Solution to selected problems.

Chapter 1. Preliminaries

1. VAe Fg,Vt >0, AN{T <t} = (An{S<t})N{T < t}, since {T <t} C {S < t}. Since
AnN{S<tte Frand {T <t} € Fr, AnN{T <t} € Fi. Thus Fs C Fr.

2. Let Q = Nand F = P(N) be the power set of the natural numbers. Let F,, = o({2},{3},...,{n+
1}), ¥n. Then (Fy,)n>1 is a filtration. Let S =313 and T'=4. Then S < T and

' B B {3} ifn=3
{w: Slw) =n} = {@ otherwise
Q ifn=4
{w: Tw) =nj = {(Z) otherwise

Hence {S =n} € F,, {T =n} € F,, Vn and S, T are both stopping time. However {w : T — S =
1} ={w: 1z (w) = 1} = {3} ¢ F1. Therefore T'— S is not a stopping time.

3. Observe that {T,, <t} € F and {T,, < t} € F; for all n € N | t € Ry, since T,, is stopping

time and we assume usual hypothesis. Then

(1) sup,, T, is a stopping time since V¢ > 0, {sup,, T, < t} = N {T,, < t} € F.

(2) inf,, T), is a stopping time since {inf,, T,, < t} = U{T,, <t} € F;

(3) limsup,,_,, is a stopping time since limsup,, ., = inf,, sup,,;>,, ITr. (and (1), (2).)
(4) liminf,_. is a stopping time since liminf,, ., = sup,, inf,>., T, (and (1), (2).).

4. T is clearly a stopping time by exercise 3, since T' = liminf,, T,,. Fr C Fr,, Vn since T' < T,,,
and Fpr C N,Fr, by exercise 1. Pick a set A € N, Fp, Vn>1, A€ Fr, and AnN{T, <t} € F.
Therefore AN{T <t} = AN (M {T, <t}) = Np (AN{T, <t}) € F. This implies N, Fr, C Fr
and completes the proof.

5. (a) By completeness of LP space, X € L¥. By Jensen’s inequality, E|M;|P = E|E(X|F)|P <
E[E(|XP|F)] = E|X|P < oo for p > 1.

(b) By (a), My € LP C L. Fort > s > 0, BE(My|Fs) = E(E(X|F)|Fs) = B(X|Fs) = My a.s. {M;}
is a martingale. Next, we show that {M,;} is continuous. By Jensen’s inequality, for p > 1,
E|\M — My = E|E(M%Y, — X|F)|P < E|MZ — X|P, vt > 0. (1)

It follows that sup, E|M* — M| < E|M2Y — X|P — 0 as n — oo. Fix arbitrary ¢ > 0. By
Chebychev’s and Doob’s inequality,

0. (2

1 P sup, B| M} — My?
P(suth”—Mt|>z—:>§pE(suth”—Mt|p)§< E > sup, EIMP" = Mif?
t & t

p—1 ep
Therefore M™ converges to M uniformly in probability. There exists a subsequence {ny} such that

M, converges uniformly to M with probability 1. Then M is continuous since for almost all w, it
is a limit of uniformly convergent continuous paths.



6. Let p(n) denote a probability mass function of Poisson distribution with parameter A\t. Assume
At is integer as given.

At
E|N; — M| =E(Ny — Xt) + 2E(N; — M)~ = 2B(N; = M) =2 (M —n)p(n)
n=0
At At At—1
o X ()" At (At)" (A)" 3
n=0 n=0 n=0
:267/\t ()\t)At
(At —1)!
7. Since N has stationary increments, for ¢ > s > 0,
E(N; — No)> = EN? , = Var(Ni—s) + (EN;_s)* = At — s)[1 + A\(t — s)]. (4)

Ast | s (ors1t), E(N— Ng)?> — 0. N is continuous in L? and therefore in probability.

8. Suppose 7, is a stopping time. A 3-dimensional Brownian motion is a strong Markov process
we know that P(7, < o) = 1. Let’s define Wy := B, 4¢— B,,. W is also a 3-dimensional Brownian
motion and its argumented filtration 7}V is independent of F, , = F, . Observe |Wy|| = ||B..| =
a. Let S =inf{t > 0: |W,|| < a}. Then Sis a F}V stopping time and {S < s} € F/V. So {S < s}
has to be independent of any sets in F,, . However {7, < t} N {S < s} = (), which implies that
{ra <t} and {S < s} are dependent. Sine {7, <t} € F, , this contradicts the fact that F,, and
F}V are independent. Hence 7, is not a stopping time.

9. (a) Since L?-space is complete, it suffices to show that S = >°" | M; is a Cauchy sequence
w.r.t. n. For m > n, by independence of {M?},

m 2 m m

n m % i) 2 1

E(St—St)2:E<Z Mt> = Y E(M) :tzﬁ. (5)
i=n+1 i=n+1 i=n-+1

, Since Y 2%, 1/i% < 0o, as n,m — oo, E(SP — S")? — oco. {SP'},, is Cauchy and its limit M; is

well defined for all ¢ > 0.

(b)First, recall Kolmogorov’s convergence criterion: Suppose {X;}i>1 is a sequence of independent
random variables. If Y. Var(X;) < oo, then ) . (X; — EX;) converges a.s.

For all i and t, AM} = (1/i)AN} and AM} > 0. By Fubini’s theorem and monotone convergence
theorem,

Sam =Yy =y Yo=Y Y ANy ©
s<t s<t i=1 i=1 s<t =1 s<t t =1 t

Let X; = (N} —t)/i. Then {X;}; is a sequence of independent random variables such that EX; = 0,
Var(X;) = 1/i% and hence Y 22, Var(X;) < oo. Therefore Kolmogorov’s criterion implies that
> iy Xi converges almost surely. On the other hand, > 7%, ¢/i = oo. Therefore, >° ., AM; =

Z?il Ntl/@ = 0.



10. (a) Let Ny = >, +(N/ —t) and L, = Y, (L} — t). As we show in exercise 9(a), N, M are
well defined in L? sense. Then by linearity of L? space M is also well defined in L? sense since

M= Y V-0 - (- 0] = Y 1N )= 3 (T~ )= N~ L @)

Both terms in right size are martingales change only by jumps as shown in exercise 9(b). Hence
My is a martingale which changes only by jumps.

(b) First show that given two independent Poisson processes N and L, >, AN,AL; = 0 a.s.,
i.e. N and L almost surely don’t jump simultaneously. Let {7}, },>1 be a sequence of jump times
of a process L. Then ) o AN;ALy =) ANr,. We want to show that ) AN7, =0 a.s. Since
AN, >0, it is enough to show that EANy, =0 for Vn > 1.

Fix n > 1 and let p7, be a induced probability measure on R of T,. By conditioning,

B(ONL) = EIE (AN = [ B (0N [T =0 un () = [~ B@N) pr ),

where last equality is by independence of N and 7,,. It follows that EANy, = EAN;. Since
AN; € L' and P(AN; = 0) = 1 by problem 25, EAN; = 0, hence EAN7, = 0.

Next we show that the previous claim holds even when there are countably many Poisson processes.
assume that there exist countably many independent Poisson processes {N'};>1. Let A C Q be a
set on which more than two processes of {N'};>; jump simultaneously. Let ;; denotes a set on
which N* and N7 don’t jump simultaneously. Then P(§;;) = 1 for i # j by previous assertion.
Since A C U;»;9;, P(A) < >, P(Q;) = 0. Therefore jumps don’t happen simultaneously
almost surely.

Going back to the main proof, by (a) and the fact that N and L don’t jump simultaneously, V¢ > 0,

STIAM| =) AN+ Y |AL| =00 as. (9)

s<t s<t s<t

11. Continuity: We use notations adopted in Example 2 in section 4 (P33). Assume E|U;| < oo.
By independence of U;, elementary inequality, Markov inequality, and the property of Poisson
process, we observe

lim P(1Z, — Zs| > €) = lim " P(|Z, — Zs| > €|N; = Ny = k)P(N; = Ny = k)
S— S—
k

k

. . €
gﬁg;P(glUil > €)P(Ny — Ns = k) < EE; [/‘ﬂp(|Ul| > E) P(N; — Ns = k) (10)

) FE
<lim 2101 S KP(N, — Ny = k) = im 29— oy =0
€
k

T st s—t €



Independent Increment: Let F' be a distribution function of U. By using independence of
{Ug }r and strong Markov property of N, for arbitrary ¢,s:¢ > s >0,

E ( w(Ze—Zs) +wZS> —E (emsz;NSH Up+iv SNs Uk)
E( ( Nt Not1 UnFiv ps lUk‘]_—))
(T O (0 S U, ) ) = (0 EE O (0 S )
B (ew SNs Uk> E <eiuzfj;NS+1 Uk) _E (ewzs> E (ez‘u(zﬁzs)) '
This shows that Z has independent increments.

