-/(2x)”
In Eq. 1.19, p is the mean vector and C is the covariance matrix
oy Oop1 = Ogp-i (1.20)
co| G Ol . Oip, S.R.S
Op-10 Op-11 - O-é—l,D—l
with the scatter matrix
62 0 .. 0 (1.21)
5| © o} 0
0 0 oh
and the correlation matrix
1 Poi - Popa (1.22)
R= Pro 1 = Pip-i
Pp-10 Pp-11 - 1

By permitting the otherwise symmetrical Gaussian distribution to be-
come ellipsoidal, the ES can assign a different step size to each dimension.
In addition, the covariance matrix allows the Gaussian mutation ellipsoid
to rotate in order to adapt better to the topography of non-decomposable
objective functions. A decomposable function (Salomon 1996) can always
be written as

D-1 (1.23)

Sx)=2 A (x)

i=

Because decomposable functions lack cross-terms, their parameters can be
optimized independently. Thus, decomposability replaces the task of opti-
mizing one function having D dimensions with the much simpler task of
optimizing D one-dimensional functions. The hyper-ellipsoid is a simple
example of a decomposable function:
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D1 (1.24)

If, however, the hyper-ellipsoid is rotated in all dimensions, it becomes
impossible to optimize one parameter independent of the others. This pa-
rameter dependence is often referred to as epistasis, an expression from
biology (www 01). Salomon (1996) shows that unless an optimizer ad-
dresses the issue of parameter dependence, its performance on epistatic ob-
jective functions will be seriously degraded. This important issue is dis-
cussed extensively in Sect. 2.6.2.

Adapting the components of C requires additional “strategy parame-
ters”, i.e., the variances and position angles of the D-dimensional hyper-
ellipsoids for which C is positive definite (Sprave 1995). Thus, the ES
with correlated mutations increases a problem’s dimensionality because it
characterizes each individual by not only a vector of D objective function
parameters, but also an additional vector of up to D-(D — 1)/2 strategy pa-
rameters. For problems having many variables, the time and memory
needed to execute these additional (matrix) calculations may become pro-
hibitive.

Nelder and Mead

The Nelder—Mead polyhedron search (Nelder and Mead 1965; Bunday and
Garside 1987; Press et al. 1992; Schwefel 1994), tries to solve the step size
problem by allowing the step size to expand or contract as needed. The al-
gorithm begins by forming a (D + 1)-dimensional polyhedron, or simplex,
of D + 1 points, x;, i =0, 1, ..., D, that are randomly distributed throughout
the problem space. For example, when D = 2, the simplex is a triangle. In-
dices of the points are ordered according to ascending objective function
value so that X, is the best point and X is the worst point. To obtain a new
trial point, x,, the worst point, Xp, is reflected through the opposite face of
the polyhedron using a weighting factor, F1:

X, =X, +F1-(x, —x,). (1.25)

The vector, X, is the centroid of the face opposite xp:

1 D-1
Xm = B(ZZ_O:XZJ

Figure 1.16 illustrates the reflection operation defined in Eq. 1.25.

(1.26)
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v
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Fig. 1.16. Reflection and expansion in the Nelder-Mead method where D =2

If a reflection through the centroid improves on the best point, X, i.e., if
Ax,) < f(xp), then the Nelder—Mead algorithm takes another step in the
same direction based on the assumption that still further improvement may
be possible. When weighted by a second scale factor, F2, this expansion
Step generates a new trial point, X,

X, =x, +F2-(x,, —x,) (1.27)

If this expansion step also improves on X, then x, replaces xp. This new
set of D + 1 points becomes the next simplex and the procedure begins
again by ordering points based on their objective function value. If, how-
ever, X, did not improve upon X, then x, replaces xp. If x,. did not improve
upon X in the first place, then x, is compared to the next worst point, Xp-;.
If x, is better than x,_;, then x, replaces xp. If, however, x, is worse than
Xp-1, a third scaling constant, F3, shrinks the entire simplex. Pseudo-code
for the Nelder—Mead algorithm appears in Fig. 1.17. Figures 1.18-1.21 il-
lustrate how the simplex moves in a two-dimensional parameter space.
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while (convergence criterion not yet met)

