CHAPTER II

BOUNDARY VALUE PROBLEMS OF
GENERALIZED REGULAR FUNCTIONS
AND HYPERBOLIC HARMONIC
FUNCTIONS IN REAL CLIFFORD
ANALYSIS

This chapter deals with boundary value problems of some functions
in real Clifford analysis. In the first three sections, the problems of reg-
ular and generalized regular functions are considered, and in the last
section, the Dirichlet problem of hyperbolic harmonic functions is dis-
cussed. Most results in this chapter have been obtained by us in recent
years.

1 The Dirichlet Problem of Regular Functions for
a ball in Real Clifford Analysis

In this section, we discuss two boundary value problems of regular
functions for a ball in real Clifford analysis, which are obtained from the
papers of Luogeng Hua[26]1) and Sha Huang[29]4),5).

Firstly, we give definitions of some differential operators
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By using the quasi-permutation signs introduced in Chapter I, we can
give some regular conditions of functions.

(Di—14 — 0i—14), i =2,3,...,n.

If we write the element >  aseq in A as
A
D asea=> (ap+azpes)ep = > Ipep,
A B B

where B = {aq,...,ap} € {3,4,...n},3< a1 < - <ar <n,IpeC
(the complex plane). It is evident that we can obtain the following
theorem.

Theorem 1.1 The sufficient and necessary condition for Y ases =0
A

is that for all B = {aq,....,ax} C{3,...,n},3< a1 <+ < ay <n, the
following equality holds:

Ip =ap + asges = 0. (1.1)

Moreover, for a function whose value is in the real Clifford algebra
An(R).'
f(z) = ZfA(:c)eA : Q— A,(R),
A

we can write it as

f(.%’) = ZIBeB : Q — .Anfl(C),
B

where Ig : Q@ — C, A,_1(C) is the complex Clifford algebra.

Theorem 1.2 A function whose value is in the real Clifford algebra

A:
f@)=>" fa(z)ea =) _Ipes,
A B
(A={Br,...0} C{2.3,..n}, 2B < < fp<n, (12
B={aj,..,ar} C{3,4,...n},3< a1 < - <ar<n)

is regular in € if and only if

n
Oialp = 0plipy,

m=3
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where Ig, = 0L 5/0xm, T@mm is the conjugate of I-5, , and mB
is the quasi-permutation for mB, 65 is the sign of quasi-permutation
mB. In addition, a function f is harmonic in Q if and only if every Ip

18 harmonic.
Proof It is clear that e,,/p = age,m — aspesey, = Igem, SO
25121363 +> Z Ipz,,emen-
B m=3

Denote B = {ai,...,ax}, By ={a1,...,0p—1, py1,...,0x}, mB =ma;
., Bm = a1 ...apm. When m is some o), among B, we have

. o= ] _1)\P Y VR
eapIBpxapeBp - IBpmap( 1) €B = Iaprap 5apBeB'

When m < a;, we have

emImBzmemB = —I@mmeB = —I@ImémeeB.
Similarly, when m > ag, we get

emIBm:cmeBm = _Imem(smBeB7
and
n n

> D Imanemen = =3 3 [Inp,, dnplen,

B m=3 B m=3
hence

=2 Oulpen =) > T b

B m=3
Thus according to Theorem 1.1, the function f is regular if and only if

n
di2lp =Y Ipp, oop
m=3

This completes the proof.

In order to derive another sufficient and necessary requirement of the
generalized Cauchy-Riemann condition, we divide the function

=Y faea=) Igep
A B

into the two parts

fz) = f¢ ZIB€B+Z I// B
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where B in the sum Y’ obtained from (3,4, ...,n) is a combination with

B
odd integers; it is called the first suffix, the rest is called the second
suffix. The corresponding sum is denoted by 3", Ig(x) whose B is got
B

from the first suffix and is denoted by Iz (), ep whose B is derived from
the second suffix is denoted by €5, and Ip(z), ep whose B is derived from
the second suffix are denoted by I}, € respectively. In addition, we call
f@ the ith part of f, and denote f() = J;f(i = 1.2). According to this
and the above theorem, we can get the following theorem.

Theorem 1.3 A function f whose value is in real Clifford algebra
An(R) is regular in domain 2, if and only if

_ n -
0121} = Z [ —lmBr,
m= (1.3)

a3 7 _ n !
812IB - mz—?) 5mB mBLm

in which f(x) = > faea = > Ipep = ZIBEB + Z//I% B B =
A B

{ai,...,ax} C {3,4,. n} and 01210, Imem, O denote the corre-
sponding part of 81213, B, 05 respectively, when B, mB are de-
rived from the first suffix. The rest is the corresponding part which is
derived from the second suffiz.

Let © = (x1,22,....,2,) C R", and 27 be the transpose of z, Q :

n

zal = Y x? < 1 represent a unit ball, and 9 : zz” =1 be a unit
i=1

sphere, whose area w, = 27™/2/I'(n/2).

Definition 1.1 If %/u’Be’B is continuous in 912, we find a function f(x)

to be regular in €, and continuous in Q = Q U 9Q with the condition

Tif(E) =3 ug(€)e, € € 09 (1.4)
B

The above problem is called the Dirichlet boundary value problem in
the unit ball, and we denote it by Problem D.

Theorem 1.4 Let Y uzey be continuous on the sphere 0. Then
B

Problem D in the ball € is solvable, and the solution can be represented

by
) =3 Ty()el + 3 Thx)eh, (1.5)
B B
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= [ [ Pk (1.6)
—

£67=1

in which P(x,&) = (1 —z2™)/(1 — 22”4 2z )% is called the Poisson
kernel, f is the area element of the sphere €67 =

Ip(x) = ThaRp(z) + Qp (fl?), (L.7)

2%/ /Zmeé;n—Buf (©)¢, (1.8)
ey

where

and Q'h(x) satisfies the following relations:
8;12 /é(l“) =0, (1'9)

Dol (x Z o5 TR, (@) + QL (@) (1.10)

The operators Tio, T1o and 8;12 can be seen below.

Proof Firstly, we find an expression of the solution. Suppose that
f(x) is a solution of Problem D in the ball 2. Then from Theorem 2.1,
Chapter I, and Theorem 1.2, we can derive that I (z) is harmonic in .
By [26]1) we obtain

j— , :
wn / / (1 —2&2T + CCCCT) g ON
@

which satisfies I5(§) = uz(§) (€ € 9Q), where //5 = W,
——
£67=1

Denote 212 = z1+12€2, Q12 = §1+82€2, 02, = % (% - 62%) 021, =
L (3 +eap). It follows that Orp = 20.,,, D1z = 20, When a2’ < 1

we introduce two operators:

T12fB($):% / ) / fB(£13527$37$47"'7$n)d€1d€2’

212 — (12
E+e2<1—a2——a2
— 1 , €9, 3,4, .0y Ty
Th2fp(x) = — // fole ?12 - Z4 )d€1d§2-
—G12

§He3<d—ai——af
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By using the results in [77] and the first expression of Theorem 1.3,
we can obtain

*T12 Z O Bi'/me +Qp(x),

where 0z,,Q%(z) =0 (z € Q). By using [26]1), we get

—22,, (1282 +22T)—27Ing,, i
an/ /Z (1 — 2627 +xxT)% Ot mB(f)f

EET 1

Therefore,
Ip(z) = T2 Rp(z) + Q(2).