Stationary increment: Since {Uy}y are i.i.d and independent of Ny,

(/ eiuwpux))N(t)] - %W (f ) )
—exp {—t)\ (/[1 — “”]F(daf)> }

By (11) and (12), set v = u,
E <ew<Zt*Zs>> =E (¢"%) |E (e™%) = exp {—(t — 5\ ( / - em]F(dm)> }

=F <ei“(Zi—S))

Hence Z has stationary increments.

E (™) =F (E (¢"?|N,)) = E

12. By exercise 12, a compound Poisson process is a Lévy process and has independent stationary
increments.

E|Z, — AXtEUL| <

E(E(|Z||Ny) + ME|U)| <Y E (Z Ui || Ny = n) P(N; = n) + ME|U;| a
=1
:E|U1|EN,5 + )\tE|U1’ = 2)\15E|U1| < 00,

n=1
For t > s, E(Zy|Fs) = E(Zy — Zs + Zs|Fs) = Zs + E(Z_s). Since

EZ; = E(E(Z|Ny)) Z E (Z Ui|N; = n> P(N; =n) = MEU, (15)
E(Z; — EU\M|Fs) = Zs — EUAs as. and {Z; — EUjAt}¢>0 is a martingale.
13. By Lévy decomposition theorem and hypothesis, Z; can be decomposed as

Zy = /Rth(', dx) +t(a — / zv(dx)) = Z, + (Bt (16)

|lz|>1



where Z] = [p xNy(-,dx), f = a— z)>1 2(dx). By theorem 43, E(e"%t) = [o(1—e™)u(dx). Z} is
a compound Poisson process (See problem 11). Arrival rate (intensity) is A since E( [ N¢(-, dx)) =
t [z v(dx) = At. Since Z; is a martingale, EZt —ft. Since EZ{ = E([p Ny(-, dx)) =t [ zv(dz),
8= — f]R zv(dz). It follows that Z; = — M fo§(dx) is a compensated compound Poisson
process. Then problem 12 shows that EU1 = [z ¥ (dz). It follows that the distribution of jumps

p=(1/A)v.

14. Suppose EN; < co. At first we show that Z; € L!.

N 00 n o n
E|Z|<E (Z |Ui|> = ZE (Z |Ui|> P(N;=n) = > E(|U;]) P(N; = n)

< supE!U\ZnP N; =n) = ENysup E|U;| < oc.
n=0 L

Then
E(Zi|Fs) = E(Zs + Z U'L']‘{S<Ti§t}|f3) =Zs + E(Z Uil{s<Ti§t}|-7:8)
=1 =1

=Zs+ Y EUE({lcr<y|Fs Vo (Ui 10 2 1)|F) = Zo + Y E(UiE(eer,<|Fo)|Fs) (18)
i=1 i=1

:Zs + Z E(Ui’fs)E(l{Tigt}|f8)1{Ti>s} = ZS, a.s.
=1

since E(U;|Fs)1i7,>s) = 0a.s. Note that if we drop the assumption £N; < 0o, Z; is not a martingale
in general. (Though it is a local martingale.)

15. By Lévy decomposition theorem (theorem 42),

|z[<1 0<s<t
The first term in right side is a martingale (theorem 41). Then oo = — fl$|>1 zv(dz) since Zt is a

martingale. Note that « is well defined by a condition ) ﬁ,%,ak < co0. Hence Z; = fR —
tv(dz)). Let A =R\{Bx},. Then EN{' = [, v(dz) = 0 by theorem 38. Therefore mass of N( dw)
is concentrated on countable set {fx}x. Fix k > 1 and let N} denote Ny(-,8). Then NF is a
Poisson process and its rate is oy since by theorem 38, ENI f Y v(dx) = ay. Therefore,

= Be(Nf — axt) (20)

To verify that Z; € L? , we observe that E (3>_, Be(N}, — ozkt))2 =t> 4, Biay — 0asn,m —
oosince Y po ﬂ,% < 00. Therefore, Z; is a Cauchy limit in L?. Since L?-space is complete, Z; € L?.



16. Let F; be natural filtration of B; satisfying usual hypothesis. By stationary increments
property of Brownian motion and symmetry,

d d
Wiy=DB1+—B1=B1—Bi-+=B_(1) = Bt (21)

This shows W; is Gaussian. W; has stationary increments because Wy — Wy = B1_s— B1_¢ 4 Bi_s.
Let G; be a natural filtration of W;. Then G; = o(—(B1 — B1—s) : 0 < s < t). By independent
increments property of By, G; is independent of F;_;. For s > ¢, Wy —W; = —(B1_t— B1_s) € Fi1-¢
and hence independent of G;.

17. a) Fix e > 0 and w such that X.(w) has a sample path which is right continuous, with left
limits. Suppose there exists infinitely many jumps larger than € at time {s,},>1 € [0,¢]. (If there
are uncountably many such jumps, we can arbitrarily choose countably many of them.) Since |0, ¢]
is compact, there exists a subsequence {sp, }x>1 converging to a cluster point s, € [0,1]. Clearly
we can take further subsequence converging to s* € [0, 1] monotonically either from above or from
below. To simplify notations, Suppose 3{s,}n>1 1 s*. ( The other case {s,}n>1 | s* is similar.)
By left continuity of X}, there exists ¢ > 0 such that s € (s* — ¢, s*) implies | Xs — Xs+_| < /3 and
| Xs— — Xs+—| < &/3. However for s, € (s* — 4, s"),

2e
|X5n - XS*7| = |X3n7 - XS*, + AXsn| > |AX577,| - ’Xsnf - XS*7| > ? (22)

This is a contradiction and the claim is shown.

b) By a), for each n there is a finitely many jumps of size larger than 1/n. But J = {s € [0,¢] :
IAXg| >0} =022 {s €[0,t] : |AX,| > 1/n}. We see that cardinality of J is countable.

18. By corollary to theorem 36 and theorem 37, we can immediately see that J¢ and Z — J¢ are
Lévy processes. By Lévy -Khintchine formula (theorem 43), we can see that ¥ etz je = 1. Thus
J¢ and Z — J¢ are independent. ( For an alternative rigorous solution without Lévy -Khintchine
formula, see a proof of theorem 36 .)

19. Let T, = inf{t > 0 : | X¢| > n}. Then T, is a stopping time. Let S,, = Tnl{xy<n)- We have
{Sn <t} ={T,, <t,Xo <n}U{Xo>n}={T, <t} U{Xo>n} e F and S, is a stopping time.
Since X is continuous, S,, — oo and XS"1{5n>0} < n, Vn > 1. Therefore X is locally bounded.

20. Let H be an arbitrary unbounded random variable. (e.g. Normal) and let T' be a positive
random variable independent of H such that P(T" > t) > 0, V¢t > 0 and P(T < o0) = 1. (e.g.
Exponential). Define a process Z; = H Lir>ty- Z¢ is a cadlag process and adapted to its natural
filtration with Zy = 0. Suppose there exists a sequence of stopping times 7T}, T oo such that Z» is
bounded by some K, € R. Observe that

H T. >T >t
zin = te (23)
0 otherwise

Since Z™» is bounded by K,, P(Z™ > K,) = P(H > K,)P(T, > T > t) = 0. It follows that
P(T,, > T >t) =0, ¥n and hence P(T,, < T) = 1. Moreover P(N,{T,, <T}) = P(T = ) = 1.
This is a contradiction.



21. a) leta = (1-1¢)" f Y(s)ds) and Let M; = Y (w)l(o(w) 4 alpq)(w). For arbitrary
B e B([0,1]), {w Mt € B} = ((0, t) N {Y € B})U({a € B}n(t1)). (0,t)N{Y € B} C (0,t) and
hence in F;. {a € B}N(t,1) is either (¢,1) or ) depending on B and in either case in F;. Therefore
My is adapted.

