
CHAPTER II

BOUNDARY VALUE PROBLEMS OF

GENERALIZED REGULAR FUNCTIONS

AND HYPERBOLIC HARMONIC

FUNCTIONS IN REAL CLIFFORD

ANALYSIS

This chapter deals with boundary value problems of some functions
in real Clifford analysis. In the first three sections, the problems of reg-
ular and generalized regular functions are considered, and in the last
section, the Dirichlet problem of hyperbolic harmonic functions is dis-
cussed. Most results in this chapter have been obtained by us in recent
years.

1 The Dirichlet Problem of Regular Functions for
a ball in Real Clifford Analysis

In this section, we discuss two boundary value problems of regular
functions for a ball in real Clifford analysis, which are obtained from the
papers of Luogeng Hua[26]1) and Sha Huang[29]4),5).

Firstly, we give definitions of some differential operators
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∂

∂xi
=

−ei

2
(∂i−1,i − ∂i−1,i), i = 2, 3, ..., n.

By using the quasi-permutation signs introduced in Chapter I, we can
give some regular conditions of functions.

If we write the element
∑
A

aAeA in A as

∑
A

aAeA =
∑
B

(aB + a2Be2)eB =
∑
B

IBeB,

where B = {α1, ..., αk} ⊆ {3, 4, ..., n}, 3 ≤ α1 < · · · < αk ≤ n, IB ∈ C
(the complex plane). It is evident that we can obtain the following
theorem.

Theorem 1.1 The sufficient and necessary condition for
∑
A

aAeA = 0

is that for all B = {α1, ..., αk} ⊆ {3, ..., n}, 3 ≤ α1 < · · · < αk ≤ n, the
following equality holds:

IB = aB + a2Be2 = 0. (1.1)

Moreover, for a function whose value is in the real Clifford algebra
An(R):

f(x) =
∑
A

fA(x)eA : Ω → An(R),

we can write it as

f(x) =
∑
B

IBeB : Ω → An−1(C),

where IB : Ω → C, An−1(C) is the complex Clifford algebra.

Theorem 1.2 A function whose value is in the real Clifford algebra
A:

f(x) =
∑
A

fA(x)eA =
∑
B

IBeB,

(A = {β1, ..., βk} ⊆ {2, 3, ..., n}, 2 ≤ β1 < · · · < βk ≤ n,

B={α1, ..., αk} ⊆ {3, 4, ..., n}, 3 ≤ α1 < · · · < αk ≤ n)

(1.2)

is regular in Ω if and only if

∂12IB =
n∑

m=3

δmBImBxm
,
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where ImBxm
= ∂ImB/∂xm, ImBxm

is the conjugate of ImBxm
, and mB

is the quasi-permutation for mB, δmB is the sign of quasi-permutation
mB. In addition, a function f is harmonic in Ω if and only if every IB

is harmonic.

Proof It is clear that emIB = aBem − a2Be2em = IBem, so

∂f(x) =
∑
B

∂12IBeB +
∑
B

n∑
m=3

IBxmemeB.

Denote B = {α1, ..., αk}, B̂p = {α1, ..., αp−1, αp+1, ..., αk}, mB = mα1

...αk, Bm = α1 ...αkm. When m is some αp among B, we have

eαpIB̂pxαp
eB̂p

= −IB̂pxαp
(−1)peB = −IαpBxαp

δαpBeB.

When m < α1, we have

emImBxmemB = −ImBxm
eB = −ImBxm

δmBeB.

Similarly, when m > αk, we get

emIBmxmeBm = −ImBxm
δmBeB,

and ∑
B

n∑
m=3

IBm xmemeB = −
∑
B

n∑
m=3

[ImBxm
δmB]eB,

hence

∂f(x) =
∑
B

∂12IBeB −
∑
B

n∑
m=3

ImBxm
δmBeB.

Thus according to Theorem 1.1, the function f is regular if and only if

∂12IB =
n∑

m=3

ImBxm
δmB.

This completes the proof.

In order to derive another sufficient and necessary requirement of the
generalized Cauchy-Riemann condition, we divide the function

f(x) =
∑
A

fAeA =
∑
B

IBeB

into the two parts

f(x) = f (1) + f (2) =
∑
B

′
I ′Be′B +

∑
B

′′
I ′′Be′′B,
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where B in the sum
∑
B

′ obtained from (3, 4, ..., n) is a combination with

odd integers; it is called the first suffix, the rest is called the second
suffix. The corresponding sum is denoted by

∑
B

′′, IB(x) whose B is got

from the first suffix and is denoted by I ′B(x), eB whose B is derived from
the second suffix is denoted by e′B, and IB(x), eB whose B is derived from
the second suffix are denoted by I ′′B, e′′B respectively. In addition, we call
f (i) the ith part of f , and denote f (i) = Jif(i = 1.2). According to this
and the above theorem, we can get the following theorem.

Theorem 1.3 A function f whose value is in real Clifford algebra
An(R) is regular in domain Ω, if and only if⎧⎪⎪⎨⎪⎪⎩

∂12I
′′
B =

n∑
m=3

δ′
mB

I
′
mBxm

,

∂12I
′
B =

n∑
m=3

δ′′
mB

I
′′
mBxm

,
(1.3)

in which f(x) =
∑
A

fAeA =
∑
B

IBeB =
∑
B

′I ′Be′B +
∑
B

′′I ′′Be′′B, B =

{α1, ..., αk} ⊂ {3, 4, ..., n}, and ∂12I
′
B, I

′
mBxm

, δ′
mB

denote the corre-
sponding part of ∂12IB, ImBxm

, δmB respectively, when B, mB are de-
rived from the first suffix. The rest is the corresponding part which is
derived from the second suffix.

Let x = (x1, x2, ..., xn) ⊂ Rn, and xT be the transpose of x, Ω :

xxT =
n∑

i=1
x2

i < 1 represent a unit ball, and ∂Ω : xxT = 1 be a unit

sphere, whose area ωn = 2πn/2/Γ(n/2).

Definition 1.1 If
∑
B

′u′
Be′B is continuous in ∂Ω, we find a function f(x)

to be regular in Ω, and continuous in Ω = Ω ∪ ∂Ω with the condition

J1f(ξ) =
∑
B

′
u′

B(ξ)e′B, ξ ∈ ∂Ω. (1.4)

The above problem is called the Dirichlet boundary value problem in
the unit ball, and we denote it by Problem D.

Theorem 1.4 Let
∑
B

′u′
Be′B be continuous on the sphere ∂Ω. Then

Problem D in the ball Ω is solvable, and the solution can be represented
by

f(x) =
∑
B

′
I ′B(x)e′B +

∑
B

′′
I ′′B(x)e′′B, (1.5)
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where
I ′B(x) =

1
ωn

∫
· · ·
∫

︸ ︷︷ ︸
ξξT =1

P (x, ξ)u′
B(ξ)ξ̇, (1.6)

in which P (x, ξ) = (1 − xxT )/(1 − 2ξxT + xxT )
n
2 is called the Poisson

kernel, ξ̇ is the area element of the sphere ξξT = 1,

I ′′B(x) = T12R
′′
B(x) + Q′′

B(x), (1.7)

R′′
B(x) =

1
2ωn

∫
· · ·
∫

︸ ︷︷ ︸
ξξT =1

n∑
m=3

Pxmδ′
mB

u′
mB

(ξ)ξ̇, (1.8)

and Q′′
B(x) satisfies the following relations:

∂z12Q
′′
B(x) = 0, (1.9)

∂12I
′
B(x) =

n∑
k=3

δ′′
kB

[T 12R′′
kBxk

(x) + Q′′
kBxk

(x)]. (1.10)

The operators T12, T 12 and ∂z12 can be seen below.

Proof Firstly, we find an expression of the solution. Suppose that
f(x) is a solution of Problem D in the ball Ω. Then from Theorem 2.1,
Chapter I, and Theorem 1.2, we can derive that I ′B(x) is harmonic in Ω.
By [26]1) we obtain

I ′B(x) =
1
ωn

∫
· · ·
∫

︸ ︷︷ ︸
ξξT =1

1 − xxT

(1 − 2ξxT + xxT )
n
2

u′
B(ξ)ξ̇,

which satisfies I ′B(ξ) = u′
B(ξ) (ξ ∈ ∂Ω), where

∫
· · ·
∫

︸ ︷︷ ︸
ξξT =1

ξ̇ = ωn.

Denote z12 = x1+x2e2, ζ12 = ξ1+ξ2e2, ∂z12 = 1
2

(
∂

∂x1
− e2

∂
∂x2

)
, ∂z12 =

1
2

(
∂

∂x1
+ e2

∂
∂x2

)
. It follows that ∂12 = 2∂z12 , ∂12 = 2∂z12 .When xxT < 1

we introduce two operators:

T12fB(x)=
1
π

∫
· · ·
∫

︸ ︷︷ ︸
ξ2
1+ξ2

2<1−x2
3−···−x2

n

fB(ξ1, ξ2, x3, x4, ..., xn)
z12 − ζ12

dξ1dξ2,

T 12fB(x) =
1
π

∫
· · ·
∫

︸ ︷︷ ︸
ξ2
1+ξ2

2<1−x2
3−···−x2

n

fB(ξ1, ξ2, x3, x4, ..., xn)
z12 − ζ12

dξ1dξ2.
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By using the results in [77] and the first expression of Theorem 1.3,
we can obtain

I ′′B(x)=
1
2
T12

n∑
m=3

δ′
mB

I
′
mBxm

+Q′′
B(x),

where ∂z12Q
′′
B(x) = 0 (x ∈ Ω). By using [26]1), we get

R′′
B(x)=

1
2ωn

∫
· · ·
∫

︸ ︷︷ ︸
ξξT =1

n∑
m=3

−2xm(1−2ξxT +xxT )−2−1nξm

(1 − 2ξxT + xxT )
n
2

δmBu′
mB

(ξ)ξ̇.