Substituting (1.7) into the second expression of Theorem 1.3, we can

derive
n

O1alp(x) = 125" [T12Ri, (2) +Qg, (@)
From the overdetermined system (1.10) and 05,Q%5(x) = 0 (z € Q)
and by [76], we can find Q’;(z). Thus, from (1.7) again, I};(z) can also
be found. That is to say, if f(z) is a solution of Problem D, then the
expressions (1.5) — (1.10) hold.

Moreover, we verify that the function satisfying expressions (1.5) —
(1.10) is a solution of Problem D. In fact, since f(M|5q = %/11/96/37 €€

09, by using [27], we have I5(£) = uz(€), and then
!/
Vlog = > up(€)es
B
From (1.7), (1.9) and 919 = 285,,, we immediately derive

0121} = 01912 Ry + 20712Q's = 012T1a R}, = 205, T1o R,

In addition, from (1.6) and (1.8), we have

Z "o / [ P, 08

£§T 1

= Z O BiinBZL‘

28512T12R%
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Thus, from (1.10) and (1.7), we get

n

8712[/3 = Z 6/,3 mBzpn,

m=3

From Theorem 1.3 again, it is easy to see that the function f(z) sat-
isfying (1.5) — (1.10) is regular in 2. To sum up, f(x) is a solution of
Problem D. This proof is completed.

Next, we discuss the pseudo-modified Dirichlet problem. In order
to discuss the uniqueness of its solution, we first consider the sectional
domains of 2. Cutting 2 by “the planes”:

xr3 = as,
T4 = a4,
Tn = Qn,

we obtain a sectional domain G, in the x1x9 plane:

xa:caT::U%+x§+ Z a,2n <1
m=3
Let Ty : &67 = €2 4+ €2 + Z a2, = 1 be the boundary of G,, and its
center be denoted by O, = (0 0 as, ag, ..., Gp).
For given continuous functions Z’ub(&)e’B (€ € 09Q), % (&) (&a €

I'y) and the complex constants dBa’ we find a regular function f(x) =
% Igels + %” %el in Q, which is continuous in Q with the following

pseudo-modified conditions:
Jif(§) = %’U'B(ﬁ)eb,ﬁeaﬂ,
Relglr, = @p(&a) +Mp(6a)s & € T,
15(0a) = dp,,

where h; (&) = b5, (& € Ty) are all unknown real constants to be
determined appropriately, and Relf, = Re(Fp + Fyzes) = Fp. The
above problem will be denoted by Problem D*.

Theorem 1.5 Suppose that Y 'uzely is continuous on 9, and for
B

any fized ag, ag,...,an, the function ¢'5(&,) is continuous on Ty, here
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& = (&, &, as, ...,ay). Then there exists a unique solution of Problem
D*. Moreover the solution possesses the expressions (1.5) — (1.10) and
satisfies

ReQp () = —Re[T12Rp (&) + ¢5(Ea) + hp(&a), €a € Tay,  (1.11)
B(04) = —T12RE(0,) + dg- (1.12)

Proof Evidently, on the basis of the proof of Theorem 1.4, it is suffi-
cient to add the following proof.

Firstly, we find the integral representation of the solution. Suppose
that f(z) is a solution of Problem D*. From (1.7) and the boundary
condition, we can derive

Re[THR%(ga) + Q%’(&a)] = 79(5&) + h%(fa)a
T12R}(00) + Q(04) = I5(0,) = dp,
Noting that
&212 IJIS(x) =0, z € Q,

it is clear that Q7 (z,) satisfies the conditions

(z
1, QB (7a) = 0, 74 € Gy,
ReQ (§a) = —Re[T12 R (8a)] + ¢5(Ea) + hp(&a), &a € Lo,
5(0a) = —T12Rp(0a) + dp,
Since the modified Dirichlet problem for analytic functions has a unique

solution [80]7), from (1.9), (1.11) and (1.12), we can find Q% (z,), z €
G, and then Q' (z), x € Q, because a is an arbitrary point.

That is to say, if f(x) is a solution of Problem D*, then the expressions
(1.5) — (1.12) hold.

Next, we verify that the function f(x) determined by the above ex-
pressions is a solution of Problem D*. From (1.7) — (1.11), it follows
that

Re( )’Fa Re[TmR%(fa)]“‘Re[ %(ga)]: %(fa)'i'h/]g(ga)agaeraa

and then I%(0,) = T12R%5(0,) + Q%(04) = d’p,. Therefore, the above
function f(z) is just a solution of Problem D*.

Finally, we prove that the solution of Problem D* is unique. Suppose
that fi(x) and fa(x) are two solutions of Problem D*, and denote fi(x)—
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2(x) by F(x). It 1s clear that F'(x) 1s regular in {2 and 1s a solution o

by F It is cl hat F(z) i lar in © and i luti f
the corresponding homogeneous equation of Problem D* and F() loq =
Sl (€)ely — Y ulz(€)e’y = 0. For convenience, we shall adopt the same
B B

i

symbols for f(z) as before, namely denote F(z) = Y Iizely + Y " Thels.
B B
Since F'(x) is regular in €, thus it is harmonic in €2, therefore for all B,
I () are all harmonic in Q. Since ' Ie’zla0 = FM|gq = 0, Ih|aa = 0,
B

again by using the uniqueness of the solution of the Dirichlet problem
for harmonic functions in a ball (see [26]1)), we get Iz = 0 in €2, thus
J1F' =0, I'==0in Q. From the definition of R (z),

1< —
Rp@) =5 3 0 plabe,,
m=3
and then R7, = 0. Hence
I = T RE(x) + Q5 () = Q% (2). (1.13)

Since F'(x) is a solution of the corresponding homogeneous equation of
Problem D*, from (1.9), (1.11) and (1.12), we derive

&zlg /é(xa) =0, 74 € Gm

RGQ/]_,;(&L) = h%(fa)7 fa S Faa
'5(04) =0, O, € G

In addition, using the results about the existence and uniqueness of
solutions of the modified Dirichlet problem for analytic functions (see
[80]7)), we can obtain Q'5(zq) =0, z, € G4. Hence Q5(x) =0, z € Q.
From (1.13), I} = 0, = € Q, and then JoF(z) = 0 in Q. So F(z) =
0, x € Q, ie. fi(x) = fa(x), € Q. This shows the uniqueness of the
solution of Problem D*.

2 The Mixed Boundary Value Problem for Generalized
Regular Functions in Real Clifford Analysis

In this section, we discuss the existence and uniqueness of solutions
of the so-called mixed boundary value problem (Problem P-R-H) for
generalized regular functions in real Clifford analysis; the material is
derived from Huang Sha’s paper [29]6).
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Definition 2.1  We assume the linear elliptic system of second order
equations

Au = Z dmug,, + fut+g, =€, (2.1)
m=1
where (€ R") is a bounded domain and Q € C?** (0 < a < 1), dy, =
dm(r) = dp(z1,...,20,) € CO¥(Q), dyp(x) > 0,2 € Q. The oblique
derivative problem of equation (2.1) is to find a solution wu(z) =
u(z1, ..., 7,) € C?(Q) satisfying (2.1) and the boundary conditions

ou
5, +o(@u(e) = 7(2) + h, © €00, (2.2)

u(d) =ug, d= (dl, ,dn) S ﬁ,

in which o(z),7(z) € C1%(09), o(x) > 0, € IQ, h is an unknown real
constant, ug is a real constant, v is a vector on z € 9, cos(v, ng) > 0, ny
is the outward normal vector on z € 952, and cos(v, ng) € C1*(99). The
above boundary problem is called Problem O.

