Chapter 2

Line Search

2.1 Introduction

Line search, also called one-dimensional search, refers to an optimization pro-
cedure for univariable functions. It is the base of multivariable optimization.
As stated before, in multivariable optimization algorithms, for given xy, the
iterative scheme is

Tyl = Tk + pdp. (2.1.1)

The key is to find the direction vector di and a suitable step size ay. Let

o(a) = flag + ady). (2.1.2)

So, the problem that departs from z; and finds a step size in the direction
dj. such that

P(ar) < ¢(0)

is just line search about .
If we find oy, such that the objective function in the direction dj is mini-
mized, i.e.,
fxy + ogdy) = gl>i{)lf(xk + ady),

or

¢(ax) = min ¢(a),

a>0

such a line search is called exact line search or optimal line search, and «y is
called optimal step size. If we choose ay, such that the objective function has
acceptable descent amount, i.e., such that the descent f(xy)— f(xp+apdy) >
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0 is acceptable by users, such a line search is called inexact line search, or
approximate line search, or acceptable line search.

Since, in practical computation, theoretically exact optimal step size gen-
erally cannot be found, and it is also expensive to find almost exact step
size, therefore the inexact line search with less computation load is highly
popular.

The framework of line search is as follows. First, determine or give an
initial search interval which contains the minimizer; then employ some section
techniques or interpolations to reduce the interval iteratively until the length
of the interval is less than some given tolerance.

Next, we give a notation about the search interval and a simple method
to determine the initial search interval.

Definition 2.1.1 Let ¢ : R — R,a* € [0,+00), and

kY .
¢(a”) = min ¢(a).
If there exists a closed interval [a,b] C [0,400) such that o € [a,b], then
[a,b] is called a search interval for one-dimensional minimization problem
ming>o ¢(a). Since the exact location of the minimum of ¢ over |a,b] is not
known, this interval is also called the interval of uncertainty.

A simple method to determine an initial interval is called the forward-
backward method. The basic idea of this method is as follows. Given an
initial point and an initial steplength, we attempt to determine three points
at which their function values show “high-low—high” geometry. If it is not
successful to go forward, we will go backward. Concretely, given an initial
point ag and a steplength hg > 0. If

d(ao + ho) < ¢(an),

then, next step, depart from ag+ hg and continue going forward with a larger
step until the objective function increases. If

¢(ao + ho) > ¢(ap),

then, next step, depart from ag and go backward until the objective function
increases. So, we will obtain an initial interval which contains the minimum

oF.
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Algorithm 2.1.2 (Forward-Backward Method)

Step 1. Given ag € [0,00),hg > 0, the multiple coefficient t > 1
(Usually t = 2). Evaluate ¢p(ap), k := 0.

Step 2. Compare the objective function values. Set a1 = ok + hy

and evaluate ¢p+1 = ¢(agy1). If dry1 < ¢r, go to Step 3;
otherwise, go to Step 4.

Step 3. Forward step. Set hxi1 = thy, o = g, o = Qpt1, O =
Ok+1,k =k +1, go to Step 2.

Step 4. Backward step. If k = 0, invert the search direction. Set
hi == —hg, ar := ag41, go to Step 2; otherwise, set

a = min{a, agy1}, b = max{a, agi1},
output [a,b] and stop. O

The methods of line search presented in this chapter use the unimodality
of the function and interval. The following definitions and theorem introduce
their concepts and properties.

Definition 2.1.3 Let ¢ : R — R, [a,b] C R. If there is o* € [a,b] such that
o) is strictly decreasing on |a,a*] and strictly increasing on [a*,b], then
() is called a unimodal function on [a,b]. Such an interval [a,b] is called
a unimodal interval related to ¢(av).

The unimodal function can also be defined as follows.

Definition 2.1.4 If there exists a unique o € |a,b], such that for any
a1, e € [a,b], a1 < ag, the following statements hold:

if ag < o, then ¢(ay) > ¢(a);
if on > o, then ¢(ar) < ¢p(az);

then ¢(av) is the unimodal function on |a,b].