Therefore,
I ′′B(x) = T12R

′′
B(x) + Q′′

B(x).

Substituting (1.7) into the second expression of Theorem 1.3, we can
derive

∂12I
′
B(x) =

n∑
k=3

δ′′
kB

[T 12R′′
kBxk

(x) + Q′′
kBxk

(x)].

From the overdetermined system (1.10) and ∂z12Q
′′
B(x) = 0 (x ∈ Ω)

and by [76], we can find Q′′
B(x). Thus, from (1.7) again, I ′′B(x) can also

be found. That is to say, if f(x) is a solution of Problem D, then the
expressions (1.5) − (1.10) hold.

Moreover, we verify that the function satisfying expressions (1.5) −
(1.10) is a solution of Problem D. In fact, since f (1)|∂Ω =

∑
B

′I ′Be′B, ξ ∈
∂Ω, by using [27], we have I ′B(ξ) = u′

B(ξ), and then

f (1)|∂Ω =
∑
B

′
u′

B(ξ)e′B.

From (1.7), (1.9) and ∂12 = 2∂z12 , we immediately derive

∂12I
′′
B = ∂12T12R

′′
B + 2∂z12Q

′′
B = ∂12T12R

′′
B = 2∂z12T12R

′′
B.

In addition, from (1.6) and (1.8), we have

2∂z12T12R
′′
B =

n∑
m=3

δ′
mB

ωn

∫
· · ·
∫

︸ ︷︷ ︸
ξξT =1

Pxm(x, ξ)u′
mB

(ξ)ξ̇

=
n∑

m=3

δ′
mB

I
′
mBxm

.
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Thus, from (1.10) and (1.7), we get

∂12I
′
B =

n∑
m=3

δ′′
mB

I
′′
mBxm

.

From Theorem 1.3 again, it is easy to see that the function f(x) sat-
isfying (1.5) − (1.10) is regular in Ω. To sum up, f(x) is a solution of
Problem D. This proof is completed.

Next, we discuss the pseudo-modified Dirichlet problem. In order
to discuss the uniqueness of its solution, we first consider the sectional
domains of Ω. Cutting Ω by “the planes”:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x3 = a3,

x4 = a4,

...

xn = an,

we obtain a sectional domain Ga in the x1x2 plane:

xax
T
a = x2

1 + x2
2 +

n∑
m=3

a2
m < 1.

Let Γa : ξaξ
T
a = ξ2

1 + ξ2
2 +

n∑
m=3

a2
m = 1 be the boundary of Ga, and its

center be denoted by Oa = (0, 0, a3, a4, ..., an).

For given continuous functions
∑
B

′u′
B(ξ)e′B (ξ ∈ ∂Ω), φ′′

B(ξa) (ξa ∈
Γa) and the complex constants d′′Ba, we find a regular function f(x) =∑
B

′I ′Be′B +
∑
B

′′I ′′Be′′B in Ω, which is continuous in Ω with the following

pseudo-modified conditions:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
J1f(ξ) =

∑
B

′u′
B(ξ)e′B, ξ ∈ ∂Ω,

ReI ′′B|Γa = φ′′
B(ξa) + h′′

B(ξa), ξa ∈ Γa,

I ′′B(Oa) = d′′Ba,

where h′′
B(ξa) = h′′

Ba (ξa ∈ Γa) are all unknown real constants to be
determined appropriately, and ReI ′′B = Re(F ′′

B + F ′′
2Be2) = F ′′

B. The
above problem will be denoted by Problem D∗.

Theorem 1.5 Suppose that
∑
B

′u′
Be′B is continuous on ∂Ω, and for

any fixed a3, a4, ..., an, the function φ′′
B(ξa) is continuous on Γa, here
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ξ = (ξ1, ξ2, a3, ..., an). Then there exists a unique solution of Problem
D∗. Moreover the solution possesses the expressions (1.5) − (1.10) and
satisfies

ReQ′′
B(ξa) = −Re[T12R

′′
B(ξa)] + φ′′

B(ξa) + h′′
B(ξa), ξa ∈ Γa, (1.11)

Q′′
B(Oa) = −T12R

′′
B(Oa) + d′′Ba. (1.12)

Proof Evidently, on the basis of the proof of Theorem 1.4, it is suffi-
cient to add the following proof.

Firstly, we find the integral representation of the solution. Suppose
that f(x) is a solution of Problem D∗. From (1.7) and the boundary
condition, we can derive

Re[T12R
′′
B(ξa) + Q′′

B(ξa)] = φ′′
B(ξa) + h′′

B(ξa),

T12R
′′
B(Oa) + Q′′

B(Oa) = I ′′B(Oa) = d′′Ba.

Noting that
∂z12Q

′′
B(x) = 0, x ∈ Ω,

it is clear that Q′′
B(xa) satisfies the conditions⎧⎪⎪⎨⎪⎪⎩

∂z12Q
′′
B(xa) = 0, xa ∈ Ga,

ReQ′′
B(ξa) = −Re[T12R

′′
B(ξa)] + φ′′

B(ξa) + h′′
B(ξa), ξa ∈ Γa,

Q′′
B(Oa) = −T12R

′′
B(Oa) + d′′Ba.

Since the modified Dirichlet problem for analytic functions has a unique
solution [80]7), from (1.9), (1.11) and (1.12), we can find Q′′

B(xa), x ∈
Ga, and then Q′′

B(x), x ∈ Ω, because a is an arbitrary point.

That is to say, if f(x) is a solution of Problem D∗, then the expressions
(1.5) − (1.12) hold.

Next, we verify that the function f(x) determined by the above ex-
pressions is a solution of Problem D∗. From (1.7) − (1.11), it follows
that

Re(I ′′B)|Γa =Re[T12R
′′
B(ξa)]+Re[Q′′

B(ξa)]=φ′′
B(ξa)+h′′

B(ξa), ξa∈Γa,

and then I ′′B(Oa) = T12R
′′
B(Oa) + Q′′

B(Oa) = d′′Ba. Therefore, the above
function f(x) is just a solution of Problem D∗.

Finally, we prove that the solution of Problem D∗ is unique. Suppose
that f1(x) and f2(x) are two solutions of Problem D∗, and denote f1(x)−
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f2(x) by F (x). It is clear that F (x) is regular in Ω and is a solution of
the corresponding homogeneous equation of Problem D∗ and F (1)|∂Ω =∑
B

′u′
B(ξ)e′B −∑

B

′u′
B(ξ)e′B = 0. For convenience, we shall adopt the same

symbols for f(x) as before, namely denote F (x) =
∑
B

′I ′Be′B +
∑
B

′′I ′′Be′′B.

Since F (x) is regular in Ω, thus it is harmonic in Ω, therefore for all B,
I ′B(x) are all harmonic in Ω. Since

∑
B

′I ′Be′B|∂Ω = F (1)|∂Ω = 0, I ′B|∂Ω = 0,

again by using the uniqueness of the solution of the Dirichlet problem
for harmonic functions in a ball (see [26]1)), we get I ′B ≡ 0 in Ω, thus
J1F ≡ 0, I ′

mB
≡ 0 in Ω. From the definition of R′′

B(x),

R′′
B(x) =

1
2

n∑
m=3

δ′
mB

I
′
mBxm

,

and then R′′
B ≡ 0. Hence

I ′′B = T12R
′′
B(x) + Q′′

B(x) = Q′′
B(x). (1.13)

Since F (x) is a solution of the corresponding homogeneous equation of
Problem D∗, from (1.9), (1.11) and (1.12), we derive⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂z12Q
′′
B(xa) = 0, xa ∈ Ga,

ReQ′′
B(ξa) = h′′

B(ξa), ξa ∈ Γa,

Q′′
B(Oa) = 0, Oa ∈ Ga.

In addition, using the results about the existence and uniqueness of
solutions of the modified Dirichlet problem for analytic functions (see
[80]7)), we can obtain Q′′

B(xa) ≡ 0, xa ∈ Ga. Hence Q′′
B(x) ≡ 0, x ∈ Ω.

From (1.13), I ′′B ≡ 0, x ∈ Ω, and then J2F (x) ≡ 0 in Ω. So F (x) ≡
0, x ∈ Ω, i.e. f1(x) = f2(x), x ∈ Ω. This shows the uniqueness of the
solution of Problem D∗.

2 The Mixed Boundary Value Problem for Generalized
Regular Functions in Real Clifford Analysis

In this section, we discuss the existence and uniqueness of solutions
of the so-called mixed boundary value problem (Problem P -R-H) for
generalized regular functions in real Clifford analysis; the material is
derived from Huang Sha’s paper [29]6).
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Definition 2.1 We assume the linear elliptic system of second order
equations

∆u =
n∑

m=1

dmuxm + fu + g, x ∈ Ω, (2.1)

where Ω(∈ Rn) is a bounded domain and Ω ∈ C2,α (0 < α < 1), dm =
dm(x) = dm(x1, ..., xn) ∈ C0,α(Ω), dm(x) ≥ 0, x ∈ Ω. The oblique
derivative problem of equation (2.1) is to find a solution u(x) =
u(x1, ..., xn) ∈ C2(Ω) satisfying (2.1) and the boundary conditions⎧⎪⎨⎪⎩

∂u

∂ν
+ σ(x)u(x) = τ(x) + h, x ∈ ∂Ω,

u(d) = u0, d = (d1, ..., dn) ∈ Ω,

(2.2)

in which σ(x), τ(x) ∈ C1,α(∂Ω), σ(x) ≥ 0, x ∈ ∂Ω, h is an unknown real
constant, u0 is a real constant, ν is a vector on x ∈ ∂Ω, cos(ν, n0) ≥ 0, n0

is the outward normal vector on x ∈ ∂Ω, and cos(ν, n0) ∈ C1,α(∂Ω). The
above boundary problem is called Problem O.