Problem O is a non-regular oblique derivative problem. If the coef-
ficients v(z), o(x) satisfy cos(v,ng) =0, o(x) = 0 on 91, then Problem
O is the Dirichlet problem. If v(z), o(x) satisty cos(v,ng) =1, o(xz) =0
on 012, then Problem O is the Neumann problem. If cos(v,ng) > 6 >
0, o(z) > 0 on 02, then Problem O is the regular oblique derivative
problem. In [59], B. P. Ponejah proved the following lemma using the
method of integral equations.

Lemma 2.1 Problem O for equation (2.1) has a unique solution.

Proof The existence and uniqueness of solutions for Problem O for
equation (2.1) in the plane can be found in [80]4). Using a similar
method in [80]4), we can also prove the uniqueness of the solution in
Lemma 2.1. Using a priori estimates of solutions and the Leray-Schauder
theorem [18], the existence of solutions in Lemma 2.1 can be proved.

For convenience, we order all w(x) with numbers of the form 27!
in w(z) = Y wa(x)es according to the following method, and denote
A
them by wi,ws,wa, ..., won-1.
1) If none of the suffixes in wg = wp, . p, is h; = n, but there exists
some suffix k; = n in wp = wy, . 1,, then we arrange wy before wp.

2) If none of the suffixes in wy = Whi,.hyes WB = Why .k, 18 1, then
when r < s, we order wa before wp. When wy = wp, .. n,,we = Way,....ar
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and hi + -+ h, < a1 + -+ + a,, we order wy before we. When
hi+--+4+h=a1+ -+ a and (hy,...,h) # (a1, ..., ), if the first
unequal suffix is h; < «;, we also order wa before wc.

3) If there exists some suffix in wq = wp, . p,
n, then waA = Wy, hy_ins WB = Wiy, ks_1,n> W€ OTder WA = Why . h,_y
and wp = Wk, ...k, , by using the method as in 2), and regard them as
the order of wq = wp, . 4, and wp = Wy, . k.-

and WRB = Wky,... .k is

s

We have ordered all suffixes with numbers in the form 2"~! through
1), 2), 3), then we can denote them by wi, ..., won—1.

Definition 2.2 The oblique derivative problem for generalized regular
functions in €2 is to find a solution w(x) € CH* () N C?(Q)for the elliptic
system of first order equations

Ow = aw + bw +1 (2.3)
satisfying the boundary conditions
0
9k 4 (@) won(x) = () + haey T € B,
Oy, (2.4)

wk(d) =up, 1<k< on—l1

in which o, (2), 7(x) € CY¥(99), 01(z) > 0 on IQ, hy, is an unknown
real constant, u; is a real constant, v is the vector on 9€), ng is the
outward normal vector on 9€2; moreover, cos(vy,ng) € CH*(99). The
above boundary value problem will be called Problem P.

Let w(z) = > wa(x)es be a solution of Problem P. Then according
A
to Property 3.3 and Property 3.4, Chapter I, we know that the following
equalities for arbitrary index A are true:

n

Y. OmpwBa, = Y (actbo)wmdeys
et BA CCM=A (2.5)

+ > (ac—bc)chSC—M—HA,
oo =L

Z pocar(ac + bo)z;wm + Z Hcar(ac + bo)wa,

Z D CM( _bC)r]wMJFE 7D CM( — bc)wpta

+ j;l 5ﬁlAmj ,
(2.6)
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where j = 1,2,...,n,jD = A, CM = A, CM = A; M, M denote two
kinds of indices of M respectively (see [29]6))

Suppose that the equalities
(ac +bc)z; =0, (ac — bc)x; = 0, jD=A CM=A, C#j (2.7)

in (2.6) are true. Especially, when n = 3, set C' = 23, then according
to the condition (2.7), we get (ags — b23).; = 0,1 < j < 3, namely
(ags — bag) is a constant. If C = 3, by the condition (2.7), we get
(a3 —b3)z; =0, j=1,2,ie. (a3 — b3) only depends on x3.

Noting the condition (2.7), the equality (2.6) can be written as
AwD = 25 0——+ M(a] +b ) jwM+%5E5@(ac+bc)waj

+Z JD' jM( bj)xng—i_%éﬁé@(ac_bc)w%% (28)

+ j;éﬁl Azj)

in which CM = A, Cﬂ:A,ﬁ:A.

Suppose that D is the A-type index. In the first term of the right
side in (2.8), we see jM = jD, M = D, and then 5JD6]M 1; and in
the third term of the right side in (2.8), if the equality jM = jM holds,
then D = M is the A-type index. This is a contradiction. Hence when
D is the A-type index, the third term of the equality (2.8) disappears.

Thus the equality (2.8) can be written as

n
AwD: gl(aj + b ) WD + Z ]D CM(aC + bC)Wij
! (2.9)
+ Z 3D CM( - bc)wa] +]¥ 5JDZA:)3]7
in which CM = A,CM = A,jD = A. Especially, when n = 3,D = 1,
the equality (2.9) possesses the form

3 3
Awr= 2, (4 +bj)onz; + 2 (a5 +bj)a,wn + (a1 = bi)war,
Jj= J=

+(a1 — by)wszs — (a2 — b2)wazy — (a2 — ba)wazzs
(2.10)
—(az — b3)wsxs + (a3 — b3)waszyy — (@23 — ba3)wazry

3
—(ag3 — 523)w3m2 + (a3 — 523)w21‘3 + '21 Ljz;.
j=
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Noting M = D =1, M # D = 1, it is clear that the third term of the

equality (2.8): - (a;j —bj)q,wn in (2.10) disappears. When M = D, we
j=1
have C = MA = MjD = DjD = j, 5 5CM 5 506D = 5]D5]D

and then the equality (2.9) can be rewr1tten as

AwD:Z(aj—i—bj)ijD—i—Z(aj +bj)WD{L'j + %5ﬁém(ac+bc)waj
J J D> T

+JXC:’5]7D(S@(CLC — bc)UJ%m]. + Z]: 5ElAmj,

(2.11)
where M # D, and A is the index satisfying A = jD.
In addition, we first write equation (2.5) in the form
n n
Z (5@&)ij + Z (Smu)ng

3=l j=1 7= (2.12)

= Z(CLE—H)E)UJM(SW—I—Z(GE—bE)(SWwM—i-lB,

E = E = =

where EM = B, BM = B, jM = B, and B runs all indexes. Moreover
we use §p(ac —bc) to multiply every equation in (2.12), herein CD =
B, D is the fixed index, and sum according to the index B, we obtain

g:j 5@5@@%' — bC)Wij + BZ] 5@5@@0 — bc)wgwj

=) (ac — bc)(ap + bp)dapdmmwm (2.13)

)

+ BE:E(CLC — bC)(CLE — bE)d@&@W& + %(CLC — bC)échB

)

where CD = B, EM = B,EM = B,jM = B.

According to Property 3.6 about the quasi-permutation in Section 3,
Chapter I, C = DB and the arbitrariness of B, we know that C' can run
all indexes, so the second term in the left-hand side in (2.13) can also
be written as

> depdsgr(ac — bo)wmz; = Z Sepdiar(ac — bo)wmr;
e I n (2.14)

_]z: /’L]DC(s 5C]\/[(QC bC)ngL‘ja

where jM = B, CD = B.