Pick A € F;. Suppose A C (0,t). Then clearly E(M, : A) = E(Y : A). Suppose A D (t,1). Then

1 1
EM;:A)=EY :An(0,t))+E| —— [ Y(s)ds:(t1)
(1_t/t > (24)

1
=E(Y : AN (0,t)) +/ Y(s)ds=E(Y : AN (0,t))+ E(Y : (¢t,1)) =E(Y : A).
t
Therefore for VA € F;, E(M; : A) = E(Y : A) and hence M; = E(Y|F;) a.s

b) By simple calculation EY2 =1/(1-2a)<ocoand Y € L? C L'. Tt is also straightforward to
compute M; = (1 —t)~ ft s)ds = (1 — a)~tY(t) for w € (¢, 1).

c¢) From b), Mi(w) =Y (w)l(gy(w) +1/(1 —a) 'Y ()11)(w). Fix w € (0,1). Since 0 < a < 1/2,
Y/(1—«)>Y and Y is a increasing on (0, 1). Therefore,

sup M, = < sup L) ) v < sup Y(@) _ Y@ |y = Y (25)

0<t<1 O<t<w 1 — w<t<1 -« -«

For each w € (0,1), My(w) = Y (w) for all t > w and especially My (w) = Y (w). Therefore

1 1
I S‘LIJ:lI)]\/~"|’L2 = EHYHL2 = EHMooHB (26)

22. a) By simple computation, 1%1; ftl s71/2ds = 2/(1 4 v/t) and claim clearly holds.

b) Since T is a stopping time, {T' > ¢} € F. and hence {T > ¢} C (0,¢] or {T > ¢} D (g,1) for
any € > 0. Assume {7 > ¢} C (0,¢] for all ¢ > 0. Then T'(w) < € on (g,1) for all € > 0 and it
follows that T' = 0. This is contradiction. Therefore there exists g¢ such that {T" > eo} D (eo, 1).
Fix e € (0,e0). Then {T > ¢} D {T > e} D (c0,1). On the other hand, since T" is a stopping time,
{T > e} C (0,e] or {T > e} D (g,1). Combining these observations, we know that {T" > ¢} D (g,1)
for all € € (0,e0). Ve € (0,¢0), there exists 6 > 0 such that e —§ >0 and {T'>ec -6} D (¢ — 4, 1).
Especially T'(¢) > ¢ — ¢. Taking a limit of 6 | 0, we observe T'(¢) > ¢ on (0, &9).

c) Using the notation in b) T(w) > w on (0,g0) and hence My (w) = w™/2 on (0,eq). Therefore,
EMZ? > E(1/w : (0,20)) = [;°w ! dw = oo. Since this is true for all stopping times not identically
equal to 0, M cannot be locally a L? martingale.

d) By a), |[M;(w)| <w™'/2Vv2 and M has bounded path for each w. If Mr71i7+0) were a bounded
random variable, then M7 would be bounded as well since My = 2. However, from ¢) My ¢ L?
unless T'= 0 a.s. and hence M7l7~0) is unbounded.

23. Let M be a positive local martingale and {7},} be its fundamental sequence. Then for ¢t > s >
0, E(Mtﬂ‘l{Tn>0}|.7:s) = ME”I{TH>O}. By applying Fatou’s lemma, E(M;|F,) < My a.s. Therefore

7



a positive local martingale is a supermartingale. By Doob’s supermartingale convergence theorem,
positive supermartingale converges almost surely to X, € L' and closable. Then by Doob’s
optional stopping theorem E(Mp|Fs) < Mg a.s. for all stopping times S < T < oo. If equality
holds in the last inequality for all S < T, clearly M is a martingale since deterministic times
0 < s <t are also stopping time. Therefore any positive honest local martingale makes a desired
example. For a concrete example, see example at the beginning of section 5, chapter 1. (p. 37)

24. a) To simplify a notation, set F! = o(Z7—,T) v N. At first, we show Gr_ O F'. Since
N C Gy, N CGp_. Clearly T € Gp_ since {T <t} = (Qn{t<T})€Gr_.

Vi >0, {ZI7 € B} = ({Z € Byn{t < THU{Zr_ € B}n{t > T}n{T < oo}).
{Z, € B} n{t < T} € Gr_ by definition of Gr_. Define a mapping f : {T' < oo} = {T < oo} x Ry
by f(w) = (w,T(w)). Define a o-algebra P! consists of subsets of Q x R, that makes all left
continuous processes with right limits (caglad processes) measurable. Especially {Z;_}i>0 is P-
measurable ie, {(w,t) : Z;(w) € B} € P. Without proof, we cite a fact about P. Namely,
S7HP) = Gr— n{T < oc}. Since Zy(,)_(w) = Z_ o f(w), {Zr— € B} N{T < oo} = [ ({(w,t) :
Zi(w) € B}) N{T < oo} € Gpr_ N{T < oo}. Note that {T' < oo} = Np{n < T} € Gr_. Then
77— ¢ Gr_ and Gyr_ D FlL.

Next We show Gr_ C FL. Gy C F!, since Zg_ = Zy. Fix t > 0. We want to show that for all
AcG, AN{t<T}eF . Let A={A: An{t <T} € F'}. Let

M={N"{Zs, <z} :neN;,0<s; <t,x; e R}UN (27)
Then II is a 7-system and o(II) = G;. Observe N’ C F! and
(Mo {Zs, Sz}) N{t < T} = (ML {Zs <z})n{t < T} e F, (28)

IT ¢ A. By Dynkin’s theorem (7 — A theorem), G; = o(I) C A hence the claim is shown.

b) To simplify the notation, let H = o(T, Z7) AN. Then clearly H C Gr since N C G, T € Gr,
and ZtT € Gr for all ¢. It suffices to show that Gr C H. Let

L= {A € Goo : E[14|Gr] = E[lAlH]} (29)
Observe that £ is a A-system (Dynkin’s system) and contains all the null set since so does G,. Let

C=1¢(){%, €Bj}:neNt; €[0,00),B; € BR) ¢ . (30)
j=1

Then C is a w-system such that o(C) VN = G. Therefore by Dynkin’s theorem, provided that
CC L,0(C)C L and thus G C L. For arbitrary A € Gp C Goo, 14 = E[14|G7r] = E[14|H] € H and
hence A € H.

It remains to show that C C L. Fix n € N. Since H C G, it suffices to show that

E |:H 1{th €B;}
j=1

1P is called a predictable o-algebra. Its definition and properties will be discussed in chapter 3.

gT] eM. (31)




For this, let tg = 0 and ¢,41 = oo and write

n n+1
E [H 1{th €B;}
j=1

gT] =Y lrepn )
k=1

H 1{th/\T€Bj}E |:H 1{thvTEBj} gT:| :

i<k j>k

Let & 2 szk ]‘{thvT—Tij} € Goo. Then by the strong Markov property of Z,

E [H 1{thvTeB]-} QT} =F [5 o 0T’QT:| = Ez.[¢]. (32)
sk

This verifies (31) and completes the proof. (This solution is by Jason Swanson).

c) Since G- C Gr and Z7lyro) € G, 0{G7—, Z1} C Gr if T' < o0 a.s. To show the converse,
observe that Z} = ZtTf + AZrlg>ry. Since ZtT*, Zr—, 1ysty € Gp— for all ¢ > 0, Zl ¢
0(Gr—, Zr) for all t > 0. Therefore Gr = o(Gr—, Z7).

d) Since N C Gr_, Zp = Zp_ as. for T < oo implies G = 0(Gr—, Z1) = 0(Gr—) = Gr—.

25. Let Z be a Lévy process. By definition Lévy process is continuous in probability, i.e. Vi,
lim,, P(|Zt — ZT—l/n| > 8) =0. Ve > 0, Vit > 0, {|AZt’ > 6} = Up Np>m {|Zt — ZT—l/n| > 5}.
Therefore,

P(|AZt| >€) §limian(\Zt—ZT,1/n\ >€):O (33)
Since this is true for all e > 0, P(|AZ;| > 0) =0, Vt.