Problem O is a non-regular oblique derivative problem. If the coef-
ficients ν(x), σ(x) satisfy cos(ν, n0) ≡ 0, σ(x) ≡ 0 on ∂Ω, then Problem
O is the Dirichlet problem. If ν(x), σ(x) satisfy cos(ν, n0) ≡ 1, σ(x) ≡ 0
on ∂Ω, then Problem O is the Neumann problem. If cos(ν, n0) ≥ δ >
0, σ(x) ≥ 0 on ∂Ω, then Problem O is the regular oblique derivative
problem. In [59], B. P. Ponejah proved the following lemma using the
method of integral equations.

Lemma 2.1 Problem O for equation (2.1) has a unique solution.

Proof The existence and uniqueness of solutions for Problem O for
equation (2.1) in the plane can be found in [80]4). Using a similar
method in [80]4), we can also prove the uniqueness of the solution in
Lemma 2.1. Using a priori estimates of solutions and the Leray-Schauder
theorem [18], the existence of solutions in Lemma 2.1 can be proved.

For convenience, we order all ωA(x) with numbers of the form 2n−1

in ω(x) =
∑
A

ωA(x)eA according to the following method, and denote

them by ω1, ω2, ω2, ..., ω2n−1 .

1) If none of the suffixes in ωA = ωh1,...,hr is hi = n, but there exists
some suffix kj = n in ωB = ωk1,...,ks , then we arrange ωA before ωB.

2) If none of the suffixes in ωA = ωh1,...,hr , ωB = ωk1,...,ks is n, then
when r < s, we order ωA before ωB. When ωA = ωh1,...,hr , ωC = ωα1,...,αr ,
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and h1 + · · · + hr < α1 + · · · + αr, we order ωA before ωC . When
h1 + · · · + hr = α1 + · · · + αr and (h1, ..., hr) �= (α1, ..., αr), if the first
unequal suffix is hi < αi, we also order ωA before ωC .

3) If there exists some suffix in ωA = ωh1,...,hr and ωB = ωk1,...,ks is
n, then ωA = ωh1,...,hr−1,n, ωB = ωk1,...,ks−1,n, we order ωA = ωh1,...,hr−1

and ωB = ωk1,...,ks−1 by using the method as in 2), and regard them as
the order of ωA = ωh1,...,hr and ωB = ωk1,...,ks .

We have ordered all suffixes with numbers in the form 2n−1 through
1), 2), 3), then we can denote them by ω1, ..., ω2n−1 .

Definition 2.2 The oblique derivative problem for generalized regular
functions in Ω is to find a solution ω(x) ∈ C1,α(Ω)

⋂
C2(Ω)for the elliptic

system of first order equations

∂̄ω = aω + bω̄ + l (2.3)

satisfying the boundary conditions⎧⎪⎨⎪⎩
∂ωk

∂νk
+ σk(x)ωk(x) = τk(x) + hk, x ∈ ∂Ω,

ωk(d) = uk, 1 ≤ k ≤ 2n−1

(2.4)

in which σk(x), τk(x) ∈ C1,α(∂Ω), σk(x) ≥ 0 on ∂Ω, hk is an unknown
real constant, uk is a real constant, νk is the vector on ∂Ω, n0 is the
outward normal vector on ∂Ω; moreover, cos(νk, n0) ∈ C1,α(∂Ω). The
above boundary value problem will be called Problem P .

Let ω(x) =
∑
A

ωA(x)eA be a solution of Problem P . Then according

to Property 3.3 and Property 3.4, Chapter I, we know that the following
equalities for arbitrary index A are true:

n∑
m=1,mB=A

δmBωBxm =
∑

C,CM=A

(aC +bC)ωMδCM

+
∑

C,CM

(aC−bC)ωMδCM +lA,
(2.5)

∆ωD =
∑
j,C

δjDδCM (aC + bC)xjωM +
∑
j,C

δjDδCM (aC + bC)ωMxj

+
∑
j,C

δjDδCM (aC − bC)xjωM +
∑
j,C

δjDδCM (aC − bC)ωMxj

+
n∑

j=1
δjDlAxj ,

(2.6)
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where j = 1, 2, ..., n, jD = A, CM = A, CM = A; M, M denote two
kinds of indices of M respectively (see [29]6)).

Suppose that the equalities

(aC + bC)xj = 0, (aC − bC)xj = 0, jD = A, CM = A, C �= j (2.7)

in (2.6) are true. Especially, when n = 3, set C = 23, then according
to the condition (2.7), we get (a23 − b23)xj = 0, 1 ≤ j ≤ 3, namely
(a23 − b23) is a constant. If C = 3, by the condition (2.7), we get
(a3 − b3)xj = 0, j = 1, 2, i.e. (a3 − b3) only depends on x3.

Noting the condition (2.7), the equality (2.6) can be written as

∆ωD =
∑
j

δjDδjM (aj+bj)xjωM +
∑
j,C

δjDδCM (aC +bC)ωMxj

+
∑
j

δjDδjM (aj−bj)xjωM +
∑
j,C

δjDδCM (aC−bC)ωMxj

+
n∑

j=1
δjDlAxj ,

(2.8)

in which CM = A, CM = A, jD = A.

Suppose that D is the A-type index. In the first term of the right
side in (2.8), we see jM = jD, M = D, and then δjDδjM = 1; and in
the third term of the right side in (2.8), if the equality jM = jM holds,
then D = M is the A-type index. This is a contradiction. Hence when
D is the A-type index, the third term of the equality (2.8) disappears.
Thus the equality (2.8) can be written as

∆ωD =
n∑

j=1
(aj + bj)xjωD +

∑
j,C

δjDδCM (aC + bC)ωMxj

+
∑
j,C

δjDδCM (aC − bC)ωMxj +
n∑

j=1
δjDlAxj ,

(2.9)

in which CM = A,CM = A, jD = A. Especially, when n = 3, D = 1,
the equality (2.9) possesses the form

∆ω1=
3∑

j=1
(aj + bj)ω1xj +

3∑
j=1

(aj + bj)xjω1 + (a1 − b1)ω2x2

+(a1 − b1)ω3x3 − (a2 − b2)ω2x2 − (a2 − b2)ω23x3

−(a3 − b3)ω3x3 + (a3 − b3)ω23x2 − (a23 − b23)ω23x1

−(a23 − b23)ω3x2 + (a23 − b23)ω2x3 +
3∑

j=1
ljxj .

(2.10)
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Noting M = D = 1, M �= D = 1, it is clear that the third term of the

equality (2.8):
n∑

j=1
(aj − bj)xjωM in (2.10) disappears. When M = D, we

have C = MA = MjD = DjD = j, δjDδCM = δjDδCD = δjDδjD = 1,

and then the equality (2.9) can be rewritten as

∆ωD =
∑
j
(aj+bj)xjωD+

∑
j
(aj+bj)ωDxj +

∑
j,C

δjDδCM (aC +bC)ωMxj

+
∑
j,C

δjDδCM (aC − bC)ωMxj +
∑
j

δjDlAxj ,

(2.11)
where M �= D, and A is the index satisfying A = jD.

In addition, we first write equation (2.5) in the form

n∑
j=1

δjMωMxj +
n∑

j=1
δjMωMxj

=
∑
E

(aE+bE)ωMδEM +
∑
E

(aE−bE)δEMωM +lB,
(2.12)

where EM = B, BM = B, jM = B, and B runs all indexes. Moreover
we use δCD(aC − bC) to multiply every equation in (2.12), herein CD =
B, D is the fixed index, and sum according to the index B, we obtain∑

B,j
δCDδjM (aC − bC)ωMxj +

∑
B,j

δCDδjM (aC − bC)ωMxj

=
∑
B,E

(aC − bC)(aE + bE)δCDδEMωM

+
∑
B,E

(aC − bC)(aE − bE)δCDδEMωM +
∑
B

(aC − bC)δCDlB

(2.13)

where CD = B,EM = B,EM = B, jM = B.

According to Property 3.6 about the quasi-permutation in Section 3,
Chapter I, C = DB and the arbitrariness of B, we know that C can run
all indexes, so the second term in the left-hand side in (2.13) can also
be written as∑

B,j
δCDδjM (aC − bC)ωMxj =

∑
C,j

δCDδjM (aC − bC)ωMxj

=
∑
j,C

µjDCδjDδCM (aC − bC)ωMxj ,
(2.14)

where jM = B, CD = B.

Since D is given, we get A = jD (j = 1, 2, ..., n) and C = MA =
MjD. Suppose that the coefficients corresponding to C which do not
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conform to the condition jD = CM = A satisfy

aC − bC = 0, (2.15)

and the coefficients corresponding to C = BD with the condition
µjDC = 1 satisfy

aC − bC = 0; (2.16)

then the equality (2.14) can also be written in the form∑
B,j

(CD,jM=B)

δCDδjM (aC − bC)ωMxj = −
∑
j,C

(jD=A,CM=A)

δjDδjM (aC − bC)ωMxj . (2.17)

In addition, from the equality (2.13), we have∑
j,C

δjDδjM (aC − bC)ωMxj

=
∑
j,B

(CD=B,jM=B)

δCDδjM (aC−bC)ωMxj−
∑
E,B

(CD=B,EM=B)

(aC−bC)(aE+bE)δCDδEMωM

− ∑
E,B

(CD=B,EM=B)

(aC − bC)(aE − bE)δCDδEMωM− ∑
B

(CD=B)

(aC − bC)δCDlB.