Since D is given, we get A = jD(j = 1,2,...,n) and C = MA =
MjD. Suppose that the coefficients corresponding to C' which do not
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conform to the condition jD = CM = A satisfy
ac —bo =0, (2.15)

and the coeflicients corresponding to C' = BD with the condition

pipc = 1 satisfy
ac — bo = 0; (2.16)

then the equality (2.14) can also be written in the form

Z 5CD5JM(GC bo) UJMI] = Z D jM aC_bC)Wgzj- (2.17)
B
(CD, jILJI B) (D= A CK A)

In addition, from the equality (2.13), we have

Z iD JM( —bo)wa,

= z}; (5@ W(GC_bC)Wij_ EXJ; (ac—bc)(aE—l-bE)(SCD(s TYM
Js - 5

(CD=B,jM=B) (CD=B,EM=B)
- EZ}; (GC - bC)<aE - bEﬁ@(S@w%— %: (a(j — 60)5@@9.
(ﬁ:B:@:B) o (CD=B)
(2.18)
Substituting the equality (2.18) into the equality (2.11), we get
Awp = z]: (aj—i-bj)zij—i- ; (aj—l—bj)wpg;j
(7D=A) (7D=A)
+ Z ip0car(ac+bo)wma; + 2 depoar(ac —bo)wmz;
7(113 " (7M=B.CD=B)
CM=A,M#D
— Bz;s (aC - bC)(GE — bE)(S@(S@wM
(CD=B,EM=B)
_ Bz;a (aC — bc)(aE — bE)(S@(S@w%
(ﬁ:B:@:B) B
— X (ac ~bc)dpls + Z 75l A, -
(CD=B) (;D A)
(2.19)

In the fourth term of the equality (2.19), when M = D, we have CD =
B:m:ﬁ,andC:j,thuséﬁz5m:5j7):1.Inthe
fifth term of the equality (2.19), when M = D, in accordance with
CD = EM = B, we have C = E, and then 059537 = 9epdep = 1. So,
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the equality (2.19) can be written as

Awp =

Y (ajtbi)e, — ¥ (ag—bg)|wp+ ¥ 2acwpa;

]7(.7D_A) C)(]D_B) jT:A,ﬁ:B

+ Z; D CM(ac—l—bo)wMg;]—l— ;‘ 5@5W(ao—bc)wM$j
. =

JD=A,CM=A,M#D jM=B,CD=B,M#D
— Z (CLC — bc)(CLE + bE)écTéWWM
B.E -

CD=B,EM=B,M#D

- > (ac—bc)(ag — be)izpo5r M

B.E

CT:B,@:B

- > (aC —-b )5 lB + X o5 DleJ
B, CD=B §, jD=A

(2.20)
In the sixth term of the right-hand side of equality (2.20), when E # C
and pcpp = —1, by Property 3.6 in Section 3, Chapter I, we get (ac —
bc)(aE—bE)(5 6EM = (ac—bo)(CLE—bE>5ﬁ(5@ = —(CLE—bE>(ac—
bC)éﬁ(S@, hence }32;5 (CLC —bo)(aE —bE) Xé@é@(ﬂg = 0,

E#Cncpp==1

While F # C, ucprg = —1, suppose that the term corresponding to the
sixth term of the right-hand side in (2.20) satisfies

(ac —be)(ag —bg) = 0. (2.21)

When E = C, we have CD = EM = CM, so D = M. This contradicts
that D is an A-type index. Hence this condition does not hold, hence
the equality (2.20) can also be written as

Awp=| ¥ (aj+bj)e;— X (ag=b%)|wp+ X20cwpz;
3,(1D=A) C,\(jD=B) J
+ £ 6E5@(ac+bc)wa]
j7D=A

+ Z 5ﬁ5@(ac—bc)wﬂ%

B,M:
— > (ac—bc)(aE+bE)5@5mwM
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- ¥ (ac—bo)igple+ ¥ Oiplas; (2.22)
B,(CD=B) J,(1D=A)

Let the third, fourth, and fifth terms in the right-hand side of (2.22)
satisfy

ac+bc =0, ac—bc =0, (ac — bc)(CLE + bE) =0, (2.23)
respectively. Then equality (2.22) can be written in the form

Awp=[ ¥ (aj+bj)a:j—%:(a20—bzc)]wD+ >, 2acwpg,
J

5, (iD=A) BB 7D

- ¥ (ac—bc)dgple+ 3 Oplas;.

B,(CD=B) 7,(jD=A4)
(2.24)
When D = 1, we simply write the equality (2.24) as
n
Awp = Y dmywie,, + frws + g1, (2.25)

m=1

here d, = dp, () = dpy (21, s 20), f1 = fi(x) = fi(zr, .oy xn), g1 =
g1(x) = q1(z1, ..., ). Let
fl(l') > 0. (2.26)

Then according to Lemma 2.1, there exists a unique function wi(x)
satisfying the boundary condition (2.4). After we get wi(x), we can
consider that wi(z) in equation (2.5) is known as well as the known
coefficients a4(x),ba(x),la(x). Applying the same method concluding
with the equality (2.25), we get the equality (2.24) when D = 2, and
write it simply as

m=1

where dy,, = dm, (2), f2 = f2(2), g2 = g2(x, wi(x)). Set fa(z) > 0; on the
basis of Lemma 2.1, there exists a unique we(x) satisfying the boundary
condition (2.4). After getting wa(z), we can regard wi(z), we(x) as the
known functions. Using the above method, we can get

Au)g = Z dmgngm + f3w3 + g3, (2.28)

m=1
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in which dy, = dim, (), f3 = f3(z), g3 = g3(x,wi(x),wa(x)). In accor-
dance with the above steps and the order of wq,...,wsn-1, We proceed
until wyn-2. At last, we get the unique wi, ..., wyn—2 satisfying

Awp = iy Whay, + fewi + i (2.29)

m=1
where

dmk == dmk(x)a fk - fk($)7 gk = gk($,w1(x)7 WQ(SU), --.,wk_1($))7
fr(z) >0,1<k <22,

For simplicity, denote by U the conditions (2.7), (2.15), (2.16), (2.17),
(2.21), (2.23),... and fi(z) > 0(1 < k < 2772) of system (2.3).

From the above discussion, by means of Lemma 2.1, if system (2.3)
satisfies the condition U, then there exists a unique solution wy, ,1 <
k<22

In order to further discuss wy, (2" 241 < k < 2"71), we need to study
the system (2.5). Suppose that the suffix A of [4 in the equality (2.5)
has been arranged according to the above method, and [4 has been
written I1,...,lon—2, lon—241,...,lon-1. We may only discuss the system
of equations corresponding to lon—241, lon—249,...,lon—1 in the equality
(2.5), namely

21 5@&)me = Z (CLC + bC)WM(S@
mB—A

(2.30)
>, (ac —be)wmdagr +la;

where [4 = I, 2" 24+ 1 < k < 2771 w(z) = Swalx)es, © € Q. The
A

following assumption is called the condition V. Set n = 2m, and denote
Top_1 + Topt = zk, k = 1,...,m, ¢ is the imaginary unit, and wor_1 +
iwor, = Wy, k=1,...,2" 2. Let Q = Gy x - - x G,, be a multiply circular
cylinder about complex variables z1, ..., 2. Then we regard wy, ..., won—2
as the known functions, by using the result in [80]4), the elliptic system
of first order equations: (2.30) about wgn-2,1,...,won-1 can be written
* 0w,
Fk = f11(21, orry Zim, Wan—3.4 1, Wan—39, ..., Wan—2), (2.31)
Zk
in which k=2""2+1,..,2"2 I =1,..,m.
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Denote (see [43])

fis a Holder continuous function defined on characteristic
manifold 0Gy X - -+ x 0G,y,, whose real index is 3, and