Note that, first, the unimodal function does not require the continuity and
differentiability of the function; second, using the property of the unimodal
function, we can exclude portions of the interval of uncertainty that do not
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contain the minimum, such that the interval of uncertainty is reduced. The
following theorem shows that if the function ¢ is unimodal on [a, b], then the
interval of uncertainy could be reduced by comparing the function values of
¢ at two points within the interval.

Theorem 2.1.5 Let ¢ : R — R be unimodal on [a,b]. Let ay,an € [a,b],
and a1 < ag. Then

1. if p(ar) < P(a2), then [a, as] is a unimodal interval related to ¢;

2. if p(a1) > ¢(aa), then [a1,b] is a unimodal interval related to ¢.

Proof.  From the Definition 2.1.3, there exists a* € [a,b] such that ¢(«)
is strictly decreasing over [a,a*] and strictly increasing over [a*,b]. Since
¢(a1) < ¢(ag), then a* € [a, ag] (see Figure 2.1.1). Since ¢(a) is unimodal
on [a, b], it is also unimodal on [a, ag]. Therefore [a, 2] is a unimodal interval
related to ¢(«) and the proof of the first part is complete.

The second part of the theorem can be proved similarly. O

This theorem indicates that, for reducing the interval of uncertainty, we
must at least select two observations, evaluate and compare their function
values.

a a a* ay, b a a® ay @ b

Figure 2.1.1 Properties of unimodal interval and unimodal function

2.2 Convergence Theory for Exact Line Search

The general form of an unconstrained optimization algorithm is as follows.

Algorithm 2.2.1 (General Form of Unconstrained Optimization)

Initial Step: Given xg € R™,0 < e < 1.
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k-th Step: Compute the descent direction dy;
Compute the step size ay, such that

flag + apdy) = gl;%f(xk + ady); (2.2.1)

Set
Tyl = Tk + pdy; (2.2.2)

If |V f(zrs1)| < €, stop; otherwise, repeat the above steps.
O

Set
p(a) = flzg + ady), (2.2.3)

obviously we have from the algorithm that

$(0) = f(z1), ¢(a) < ¢(0).

In fact, (2.2.1) is to find the global minimizer of ¢(«) which is rather difficult.
Instead, we look for the first stationary point, i.e., take oy such that

ar = min{a > 0 | Vf(xg + ady) dy = 0}. (2.2.4)

Since, by (2.2.1) and (2.2.4), we find the exact minimizer and the stationary
point of ¢(a) respectively, we say that (2.2.1) and (2.2.4) are exact line
searches.

Let (dy, —V f(z1)) denote the angle between dy and —V f(xy), we have

di V f ()

cos(dy, =V f(xy)) = _m.

(2.2.5)
The following theorem gives a bound of descent in function values for each
iteration in exact line search.

Theorem 2.2.2 Let oy, > 0 be the solution of (2.2.1). Let ||V2f(x) +
ady)|| < M VYo > 0, where M is some positive number. Then

1

fzk) = flzg + oxdy) > mHVf(l“k)”Q cos?(dk, —V f (k). (2.2.6)
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Proof. From the assumptions we have that
T a’ 2
flay +ady) < f(zx) + ady Vf(zx) + o Mdi]]", Ya > 0. (2.2.7)

Set & = —dL'V f(x)/(M||dx||?); it follows from the assumptions, (2.2.7) and
(2.2.5) that

fzr) = flog + ardy)

v

f(@r) = f (g + ady)
=2
—ad{ v (ex) - 5 Mdi?

1 (dfVf(xp))?
2 M||dgl?

_ b 2
= oIV @l

v

(dEV f(xr))?
e[V f ()
(

1
= m”vf(flfk)HQCOSQ(dk,—Vf

12
.I‘k)>D

Now we are in position to state the convergence property of general un-
constrained optimization algorithms with exact line search. The following
two theorems state the convergence by different forms.