(2.18)
Substituting the equality (2.18) into the equality (2.11), we get

∆ωD =
∑
j

(jD=A)

(aj+bj)xjωD+
∑
j

(jD=A)

(aj+bj)ωDxj

+
∑
j,C

(jD=A)

CM=A,M �=D

δjDδCM (aC +bC)ωMxj +
∑
B,j

(jM=B,CD=B)

δCDδjM (aC−bC)ωMxj

− ∑
B,E

(CD=B,EM=B)

(aC − bC)(aE − bE)δCDδEMωM

− ∑
B,E

(CD=B,EM=B)

(aC − bC)(aE − bE)δCDδEMωM

− ∑
B

(CD=B)

(aC − bC)δCDlB +
∑
j

(jD=A)

δjDlAxj .

(2.19)
In the fourth term of the equality (2.19), when M = D, we have CD =
B = jM = jD, and C = j, thus δCD = δjM = δjD = 1. In the
fifth term of the equality (2.19), when M = D, in accordance with
CD = EM = B, we have C = E, and then δCDδEM = δCDδCD = 1. So,
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the equality (2.19) can be written as

∆ωD =⎡⎣ ∑
j,(jD=A)

(aj+bj)xj −
∑

C,(jD=B)

(a2
C−b2

C)

⎤⎦ωD +
∑
j

jD=A,CD=B

2aCωDxj

+
∑
j,C

jD=A,CM=A,M �=D

δjDδCM (aC +bC)ωMxj +
∑
B,j

jM=B,CD=B,M �=D

δCDδjM (aC−bC)ωMxj

− ∑
B,E

CD=B,EM=B,M �=D

(aC − bC)(aE + bE)δCDδEMωM

− ∑
B,E

CD=B,EM=B

(aC − bC)(aE − bE)δCDδEMωM

− ∑
B, CD=B

(aC − bC)δCDlB +
∑

j, jD=A

δjDlAxj .

(2.20)
In the sixth term of the right-hand side of equality (2.20), when E �= C
and µCDE = −1, by Property 3.6 in Section 3, Chapter I, we get (aC −
bC)(aE−bE)δCDδEM = −(aC−bC)(aE−bE)δEDδCM = −(aE−bE)(aC−
bC)δEDδCM , hence

∑
B,E

E �=C,µCDE=−1

(aC − bC)(aE − bE) ×δCDδEMωM = 0;.

While E �= C, µCDE = −1, suppose that the term corresponding to the
sixth term of the right-hand side in (2.20) satisfies

(aC − bC)(aE − bE) = 0. (2.21)

When E = C, we have CD = EM = CM , so D = M. This contradicts
that D is an A-type index. Hence this condition does not hold, hence
the equality (2.20) can also be written as

∆ωD =

⎡⎣ ∑
j,(jD=A)

(aj+bj)xj −
∑

C,(jD=B)

(a2
C−b2

C)

⎤⎦ωD +
∑
j
2aCωDxj

+
∑
j,C

jD=A

CM=A,M �=D

δjDδCM (aC +bC)ωMxj

+
∑
B,j

jM=B

CD=B,M �=D

δCDδjM (aC−bC)ωMxj

− ∑
B,E

CD=B,EM=B
M �=D,E �=C

(aC−bC)(aE+bE)δCDδEMωM
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− ∑
B,(CD=B)

(aC − bC)δCDlB +
∑

j,(jD=A)

δjDlAxj . (2.22)

Let the third, fourth, and fifth terms in the right-hand side of (2.22)
satisfy

aC + bC = 0, aC − bC = 0, (aC − bC)(aE + bE) = 0, (2.23)

respectively. Then equality (2.22) can be written in the form

∆ωD = [
∑

j,(jD=A)

(aj+bj)xj −
∑
C

(a2
C−b2

C)]ωD +
∑
j

CD=B,jD=A

2aCωDxj

− ∑
B,(CD=B)

(aC − bC)δCDlB +
∑

j,(jD=A)

δjDlAxj .

(2.24)
When D = 1, we simply write the equality (2.24) as

∆ω1 =
n∑

m=1

dm1ω1xm + f1ω1 + g1, (2.25)

here dm1 = dm1(x) = dm1(x1, ..., xn), f1 = f1(x) = f1(x1, ..., xn), g1 =
g1(x) = g1(x1, ..., xn). Let

f1(x) ≥ 0. (2.26)

Then according to Lemma 2.1, there exists a unique function ω1(x)
satisfying the boundary condition (2.4). After we get ω1(x), we can
consider that ω1(x) in equation (2.5) is known as well as the known
coefficients aA(x), bA(x), lA(x). Applying the same method concluding
with the equality (2.25), we get the equality (2.24) when D = 2, and
write it simply as

∆ω2 =
n∑

m=1

dm2(x)ω2xm + f2ω2 + g2, (2.27)

where dm2 = dm2(x), f2 = f2(x), g2 = g2(x, ω1(x)). Set f2(x) ≥ 0; on the
basis of Lemma 2.1, there exists a unique ω2(x) satisfying the boundary
condition (2.4). After getting ω2(x), we can regard ω1(x), ω2(x) as the
known functions. Using the above method, we can get

∆ω3 =
n∑

m=1

dm3ω3xm + f3ω3 + g3, (2.28)
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in which dm3 = dm3(x), f3 = f3(x), g3 = g3(x, ω1(x), ω2(x)). In accor-
dance with the above steps and the order of ω1, ..., ω2n−1 , we proceed
until ω2n−2 . At last, we get the unique ω1, ..., ω2n−2 satisfying

∆ωk =
n∑

m=1

dmk
ωkxm + fkωk + gk, (2.29)

where

dmk
= dmk

(x), fk = fk(x), gk = gk(x, ω1(x), ω2(x), ..., ωk−1(x)),

fk(x) ≥ 0, 1 ≤ k ≤ 2n−2.

For simplicity, denote by U the conditions (2.7), (2.15), (2.16), (2.17),
(2.21), (2.23),... and fk(x) ≥ 0 (1 ≤ k ≤ 2n−2) of system (2.3).

From the above discussion, by means of Lemma 2.1, if system (2.3)
satisfies the condition U , then there exists a unique solution ωk, , 1 ≤
k ≤ 2n−2.

In order to further discuss ωk (2n−2+1 ≤ k ≤ 2n−1), we need to study
the system (2.5). Suppose that the suffix A of lA in the equality (2.5)
has been arranged according to the above method, and lA has been
written l1, ..., l2n−2 , l2n−2+1, ..., l2n−1 . We may only discuss the system
of equations corresponding to l2n−2+1, l2n−2+2, ..., l2n−1 in the equality
(2.5), namely

n∑
m=1

mB=A

δmBωBxm =
∑

C,(CM=A)

(aC + bC)ωMδCM

+
∑

C,(CM=A)

(aC − bC)ωMδCM + lA,
(2.30)

where lA = lk, 2n−2 + 1 ≤ k ≤ 2n−1, ω(x) =
∑
A

ωA(x)eA, x ∈ Ω. The

following assumption is called the condition V . Set n = 2m, and denote
x2k−1 + x2ki = zk, k = 1, ..., m, i is the imaginary unit, and ω2k−1 +
iω2k = ωk, k = 1, ..., 2n−2. Let Ω = G1×· · ·×Gm be a multiply circular
cylinder about complex variables z1, ..., zm. Then we regard ω1, ..., ω2n−2

as the known functions, by using the result in [80]4), the elliptic system
of first order equations: (2.30) about ω2n−2+1, ..., ω2n−1 can be written
as

∂ωk

∂zk
= fkl(z1, ..., zm, ω2n−3+1, ω2n−3+2, ..., ω2n−2), (2.31)

in which k = 2n−3 + 1, ..., 2n−2, l = 1, ..., m.
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Denote (see [43])

N⊥
1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
f

∣∣∣∣∣∣∣∣∣∣∣∣

f is a Hölder continuous function defined on characteristic
manifold ∂G1 × · · · × ∂Gm, whose real index is β, and∫

∂G1

· · ·
∫

∂Gm

f(ζ1, ..., ζm)
ζJ1
1 ...ζJm

m

dζ1...dζm = 0,

Jl > −kl, l = 1, ..., m

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

If (i) fkl is continuous with respect to z = (z1, ..., zm) ∈ Ω, ω =
(ω2n−3+1, ω2n−3+2, ..., ω2n−2) ∈ Bθ, here Bθ = {ω||ωj | < θ, j = 2n−3 +
1, 2n−3 + 2, ..., 2n−2}, θ > 0, moreover, fkl is holomorphic about ω ∈
Bθ, and has continuous mixed partial derivatives until m − 1 order for

different zj (j �= l), namely
∂λfkl

∂zi1 ...∂ziλ

is continuous about ω ∈ Bθ, z ∈
Ω, here λ ≤ m − 1, 1 ≤ i1 < · · · < iλ ≤ m, ik �= l, k = 1, ..., λ.

(ii) the system (2.31) is completely integrable, that is

∂fkl

∂zj
+

2n−2∑
p=2n−3+1

∂fkl

∂ωp
fpj =

∂fkj

∂zl
+

2n−2∑
p=2n−3+1

∂fkj

∂ωp
fpl,

k = 2n−3 + 1, ..., 2n−2, 1 ≤ j, l ≤ m.