NlL: f Cla' 7Cm)
/acl /aam Toh ot Gt dom =0,

1‘m

J>—k, l=1,...m

If (i) fi is continuous with respect to z = (z1,...,2m) € Q, @ =
(627173_’_1, EQn—3+2, ...,527172) S Bg, here B9 = {WHEJ’ < 0, J = 2”73 +
1,273 4+ 2,...,2"2}  § > 0, moreover, fi; is holomorphic about @ €
By, and has continuous mixed p/\artial derivatives until m — 1 order for
different Z; (j # [), namely afgl%
Q, here \<m—-1,1<i;<---<iy<m,ig #lL k=1,...,\

is continuous about W € By, z €

(ii) the system (2.31) is completely integrable, that is

n—2 2n72
O frl g Ofu O frj 0 frj
— + ——fp, = —+ — [l
07 p2;3+1 0w, Pi 0z p2;3+1 ow, P

k=2"341,...,2"2 1<j l<m.

(iii) the set

w are several complex variable functions defined on €,
with continuous mixed partial derivatives up to order m
for different Z;, and satisfy
)\7
0 Wy
8@1 ...0Z; N

1<ip<---<ix<m, 1<A<m, 2z€Q

;| <0, | 1<, j=2"341,..,2"2

is defined. When w € My, the composite function fi; and its continu-
ous mixed partial derivatives up to order m for different Z; (j # ) are
uniformly bounded, we denote its bound by Ky. Moreover, for arbitrary
W, w € My, the composite function fi; and its mixed partial derivatives
satisfy the Lipschitz condition, that is

)\ J— J—
O fri(21, vy Zm, Won—3.41, ..., Wan—2)
(951'1...85@')\

)\ ~ ~
0 Tri(21, oy Zmy Won—341, ..., Won—2)
822-1...(%“
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< Ly max sup | ———=
- 2n73+1§5§2n*2 0O ’ 82‘7162‘]& "
1<) < <ja<m

1<ip <<y <myip # L

(iv) the real functions v;(z1,...,2m) on 0Gy X --- x 0G,, satisfy
the Holder condition, namely (21, ..., 2m) € CP(OG x -+ x 0Gyp,). In
addition, we assume an unknown real function h; on Nj-. The above
conditions are called the condition V.

anl

Definition 2.3 For the solution w = ) wi(x)ep of Problem P,
k=1

if Won-3,1,...,Won—2(0 = wop—1 + iwar) sa‘;isfy generalized Riemann-
Hilbert boundary condition on 9G1 X - - - x 0G,, (see [43]):

Re[szl, ey zr_nkm, Wi(215 0 2m)] = ¥j(21, o Zm) + by, (2.5
G=2"3 4 1,..,2" 2 2 = (21, ..., 2m) € OGY X - -+ X OGp,

then the problem for generalized regular functions is called the mixed
boundary problem, which will be denoted by Problem P-R-H.

On the basis of the result in [43], under the condition V, when K; <

2n72

0(j = 1,..,m), and Ky,Lg, > Cg(1j) are small enough, there
j=2n—341

exists a unique solution (Won-341,...,Won-2) for the modified problem

(2.31), (2.32), S0 won-2,41,...,wan—1 are uniquely determined.

From the above discussion, we get the existence and uniqueness of
the solution of Problem P-R-H for generalized regular functions in real
Clifford analysis.

Theorem 2.2 Under the condition U, V, when K; < 0 (j = 1,2, ...,
2n—2
m), and Kg,Lg, > Cg(1;) are small enough, there exists a unique
j=2n—341

n—1

solution w(z) => wa(x)ea= Y. wi(z)ex (x € Q) of Problem P—R—H
A k=1

for generalized regular functions, where wy(x), ..., won—2(x) satisfy equa-
tion (2.3) and the boundary condition (2.4) of Problem P. Denote
Wk = wop—1 + dwog (k=273 + 1, ...,2""2), then Won-341, ..., Won—2 Sat-
isfy equation (2.31), and the corresponding functions won—2 1, won-29,
ey Won—1 satisfy equation (2.3) and the generalized R—H boundary con-
dition (2.32).
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3 A Nonlinear Boundary Value Problem With Haseman
Shift for Regular Functions in Real Clifford Analysis

This section deals with the nonlinear boundary value problem with
Haseman shift d(¢) in real Clifford analysis, whose boundary condition
is as follows:

a(t)®T(t) + b(t)PT(d(t)) + c(t)® (1)

(3.1)
= g(t) - fz, @ (t), 2 (t), 27 (d(t)), 2~ (d(2)))-

We shall prove the existence of solutions for the problem (3.1) by using
the Schauder fixed point theorem (see [29]1)). It is easy to see that
when a(t) = g(t) =0, b(t) = 1, the problem (3.1) becomes the Haseman
problem

H(d(t)) = GH)D (D). (3.2)

The problem (3.2) was first solved by C. Haseman [22]. In general, all
boundary value conditions for holomorphic functions can be expressed
as the pasting condition of the unknown functions, hence the boundary
value problem can be regarded as the conformal pasting problem [87] in
function theory. But the method of conformal pasting cannot be used to
handle all problems of multiple elements. In 1974, A. M. Hekolaeshuk
[23] gave an example, i.e. for the boundary value problem

a(®)®T(t) + ()@ (d(t)) + c(t)@ (t) = g(1), (3.3)

the method of conformal pasting cannot be eliminated the shift d(t). For
the problem (3.1) discussed in this section, we choose the linear case of
(3.3) as its example.

Firstly, we reduce the problem to the integral equation problem, and
then use the fixed point theorem to prove the existence of solutions for
the problem.

Assume a connected open set 2 € R™, whose boundary 02 is a
smooth, oriented, compact Liapunov surface (see Section 2, Chapter
1). Suppose that a(t),b(t), c(t),d(t), g(t) are given on 0L, and d(t) is
a homeomorphic mapping, which maps 99 onto 9. Denote QT =
Q0,0 = RM\Q, O = QUOIN; we shall find a regular function ®(x)
in QF, which is continuous on QF |JJQ, and satisfies @~ (c0) = 0 and
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the nonlinear boundary condition (3.1) with Haseman shift. The above
problem is called Problem SR. Set

O(x) = — - E(z,t)m(t)p(t)ds:, (3.4)

where w,, = QW%/P(%) is the surface area of a unit ball in R", E(x,t) =

n
‘t"ff‘n, m(t) = > ejcos(m,e;) is the outward normal unit vector on 02,
j=1
and ds; is the area element, and () is the unknown Hélder continuous
function on 99Q. According to the Plemelj formula (2.24) in Section 2,

Chapter I,

o+ (2) = P2 L po(a), 2 € 00, (3.5)
O () = ( ) + Py(x), x € 09, (3.6)
in which the operator
Po(x) = wln [ B m(t)p(t)ds;, o o9
In addition
(1) = “012(“””) + Pip(z), © €00 (3.7)
o (d(t)) = *Oléx) + Pip(x), =€ 80 (3.8)

where ¢1(z) = ¢(d(x)), and

Prp(z) = Pep(d(x))

= L[ Bld@), mt)e()ds.. (3.9)
o0

Substituting (3.5) — (3.8) into (3.1), we get

( +P<,p)+b( +P1gp)+c(——+P<p)_g f. (3.10)

2

Introducing the operator
Fo=(a+0)(—5 + Pg) +b(5 + Pip) + (L+a)o - gf.
the equation (3.10) becomes

p=1Fo. (3.11)
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Thus the problem SR is reduced to solving the integral equation (3.11).