{
//---sort all D+1 points of the simplex according to-----
//---ascending objective function value------------------
sort (x;,D+1) ;
//---compute centroid-----------------------~~-~--——---—-—-

X, = 0;
for (i=0; i<D; i++) x, = X, + X;;
Xy = Xu/D;

//---start exploration of surface--------------------~--—-
X, = X, + Fl(x, - %xp);//reflection
if (£(xy) < £(xq)) //if best point is improved
{
X. = X, + F2(x, - %Xp);//expansion
if (F(x.) < £(x0)) %Xp = Xo;
else Xp = Xpj
}

else if (f(x,) < f(xp.,))//if next worst point is improved

{
}

else//if best and next worst point are not improved

{

Xp = Xpj

if (£(x,) < £(xp))

{

Xp = X,;//replace worst point with reflected point
X, = X, + F3(x, - xp);//contract around centroid

}

else

{
}

if (f(x.) < f(xp))//if contraction was successful

{

X, = X, - F3(x, - xp);//contract around centroid

Xp = Xqoj

else //contract around the best point

{
}
}

}//end while

for (i=1; i<=D; i++) =x; = 0.5%(x, + X;);

Fig. 1.17. Pseudo-code for the Nelder—Mead algorithm
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Fig. 1.18. Evolution of the Nelder—Mead simplex: first iteration. The reflection
succeeds but the following expansion fails.
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Fig. 1.19. Evolution of the Nelder—-Mead simplex: second iteration. Again the re-

flection succeeds but the expansion fails.
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Fig. 1.20. Evolution of the Nelder—Mead simplex: third iteration. This time, even
the reflection fails so a contraction must be tried. The contraction is successful.
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Fig. 1.21. Evolution of the Nelder-Mead simplex: fourth iteration. The reflection
succeeds, but the expansion does not.
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The Nelder—Mead method is one of the oldest optimization algorithms
to heavily rely on difference vectors for exploring the objective function
landscape. One advantage of the Nelder—-Mead method is that the simplex
can shrink as well as expand to adapt to the current objective function sur-
face. This makes the step size a variable that depends on the topography of
the objective function landscape. Like the Nelder—Mead method, DE also
exploits vector differences but without the positional bias inherent in sim-
plex reflections. Section 2.6.3 explores this distinction in detail.

Unlike DE, the Nelder—Mead algorithm restricts the number of sample
points to D + 1. This limitation becomes a drawback for complicated ob-
jective functions that require many more points to form a clear model of
the surface topography. Box (Box 1965; Bunday and Garside 1987,
Schwefel 1994) suggested using a geometrical entity called a complex that,
unlike a simplex, contains 2D points. Box also exploited the difference
vectors formed by the centroid and all other points except for the worst
one, but for multi-modal functions in particular, excessive reliance on the
centroid as a reference point is meaningless, or, worse, the cause of prema-
ture convergence.

X2
A —— : successful move

~——— contour lines
of f{x1,x,)

\ 4

X1

Fig. 1.22. The CRS method applies Nelder—Mead’s reflections to a population of
points.
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while (convergence criterion not yet met)

{

//---sort all Np points according to---------------------

//---ascending objective function value------------------

sort (x;,Np); //x, is best, x, is worst point x,

//---compute centroid (Points of centroid should be------

//---all different. Code to achieve that is not shown.)--

j = rand(Np); //pick a random point from the population
//as a variant pick j=0 (best point)

Xy = X5

for (i=1; i<D; i++)

j = rand(Np); //pick a random point from the population
Xy = Xy + Xy;
}
Xy = X,/D;
//---start exploration of surface--------------------~--—-
X, = Xy + Fl(x, _ x3);//reflection from last j, usually Fl=1

if (bounds ok(x,) == TRUE)//if inside the region of interest
{
if (f(xy) < £(xp)) //if worst point is improved
{
Xp = Xyj

}//eﬁé.while

Fig. 1.23. Pseudo-code for the CRS-type algorithms

Controlled Random Search

Price’s (no relation to the author of this book) controlled random search
(CRS) also uses difference vectors for reflection operations (Price 1978).
CRS employs a Nelder—Mead-like simplex consisting of D + 1 points
drawn at random from a population of Np > D + 1 vectors as shown in
Figure 1.22. A reflection through the centroid generates a new point x,. If
this point is better than the current worst point x,,, X, replaces x,,. Figure
1.23 presents pseudo-code for the CRS.