(iii) the set

Mθ=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
ω

∣∣∣∣∣∣∣∣∣∣∣∣∣

ω are several complex variable functions defined on Ω,
with continuous mixed partial derivatives up to order m
for different zj , and satisfy

|ωj | < θ, | ∂λωj

∂zi1 ...∂ziλ

| ≤ θ, j = 2n−3 + 1, ..., 2n−2,

1 ≤ i1 < · · · < iλ ≤ m, 1 ≤ λ ≤ m, z ∈ Ω

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
is defined. When ω ∈ Mθ, the composite function fkl and its continu-
ous mixed partial derivatives up to order m for different zj (j �= l) are
uniformly bounded, we denote its bound by Kθ. Moreover, for arbitrary
ω, ˜̄ω ∈ Mθ, the composite function fkl and its mixed partial derivatives
satisfy the Lipschitz condition, that is∣∣∣∣∣∂λfkl(z1, ..., zm, ω2n−3+1, ..., ω2n−2)

∂zi1 ...∂ziλ

−∂λfkl(z1, ..., zm, ˜̄ω2n−3+1, ..., ˜̄ω2n−2)
∂zi1 ...∂ziλ

∣∣∣∣∣
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≤ Lθ max
2n−3+1≤ε≤2n−2

1≤j1<···<jα≤m

sup
Ω

|∂
α(ωE − ω̃ε)
∂zj1 ...∂zjα

|,

1 ≤ i1 < · · · < iλ ≤ m, ip �= l.

(iv) the real functions ψj(z1, ..., zm) on ∂G1 × · · · × ∂Gm satisfy
the Hölder condition, namely ψj(z1, ..., zm) ∈ Cβ(∂G1 × · · · × ∂Gm). In
addition, we assume an unknown real function hj on N⊥

1 . The above
conditions are called the condition V .

Definition 2.3 For the solution ω =
2n−1∑
k=1

ωk(x)ek of Problem P ,

if ω2n−3+1, ..., ω2n−2(ωk = ω2k−1 + iω2k) satisfy generalized Riemann-
Hilbert boundary condition on ∂G1 × · · · × ∂Gm (see [43]):

Re[z−k1
1 , ..., z−km

m , ωj(z1, ..., zm)] = ψj(z1, ..., zm) + hj ,

j = 2n−3 + 1, ..., 2n−2, z = (z1, ..., zm) ∈ ∂G1 × · · · × ∂Gm,
(2.32)

then the problem for generalized regular functions is called the mixed
boundary problem, which will be denoted by Problem P -R-H.

On the basis of the result in [43], under the condition V , when Kj <

0 (j = 1, ..., m), and Kθ, Lθ,
2n−2∑

j=2n−3+1

Cβ(ψj) are small enough, there

exists a unique solution (ω2n−3+1, ..., ω2n−2) for the modified problem
(2.31), (2.32), so ω2n−2+1, ..., ω2n−1 are uniquely determined.

From the above discussion, we get the existence and uniqueness of
the solution of Problem P -R-H for generalized regular functions in real
Clifford analysis.

Theorem 2.2 Under the condition U, V , when Kj < 0 (j = 1, 2, ...,

m), and Kθ, Lθ,
2n−2∑

j=2n−3+1

Cβ(ψj) are small enough, there exists a unique

solution ω(x) =
∑
A

ωA(x)eA =
2n−1∑
k=1

ωk(x)ek (x ∈ Ω) of Problem P−R−H

for generalized regular functions, where ω1(x), ..., ω2n−2(x) satisfy equa-
tion (2.3) and the boundary condition (2.4) of Problem P. Denote
ωk = ω2k−1 + iω2k (k = 2n−3 + 1, ..., 2n−2), then ω2n−3+1, ..., ω2n−2 sat-
isfy equation (2.31), and the corresponding functions ω2n−2+1, ω2n−2+2,
..., ω2n−1 satisfy equation (2.3) and the generalized R−H boundary con-
dition (2.32).
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3 A Nonlinear Boundary Value Problem With Haseman
Shift for Regular Functions in Real Clifford Analysis

This section deals with the nonlinear boundary value problem with
Haseman shift d(t) in real Clifford analysis, whose boundary condition
is as follows:

a(t)Φ+(t) + b(t)Φ+(d(t)) + c(t)Φ−(t)

= g(t) · f(x,Φ+(t), Φ−(t), Φ+(d(t)), Φ−(d(t))).
(3.1)

We shall prove the existence of solutions for the problem (3.1) by using
the Schauder fixed point theorem (see [29]1)). It is easy to see that
when a(t) = g(t) ≡ 0, b(t) ≡ 1, the problem (3.1) becomes the Haseman
problem

Φ+(d(t)) = G(t)Φ−(t). (3.2)

The problem (3.2) was first solved by C. Haseman [22]. In general, all
boundary value conditions for holomorphic functions can be expressed
as the pasting condition of the unknown functions, hence the boundary
value problem can be regarded as the conformal pasting problem [87] in
function theory. But the method of conformal pasting cannot be used to
handle all problems of multiple elements. In 1974, A. M. Hekolaeshuk
[23] gave an example, i.e. for the boundary value problem

a(t)Φ+(t) + b(t)Φ−(d(t)) + c(t)Φ−(t) = g(t), (3.3)

the method of conformal pasting cannot be eliminated the shift d(t). For
the problem (3.1) discussed in this section, we choose the linear case of
(3.3) as its example.

Firstly, we reduce the problem to the integral equation problem, and
then use the fixed point theorem to prove the existence of solutions for
the problem.

Assume a connected open set Ω ∈ Rn, whose boundary ∂Ω is a
smooth, oriented, compact Liapunov surface (see Section 2, Chapter
1). Suppose that a(t), b(t), c(t), d(t), g(t) are given on ∂Ω, and d(t) is
a homeomorphic mapping, which maps ∂Ω onto ∂Ω. Denote Ω+ =
Ω, Ω− = Rn\Ω, Ω = Ω

⋃
∂Ω; we shall find a regular function Φ(x)

in Ω+, which is continuous on Ω±⋃ ∂Ω, and satisfies Φ−(∞) = 0 and
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the nonlinear boundary condition (3.1) with Haseman shift. The above
problem is called Problem SR. Set

Φ(x) =
1
ωn

∫
∂Ω

E(x, t)m(t)ϕ(t)dst, (3.4)

where ωn = 2π
n
2 /Γ(

n

2
) is the surface area of a unit ball in Rn, E(x, t) =

t−x
|t−x|n , m(t) =

n∑
j=1

ej cos(m, ej) is the outward normal unit vector on ∂Ω,

and dst is the area element, and ϕ(t) is the unknown Hölder continuous
function on ∂Ω. According to the Plemelj formula (2.24) in Section 2,
Chapter I,

Φ+(x) =
ϕ(x)

2
+ Pϕ(x), x ∈ ∂Ω, (3.5)

Φ−(x) = −ϕ(x)
2

+ Pϕ(x), x ∈ ∂Ω, (3.6)

in which the operator

Pϕ(x) =
1
ωn

∫
∂Ω

E(x, t)m(t)ϕ(t)dSt, x ∈ ∂Ω.

In addition

Φ+(d(t)) =
ϕ1(x)

2
+ P1ϕ(x), x ∈ ∂Ω, (3.7)

Φ−(d(t)) = −ϕ1(x)
2

+ P1ϕ(x), x ∈ ∂Ω, (3.8)

where ϕ1(x) = ϕ(d(x)), and

P1ϕ(x) = Pϕ(d(x))

=
1
ωn

∫
∂Ω

E(d(x), t)m(t)ϕ(t)dSt.
(3.9)

Substituting (3.5) − (3.8) into (3.1), we get

a(
ϕ

2
+ Pϕ) + b(

ϕ1

2
+ P1ϕ) + c(−ϕ

2
+ Pϕ) = g · f. (3.10)

Introducing the operator

Fϕ = (a + c)(−ϕ

2
+ Pϕ) + b(

ϕ1

2
+ P1ϕ) + (1 + a)ϕ − gf,

the equation (3.10) becomes

ϕ = Fϕ. (3.11)



62 Chapter II

Thus the problem SR is reduced to solving the integral equation (3.11).

Denote by H(∂Ω, β) the set of the above Hölder continuous functions
with the Hölder index β (0 < β < 1). For arbitrary ϕ ∈ H(∂Ω, β), the
norm of ϕ is defined as

‖ ϕ ‖β = C(ϕ, ∂Ω) + H(ϕ, ∂Ω, β),

where C(ϕ, ∂Ω)=max
t∈∂Ω

|ϕ(t)|, H(ϕ, ∂Ω, β) = sup
t1 �=t2, t1,t2∈∂Ω

|ϕ(t1)−ϕ(t2)|
|t1 − t2|β .

It is evident that H(∂Ω, β) is a Banach space; moreover we easily verify

‖ f + g ‖β ≤ ‖ f ‖β + ‖ g ‖β, ‖ f · g ‖β ≤ 2n−1‖ f ‖β‖ g ‖β, (3.12)

where f, g ∈ H(∂Ω, β).

Theorem 3.1 Suppose that the operator θ : θϕ = ϕ
2 − Pϕ and the

function ϕ(t) ∈ H(∂Ω, β) are given; then there exists a constant J1

independent of ϕ, such that

‖ θϕ ‖β ≤ J1‖ ϕ ‖β. (3.13)

Proof On the basis of Theorem 2.7, Chapter I, we know

1
ωn

∫
∂Ω

E(x, t)m(t)dst =
1
2
, x ∈ ∂Ω,

and then

|(θϕ)(x)|≤ 1
ωn

H(ϕ, ∂Ω, β)
∫

∂Ω

dst

|t−x|n−1−β
=M1H(ϕ, ∂Ω, β), (3.14)

in which M1 is a constant independent of ϕ.