Denote by H (952, 3) the set of the above Hélder continuous functions
with the Hélder index 8 (0 < 8 < 1). For arbitrary ¢ € H(99,3), the
norm of ¢ is defined as

| ¢ llg=Clp,00) + H(p,0Q,B),

t1)—op(t
where O, 00) =max [o(0), H(p,90,9) = sup A= AA]]
teo t17#t2, t1,t2 €00 |t1 - t2’
It is evident that H (3(2, () is a Banach space; moreover we easily verify

I f+gls<Uflg+1gls 1F-glls<2"7 fllglglly (312)
where f,g € H(0Q, ).

Theorem 3.1 Suppose that the operator 6 : 0p = § — Pp and the
function o(t) € H(OR, ) are given; then there exists a constant Jy
independent of p, such that

10e g < Tl ¢ g (3.13)

Proof On the basis of Theorem 2.7, Chapter I, we know

1 1
— E(x,t)ym(t)ds; = =, = € 09,
o0N 2

and then

O) @) < H(p00.5) [

bali—z-1-8 =M H(p,00,8), (3.14)

in which M; is a constant independent of .

In order to consider H(0p, 092, 3), we choose arbitrary x, & € 0f2, and
denote § = |x — #|. Firstly, suppose 66 < d (d is the constant about a
Liapunov surface in Section 2, Chapter I); we can make a sphere with
the center at x and radius 36. The inner part of this sphere is denoted
0y and the remaining part is denoted 9{22, thus we have

(02)(a) = 02) )| < | [ Bla.om(O(ela) — olt)ds
+ ol [ EGOmOe@) - e)ds

Wn  JOQ
+ 1B meta) —p)ds— B Om() (o) -(0)ds

= L1+L2—|—L3.
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For x, we use the result about Ny € 9 in Section 2, Chapter I, and
denote by 7 the projection field of 9€2; on the tangent plane of z; then

35 n—2
Ly < MaH(9,00.0) |~ Lsdpo = MsH (0,02 )l = 3l
Po
where Mo, M3 are constants independent of x, . In the following we
shall denote by M; the constant having this property. Similarly, Ly <

MyH(p, 09, B)|x — 2|°. Next, we estimate Ls:

Lo < ool [ (Bt = B oym(t)(p(a) - olt)ds
+ o[BG Om)(e(@) — ol@)ds| = 01+ 0x

By using Hile’s lemma (see Section 2, Chapter 1), we get

t—x B t—=T
it —al* [t—2"

|E(z,t) — E(Z,1)] =

n—=2,, _—(k+1)

t
) P It — 2"z — 4.
=0 t—x

For arbitrary t € 0, we have |t — &| > 26, and then

1 t—=x
=<
2

—| < 2.
t—2x

Thus Oy < MsH (i, 09, 8)|z — 2|°. Noting that ¢ € H(p,09Q), it is easy
to see that Oy < MgH (0,09, 8)|z — #|°. Hence

Ls < MrH(p,09, f)lz — |,
From the above discussion, when 6|z — Z| < d, we have

|(09)(z) — (6)(2)] < MgH (, 0, B)|x — 2|7 (3.15)

On the basis of the results in [53], we obtain the above estimation for
6|z — 2| > d. Moreover, according to (3.14),(3.15), there exists a positive
constant Ji, such that || 6 [|5 < Ji]| ¢ [| 5. This completes the proof.

Taking into account

¥
Pp==-4
P 9 1)

we get
1 1
IPellg < Slels+110ells < (5 + Il ¢ lls (3.16)
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Similarly, it is easy to prove the following corollary.

Corollary 3.2 For arbitrary ¢ € H(0Q,3), there exists a constant
Jo independent of ¢, such that

¥
15+ Pel < 2l ¢l (3.17)

Theorem 3.3 Let the shift d = d(x)(x € 0Q) satisfy the Lipschitz
condition on 02. Then for arbitrary z, & € 082, we have

d(x) - d(@)| < Jslz — . (3.18)

We introduce the operator

Go =24 Pip= P10 4 poiaay),

then for arbitrary ¢ € H(OQ, 3), there exists a constant Js independent
of p, such that
1Gellg < Jsll ¢ 5 (3.19)

Proof According to (3.16), we get

Lo lls
2

C(Gep,09) < e

Similar to the proof of (3.15), we have

|Po(d(x)) = Po(d(2))| < Jall ¢ l|sld(2) — d(@)|° < 5]l ¢ l|gle — 217
(3.21)
From (3.20), (3.21), it follows that the inequality || Gy ||z < Js ¢ |5
holds.

s Tl els=0+d)llells  (3.20)

Corollary 3.4 Under the same condition as in Theorem 3.3, the fol-
lowing inequality holds:

| =+ Pip || < Jill ¢ llg- (3.22)

Theorem 3.5 Suppose that the shift d = d(z) in Problem SR satis-
fies the condition (3.18) and a(t), b(t), c(t), g(t) € H(OQ, B). Then, if
the function f(t,®1) &2 &G) &®) is Hélder continuous for the ar-
bitrary fized Clifford numbers ®1) &2 &G) &™) gbout fized t € N
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and satisfies the Lipschitz condition for the arbitrary fixed t € 02 about
oM o2 B &M namely

|f(t17 q)gl)a @52)’ q>g3)7 (1)(14)) - f(tQ, (I)gl)v ¢)§2)7 @;3), (1)(24))| (3 23)
< Jgltr = 62 + Jo|@f" — @57| + - 4 Jiaf @l — @)Y

where J;, i = 8, ...,12 are positive constants independent of t;, @g’) (i =

1,2,3,4,j=1,2), £(0,0,0,0,0) = 0; and if [ a+c ||z <e <1, || bz <

e<l, [14allg<e<1,0<p=e2""(Ji+Js+1) <1, and | g |5 <
, M(1 — p)

0; then when 0 < § < (it Jish)’

M is the given positive number (|| ¢ [|5 < M), Ji7,.Jis are the positive

numbers dependent on J;, 1 =1,2,6,7,...,12.

Problem SR is solvable, where

Proof Denote by

T ={plp € HOQ, B), | ¢ 5 < M}

the subset of the continuous function space C'(0f2). According to (3.11),
we have

1Fpllg <27 HlatcllslOlls+2" bl |Gl 52 [1+allll ]

_ ' 14 ¥1 ¥1

From Theorems 3.1, 3.3, Corollaries 3.2, 3.4 and the condition (3.23), it
follows that
C(f,09Q) < Jiz + Jual|o||g- (3.24)

Moreover using (3.23) we have

(028 4 P o), ZE o), 25 4 P,

-, Pie(t) - f (¢ R
@1§2) + Prp(t2), —goz(tz) + Pl‘p(t2)> ’

< (15 + Juellellg)tr — t2f (J15 = Js).
(3.25)
In accordance with (3.24),(3.25), we obtain

1fllg < 17+ Jusllell g, (3.26)
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hence when ¢ € T, applying the condition in this theorem, the inequality
1Fells < pllellg+27710(Jir + Jisllell5)
< uM + 82" Jir + JisM) < M
is concluded. This shows that F' maps the set T into itself.