26. To apply results of exercise 24 and 25, we first show following almost trivial lemma.
Lemma Let T be a stopping time and t € Ry. If T'=1¢, then Gr = G; and Gr_ = G;_.

Proof. Gr— ={AN{T >s}:Aec G} ={An{t>s}:AecG}={A:Ac G, s<t}=G_. Fix
AeG. An{t<s}=A€G CGs(t<s),orlegs(t>s)and hence G C Gr. Fix A € Gp,
AN{t < s} e Vs> 0. Especially, AN {t <t} = A € G, and Gr C G;. Therefore Gr = G;. ]

Fix t > 0. By exercise 25, Z; = Z;_ a.s.. By exercise 24 (d), G; = G;_ since t is a bounded stopping
time.

27. Let Ae F. Then AN{t < S}=(ANn{t <S}HN{t <T} € Fr_since AN{t < S} € F.
Then Fs_ C Fr_.

Since T, < T, Fg,— C Fr_ for all n as shown above. Therefore, V,,Fr,—- C Fr—. Let A € F;.
AN{t<T}=U,(An{t <T,}) € Vo Jr,,— and Fp_ C V,Fr,—. Therefore, Fp_ =V, Fr, .

28. Observe that the equation in theorem 38 depends only on the existence of a sequence of simple

functions approximation f15 > 0 and a convergence of both sides in E{}_; aij{\j} =ty av(A).

For this, f15 € L' is enough. (Note that we need f1, € L? to show the second equation.)



29. Let M; be a Lévy process and local martingale. M; has a representation of the form

M, = B, + / x [Ne(+,dx) — tv(dz)] + at + / x Ny (-, dx) (34)
{lz[<1} {lz[>1}

First two terms are martingales. Therefore WLOG, we can assume that
M; = at + / TN(-, dx) (35)
{l=[>1}

M; has only finitely many jumps on each interval [0, {] by exercise 17 (a). Let {7, }»>1 be a sequence
of jump times of M;. Then P(T,, < o) = 1, Vn and T,, T co. We can express M; by a sum of
compound Poisson process and a drift term (See Example in P.33):

My => Ulgsry — ot (36)
i=1

Since M; is local martingale by hypothesis, M is a martingale if and only if M; € L' and E[M,] = 0,
Vt. There exists a fundamental sequence {S,} such that M“ is a martingale, ¥Yn. WLOG, we
can assume that M is uniformly integrable. If U; € L', M, € L' for every o and M; becomes
martingale with oo, = EN,EU;/t. Furthermore, for any other o, M; can’t be local martingale since
for any stopping time 7', M = LI + (cv. — @)(t AT) where L; is a martingale given by o = av, and
M can’t be a martingale if a # . It follows that if M; is only a local martingale, Uy ¢ L'.

By exercise 24,

Fr_=oc(MB~ T)VN=0c(Th)) VN (37)
since M"” = My1yoryy + My~ 1lgsry = —a(t ATy) and MZ~ = —aT). Then

{Sp <1} =Upe, {Sn <r}n{r <N} € Fr,_ =o(T) VN (38)
Therefore,

E|Ms,nr,| =E|Uil(s, 57} — a(Su AT))| > E[Uil(s,57)] — aE|Sn AT
—E[E(|U1|1(s,5>73|0(T1) VN)] — aE|S, AT
=B[1(s, > E(Uilo(T1) V V)] — 0[S, AT
>E|U1|P(S, > T1) — aET, = 0o

This is a contradiction. Therefore, M is a martingale.

30. Let T, =inf{s > 0: Z; > z}. Then T, is a stopping time and P(7, < co) = 1. Let’s define a
coordinate map w(t) = Z;(w). Let R=inf{s <t : Zs > z}. We let

Yalw) =

{1 s<t,wlt—s)<z—y (40)

1 s<t,wlt—s)>z+y
0 otherwise

0 otherwise

10



So that

1 R<St, Zy<z—y

0 otherwise

1 R<t, Z;>z4y

: (41)
0 otherwise

Yrobr(w) :{ , Y}, 00p(w) :{

Strong Markov property implies that on {R < oo} = {T, <t} = {S; > z},

Eo(Yr o OR|Fr) = Bz, Yr,  Eo(YhoOp|Fr) = Ez,Y}, (42)
Since Zr > z and Z is symmetric,

EYs = Bilyz, .oy < Baliz, .oospy = EY!,  Va>2z, s<dt. (43)
By taking expectation,

Py(T, < ,Z < 2 —y) = E(Ey(Yp 0 05| Fg) : R < 00) = E(Ez,Yg : R < )
<FE(Ez,Yfp:R<o0)=E(Ey(Ypo0r|Fr): R<o0)=Py(T, <t,Z;>z+y) (44)
=P(Zy >z +y)

31. We define T, R, w(t) as in exercise 30. We let

1 <t t— >
Yi(w) = sXt, wlt—e) 27 (45)
0 otherwise

Since Zr > z and Z is symmetric,
1
Ea}/s = Eal{Zt_SZZ} Z 5 Va, 2 Z, 8 <t. (46)

By the same reasoning as in exercise 30, taking expectation yields

Po(Zt > Z) = P()(TZ <t Z;> Z) = E(Eo(YR o 9R|.7:R) R < OO) = E(EZRYR R < OO)
(47)

SE(E:R<o00) = %P(R< 50) = %P(St > 2)

1
2

11



Chapter 2. Semimartingales and Stochastic Integrals

1. Let 2¢p € R be a discontinuous point of f. Wlog, we can assume that f is a right continuous
function with left limit and Af(xg) = d > 0. Since inf;{B; = z¢} < oo and due to Strong Markov
property of By, we can assume zg = 0. Almost every Brownian path does not have point of decrease
(or increase) and it is a continuous process. So B. visit 29 = 0 and changes its sign infinitely many
times on [0, €] for any € > 0. Therefore, Y; = f(B;) has infinitely many jumps on any compact
interval almost surely. Therefore,

Z:(AYS)2 =00 a.s.

s<t

2. By dominated convergence theorem,

. : dQ
Jim EQl| X — X|A1] = lim Ep || X, - X[AL- 25| =0

| X, — X|A1—0in L}(Q) implies that X,, — X in Q-probability.

3. B, is a continuous local martingale by construction and by independence between X and Y,
[B,B]; = o*[X, X + (1 — oAV, Y], =t

So by Lévy theorem, B is a standard 1-dimensional Brownian motion.

[XaB]t:atv [Y7B]t: Vl_azt

4. Assume that f(0) = 0. Let My = By ;) and G; = F(;) where B. is a one-dimensional standard
Brownian motion and F; is a corresponding filtration. Then

E[M|Gs] = E [Bp)|Frs)] = Bys) = Ms

Therefore M; is a martingale w.r.t. G;. Since f is continuous and B; is a continuous process, My is
clearly continuous process. Finally,

[M, M] = [B, By = f(t)

If f(0) > 0, then we only need to add a constant process A; to By ;) such that 2A; Mo+ A? = —BJ%(O)
for each w to get a desired result.

5. Since B is a continuous process with ABy = 0, M is also continuous. M is local martingale
since B is a locally square integrable local martingale.

t t
[M,M]t:/ Hfdsz/ lds =t
0 0

So by Lévy ’s characterization theorem, M is also a Brownian motion.

12



6. Pick arbitrary tg > 1. Let X' = 1(t0_1700)(t) for n > 1, Xy = 1j,00), Y2 = 1ljzy,00)- Then
X", X,Y are finite variation processes and Semimartingales. lim,, X;* = X; almost surely. But

hm[XnaY]to =0#1=[X, Y]to

7. Observe that
(X", Z|=[H",Y - Z|=H"-[Y, Z], (X,Z|=[H,Y -Z]|=H"-[Y, Z]

and [Y, Z] is a semimartingale. Then by the continuity of stochastic integral, H" — H in ucp
implies, H" - [Y, Z] — H - [Y, Z] and hence [X", Z] — [X Z] in ucp.