In order to consider H(θϕ, ∂Ω, β), we choose arbitrary x, x̂ ∈ ∂Ω, and
denote δ = |x − x̂|. Firstly, suppose 6δ < d (d is the constant about a
Liapunov surface in Section 2, Chapter I); we can make a sphere with
the center at x and radius 3δ. The inner part of this sphere is denoted
∂Ω1 and the remaining part is denoted ∂Ω2, thus we have

|(θϕ)(x) − (θϕ)(x̂)| ≤ 1
ωn

|
∫

∂Ω1

E(x, t)m(t)(ϕ(x) − ϕ(t))dst|

+
1
ωn

|
∫

∂Ω1

E(x̂, t)m(t)(ϕ(x̂) − ϕ(t))dst|

+
1
ωn

|
∫

∂Ω2

E(x, t)m(t)(ϕ(x)−ϕ(t))dst−
∫

∂Ω2

E(x̂, t)m(t)(ϕ(x̂)−ϕ(t))dst|

= L1 + L2 + L3.
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For x, we use the result about N0 ∈ ∂Ω in Section 2, Chapter I, and
denote by π1 the projection field of ∂Ω1 on the tangent plane of x; then

L1 ≤ M2H(ϕ, ∂Ω, β)
∫ 3δ

0

ρn−2
0

ρn−1−β
0

dρ0 = M3H(ϕ, ∂Ω, β)|x − x̂|β,

where M2, M3 are constants independent of x, x̂. In the following we
shall denote by Mi the constant having this property. Similarly, L2 ≤
M4H(ϕ, ∂Ω, β)|x − x̂|β. Next, we estimate L3:

L3 ≤ 1
ωn

|
∫

∂Ω2

(E(x, t) − E(x̂, t))m(t)(ϕ(x) − ϕ(t))dst|

+
1
ωn

|
∫

∂Ω2

E(x̂, t)m(t)(ϕ(x) − ϕ(x̂))dst| = O1 + O2.

By using Hile’s lemma (see Section 2, Chapter 1), we get

|E(x, t) − E(x̂, t)| =

∣∣∣∣∣ t − x

|t − x|n − t − x̂

|t − x̂|n
∣∣∣∣∣

≤
n−2∑
k=0

∣∣∣∣ t − x

t − x̂

∣∣∣∣−(k+1)

|t − x̂|−n|x − x̂|.

For arbitrary t ∈ ∂Ω2, we have |t − x̂| ≥ 2δ, and then

1
2
≤ | t − x

t − x̂
| ≤ 2.

Thus O1 ≤ M5H(ϕ, ∂Ω, β)|x− x̂|β. Noting that ϕ ∈ H(ϕ, ∂Ω), it is easy
to see that O2 ≤ M6H(ϕ, ∂Ω, β)|x − x̂|β. Hence

L3 ≤ M7H(ϕ, ∂Ω, β)|x − x̂|β.

From the above discussion, when 6|x − x̂| < d, we have

|(θϕ)(x) − (θϕ)(x̂)| ≤ M8H(ϕ, ∂Ω, β)|x − x̂|β. (3.15)

On the basis of the results in [53], we obtain the above estimation for
6|x− x̂| ≥ d. Moreover, according to (3.14),(3.15), there exists a positive
constant J1, such that ‖ θϕ ‖β ≤ J1‖ ϕ ‖β. This completes the proof.

Taking into account
Pϕ =

ϕ

2
− θϕ,

we get

‖ Pϕ ‖β ≤ 1
2
‖ ϕ ‖β + ‖ θϕ ‖β ≤ (

1
2

+ J1)‖ ϕ ‖β. (3.16)
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Similarly, it is easy to prove the following corollary.

Corollary 3.2 For arbitrary ϕ ∈ H(∂Ω, β), there exists a constant
J2 independent of ϕ, such that

‖ ϕ

2
+ Pϕ ‖

β
≤ J2‖ ϕ ‖β. (3.17)

Theorem 3.3 Let the shift d = d(x) (x ∈ ∂Ω) satisfy the Lipschitz
condition on ∂Ω. Then for arbitrary x, x̂ ∈ ∂Ω, we have

|d(x) − d(x̂)| ≤ J3|x − x̂|. (3.18)

We introduce the operator

Gϕ =
ϕ1

2
+ P1ϕ =

ϕ(d(x))
2

+ Pϕ(d(x)),

then for arbitrary ϕ ∈ H(∂Ω, β), there exists a constant J6 independent
of ϕ, such that

‖ Gϕ ‖β ≤ J6‖ ϕ ‖β. (3.19)

Proof According to (3.16), we get

C(Gϕ, ∂Ω) ≤ ‖ ϕ ‖β

2
+ (

1
2

+ J1)‖ ϕ ‖β = (1 + J1)‖ ϕ ‖β. (3.20)

Similar to the proof of (3.15), we have

|Pϕ(d(x)) − Pϕ(d(x̂))| ≤ J4‖ ϕ ‖β|d(x) − d(x̂)|β ≤ J5‖ ϕ ‖β|x − x̂|β.
(3.21)

From (3.20), (3.21), it follows that the inequality ‖ Gϕ ‖β ≤ J6‖ ϕ ‖β

holds.

Corollary 3.4 Under the same condition as in Theorem 3.3, the fol-
lowing inequality holds:

‖ −ϕ1

2
+ P1ϕ ‖

β
≤ J7‖ ϕ ‖β. (3.22)

Theorem 3.5 Suppose that the shift d = d(x) in Problem SR satis-
fies the condition (3.18) and a(t), b(t), c(t), g(t) ∈ H(∂Ω, β). Then, if
the function f(t, Φ(1), Φ(2), Φ(3), Φ(4)) is Hölder continuous for the ar-
bitrary fixed Clifford numbers Φ(1), Φ(2), Φ(3), Φ(4) about fixed t ∈ ∂Ω
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and satisfies the Lipschitz condition for the arbitrary fixed t ∈ ∂Ω about
Φ(1), Φ(2), Φ(3), Φ(4), namely

|f(t1, Φ
(1)
1 , Φ(2)

1 , Φ(3)
1 , Φ(4)

1 ) − f(t2, Φ
(1)
2 , Φ(2)

2 , Φ(3)
2 , Φ(4)

2 )|

≤ J8|t1 − t2|β + J9|Φ(1)
1 − Φ(1)

2 | + · · · + J12|Φ(4)
1 − Φ(4)

2 |,
(3.23)

where Ji, i = 8, ..., 12 are positive constants independent of ti, Φ(i)
j (i =

1, 2, 3, 4, j = 1, 2), f(0, 0, 0, 0, 0) = 0; and if ‖ a + c ‖β < ε < 1, ‖ b ‖β <

ε < 1, ‖ 1 + a ‖β < ε < 1, 0 < µ = ε·2n−1(J1+J6+1) < 1, and ‖ g ‖β <

δ; then when 0 < δ ≤ M(1 − µ)
2n−1(J17 + J18M)

, Problem SR is solvable, where

M is the given positive number (‖ ϕ ‖β ≤ M), J17, J18 are the positive
numbers dependent on Ji, i = 1, 2, 6, 7, ..., 12.

Proof Denote by

T = {ϕ|ϕ ∈ H(∂Ω, β), ‖ ϕ ‖β ≤ M}

the subset of the continuous function space C(∂Ω). According to (3.11),
we have

||Fϕ||β ≤2n−1‖a+c‖β‖θϕ‖β+2n−1||b||β||Gϕ||β+2n−1||1+a||β||ϕ||β
+2n−1||g||β · ||f(t,

ϕ

2
+ Pϕ,−ϕ

2
+ Pϕ,

ϕ1

2
+ P1ϕ,−ϕ1

2
+ P1ϕ)||

β
.

From Theorems 3.1, 3.3, Corollaries 3.2, 3.4 and the condition (3.23), it
follows that

C(f, ∂Ω) ≤ J13 + J14||ϕ||β. (3.24)

Moreover using (3.23) we have∣∣∣∣f (t1,
ϕ(t1)

2
+ P ϕ(t1),

−ϕ(t1)
2

+ Pϕ(t1),
ϕ1(t1)

2
+ P1ϕ(t1) ,

− ϕ1(t1)
2

+ P1ϕ(t1)
)
− f

(
t2,

ϕ(t2)
2

+ Pϕ(t2) ,
−ϕ(t2)

2
+ Pϕ(t2),

ϕ1(t2)
2

+ P1ϕ(t2),
−ϕ(t2)

2
+ P1ϕ(t2)

)∣∣∣∣
≤ (J15 + J16||ϕ||β)|t1 − t2|β (J15 = J8).

(3.25)
In accordance with (3.24),(3.25), we obtain

||f ||β ≤ J17 + J18||ϕ||β, (3.26)
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hence when ϕ ∈ T , applying the condition in this theorem, the inequality

||Fϕ||β ≤ µ||ϕ||β + 2n−1δ(J17 + J18||ϕ||β)

< µM + δ2n−1(J17 + J18M) ≤ M

is concluded. This shows that F maps the set T into itself.