In the following, we shall prove that F' is a continuous mapping.
Choose arbitrary (™ (z) € T, such that {©((x)} uniformly converges
to o(z),x € ON. It is clear that for arbitrary given number £ > 0, when
n is large enough, ||¢™ — ¢|| 5 may be small enough. Now we consider
P (x) — Po(x). Let 66 < d, § > 0. Then we can make a sphere with
the center at x and radius 36. The inner part of the sphere is denoted
by 091, and the rest part is denoted 0€22. Thus we have

1P (2) — Po(z)] < Bl m(t) (o™ () — @(t)]dS;

- r/ S 90(")( )+ ¢(a) - o(0) + ¢"@)
o)lds| < | / OIERIORERIE)

+(p(@) = p(1))dS, (2, ym(t) (¢ () — () dS;

< wln| . E(z, ym(t)[(e"™ (1) — ™ (@) + (#(x) — @(t))1dS)]
+w1n| o, E(z, )m()[(e™ (1) — ™ (2)) + (p(x) — @(t))]dS)]
+%H<ﬁ‘”) —¢llg=La+Ls + W
where
Ly = wln| . E(z, )m(t)[(™ (t) — ™ (2)) + ((x) — o(t))dS,]
< g /0 ? pgllgpgﬂdpo = Jig /0 " ot dpy = o,
and
Ls = wln| QQQE(J% Hm ()™ (1) = (1)) = (™ (x) = p(x))dS|
< Jalle™ = ol
hence

|P<p(")(ac) — Py(x)| < Jood? + J22|’¢(n) - <P||5-
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We choose a sufficiently small positive number §, such that Jyp6? <
£/2, and then choose a sufficiently large positive integer n, such that

Joa| | — ellg < g Thus for the arbitrary x € 92, we have

|Po™(2) — Po(z)| < e. (3.27)

Similarly, when n is large enough, for arbitrary x € 92, we can derive
(@) - pr(@)] <, (3.28)
|Pro™ (2) — Pro(z)| < e. (3.29)

Taking into account (3.11), (3.23) and (3.27) — (3.29), we can choose a
sufficiently large positive integer n, such that

|Fo™(z) — Fo(z)| < e, for arbitrary z € 8.

This shows that F' is a continuous mapping, which maps 7" into itself.
By means of the Ascoli-Arzela theorem, we know that 7" is a compact set
in the continuous function space C'(02). Hence the continuous mapping
F maps the closed convex set 7" in C'(0f2) onto itself, and F(T') is also
a compact set in C'(9€2). By the Schauder fixed point theorem, there
exists a function ¢g € H(01, ) satisfying the integral equation (3.11).
This shows that Problem SR is solvable.

Theorem 3.6 If f = 1 in Theorem 3.5, then Problem SR has a
unique solution.

In fact, for arbitrary ¢1, @2 € H(0, 3), by using the similar method
as before, we can obtain

1Fp1 = Fallg < pller — wall5-

Taking account of the condition 0 < p < 1, we know that F¢ (when
f =1) is a contracting mapping from the Banach space H (02, 3) into
itself, hence there exists a unique fixed point ¢o(z) of the functional
equation g = Fpg, i.e. Problem SR has a unique solution

B(z) = wln [ Blatim(t)go(t)ds:, & (00) = .

In 1991, Sha Huang discussed the boundary value problem with con-
jugate value

a(t)®T(t) + b(t) DT (t) + c(t)®(t) + d(t) @ (t)

=g(t), te
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for regular functions in real Clifford analysis (see [29]3)). Similarly,
we can discuss the nonlinear boundary value problem with shift and
conjugate value for regular functions in real Clifford analysis.

4 The Dirichlet Problem of Hyperbolic Harmonic
Functions in Real Clifford Analysis

One of the generalized forms of a Cauchy-Riemann system in high
dimensional space is the following system of equations:

8U1 8’[1,2 8“71
WG = == o)+ (n = Du, =0,
v (Bacl 0z &cn) +(n—1u 0
8xk 8.%'1’ Z7k 9 7n’ ( )
8u1 8uk
—=——Lt k=20
oz, Ory’ !t

The system (H,,) appeared in a remark of H. Hasse paper [21] in 1949,
but to our knowledge has not been treated so far. In 1992, H. Leutwiler
established the relation between solutions for system (H,,) and classical
holomorphic functions [41]. In this section, on the basis of [41], we study
the Schwarz integral representation for hyperbolic harmonic functions
and the existence of solutions for a kind of boundary value problems for
hyperbolic harmonic functions for a high dimension ball in real Clifford
analysis. We also discuss hyperbolic harmonic functions in real Clifford
analysis and the relation with solutions of system (H,). The material
comes from Sha Huang’s paper [29]7).

4.1 The Relation Between Solutions for System (H,) and
Holomorphic Functions

n
Setting * = (x1,22,....,2p) € R", we denote I(x) = [> xz]%,
k=2

n
I(x) = > zper/l(x). In the following, we shall introduce a kind
k=2

of mapping from R"™ to A,(R). For any complex variable func-
tion f(z) = u(z,y) + tv(z,y), we consider its corresponding function
f=f(z1, 22, ... 2,) = u(z1,l(x)) + I(x)v(z1,1(z)). In [41], H. Leutwiler
gave the following result.

Theorem 4.1 Let @ C (R*)T = {z]z = (z,y) € R?,y > 0} be an
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open set, and f(z) = u + iv be holomorphic in Q. Then

f(x) = f(x1, 22, ..., ) = u(zy, [(x) + I(z)v(z1, (x)) (4.1)
is a solution of system (H,) in Q= {x= f: zrer € Rz +il(z) € Q.
k=1

~ n
Moreover, if we denote f = > uger in (4.1), then u;xy = upx;, i,k =
k=1
2,..,n.

Proof Since f(z) is holomorphic, we have

f = uta, @) + (22 + 100 T @)
and then
ur () = u(zy, (),
ug(z) = %U($l’l($))’ k=23, ..,n
Hence
8u1
9, tal@n (@),
Ouy, Tp (1 Tk
B = (s ool () + @[vm,u Dles

Substitute the above equality into the first equality of system (H,); it is
obvious that the first equality holds. After a similar computation, the
other equalities are all true.

Sha Huang gave the corresponding results about the above functions
in [29]7).

Theorem 4.2 Suppose we have compler constants a = a1 + ib, ¢ =
c1 + id and complex variable number z = x1 + iy. Then

1) 1=1(z), 2= =21+ > j_o TkCk.
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2) a=ay+ I(x)b, specially, @ = a, a + z = a+ %, when a is a real
number.

3) D=1 (9=
4) (’{) = 5\a|_2, here, |a| = \/a% + b2, (%v) = 3(,{).

5) (35) ===

=
[SEIS}
Wt

We can verify by direct computation that all above terms are true.
Here, the proof is omitted.

Theorem 4.3 Suppose that f = 3. ugey, is defined in the ball B C
k=1

(R™)™, which does not intersect with the real azis in R™, moreover fis
a solution for system (H,) satisfying u;xy = upz;, i,k = 2,...,n. Then
there exists a holomorphic function f(z) = u+ iv defined in a circular

disk B, such that f(z) = u(w1, \/Sp_sx7)+1(x)v(z1, /S 0o 7), where
ve B ={o=Y}_ o, € R (21 +i\/Sio2}) € B}

4.2 The Integral Representation of Hyperbolic Harmonic
Functions in Real Clifford Analysis

The components uyq, ..., u,—1 of (twice continuously differentiable) so-
lution (uq,...,u,) of (H,) satisfy the hyperbolic version of the Laplace
equation i.e. the hyperbolic Laplace equation in mathematics and
physics is

ou

TnAu — (n — 1)(3— =0, (4.3)
In

where v : R™® — R is a real-valued function with n variables.