8. By applying Ito’s formula,

t
0

[fn(X) = f(X), Y]e =[fn(X0) — f(X0), Y] +/ (fa(Xs) = f1(Xs))d[X, Y],

% /0 (f7u(Xs) = 7 n(X))dI[X, X], Y],

—(fal(Xo0) — F(X0))Yo + /0 (f1(Xe) — F/(X.))dIX. Y],

Note that [[X, X],Y] = 0 since X and Y are continuous semimartingales and especially [X, X] is a
finite variation process. Asn — 0o, (fn(Xo)— f(X0))Yo — 0 for arbitrary w € §2. Since [X, Y] has a
path of finite variation on compacts, we can treat f,(X)-[X,Y], f(X)-[X,Y] as Lebesgue-Stieltjes
integral computed path by path. So fix w € 2. Then as n — oo,

sup |fn(Bs) — f(Bs)| = sup |fu(z) — f(2)] =0

0<s<t

infs<¢ Bs<wx<sup,<; Bs

since f] — f uniformly on compacts. Therefore

t
< sup [fu(Bs) - f(BY) / A, Y]l — 0
0<s<t 0

/0 (frlz(Xs) - f,(Xs))d[X7 Y]s

9. Let 0, be a sequence of random partition tending to identity. By theorem 22,

(M, A] = MoAp + lim >~ (MTfll - MTZ’) (ATJL - ATz‘")
3 ‘ ATl — ATY
since M is a continuous process and ), ’ATﬁH — ATV
(A, A] = M2+ lim Y (ATﬁl - ATz'") (ATz-’il - ATZ"‘)

n—oo
i
Z ‘AT;}H T
i

<0+ lim sup | M — %"

=0

< oo by hypothesis. Similarly

<0+ lim sup |ATH — AT

n—oo 7

=0

Therefore,

(X, X] = [M,M]+2[M, A+ [A, A] = [M, M]

13



10. X?is P-semimartingale and hence Q-semimartingale by Theorem 2. By Corollary of theorem
15, (X_ - X)¥ is indistinguishable form (X_ - X)¥. Then by definition of quadric variation,

X, X =x2—(Xx_- X)'=X2—-(X_-X)9=[X,X)°

up to evanescent set.

11. a) A = [-2,1] is a closed set and B has a continuous path, by Theorem 4 in chapter 1,
T(w) =inft: By ¢ A is a stopping time.

b) M, is a uniformly integrable martingale since M; = E[Bp|F:]. Clearly M is continuous.
Clearly N is a continuous martingale as well. By Theorem 23, [M, M]; = [B,B]] = t AT and
[N,N); = [-B,—B]] =tAT. Thus [M, M] = [N, N]. However P(M; > 1) =0 # P(N; > 1). M
and N does not have the same law.

12. Fixt € Ry andw € 2. WLOG we can assume that X (w) has a cadlag path and ), |[AX(w)| <
oo. Then on [0, ], continuous part of X is bounded by continuity and jump part of X is bounded
by hypothesis. So {X;s}s<: is bounded. Let K C R be K = [infs<; Xs(w),supy«; Xs(w)]. Then f,
f', f7 is bounded on K. Since Y ., {f(Xs) — f(Xs—) — f'(Xs-)AXs} is an absolute convergent
series, (see proof of Ito’s formula (Theorem 32), it suffices to show that Y, {f/(Xs—)AXs} < 0.
By hypothesis, -

Z }f’(Xs_)AXS‘ < sup \f’(x)|Z\AXs] < 00
s<t zeK s<t

Since this is true for all t € R4 and almost all w € §2, the claim is shown.

13. By definition, stochastic integral is a continuous linear mapping Jx: Syep — Dyep. (Section
4). By continuity, H" — H under ucp topology implies H" - X — H - X under ucp topology.

14. Let A =1+ A to simplify notations. Fix w € Q and let A~' - X = Z. Then Zo(w) < 0o by
hypothesis and A - Z = X. Applying integration by parts to X and then device both sides by A

yields

t

Xt =7 — 1A/ Z.dA,
A A Jo

Since Z, < 00 exists, for any € > 0, there exists 7 such that |Z; — Z| < € for all t > 7. Then for
t>T,

A — A,

1 t R 1 T R 1 t N
. stAs - = stAs + — (ZS - Zoo)dAs + Zoo
At Jo At Jo At Jr t

t

Let’s evaluate right hand side. As t — oo, the first term goes to 0 while the last term converges
to Zs by hypothesis. By construction of 7, the second term is smaller than (A, — A;)/A;, which
converges to €. Since this is true for all € > 0,

1 [t .
lim — / ZodAs = Zoo
0

t—oo A

Thus lim;_o X;/A; = 0.

14



15. If My = 0 then by Theorem 42, there exists a Brownian motion B such that M; = By, -
By the law of iterated logarithm,
My B,

oo [M, M, toso [M, M], 7200 7 0

If My # 0, Let Xy = My — My. Then [X, X]; = [M, M]; — M&. So [X, X]; — oo and

My Xy + My 0
(M, My [X, X]; + Mg

17. Since integral is taken over [t — 1/n,t] and Y is adapted, X" is also an adapted process. For
t > s >1/n such that |t —s| < 1/n,

t t—1/n
/ Y dr — / Y. dr
s s—1/n

Since X is constant on [0, ] and [1,00), let m be a partition of [t,1] and M =sup,_1_._,|Y7| < oo.

|1 X; — X =n <2n(t—s) sup |Y;|

s—L<r<t
n

Then for each n, total variation of X™ is finite since

sup | X7 — X7 < 2nM Y (tigr —ti) = 2nM(1 - t)
™
™

Therefore X, is a finite variation process and in particular a semimartingale. By the fundamental
theorem of calculus and continuity of Y, Yy = lim,, oo n fss_l /n Ysdu = lim, .o X{* for each t > 0.
At t =0, lim, X;, =0 =Y. So X, — Y for all t > 0. However Y need not be a semimartingale
since Y; = (Bt)l/ 3 where B, is a standard Brownian motion satisfies all requirements but not a
semimartingale.

18. B has a continuous path almost surely. Fix w such that B;(w) is continuous. Then lim,,_,o, X}'(w) =
By (w) by Exercise 17. By Theorem 37, the solution of dZ]* = Z dX[, Zy =1 is

1
Zy' = exp <X[° — Q[X",X"]t> = exp(X}),

since X" is a finite variation process. On the other hand, Z; = exp(B; — t/2) and

lim Z' = exp(By) # Zy
n—oo

19. A" is a clearly cadlag and adapted. By periodicity and symmetry of triangular function,

/0’5 l4ds] = 711/0 dsinns)| = ”/0 d(sin(ns)) = /0 d(sin(s)) = 1

Since total variation is finite, A} is a semimartingale. On the other hand,

. .1
lim sup |A}|= lim —=0
n—oo ogtgg n—oo n

15



20. Applying Ito’s formula to u € C?(R? — {0}) and B; € R3\{0}, V¢, a.s.
K 1/t 1 .
u(Bt) = u(w) +/ Vu(Bs) - dBs + 2/ Au(Bs)ds = Tzl + Z/ O;ju(Bs)dBs:
0 0 — Jo

and M; = u(By) is a local martingale. This solves (a). Fix 1 < a < 3. Observe that E(u(By)®) <
oo. Let p, ¢ be a positive number such that 1/p+1/g = 1. Then

B(B)) = [ ol
D)= L Tolle @)z Y

_/ 1 1 ez%yzder/ 1 1 e,uz%mﬁdy
(BO)NBe (o)) Y (2mt)3/2 R3\(B(0;1)nBe ()} 1W[* (2t)3/2

1 _llz—y)? 1
< sup Te 2t - ady
Ve(BO:)NBe(2:8)} (2mt)2 B Yl

1
N / 1 ] /p / < 1 _mgyg)qd 1/q
Yy o a2, C t Y
R3\{B(0;1)NBe(z:5)} |Y]|*P R3\{B(0;1)NBe(z:0)} \ (27t)3/2

Pick p > 3/a > 1. Then the first term goes to 0 as ¢ — oco. In particular it is finite for all ¢ > 0.
The first factor in the second term is finite while the second factor goes to 0 as ¢ — oo since

1 1 ||z2t/y||2 p 1 1 1 _ Hz%/yHQ p 1 1
q —= q e
/ (27t)3/2 (27#)3((171)/26 Y= (2rt)3a—D)/2 / pEIE (27rt/q)3/26 Yy (27t)3@—D)/2 ¢3/2

and the second factor is finite for all £ > 0. (b) is shown with o = 1. (c) is shown with a = 2. It
also shows that

i E(ul(Bi)?) = 0
which in turn shows (d).
21. Applying integration by parts to (A* — A.)(C>* - C),
(Ao —A)(Coo — C) = AxCp — /(A — A )dCs — / _)dAs +[A, C.