CRS resembles DE because the population size is a control variable and
because vector differences generate new points. Like the Nelder—Mead al-
gorithm, though, CRS’s reflection operations are a form of arithmetic re-
combination (see Sect. 2.6.3), whereas DE’s vector operations more
closely resemble a mutation operation (see Sect. 2.5).
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One drawback of the CRS algorithm is that continually replacing the
current worst point exerts high selective pressure that may force the popu-
lation to prematurely converge. Even though it is a multi-point strategy,
this “replace worst” selection strategy also makes it difficult to implement
the CRS algorithm in parallel. Conflicts can arise because the current
worst point can change after every reflection. There have been several im-
provements to the CRS algorithm, most notably by Ali et al. (1997) and
Ali and T6rn (2004).

1.2.4 Differential Evolution — A First Impression

Price and Storn developed DE to be a reliable and versatile function opti-
mizer that is also easy to use. The first written publication on DE appeared
as a technical report in 1995 (Storn and Price 1995). Since then, DE has
proven itself in competitions like the IEEE’s International Contest on Evo-
lutionary Optimization (ICEO) in 1996 and 1997 and in the real world on a
broad variety of applications. Recently, Mathematica® added DE to its
numerical optimizer package.

Like nearly all EAs, DE is a population-based optimizer that attacks the
starting point problem by sampling the objective function at multiple, ran-
domly chosen initial points. Preset parameter bounds define the domain
from which the Np vectors in this initial population are chosen (Fig. 1.24).
Each vector is indexed with a number from 0 to Np — 1. Like other popula-
tion-based methods, DE generates new points that are perturbations of ex-
isting points, but these deviations are neither reflections like those in the
CRS and Nelder—Mead methods, nor samples from a predefined probabil-
ity density function, like those in the ES. Instead, DE perturbs vectors with
the scaled difference of two randomly selected population vectors (Fig.
1.25). To produce the trial vector, uy, DE adds the scaled, random vector
difference to a third randomly selected population vector (Fig. 1.26). In the
selection stage, the trial vector competes against the population vector of
the same index, which in this case is number 0. Figure 1.27 illustrates the
select-and-save step in which the vector with the lower objective function
value is marked as a member of the next generation. Figures 1.28—-1.29 in-
dicate that the procedure repeats until all Np population vectors have com-
peted against a randomly generated trial vector. Once the last trial vector
has been tested, the survivors of the Np pairwise competitions become par-
ents for the next generation in the evolutionary cycle.
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Fig. 1.25. Generating the perturbation: x,; — X,»
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weighted difference
A vector F(X,1-X,,)

X,3 is another randomly
selected vector which,
together with the weighted
difference vector, yields
the trial vector u,.

» xl
Fig. 1.26. Mutation
X2
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the vector no. 0 of the
population.
The vector with the
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vector no. 0 of the next
population.

:Xl

Fig. 1.27. Selection. Because it has a lower function value, u, replaces the vector
with index 0 in the next generation.
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Fig. 1.28. A new population vector is mutated with a randomly generated pertur-

bation.
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Fig. 1.29. Selection. This time, the trial vector loses.
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Figure 1.30 presents pseudo-code for DE’s most basic idea.

while (convergence criterion not yet met)

{

//---x%x; defines a vector of the current vector population-------
//---y; defines a vector of the new vector population-----------
for (i=0; 1i<Np; i++)

{

rl = rand(Np); //select a random index from 1, 2, ..., Ny
r2 = rand(Np); //select a random index from 1, 2, ..., N,
r3 = rand(Ng); //select a random index from 1, 2, ..., N,

U = Xy + FR (X - Xpo) g
if (£(uy) <= £(x;))

{

Yi = Uij
1
else
{

Yi = Xii

}

}//end while

Fig. 1.30. Pseudo-code for a simplified form of DE’s generate-and-test operations

Even though the scheme described above already works remarkably
well, DE’s performance can be improved and its methodology adapted to a
wide variety of optimization scenarios. The following chapters provide ad-
ditional insight into how and why DE works, including a convergence
proof, performance comparisons with other global optimization algo-
rithms, practical applications, and computer code for solving real-world
tasks.
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