Definition 4.1 The twice continuously differentiable solution u(x) of
equation (4.3) is called the real hyperbolic harmonic function of n vari-
ables.

In [41], H. Leutwiler introduced the definition of hyperbolic harmonic
function in real Clifford analysis.

~ n

Definition 4.2 Let f = Y ug(z)er : R™ — R™ possess twice con-
k=1

tinuously differentiable derivatives, the components ui,us,...,un—1 be

hyperbolic harmonic, and u,, satisfy the equation

22 Au — (n — 1)xn§7u +(n—1)u=0. (4.4)
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Then f is called a hyperbolic harmonic function.

Theorem 4.4 Let f: up + ugez + -+ + upeép be a twice continuously
differentiable function. Then f is a solution of system (Hy) if and only
if f and the functions

xfek + ekfx, k=1,..,n—1
are hyperbolic harmonic in the above sense.

1 -~ -
Proof The Clifford numbers wy, = §(xfek +epfx) (k=2,....,n—1)

are vectors, whose components wy; (i = 1,...,n) are given by

WEpl = —T1up — TRu, k=2,...,n—1,
Wgi = —Tiug + Ty, 1=2,...n k=2,...,n—11#k,
WEk = T1U] — ToUg — *++ — Tply, k=2,...,n—1.
. I
In case k=1, i.e. wy = §(xf + fx), we have
Wil = T1U] — TU2 — *+* — Tplp,
w1 = Tiug + X1, 1= 2,...,n.

It is easy to verify that f and wg (k = 1,...,n — 1) are hyperbolic har-
monic if and only if f satisfies system (H,,).

Theorem 4.5 Suppose that the ball B with the radius R > 0, B C
R™M*, (or B € (RM)7), f = > ug(x)e, is a hyperbolic harmonic
k=1

function in B and continuous on the boundary of E, and denote by
wii (1 <k <n—1,1<1i<n) the components of wp(z) = (xfey +
erfx)/2. Let the following four conditions hold : i) wy; = 0(2 < k <
n—1,2 <14 < n); i) The other wiy (2 < k < n—1),w; (1 <i <
n — 1) are real-valued hyperbolic harmonic functions; i) xiyu, = Tyu; (2
<i<n—1); w) wu satisfies (4.4). Then, f(x) possesses the integral
representation:

~ 2 t+ 2 —2a
Fz) = % /0 q)(t)tdl—f72dcp+l(x)v(a), (4.5)

where x € E, t belongs to the boundary of a circular disk B with the cen-
ter at a € (R®)* (see Theorem 4.1) and radius R, (t—a) = Re'?, f(z) =
u+ v is analytic in B, and Ref(x) = ®(t).
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Proof According to the conditions i),ii), we see that wg; (1 < k <
n—1,1 <i < n—1) are real-valued hyperbolic harmonic. From the
conditions i),iv), it follows that wg,(z) (1 < k < n — 1) satisfies (4.4).
Hence wg(x) (1 < k <n — 1) are hyperbolic harmonic functions. More-
over by Theorem 4.4, we know that f is a solution of system (Hy). Itis
clear that from the formula (1.7) in [41], when 2 < k <n-—1, 2 <i < n,
we have

W = %(xfek +epfr) = 2Re[fex] + exRe[fa] — (z,e5)f

n n n
— (:Cl + %xzez)(—uk) + ek[ula:l — Z uza:z} — xk(ul — Z uiei)
1=

n
= —zug + Y (—D)zjuge;+[uix; — Zum]ek TRUl+ E:pkuzez
i=2 1=2 =2
n

n
_(:El + up + zkul)—l- 22 (:Ekui—a:iuk)ei+ [ulxl — %uiwi]ek,
i= 1=
(ik)

and its components are
Wk = —Tjup + iy, 2<k<n-—1,2<i<n,i#k.

In addition, by the conditions i),iii), we have z;ur, = xpu; (i,k =2,....,n)
when ¢ = k, hence the above equality is true. By using Theorem 4.3,
there exists f(z) = w + iv, which is analytic in the circular disc B :
|z —al < R,B C (R?*)", such that

f(z) —u(ml, ka) mv(ml, Zxk),

where z € B = {z = Y7_, ze, € R™|(z1 4 i/ 0 ,x2) € B}, and in
the following we denote f = u(z) + I(x)v(z), [f(z)]; = u(x). Finally,
according to the Schwarz formula of the holomorphic function:

fz) = — / o) 22 00 4 iu(a)(z € B) (4.6)

2w Jo t—=z

in which (t — a) = Re",®(t) = Ref(t), and using Theorem 4.2 and
(4.6), we obtain

< 2w L+ —2a
fo) =5 [ o2 + 1)l

27 —x

where z € B,t € B.
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4.3 The Existence and Integral Representation of Solutions for
a Kind of Boundary Value Problem

Let ®(t) be a continuous function defined on the boundary B(|t—a| =
R) of the disk B : |z —a|] < R in (R®)*, and B = {z]|z = Y}, zrex €
R", z1 +i\/>SF o2} € B} and t = t; +ih € B. Denote h = /37, 13,

t =19 + EZ 5 trex, and ‘I)() = (I)(tl,h) = (I)(tlﬂ/zz 2t2) = (I)( )
In the following, we shall discuss the hyperbolic harmonic function f
R" — R" in B, and find a solution of the problem of Ref(t1) = ®(t);
here Ref(z) = u(acl, [(x)), u is a real number. This problem is called
Problem D.

Theorem 4.6 Problem D for hyperbolic harmonic functions in a high
dimension ball B is solvable.

Proof On the basis of the existence of solutions of the Dirichlet prob-
lem for holomorphic functions, we see that there exists a holomorphic
function f(z) = w + v, such that when z — ¢, Ref(z) — ®(¢), where
t =t 4+ih € B, z =1 + iy € B. By Theorem 4.1, we know that

f(x) —u(xl, Zxk)—i—f U(:rl, ka'

is a solution of system (H,) in B. If we denote the above function

~ n
as f(z) = Z urv, then w;zp = upx;, i,k = 2,...,n. From Theorem

4.4, it 1s clear that f(z) is hyperbolic harmonic in B. Denote z =

r1 + Z TRer € B and when + — t = t1 + > treg, we have z =
E=2 k=2

1+ iy = 314 i/ D T — t = t; +ih = t1 +iy/>f_ot3, thus

Ref(z) — ®(t), i.e. u(z1,y) = u(z) — ®(t) = ®(t1,h). Again because

u(z1,y) = w(@1, \/Shes x2) = u(z), (t1,h) = ®(t ), we have Ref(z) =

u(z) — ®(t)(z — t), namely Ref(t) = ®(t). This shows that f(z) is a
solution of Problem D.

Theorem 4.7 The solution f(ac) as in Theorem 4.6 possesses the in-
tegral representation (4.5).

Proof In fact, the hyperbolic harmonic function f () in Theorem 4.6
is a solution of Problem D, hence it is also a solution of system (H,)
satisfying (4.7). According to the proof of Theorem 4.5, we know that
f(z) possesses the integral representation (4.5).
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