Since A, C' are processes with finite variation,

[A,Cle= Y AANC,

0<s<t
/(A 1)dC, = / Ag)dCs + ) AANC,
0<s<t
Substituting these equations,
(Ao — A1) (Cxo — Ct) = AseCio — / (A% — Aq)dCy — / (C* — )dAs

Letting t — 0 and we obtain (a). (b) is immediate from this result.

16



22. Claim that for all integer £ > 1 and prove by induction.

L&Q—Agk:k{/ m%l/ dA@“./‘ dAs, (48)
S S1 Sp—1

For k =1, equation (48) clearly holds. Assume that it holds for £ = n. Then
e.¢] o o0 o0
(k+ 1)!/ dASl/ dAs, .. / dAs, ., = (k:+1)/ (Aso — Ag, )dA,, = (Ao — AR (49)
s s1 Sp—1 s

since A is non-decreasing continuous process, (Ao — A) - A is indistinguishable from Lebesgue-
Stieltjes integral calculated on path by path. Thus equation (48) holds for n = k + 1 and hence for
all integer n > 1. Then setting s = 0 yields a desired result since Ag = 0.

24. a)
t t 3 —
/Olisdﬁsz 0 1is 5_/0 1is%d8
t t t
t t t
S s f ()

B 1 11
-t | — B| =B [— —-
1—t |[1-s"], 1—t 1

_ Bi— B
1t

+ B
Arranging terms and we have desired result.

b) Using integration by arts, since [1 — s, [ (1 —u)~"*dB,]; = 0,

X, = 1—t/dﬂs—/0t<1—s>1fsdﬂs+//dﬁu 1)ds
e[ ()

as required. The last equality is by result of (a).

27. By Ito’s formula and given SDE,
d(e™X;) = ae® Xydt + e™'d Xy = ae™ Xydt + e (—aXidt + 0dBy;) = e dX;

Then integrating both sides and arranging terms yields
t
X, =e <X0 + O'/ eanBs>
0

17



28. By the law of iterated logarithm, lim sup,_, % = 0 a.s. In particular, for almost all w there
exists tg(w) such that ¢ > tg(w) implies By(w)/t < 1/2 — € for any € € (0,1/2). Then

B 1
lim £(B;) = lim exp {t (t - )} < lim e =0, a.s.
t—00 t—o0 t

2 t—oo

29. £(X)! = £(—X + [X, X]) by Corollary of Theorem 38. This implies that £(X)~! is the
solution to a stochastic differential equation,

EX)t=1+ /tg(X)S_ld(—Xs + [X, X]s),
0

which is the desired result. Note that continuity assumed in the corollary is not necessary if we
assume AX; # —1 instead so that £(X)~! is well defined.

30. a) By Ito’s formula and continuity of M, M; = 1+ fot M dBs. B, is a locally square
integrable local martingale and M € L. So by Theorem 20, M, is also a locally square integrable
local martingale.

b)

t t
[M, M); = / M2ds = / B3 (s
0 0
and for all ¢t > 0,
t t
E([M, M]y) :/ E[e2BS]e_Sds:/ e’ds < oo
0 0
Then by Corollary 3 of Theorem 27, M is a martingale.
c) EePt is calculated above using density function. Alternatively, using the result of b),
EeBt = BE(Mye?) = e EMy = e?

31. Pick A € F such that P(A) =0 and fix t > 0. Then AN{R; < s} € F; since F, contains all
P-null sets. Then A € G = Fg,. If t,, | t, then by right continuity of R, R, | R;. Then
Gt = Fr, = MFR,, = MG, = Ns>tUs

by the right continuity of {F;}; and Exercise 4, chapter 1. Thus {G,}; satisfies the usual hypothesis.

32. If ]_\4 has a cadlag path and R, is right continuous, M, has a cadlag path. M, = Mg, € Fgr, =
Gi. So M, is adapted to {G;}. For all 0 < s <t, Ry < Ry < 0o. Since M is uniformly integrable
martingale, by optional sampling theorem,

My = Mg, = E(MRg,|Fr,) = E(M|Gs),  as.

So M is G-martingale.
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Chapter 3. Semimartingales and Decomposable Processes

1. Let {T;}!' , be a set of predictable stopping time. For each i, T; has an announcing sequence
{T”}JO‘;1 Let S := max; T; , and Ry := min; T; ;. Then Sy, Ry, are stopping time. {Sj} and {Rj}
make announcing sequences of maximum and minimum of {T;},.

2. Let T, =S+ (1—1/n) for each n. Then T,, is a stopping time and T}, T T as n T co. Therefore
T is a predictable stopping time.

3. Let S, T be two predictable stopping time. Then S AT, S VT are predictable stopping time
as shown in exercise 1. In addition, A = {S VT = S AT}. Therefore without loss of generality,
we can assume that S < T. Let {T,,} be an announcing sequence of T'. Let R, = T,, + nlr, >gy-
Then R, is a stopping time since {R, <t} ={T, <t}N{t -1, <n}U{Tl, < S}) € Fi. R, is
increasing and lim R,, = T = Sj.

4. For each X € L, define a new process X, by X" = >, Xy /2n L[k /2n (k+1)/27)- Since each
summand is an optional set (See exercise 6) X™ is an optional process. As a mapping on the
product space, X is a pints limit of X™. Therefore X is optional. Then by the definition P C O.

5. Suffice to show that all cadlag processes are progressively measurable. (Then we can apply
monotone class argument.) For a cadlag process X on [0, t], define a new process X" by putting
X = Xpjon for u € [(k —1)t/2" kt/2"), k = {1,...,2"}. Then on Q x [0, ],

k—1 k

{XnEB}:Uk€N+ {WXk/Qn(W) EB} X |:2n,2n

)] e 7o) (50)
since X is adapted and X™ is progressively measurable process. Since X is cadlag , { X™} converges
pints to X, which therefore is also F; ® B([0, t]) measurable.

6. (1) (S,T]: Since 1(g7) € L, (S.T] = {(s,w) : (57 = 1} € P by definition.

(2) [S,T): Since 1ig 7y € D, [ST) = {(s,w) : 1{g) = 1} € O by definition.

(3) (S,T): Since [S,T] = Up[S.T + 1/n), [S,T] is an optional set. Then (S,7") = [0,7) N[0, S]°
and (S,T) is optional as well.

(4) [S,T) when S,T is predictable : Let {S,} and {T},} be announcing sequences of S and T'.
Then [S,T) = Ny, Uy, (Sm, T]. Since (Sp,, Tp,] is predictable by (1) for all m,n, [S,T) is predictable.

7. Pickaset A€ Fg,. Then A = An{S, < T} € Fr_ by theorem 7 and the definition of
{Sn}n- (Note: The proof of theorem 7 does not require theorem 6). Since this is true for all n,
VnFs, C Fr—. To show the converse let Il = {BN{t < T} : B € F}. Then II is closed with
respect to finite intersection. BN{t < T} = Up(BN{t < Sp}). Since (BN {t < Sp})N{S, <t} =
0 e F,BN{t < Sy} € Fs,. Therefore BN{t < T} € V,Fs, and Il C V,Fg,. Then by Dynkin’s
theorem, Fr_ C V,Fg,,.
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8. Let S, T be stopping times such that § < 7T. Then Fg, C Fr. and V,Fs, C Fr. By the
same argument as in exercise 7, Fr_ C VpFg,. Since Fr— = Fr by hypothesis, we have desired
result. (Note: {S,} is not necessarily an announcing sequence since S,, = T is possible. Therefore
VFs, # Fr— in general.)

9. Let X be a Lévy process, G be its natural filtration and T be stopping time. Then by
exercises 24(c) in chapter 1, Gr = o(Gr—, X7). Since X jumps only at totally inaccessible time
(a consequence of theorem 4), X7 = Xp_ for all predictable stopping time 7. Therefore if T
is a predictable time, Gy = o(Gr—, X7) = 0(Gr—, Xp_) = Gp_ since Xp_ € Gp_. Therefore a
completed natural filtration of a Lévy process is quasi left continuous.