Theorem 2.2.3 Let f(x) be a continuously differentiable function on an
open set D C R", assume that the sequence from Algorithm 2.2.1 satisfies
f(zry1) < f(zp)Vk and Vf(x)Tdp < 0. Let € D be an accumulation
point of {x} and Ky be an index set with K1 = {k | limg_,oc xp = T}. Also
assume that there exists M > 0 such that ||di|| < M,Vk € Ky. Then, if d is
any accumulation point of {dy}, we have

V@) Td=o0. (2.2.8)

Furthermore, if f(x) is twice continuously differentiable on D, then
dT'V2f(z)d > 0. (2.2.9)
Proof. It is enough to prove (2.2.8) because the proof of (2.2.9) is similar.

Let Ko C K; be an index set with d = limgeg, dp. If d = 0, (2.2.8) is
trivial. Otherwise, we consider the following two cases.
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(i) There exists an index set K3 C Ky such that limgeg, o = 0. Since
ay is an exact step size, then V f (), + axdy,) T dy = 0. Since ||dy| is uniformly
bounded above and o — 0, taking the limit yields

Vi) Td=o0.

(ii) Case of liminfxeg, ap = @ > 0. Let Ky C K» be an index set of k
with a > @/2,Vk € K4. Now assume that the conclusion (2.2.8) is not true,
then we have

Vi) d< —6<0.

So, there exist a neighborhood N (%) of Z and an index set K5 C Ky such
that when z € N(z) and k € K,

Vi) ld, < —6/2 <0.

Let & be a sufficiently small positive number, such that for all 0 < a < &
and all k € Ks, xp + adp, € N(z). Take o = min(a/2,&), then from
the non-increasing property of the algorithm, exact line search and Taylor’s
expansion, we have

f@) = flzo) = D [f(zns1) = flan)]

k=0

< 3 [Fmrer) — Flan)]
keKs

< [flan+atdy) — flan)] (2.2.10)
keKs

= > V(e +md) atdy (2.2.11)
keKs

)
< () o
< >-(3)

where 0 < 73, < a*. The above contradiction shows that (2.2.8) also holds
for case (ii).

The proof of (2.2.9) is similar. It is enough to note using the second-order
form of the Taylor expansion instead of the first-order form in (2.2.11). In
fact, from (2.2.10) we have

f(@) = f(0)
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< D [f(@e 4 ofdy) — flan)]
keKs5
= Z lVf(:Ek)T(oz*dk) + m;)2d£v2f(xk + Tdy)dy | for 0 <7 < a*
keKs
< Z (a*)2d{V2f(xk + dek)dk for0 <7, < o
keKs 2
176
< R (Oé*)Q
3 [ (3)e]
- (2.2.12)

We also get a contradiction which proves (2.2.9). O

Theorem 2.2.4 Let Vf(x) be uniformly continuous on the level set L =
{zx € R" | f(z) < f(xz0)}. Let also the angle ) between —V f(xy) and the
direction dj, generated by Algorithm 2.2.1 is uniformly bounded away from
90°, i.e., satisfies

O, < g — u, for some p > 0. (2.2.13)

Then V f(x) = 0 for some k; or f(x) — —oo; or V f(xy) — 0.

Proof.  Assume that, for all k, Vf(zg) # 0 and f(zy) is bounded below.
Since {f(xy)} is monotonic descent, its limit exists. Therefore

f(xk) = f(zr41) — 0. (2.2.14)

Assume, by contradiction, that V f(x;) — 0 does not hold. Then there
exists € > 0 and a subset K, such that ||V f(zy)| > eVk € K. Therefore

YV f () dy/ ||dil = |V (25)]| cos O > esinp 2 €. (2.2.15)
Note that
f(zg + ady)
flae) + aV (&) dy
= flar) + oV (zr) dy + o[V (&) — V()] dy
V f () dy
< flzg) +alldell | =7 +IVF(&k) — Vf(ze)ll ], (2.2.16)

|||



2.2. CONVERGENCE THEORY FOR EXACT LINE SEARCH 79

where & lies between x and x + ady. Since V f(z) is uniformly continuous
on the level set L, there exists & such that when 0 < o|di| < &, we have

HVf@w——Vf@mM\séfL (2.2.17)
By (2.2.15)—(2.2.17), we get

_dy [V f(zg)Tdy 16
(owragag) < s va (TRt ga)

1
< flzx) - jae.
Therefore
_ dg 1
flzrsr) < f <93k + Oé) < f(zx) — - ey,
||l 2

which contradicts (2.2.14). The contradiction shows that V f(xy) — 0. We
complete this proof. O

In the remainder of this section, we discuss the convergence rate of min-
imization algorithms with exact line search. For convenience of the proof of
the theorem, we first give some lemmas.

