
Preface

“Il ne semblait pas que cette importante théorie pût encore être perfectionnée,
lorsque les deux géomètres qui ont le plus contribué à la rendre complète, en ont
fait de nouveau le sujet de leurs méditations. . . ”. By these words, Siméon Denis
Poisson announced in 1809 [293] that he had found an improvement in the theory of
Lagrangian mechanics, which was being developed by Joseph-Louis Lagrange and
Pierre-Simon Laplace. In that pioneering paper, Poisson introduced (we slightly
modernize his writing) the notation
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)
, (0.1)

where a and b are two functions of the coordinates qi and the conjugate quantities
pi = ∂R

∂q̇i
for a mechanical system with Lagrangian function R. He proved that, if

a and b are first integrals of the system then (a, b) also is. This (a, b) is nowadays
denoted by {a, b} and called the Poisson bracket of a and b. Mathematicians of
the 19th century already recognized the importance of this bracket. In particular,
William Hamilton used it extensively to express his equations in an essay in 1835
[168] on what we now call Hamiltonian dynamics. Carl Jacobi in his “Vorlesungen
über Dynamik” around 1842 (see [185]) showed that the Poisson bracket satisfies
the famous Jacobi identity:

{{a, b}, c}+ {{b, c}, a}+ {{c, a}, b} = 0. (0.2)

This same identity is satisfied by Lie algebras, which are infinitesimal versions of
Lie groups, first studied by Sophus Lie and his collaborators in the end of the 19th
century [213].

In our modern language, a Poisson structure on a manifold M is a 2-vector
field Π (Poisson tensor) on M , such that the corresponding bracket (Poisson
bracket) on the space of functions on M , defined by

{f, g} := 〈df ∧ dg,Π〉 , (0.3)

satisfies the Jacobi identity. (M,Π) is then called a Poisson manifold. This notion
of Poisson manifolds generalizes both symplectic manifolds and Lie algebras. The
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Poisson tensor of the original bracket of Poisson is

Π =
n∑

i=1

∂

∂pi
∧ ∂

∂qi
, (0.4)

which is nondegenerate and corresponds to a symplectic 2-form, namely

ω =
n∑

i=1

dpi ∧ dqi . (0.5)

On the other hand, each finite-dimensional Lie algebra gives rise to a linear Poisson
tensor on its dual space and vice versa.

Poisson manifolds play a fundamental role in Hamiltonian dynamics, where
they serve as phase spaces. They also arise naturally in other mathematical prob-
lems as well. In particular, they form a bridge from the “commutative world” to
the “noncommutative world”. For example, Lie groupoids give rise to noncommu-
tative operator algebras, while their infinitesimal versions, called Lie algebroids,
are nothing but “fiber-wise linear” Poisson structures. Poisson geometry, i.e., the
geometry of Poisson structures, which began as an outgrowth of symplectic geom-
etry, has seen rapid growth in the last three decades, and has now become a very
large theory, with interactions with many other domains of mathematics, includ-
ing Hamiltonian dynamics, integrable systems, representation theory, quantum
groups, noncommutative geometry, singularity theory, and so on.

This book arises from its authors’ efforts to study Poisson structures, and in
particular their normal forms. As a result, the book aims to offer a quick intro-
duction to Poisson geometry, and to give an extensive account on known results
about the theory of normal forms of Poisson structures and related objects. This
theory is relatively young. Though some earlier results may be traced back to V.I.
Arnold, it really took off with a fundamental paper of Alan Weinstein in 1983
[346], in which he proved a formal linearization theorem for Poisson structures, a
local symplectic realization theorem, and the following splitting theorem: locally
any Poisson manifold can be written as the direct product of a symplectic mani-
fold with another Poisson manifold whose Poisson tensor vanishes at a point. Since
then, a large number of other results have emerged, many of them very recently.

Here is a brief summary of this book, which only highlights a few important
points from each chapter. For a more detailed list of what the book has to offer,
the reader may look at the table of contents.

The book consists of eight chapters and some appendices. Chapter 1 is based
on lectures given by the authors in Montpellier and Toulouse for graduate stu-
dents, and is a small self-contained introduction to Poisson geometry. Among
other things, we show how Poisson manifolds can be viewed as singular foliations
with symplectic leaves, and also as quotients of symplectic manifolds. The reader
will also find in this chapter a section about the Schouten bracket of multi-vector
fields, which was discovered by Schouten in 1940 [311], and whose importance goes
beyond Poisson geometry.
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Starting from Chapter 2, the book contains many recent results which have
not been previously available in book form. A few results in this book are even
original and not published elsewhere.

Chapter 2 is about Poisson cohomology, a natural and important invari-
ant introduced by André Lichnerowicz in 1977 [211]. In particular, we show the
role played by this cohomology in normal form problems, and its relations with
de Rham cohomology of manifolds and Chevalley–Eilenberg cohomology of Lie
algebras. Some known methods for computing Poisson cohomology are briefly
discussed, including standard tools from algebraic topology such as the Mayer–
Vietoris sequence and spectral sequences, and also tools from singularity theory.
Many authors, including Viktor Ginzburg, Johannes Huebschmann, Mikhail Kara-
sev, Jean-Louis Koszul, Izu Vaisman, Ping Xu, etc., contributed to the understand-
ing of Poisson cohomology, and we discuss some of their results in this chapter.
However, the computation of Poisson cohomology remains very difficult in general.