10.  As given in hint, [M, A] is a local martingale. Let {7} be its localizing sequence, that is
[M, A]™ is a martingale for all n. Then E([X, X]|[") = E([M, M]I")+ E([A, A]I"). Since quadratic
variation is non-decreasing non-negative process, first letting n — oo and then letting ¢ — oo, we
obtain desired result with monotone convergence theorem.

11. By the Kunita-Watanabe inequality for square bracket processes, ([X + Y, X + Y])l/ 2 <
([X, X)Y2 4 ([, Y])/2, Tt follows that [X + Y, X + Y] < 2([X, X] +[Y,Y]). This implies that
[X +Y, X + Y] is locally integrable and the sharp bracket process (X + Y, X +Y) exists. Since
sharp bracket process is a predictable projection (compensator) of square bracket process, we obtain
polarization identity of sharp bracket process from one of squared bracket process. Namely,

(X,V) = %(<X+Y.X+Y) (X, X) — (V. Y)) (51)

Then the rest of the proof is exactly the same as the one of theorem 25, chapter 2, except that we
replace square bracket processes by sharp bracket processes.

12. Since a continuous finite process with finite variation always has a integrable variation, without
loss of generality we can assume that the value of A changes only by jumps. Thus A can be
represented as A; = > ., AA,. Assume that C. = [ |dA,| is predictable. Then T;, = inf{t > 0 :
C¢ > n} is a predictable time since it is a debut of right closed predictable set. Let {75, }m be an
announcing sequence of T;, for each n and define S,, by S,, = sup;<p<,, Tk,n- Then S, is a sequence
of stopping time increasing to oo, S, < T, and hence Cg, < n. Thus ECg, < n and C is locally
integrable. To prove that C' is predictable, we introduce two standard results.

lemma  Suppose that A is the union of graphs of a sequence of predictable times. Then there
exists a sequence of predictable times {T,,} such that A C U,[T,] and [T,,) N [T] = 0 for n # m.

Let {S,}, be a sequence of predictable stopping times such that A C U, [S,]. Put T} = S; and for
n > 2, B, = M7Z1[Sk # Su), Tn = (Sn)s,. Then B, € Fs,_, T, is predictable, [T,,] N [T},] = 0
when n # m, and A = Up>1[T;,]. (Note: By the definition of the graph, [T,,] N [T),] = 0 even if
P(T,, =T,, = c0) >0 as long as T),, and T,, are disjoint on  x R} ) O
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lemma Let X; be a cadlag adapted process and predictable. Then there exists a sequence of
strictly positive predictable times {T,,} such that [AX # 0] C Uy,[Ty].

Proof. Let S}l/fl =inf{t:t > Tﬁ/k(w), |XS711/;€ — X¢| > 1/k or |XS$/’“ — Xi—| > 1/k}. Then since

X is predictable, we can show by induction that {S),}»>1 is predictable stopping time. In addition
[AX #0] C Un,kzl[&l/ k] Then by previous lemma, there exists a sequence of predictable stopping
times {7} such that Un,kzl[Srl/k] C Up[Ty). Then [AX # 0] C Uy,[T] O

Proof of the main claim: Combining two lemmas, we see that {AA # 0} is the union
of a sequence of disjoint graphs of predictable stopping times. Since A; = > ., AA, is absolute
convergent for each w, it is invariant with respect to the change of the order of summation. Therefore
Ay =3, AAs, 1is,<s where S, is a predictable time. AAg, 15, <4 is a predictable process since
Sy is predictable and Ag, € Fg,—. This clearly implies that |[AAg, [1(s, <} is predictable. Then
C is predictable as well.

Note: As for the second lemma, following more general claim holds.

lemma Let X; be a cadlag adapted process. Then X is predictable if and only if X satisfies
the following conditions (1). There exists a sequence of strictly positive predictable times {T,} such
that [AX # 0] C Un[Ty]. (2). For each predictable time T', X1lip<o0y € Fr—.

13.  Let {T;}; be a jump time of a counting process and define S; = T; — T;_1. Then by corollary
to theorem 23, a compensator A is given by

A=Y 1) 6i(8) + dinit = T) | Lm<ieriay,  Si(s) = /0 sFi@l_)dFi(u), (52)

i>1 | j=1

where Fj(u) = P(S; > u). For each w, it is clear that If F; has a density such that dF;(u) = f;(u)
then A; is absolutely continuous. Conversely if Fj(u) does not admit density then on [Tj_1,Tk),
Ay is not absolutely continuous.

14. Ni — 1gg>1y = 0 is a trivial martingale. Since Doob-Meyer decomposition is unique, it
suffices to show that 1;>7y is a predictable process, 1y>7y is a predictable process if and only
if T is a predictable time. Let S, = T(1 — 1/n). Then T € Fy implies S,, € Fy. In particular
{S, <t} € Fo C Fy and S, is a stopping time such that S,, < T and S,, T T.. This makes {S,,} an
announcing sequence of T'. Thus T is predictable.

15. By the uniqueness of Doob-Meyer decomposition, it suffices to show that N — pAt is a mar-
tingale. since pAt is clearly a predictable process with finite variation. Let Cy be a Poisson process
associated with N;. Then by the independent and stationary increment property of compound
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Poisson process,

Ci—s 0o Ci—s
EINy=NJ|F]=E |Y Ui| =Y E|Y UilCis=k| P(C,_s =k)
=1 k=1 =1

(53)
=1ty kP(Ci_y = k) = pA(t — 5)
k=1
Therefore Ny — puAt is a martingale and the claim is shown.
16. By direct computation,
A(t) = lim 1P(t<T<t+h]T>t)—lim1_76_Ah—)\ (54)
 h=0h - = S0 h -

A case that T is Weibull is similar and omitted.

17.  Observe that P(U > s) = P(T > 0,U > s) = exp{—pus}. P(T < t,U > s) = P(U >
s) — P(T > t.U > s). Then
P(t <T<t+ht< U) ﬁt+h e_ﬂt()\ + gt)e—()\—i-@t)udu

< > >t)= -
Pt <T <t+hT>tU>t) Pt<T,t<U) exp{—At — ut — 012}

(55)
—1[exp{=A(t + h) — 0t(t + h)} — exp{—\t — 0t?}]
= =1- —(A+6t)h
exp{—\t — 0t?} exp{=(A+00)h}
and
1-— —(A+60t)h
M) = lim L SPIZAFOOR} g, (56)
h—0 h
18. There exists a disjoint sequence of predictable times {7} such that A = {¢ > 0 :

AN(M, M), # 0} C Uy[Ty]. (See the discussion in the solution of exercise 12 for details.) In
addition, all the jump times of (M, M). is a predictable time. Let T" be a predictable time such
that (M, M)r # 0. Let N = [M,M] — (M, M). Then N is a martingale with finite variation
since (M, M) is a compensator of [M,M]. Since T is predictable, E[Np|Fr_] = Nr_. On the
other hand, since {¥;} is a quasi-left-continuous filtration, Ny— = E[Np|Fr_| = E[Np|Fr] = Nr.
This implies that A(M, M)y = A[M, M]r = (AMr)?. Recall that M itself is a martingale. So
My = E[Mp|Fr| = E[Mrp|Fr—] = Mp_ and AM7 = 0. Therefore A(M,M)7 =0 and (M, M) is

continuous.

19. By theorem 36, X is a special semimartingale. Then by theorem 34, it has a unique
decomposition X = M + A such that M is local martingale and A is a predictable finite variation
process. Let X = N + C be an arbitrary decomposition of X. Then M — N = C — A. This implies
that A is a compensator of C. It suffices to show that a local martingale with finite variation
is locally integrable. Set Y = M — N and Z = fg |dYs|. Let S, be a fundamental sequence of
Y and set T, = S, An Ainf{t : Z, > n}. Then Yy, € L' (See the proof of theorem 38) and
Zr, <n+|Yr,| € L'. Thus Y = M — N is has has a locally integrable variation. Then C is a sum
of two process with locally integrable variation and the claim holds.
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20. Let {T},} be an increasing sequence of stopping times such that X7 is a special semimartin-
gale as shown in the statement. Then by theorem 37, X7, = supy<, |X; Tn| is locally integrable.
Namely, there exists an increasing sequence of stopping times {R,} such that (X7 Y is inte-
grable. Let S,, = T;, A R,,. Then S, is an increasing sequence of stopping times such that (X;)>»
is integrable. Then X} is locally integrable and by theorem 37, X is a special semimartingale.