Lemma 2.2.5 Let ¢(a) be twice continuously differentiable on the closed
interval [0,b] and ¢'(0) < 0. If the minimizer o € (0,b) of ¢(a) on [0,b],

then
>a=—¢(0)/M, (2.2.18)

where M is a positive number such that ¢ (o) < M,V € [0,b].
Proof. Construct the auxiliary function
Y(a) = ¢/(0) + Ma,
which has the unique zero
G = —¢/(0)/M.

Noting that ¢"(a) < M, it follows that

)=+ [ "#(a)d o < #0) + / " Md a = (o).



80 CHAPTER 2. LINE SEARCH

Setting a = a* in the above inequality and noting that ¢’(a*) = 0, we obtain
0 <9(a’) =¢'(0) + Ma”
which is (2.2.18). O

Lemma 2.2.6 Let f(x) be twice continuously differentiable on R™. Then for
any vector x,d € R™ and any number «, the equality

f(x+ad) = f(z) +aVf(x)Td+o? /01(1 —)[dT'V2f(z + tad)d]dt (2.2.19)
holds.

Proof. From calculus, we have
f(z + ad) — f(x)
1
= / df(z + tad)
0
1
- / [V f(z + tad)Td)d(1 — t)
0
= —[1-t)aVf(z+tad)d)}+ /01(1 — t)d[aV f(z + tad)'d]

= aVf(x)ld+a? /01[(1 —)d'V2f(z + tad)d]dt. O

Lemma 2.2.7 Let f(x) be twice continuously differentiable in the neighbor-
hood of the minimizer x*. Assume that there exist € > 0 and M > m > 0,
such that

mly|? < y" V2 f(z)y < M|jy||*, Vy € R" (2.2.20)

holds when ||z — x*|| < €. Then we have

Smlle =" < () — f(a*) < SMlJe —a° P (22.21)

and
IVf(@)]| = m|lz — 2. (2.2.22)
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Proof. From Lemma 2.2.6 we have
f(z) = f(z7)
= V@) (x—2*)+ /1(1 —t)(z — 2)TV2f(te + (1 — t)z*)(x — 2*)dt
0

= /01(1 —t)(x — 2TV f(tr + (1 — t)2*)(z — 2*)dt. (2.2.23)

Note that (2.2.20) and the integral mean-value theorem give
1
ml|z —3:*H2/ (1—t)dt
0

/01(1 —t)(z — 2V f(tr 4+ (1 — t)z*)(z — 2*)dt

IN

IN

M|z — z*|° /01(1 )t (2.2.24)
Then combining (2.2.23) and (2.2.24) yields (2.2.21).
Also, using Taylor expansion gives
V() =Vf(z)—-Vf(x*) = /01 V2f(te + (1 — t)z*) (z — z*)dt.
Then
IVf@)lllz =" > (z—2")"Vf(z)

_ /01@; ~ VIR f (4 (1 — ) (z — 27)dt
> mlz — o

which proves (2.2.22). O

Now we are in the position to give the theorem about convergence rate
which shows that the local convergence rate of Algorithm 2.2.1 with exact
line search is at least linear.