Chapter 3 is about a kind of normal form for Poisson structures, which are
comparable to Poincaré–Birkhoff normal forms for vector fields, and which are
called Levi decompositions because they are analogous to Levi–Malcev decom-
positions for finite-dimensional Lie algebras. The results of this chapter are due
mainly to Aissa Wade [342] (the formal case), the second author and Monnier
[369, 263] (the analytic and smooth cases). The proof of the formal case is purely
algebraic and relatively simple. The analytic and smooth cases make use of the
fast convergence methods of Kolmogorov and Nash–Moser.

Chapter 4 is about linearization of Poisson structures. The results of Chapter
3 are used in this chapter. In particular, Conn’s linearization results for Poisson
structures with a semi-simple linear part [80, 81] may be viewed as special cases
of Levi decomposition. Among results discussed at length in this chapter, we will
mention here Weinstein’s theorem on the smooth degeneracy of real semisimple
Lie algebras of real rank greater than or equal to 2 [348], and our result on the
formal and analytic nondegeneracy of the Lie algebra aff(n) [120].

In Chapter 5 we explain the links among quadratic Poisson structures, r-
matrices, and the theory of Poisson–Lie groups introduced by Drinfeld [107]. So
far, all quadratic Poisson structures known to us can be obtained from r-matrices,
which have their origins in the theory of integrable systems. Some important con-
tributions of Semenov–Tian–Shansky, Lu, Weinstein and other people can be found
in this chapter. We then show how the curl vector field (also known as modular vec-
tor field) led the first author and other people to a classification of “nonresonant”
quadratic Poisson structures, and quadratization results for Poisson structures
which begin with a nonresonant quadratic part. Let us mention that Poisson–Lie
groups are classical versions of quantum groups, a subject which is beyond the
scope of this book.

Chapter 6 is devoted to n-ary generalizations of Poisson structures, which
go under the name of Nambu structures. Though originally invented by physicists
Nambu [275] and Takhtajan [328], these Nambu structures turn out to be dual to
integrable differential forms and play an important role in the theory of singular
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foliations. A linearization theorem for Nambu structures [119] is given in this chap-
ter. Its proof at one point makes use of Malgrange’s “Frobenius with singularities”
theorem [233, 234]. Malgrange’s theorem is also discussed in this chapter, together
with many other results on singular foliations and integrable differential forms.
In particular, we present generalizations of Kupka’s stability theorem [204], which
are due to de Medeiros [244, 245], Camacho and Lins Neto [59], and ourselves.

Chapter 7 deals with Lie groupoids. Among other things, it contains a re-
cent slice theorem due to Weinstein [354] and the second author [370]. This slice
theorem is a normal form theorem for proper Lie groupoids near an orbit, and gen-
eralizes the classical Koszul–Palais slice theorem for proper Lie group actions. We
also discuss symplectic groupoids, an important object of Poisson geometry intro-
duced independently by Karasev [189], Weinstein [349], and Zakrzewski [364] in the
1980s. A local normal form theorem for proper symplectic groupoids is also given.

Chapter 8 is about Lie algebroids, introduced by Pradines [294] in 1967 as
infinitesimal versions of Lie groupoids. They correspond to fiber-wise linear Pois-
son structures, and many results about general Poisson structures, including the
splitting theorem and the Levi decomposition, apply to them. Our emphasis is
again on their local normal forms, though we also discuss cohomology of Lie alge-
broids, and the problem of integrability of Lie algebroids, including a recent strong
theorem of Crainic and Fernandes [86].

Finally, Appendix A is a collection of discussions which help make the book
more self-contained or which point to closely related subjects. It contains, among
other things, Vorobjev’s description of a neighborhood of a symplectic leaf [340],
toric characterization of Poincaré–Birkhoff normal forms of vector fields, a brief
introduction to deformation quantization, including a famous theorem of Kontse-
vich [195] on the existence of deformation quantization for an arbitrary Poisson
structure, etc.

The book is biased towards what we know best, i.e., local normal forms. May
the specialists in Poisson geometry forgive us for not giving more discussions on
other topics, due to our lack of competence. Familiarity with symplectic manifolds
is not required, though it will be helpful for reading this book. There are many
nice books readily available on symplectic geometry. On the other hand, books on
Poisson geometry are relatively rare. The only general introductory reference to
date is Vaisman [333]. Some other references are Cannas da Silva and Weinstein
[60] (a nice book about geometric models for noncommutative algebras, where
Poisson geometry plays a key role), Karasev and Maslov [190] (a book on Poisson
manifolds with an emphasis on quantization), Mackenzie [228] (a general reference
on Lie groupoids and Lie algebroids), Ortega and Ratiu [288] (a comprehensive
book on symmetry and reduction in Poisson geometry), and a book in preparation
by Xu [362] (with an emphasis on Poisson groupoids). We hope that our book is
complementary to the above books, and will be useful for students and researchers
interested in the subject.
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