In the following, we shall prove that F is a continuous mapping.
Choose arbitrary ϕ(n)(x) ∈ T, such that {ϕ(n)(x)} uniformly converges
to ϕ(x), x ∈ ∂Ω. It is clear that for arbitrary given number ε > 0, when
n is large enough, ||ϕ(n) − ϕ||β may be small enough. Now we consider
Pϕ(n)(x) − Pϕ(x). Let 6δ < d, δ > 0. Then we can make a sphere with
the center at x and radius 3δ. The inner part of the sphere is denoted
by ∂Ω1, and the rest part is denoted ∂Ω2. Thus we have

|Pϕ(n)(x) − Pϕ(x)| ≤ 1
ωn

∣∣∣∣∫
∂Ω

E(x, t)m(t)[ϕ(n)(t) − ϕ(t)]dSt

∣∣∣∣
=

1
ωn

|
∫

∂Ω
E(x, t)m(t)[ϕ(n)(t) − ϕ(n)(x) + ϕ(x) − ϕ(t) + ϕ(n)(x)

−ϕ(x)]dSt| ≤ 1
ωn

|
∫

∂Ω
E(x, t)m(t)[(ϕ(n)(t) − ϕ(n)(x))

+(ϕ(x) − ϕ(t))]dSt| + 1
ωn

∣∣∣∣∫
∂Ω

E(x, t)m(t)
(
ϕ(n)(x) − ϕ(x)

)
dSt

∣∣∣∣
≤ 1

ωn
|
∫

∂Ω1

E(x, t)m(t)[(ϕ(n)(t) − ϕ(n)(x)) + (ϕ(x) − ϕ(t))]dSt|

+
1
ωn

|
∫

∂Ω2

E(x, t)m(t)[(ϕ(n)(t) − ϕ(n)(x)) + (ϕ(x) − ϕ(t))]dSt|

+
1
2
||ϕ(n) − ϕ||β = L4 + L5 +

||ϕ(n) − ϕ||β
2

where

L4 =
1
ωn

|
∫

∂Ω1

E(x, t)m(t)[(ϕ(n)(t) − ϕ(n)(x)) + (ϕ(x) − ϕ(t))dSt|

≤ J19

∫ 3δ

0

1

ρn−1−β
0

ρn−2
0 dρ0 = J19

∫ 3δ

0
ρβ−1

0 dρ0 = J20δ
β,

and

L5 =
1
ωn

|
∫

∂Ω2

E(x, t)m(t)[(ϕ(n)(t)−ϕ(t))−(ϕ(n)(x)−ϕ(x))dSt|

≤ J21||ϕ(n) − ϕ||β,

hence
|Pϕ(n)(x) − Pϕ(x)| ≤ J20δ

β + J22||ϕ(n) − ϕ||β.
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We choose a sufficiently small positive number δ, such that J20δ
β <

ε/2, and then choose a sufficiently large positive integer n, such that
J22||ϕ(n) − ϕ||β <

ε

2
. Thus for the arbitrary x ∈ ∂Ω, we have

|Pϕ(n)(x) − Pϕ(x)| < ε. (3.27)

Similarly, when n is large enough, for arbitrary x ∈ ∂Ω, we can derive

|ϕ(n)
1 (x) − ϕ1(x)| < ε, (3.28)

|P1ϕ
(n)(x) − P1ϕ(x)| < ε. (3.29)

Taking into account (3.11), (3.23) and (3.27) − (3.29), we can choose a
sufficiently large positive integer n, such that

|Fϕ(n)(x) − Fϕ(x)| < ε, for arbitrary x ∈ ∂Ω.

This shows that F is a continuous mapping, which maps T into itself.
By means of the Ascoli-Arzela theorem, we know that T is a compact set
in the continuous function space C(∂Ω). Hence the continuous mapping
F maps the closed convex set T in C(∂Ω) onto itself, and F (T ) is also
a compact set in C(∂Ω). By the Schauder fixed point theorem, there
exists a function ϕ0 ∈ H(∂Ω, β) satisfying the integral equation (3.11).
This shows that Problem SR is solvable.

Theorem 3.6 If f ≡ 1 in Theorem 3.5, then Problem SR has a
unique solution.

In fact, for arbitrary ϕ1, ϕ2 ∈ H(∂Ω, β), by using the similar method
as before, we can obtain

||Fϕ1 − Fϕ2||β < µ||ϕ1 − ϕ2||β.

Taking account of the condition 0 < µ < 1, we know that Fϕ (when
f ≡ 1) is a contracting mapping from the Banach space H(∂Ω, β) into
itself, hence there exists a unique fixed point ϕ0(x) of the functional
equation ϕ0 = Fϕ0, i.e. Problem SR has a unique solution

Φ(x) =
1
ωn

∫
∂Ω

E(x, t)m(t)ϕ0(t)dSt, Φ−(∞) = 0.

In 1991, Sha Huang discussed the boundary value problem with con-
jugate value

a(t)Φ+(t) + b(t)Φ+(t) + c(t)Φ−(t) + d(t)Φ−(t)

= g(t), t ∈ Ω
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for regular functions in real Clifford analysis (see [29]3)). Similarly,
we can discuss the nonlinear boundary value problem with shift and
conjugate value for regular functions in real Clifford analysis.

4 The Dirichlet Problem of Hyperbolic Harmonic
Functions in Real Clifford Analysis

One of the generalized forms of a Cauchy-Riemann system in high
dimensional space is the following system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xn(
∂u1

∂x1
− ∂u2

∂x2
− · · · − ∂un

∂xn
) + (n − 1)un = 0,

∂ui

∂xk
=

∂uk

∂xi
, i, k = 2, ..., n,

∂u1

∂xk
= −∂uk

∂x1
, k = 2, ..., n.

(Hn)

The system (Hn) appeared in a remark of H. Hasse paper [21] in 1949,
but to our knowledge has not been treated so far. In 1992, H. Leutwiler
established the relation between solutions for system (Hn) and classical
holomorphic functions [41]. In this section, on the basis of [41], we study
the Schwarz integral representation for hyperbolic harmonic functions
and the existence of solutions for a kind of boundary value problems for
hyperbolic harmonic functions for a high dimension ball in real Clifford
analysis. We also discuss hyperbolic harmonic functions in real Clifford
analysis and the relation with solutions of system (Hn). The material
comes from Sha Huang’s paper [29]7).

4.1 The Relation Between Solutions for System (Hn) and
Holomorphic Functions

Setting x = (x1, x2, ..., xn) ∈ Rn, we denote l(x) = [
n∑

k=2
x2

k]
1
2 ,

I(x) =
n∑

k=2
xkek/l(x). In the following, we shall introduce a kind

of mapping from Rn to An(R). For any complex variable func-
tion f(z) = u(x, y) + iv(x, y), we consider its corresponding function
f̃ = f̃(x1, x2, ..., xn) = u(x1, l(x)) + I(x)v(x1, l(x)). In [41], H. Leutwiler
gave the following result.

Theorem 4.1 Let Ω ⊂ (R2)+ = {z ∣∣z = (x, y) ∈ R2 , y > 0} be an
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open set, and f(z) = u + iv be holomorphic in Ω. Then

f̃(x) = f̃(x1, x2, ..., xn) = u(x1, l(x)) + I(x)v(x1, l(x)) (4.1)

is a solution of system (Hn) in Ω̃ = {x =
n∑

k=1
xkek ∈Rn|x1+il(x) ∈ Ω}.

Moreover, if we denote f̃ =
n∑

k=1
ukek in (4.1), then uixk = ukxi, i, k =

2, ..., n.

Proof Since f(z) is holomorphic, we have⎧⎨⎩ u′
x = v′y,

u′
y = −v′x,

(4.2)

f̃ = u(x1, l(x)) + (
x2e2

l(x)
+

x3e3

l(x)
+ · · · + xnen

l(x)
)v(x1, l(x)),

and then
u1(x) = u(x1, l(x)),

uk(x) =
xk

l(x)
v(x1, l(x)), k = 2, 3, ..., n.

Hence

∂u1

∂x1
= u

′
x(x1, l(x)),

∂uk

∂xk
= (

xk

l(x)
)
′
xk

v(x1, l(x)) +
xk

l(x)
[v(x1, l(x))]xk

=
l(x) − xkl

′
xk

(x)
[l(x)]2

v(x1, l(x)) +
xk

l(x)
v
′
y(x1, l(x))l

′
xk

(x)

=
l(x)v(x1, l(x)) − x2

k[(l(x))−1v(x1, l(x)) + v
′
y(x1, l(x))]

[l(x)]2
.

Substitute the above equality into the first equality of system (Hn); it is
obvious that the first equality holds. After a similar computation, the
other equalities are all true.

Sha Huang gave the corresponding results about the above functions
in [29]7).

Theorem 4.2 Suppose we have complex constants a = a1 + ib, c =
c1 + id and complex variable number z = x1 + iy. Then

1) ĩ = I(x), z̃ = x = x1 +
∑n

k=2 xkek.
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2) ã = a1 + I(x)b, specially, ã = a, ˜a + z = ã + z̃, when a is a real
number.

3) (̃1
z ) = 1

z̃ (̃a
z ) = ã

z̃ .

4) (̃ 1
a) = ˜̄a|a|−2, here, |a| =

√
a2

1 + b2, (̃ z
a) = z̃(̃ 1

a).

5) ˜( z+a
c−z ) = z̃+a

c̃−z
.

We can verify by direct computation that all above terms are true.
Here, the proof is omitted.

Theorem 4.3 Suppose that f̃ =
n∑

k=1
ukek is defined in the ball B̃ ⊂

(Rn)+, which does not intersect with the real axis in Rn, moreover f̃ is
a solution for system (Hn) satisfying uixk = ukxi, i, k = 2, ..., n. Then
there exists a holomorphic function f(z) = u + iv defined in a circular
disk B, such that f̃(x) = u(x1,

√∑n
k=2 x2

k)+I(x)v(x1,
√∑n

k=2 x2
k), where

x ∈ B̃ =
{
x =

∑n
k=1 xkek ∈ Rn|(x1 + i

√∑n
k=2 x2

k) ∈ B
}

.