21. Since Q ~ P, dQ/dP > 0 and Z > 0. Clearly M € L*(Q) if and only if MZ € L'(P). By
generalized Bayes’ formula.

Ep|MiZy|Fs)  Ep[M;Z4| F]

Eq[Mi] Fs) = Ep[Z|F] Z, ’

t>s (57)
Thus Ep[M;Z|Fs] = MsZ, if and only if Eg[M|Fs] = M,
22. By Rao’s theorem. X has a unique decomposition X = M + A where M is (G, P)-local

martingale and A is a predictable process with path of locally integrable variation. E[X;
Xti|gti] = E[Ati+l - At1|gtz] So

i+1

sup E

Z ‘E 1415Z At +1’gt ”] < o0 (58)

=0

Y;g = E{Xtu:'t] = E[Mt|ft] + E[At|ft] Since E[E[Mt|ft”.7:3] = E[Mt‘fs] = E[E[Mt|gs]|.7:5“ -
E[Mjg| fils], E[M;|F] is a martingale. Therefore

Z\E A |F] = ElAr | Pl ol | =D EIB[Ay, — Ayl Bl (59)

Var (Y
i=1
For arbitrary o-algebra F,G such that 7 C G and X € Ly,
E(|EX|F]) = E(|E(E[XI|GF)]) < E(E(EX|G]|F)) = E(E[X|FG]]) (60)

Thus for every 7 and t;, E [|E[A:, — Ay, +1|F]|] < E[|E[At; — At;+1|Gt,]|]- Therefore Var(X) < oo
(w.r.t. {G;})implies Var(Y) < oo (w.r.t {F;}) and Y is ({F;}, P)-quasi-martingale.

23. We introduce a following standard result without proof.

Lemma. Let N be a local martingale. If E([N, N }1/ 2) < oo or alternatively, N € H! then
N is uniformly integrable martingale.

This is a direct consequence of Fefferman’s inequality. (Theorem 52 in chapter 4. See chapter 4
section 4 for the definition of H! and related topics.) We also take a liberty to assume Burkholder-

Davis-Gundy inequality (theorem 48 in chapter 4) in the following discussion.

Once we accept this lemma, it suffices to show that a local martingale [A, M] € H!. By Kunita-
Watanabe inequality, [A, M]X* < [A, AJL*[M, M]X*. Then by Holder inequality,

1
B (4, M%) < B ([4,A142) B (M, M)2). (61)
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1
By hypothesis F ([A, A]cl,éQ) ? < 00. By BDG inequality and the fact that M is a bounded martin-
gale, E([M, M]"/?) < ¢; E[M?.] < oo for some positive constant ¢;. This complete the proof.

24. Since we assume that the usual hypothesis holds throughout this book (see page 3), let
FP =0o{T Ns:s <t} and redefine F; by F; = NFp, VN Since {T <t} ={T At <t}eF, T
is F-stopping time. Let G = {G;} be a smallest filtration such that T is a stopping time, that is a
natural filtration of the process X; = 1(r<;. Then G C F.

For the converse, observe that {T'As € B} = ({T' <s}N{T € B})U({T > s} n{s € B}) € F
since {s € B} isor Q, {T € B} € Fr and in particular {T' < s}N{T € B} € Fs; and {T > s} € Fs.
Therefore for all t, T A s, (Vs < t) is G; measurable. Hence 77 C G;. This shows that G C F. (Note:
we assume that G satisfies usual hypothesis as well. )

25.  Recall that the {(w,t) : AAs(w) # 0} is a subset of a union of disjoint predictable times and
in particular we can assume that a jump time of predictable process is a predictable time. (See the
discussion in the solution of exercise 12). For any predictable time T" such that E[AZp|Fr_] =0,

AAp = E[A7|Fr_] = B[AM7|Fr_ ] =0  a.s. (62)

26.  Without loss of generality, we can assume that Ag = 0 since E[AAg|Fo—] = E[AAo|Fo] =
AAp = 0. For any finite valued stopping time S, E[Ag] < E[A] since A is an increasing process.
Observe that As, € L; because A is a process with integrable variation. Therefore A {Ag}s is
uniformly integrable and A is in class (D). Applying Theorem 11 (Doob-Meyer decomposition) to
—A, we see that M = A — A is a uniformly integrable martingale. Then

0 = E[AMy|Fr_] = E[AAp|Fr_]| — E[AA7|Fr_] =0 — E[AA7|Fr_].  as. (63)

Therefore A is continuous at time 7.

27. Assume A is continuous. Consider an arbitrary increasing sequence of stopping time {7,,} T T
where T is a finite stopping time. M is a uniformly integrable martingale by theorem 11 and the
hypothesis that Z is a supermartingale of class D. Then co > EZr = —FE A7 and in particular
Ar € L. Since Ay > Ar, for each n. Therefore by Doob’s optional sampling theorem, Lebesgue’s
dominated convergence theorem and continuity of A yields,

lim E[ZT — ZTn} = lim E[MT - NTn] — lim E[AT - ATn] = —E[hm(AT - ATH,)] = 0. (64)

Therefore Z is regular.

Conversely suppose that Z is regular and assume that A is not continuous at time 7. Since
A is predictable, so is A_ and AA. In particular, T" is a predictable time. Then there exists an
announcing sequence {T,,} 1 T. Since Z is regular,

0 =lim E[Zr — Zr,] = lim E[My — My, ] — lim E[Ap — A, ] = E[AA7]. (65)

Since A is an increasing process and AAp > 0. Therefore AAp = 0 a.s. This is a contradiction.
Thus A is continuous.
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31. Let T be an arbitrary F* stopping time and A = {w : Xp(w) # X7r_(w)}. Then by
Meyer’s theorem, T" = T\ A Thc where T is totally inaccessible time and T is predictable time.
By continuity of X, A = () and T) = oco. Therefore T' = Thc. It follows that all stopping times are
predictable and there is no totally inaccessible stopping time.

32. By exercise 31, the standard Brownian space supports only predictable time since Brownian
motion is clearly a strong Markov Feller process. Since O = o([S,T[: S, Tare stopping time and S <
T) and P = o([S,T[: S, Tare predictable times and S < T), if all stopping times are predictable
O="7P.

35. E(M;)>0and E(M;) =exp[Bf —1/2(t A7)] < e. So it is a bounded local martingale and
hence martingale. If £(—M) is a uniformly integrable martingale, there exists £(—Mx) such that
E[€(—=My)] = 1. By the law of iterated logarithm, exp(B; — 1/27)1{;—o} = 0 a.s. Then

ElE(-My)] = E [exp (—1 . %) 1{T<oo}} <el<l. (66)
This implies that £(—M) is not a uniformly integrable martingale.

36. Clearly Fpr— C Fr and o{AMp : M a martingale} C Fp. Therefore Fpr_ V o{AMryp :
M a martingale} C Fp. For the converse, recall Theorem 6 in chapter 1 and Theorem 5 in chapter
3.

Fr = o{Xp; X all adapted cadlag processes}
Fr— = o{Hr; H predictable}

Pick an Xp. Assume first that Xp is bounded. Let My = E[Xp|Fiar|. Note that X7 is bounded
and in particular in L;. So this process is well defined. Then M; is a martingale such that
Mp = Xp. Then X7 = My = Mp_ + AMp where Mp_ is a left continuous process M;_ evaluated
at T. Mrp € o{AMyp : M a martingale}. Since {M;_} is a predictable process, Mp_ € Fp_.
Thus X7 = My € Fr— V o{AMy : M a martingale}. For unbounded X7, set X7 = X71{x,|<n}-
Then X% — Xp as. while X3 € Fr_ V o{AMr : M a martingale} for each n. Then Xr €
Fr— NV o{AMrp : M a martingale} and Fr C Fr_ Vo{AMp : M a martingale}.
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