4.2 The Integral Representation of Hyperbolic Harmonic
Functions in Real Clifford Analysis

The components u1, ..., un−1 of (twice continuously differentiable) so-
lution (u1, ..., un) of (Hn) satisfy the hyperbolic version of the Laplace
equation i.e. the hyperbolic Laplace equation in mathematics and
physics is

xn∆u − (n − 1)
∂u

∂xn
= 0, (4.3)

where u : Rn → R is a real-valued function with n variables.

Definition 4.1 The twice continuously differentiable solution u(x) of
equation (4.3) is called the real hyperbolic harmonic function of n vari-
ables.

In [41], H. Leutwiler introduced the definition of hyperbolic harmonic
function in real Clifford analysis.

Definition 4.2 Let f̃ =
n∑

k=1
uk(x)ek : Rn → Rn possess twice con-

tinuously differentiable derivatives, the components u1, u2, ..., un−1 be
hyperbolic harmonic, and un satisfy the equation

x2
n∆u − (n − 1)xn

∂u

∂xn
+ (n − 1)u = 0. (4.4)
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Then f̃ is called a hyperbolic harmonic function.

Theorem 4.4 Let f̃ = u1 + u2e2 + · · · + unen be a twice continuously
differentiable function. Then f̃ is a solution of system (Hn) if and only
if f̃ and the functions

xf̃ek + ekf̃x, k = 1, ..., n − 1

are hyperbolic harmonic in the above sense.

Proof The Clifford numbers ωk =
1
2
(xf̃ek + ekf̃x) (k = 2, ..., n − 1)

are vectors, whose components ωki (i = 1, ..., n) are given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
ωk1 = −x1uk − xku1, k = 2, ..., n − 1,

ωki = −xiuk + xkui, i = 2, ..., n, k = 2, ..., n − 1, i �= k,

ωkk = x1u1 − x2u2 − · · · − xnun, k = 2, ..., n − 1.

In case k = 1, i.e. ω1 =
1
2
(xf̃ + f̃x), we have

⎧⎨⎩ ω11 = x1u1 − x2u2 − · · · − xnun,

ω1i = xiu1 + x1ui, i = 2, ..., n.

It is easy to verify that f̃ and ωk (k = 1, ..., n − 1) are hyperbolic har-
monic if and only if f̃ satisfies system (Hn).

Theorem 4.5 Suppose that the ball B̃ with the radius R > 0, B̃ ⊂
(Rn)+, (or B̃ ⊂ (Rn)−), f̃ =

n∑
k=1

uk(x)ex is a hyperbolic harmonic

function in B̃ and continuous on the boundary of B̃, and denote by
ωki (1 ≤ k ≤ n − 1, 1 ≤ i ≤ n) the components of ωk(x) = (xf̃ek +
ekf̃x)/2. Let the following four conditions hold : i) ωki = 0 (2 ≤ k ≤
n − 1, 2 ≤ i ≤ n); ii) The other ωk1 (2 ≤ k ≤ n − 1), ω1i (1 ≤ i ≤
n− 1) are real-valued hyperbolic harmonic functions; iii) xiun = xnui (2
≤ i ≤ n − 1); iv) ωn1 satisfies (4.4). Then, f̃(x) possesses the integral
representation:

f̃(x) =
1
2π

∫ 2π

0
Φ(t)

t̃ + x − 2ã

t̃ − x
dϕ + I(x)v(a), (4.5)

where x ∈ B̃, t belongs to the boundary of a circular disk B with the cen-
ter at a ∈ (R2)+ (see Theorem 4.1) and radius R, (t−a) = Reiϕ, f(z) =
u + iv is analytic in B, and Ref(x) = Φ(t).



72 Chapter II

Proof According to the conditions i), ii), we see that ωki (1 ≤ k ≤
n − 1, 1 ≤ i ≤ n − 1) are real-valued hyperbolic harmonic. From the
conditions i), iv), it follows that ωkn(x) (1 ≤ k ≤ n − 1) satisfies (4.4).
Hence ωk(x) (1 ≤ k ≤ n − 1) are hyperbolic harmonic functions. More-
over by Theorem 4.4, we know that f̃ is a solution of system (Hn). It is
clear that from the formula (1.7) in [41], when 2 ≤ k ≤ n−1, 2 ≤ i ≤ n,
we have

ωk =
1
2
(xf̃ek + ekf̃x) = xRe[f̃ ek] + ekRe[f̃x] − (x, ek)f̃

= (x1 +
n∑

i=2
xiei)(−uk) + ek[u1x1 −

n∑
i=2

uixi] − xk(u1 −
n∑

i=2
uiei)

= −x1uk +
n∑

i=2
(−1)xiukei+[u1x1−

n∑
i=2

uixi]ek−xku1+
n∑

i=2
xkuiei

= −(x1 + uk + xku1)+
n∑

i=2
(i�=k)

(xkui−xiuk)ei+[u1x1−
n∑

i=2
uixi]ek,

and its components are

ωki = −xiuk + xkui, 2 ≤ k ≤ n − 1, 2 ≤ i ≤ n, i �= k.

In addition, by the conditions i), iii), we have xiuk = xkui (i, k = 2, ..., n)
when i = k, hence the above equality is true. By using Theorem 4.3,
there exists f(z) = u + iv, which is analytic in the circular disc B :
|z − a| < R, B ⊂ (R2)+, such that

f̃(x) = u

⎛⎝x1,

√√√√ n∑
k=2

x2
k

⎞⎠+ I(x)v

⎛⎝x1,

√√√√ n∑
k=2

x2
k

⎞⎠ ,

where x ∈ B̃ = {x =
∑n

k=1 xkek ∈ Rn|(x1 + i
√∑n

k=2 x2
k) ∈ B}, and in

the following we denote f̃ = u(x) + I(x)v(x), [f̃(x)]1 = u(x). Finally,
according to the Schwarz formula of the holomorphic function:

f(z) =
1
2π

∫ 2π

0
Φ(t)

t + z − 2a

t − z
dϕ + iv(a)(z ∈ B) (4.6)

in which (t − a) = Reiϕ, Φ(t) = Ref(t), and using Theorem 4.2 and
(4.6), we obtain

f̃(x) =
1
2π

∫ 2π

0
Φ(t)

t̃ + x − 2ã

t̃ − x
dϕ + I(x)v(a),

where x ∈ B̃, t ∈ B.
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4.3 The Existence and Integral Representation of Solutions for
a Kind of Boundary Value Problem

Let Φ(t) be a continuous function defined on the boundary Ḃ (|t−a| =
R) of the disk B : |z − a| < R in (R2)+, and B̃ = {x|x =

∑n
k=1 xkek ∈

Rn, x1 + i
√∑n

k=2 x2
k ∈ B} and t = t1 + ih ∈ Ḃ. Denote h =

√∑n
k=2 t2k,

t
¯

= t1 +
∑n

k=2 tkek, and Φ(t) = Φ(t1, h) = Φ(t1,
√∑n

k=2 t2k) = Φ(t
¯
).

In the following, we shall discuss the hyperbolic harmonic function f̃ :
Rn → Rn in B̃, and find a solution of the problem of Ref̃(t1) = Φ(t

¯
);

here Ref̃(x) = u(x1, l(x)), u is a real number. This problem is called
Problem D.

Theorem 4.6 Problem D for hyperbolic harmonic functions in a high
dimension ball B̃ is solvable.

Proof On the basis of the existence of solutions of the Dirichlet prob-
lem for holomorphic functions, we see that there exists a holomorphic
function f(z) = u + iv, such that when z → t, Ref(z) → Φ(t), where
t = t1 + ih ∈ Ḃ, z = x1 + iy ∈ B. By Theorem 4.1, we know that

f̃(x) = u

⎛⎝x1,

√√√√ n∑
k=2

x2
k

⎞⎠+ I(x)v

⎛⎝x1,

√√√√ n∑
k=2

x2
k

⎞⎠
is a solution of system (Hn) in B̃. If we denote the above function

as f̃(x) =
n∑

k=1
ukvk, then uixk = ukxi, i, k = 2, ..., n. From Theorem

4.4, it is clear that f̃(x) is hyperbolic harmonic in B̃. Denote x =

x1 +
n∑

k=2
xkek ∈ B̃, and when x → t

¯
= t1 +

n∑
k=2

tkek, we have z =

x1 + iy = x1 + i
√∑n

k=2 x2
k → t = t1 + ih = t1 + i

√∑n
k=2 t2k, thus

Ref(z) → Φ(t), i.e. u(x1, y) = u(z) → Φ(t) = Φ(t1, h). Again because
u(x1, y) = u(x1,

√∑n
k=2 x2

k) = u(x), Φ(t1, h) = Φ(t
¯
), we have Ref̃(x) =

u(x) → Φ(t
¯
)(x → t

¯
), namely Ref̃(t) = Φ(t

¯
). This shows that f̃(x) is a

solution of Problem D.

Theorem 4.7 The solution f̃(x) as in Theorem 4.6 possesses the in-
tegral representation (4.5).

Proof In fact, the hyperbolic harmonic function f̃(x) in Theorem 4.6
is a solution of Problem D, hence it is also a solution of system (Hn)
satisfying (4.7). According to the proof of Theorem 4.5, we know that
f̃(x) possesses the integral representation (4.5).
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