Theorem 2.2.8 Let the sequence {x} generated by Algorithm 2.2.1 con-
verge to the minimizer x* of f(x). Let f(x) be twice continuously differen-
tiable in a neighborhood of x*. If there exist € > 0 and M > m > 0 such that
when ||z — z*|| < e,

m|ly||* <y VAf(z)y < M|jy||*, Vy € R" (2.2.25)

holds, then the sequence {xy}, at least, converges linearly to z*.
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Proof.  Let limy .oz = z*. We may assume that ||z — z*|| < € for k
sufficiently large. Since ||zx4+1 — *| < €, there exists § > 0 such that

leg + (ax + 0)dr — 2¥|| = ||xper — 2™ + ddg|| < e (2.2.26)

Note that () = f(xy +ady), ¢' (o) = Vf(z+ady) " dy, ¢'(0) = V fay) " dy,
and [¢/(0)] < ||V f(x)]ll|dk|. We have ¢'(0) <0,

IV (@r)llldell < =¢"(0) < [V £ (k) ldi]l, for some p € (0,1)  (2.2.27)

and
¢" () = di,V? f (), + odp)dy, < M ||di||>.

Then, by Lemma 2.2.5, we know that the minimizer oy, of ¢(a) on [0, oy + 6]

satisfies ,
o>y — —¢ (0)2 > PIV IRl A
M| dg | M|\ dg||

g (2.2.28)

Set Ty, = x + ad. Obviously, it follows from (2.2.26) that ||Zx — z*|| < e.
Therefore,

J(wp 4 apdy) — f(ar)
J(wp 4 apdy) — f(or)

1
= o‘szf(xk)Tdk + 54%/0 (1-— t)dZVQf(xk + tagdy)didt (from Lemma 2.2.6)

IN

IN

1
(=) IV S )l + 5 Mag g (from (2.2.25) and (2:2.27))

PV )| (from (2.2.28))
~9n7 Ty, rom (2.2.

IN

_
2M
pm

2
< - (B) o) - f@) (from (2220)

IN

m?||zy, — 2*||* (from (2.2.22))

The above inequalities give

f@esr) = f(27) = [f(@rgr) = flae)] + [f (@) — f(27)]

IN
| — |
[u—
|
VR
<[3
~——
no
| —
oy
8
&
N~—
|
&h
—~
S
*
~—~
b
o
\o)
L
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Set

0= [1 - (‘;\?)21 : . (2.2.30)

Obviously 6 € (0,1). Therefore (2.2.29) can be written as

flar) = f(27) 0?(f (wx—1) — f(2")]

IN A CIA

02 [ f (o) — f(2)]. (2.2.31)

Furthermore, by (2.2.21), we have

o =2 < () - f)]
< ZOf(re) ~ f)
< 205w — o0l

which implies that

* M *
|z —2*|| < \/EHka_l — " (2.2.32)

and that the sequence {zy}, at least, converges linearly to z*. O
In the end of this section, we give a theorem which describes a descent
bound of the function value after each exact line search.

Theorem 2.2.9 Let oy, be an exact step size. Assume that f(z) satisfies
(= 2)"[Vf(z) = Vf(2)] = nllz — 2> (2.2.33)

Then
1
f(or) — flor + ardy) > 577H04kdk“2. (2.2.34)

Proof. Since «ay is an exact step size, then

Vf(zy + agdy)dy, = 0. (2.2.35)
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Therefore, it follows from the mean-value theorem, (2.2.35) and (2.2.33) that

Flax) = flap +apdy) = /0 ATV (o tdy)d

ap

=/ dL [V f(z + ogdy) — V f(xp + tdy)]dt
g 9
> /0 n(og — t)dt] dy|
1
= Snlledi]®. (2.2.36)

This completes the proof. O

2.3 The Golden Section Method and the Fibonacci
Method

The golden section method and the Fibonacci method are section methods.
Their basic idea for minimizing a unimodal function over [a,b] is iteratively
reducing the interval of uncertainty by comparing the function values of the
observations. When the length of the interval of uncertainty is reduced to
some desired degree, the points on the interval can be regarded as approxi-
mations of the minimizer. Such a class of methods only needs to evaluate the
functions and has wide applications, especially it is suitable to nonsmooth
problems and those problems with complicated derivative expressions.

2.3.1 The Golden Section Method

Let

p(a) = f(z + ad)
be a unimodal function on the interval [a,b]. At the iteration k of the golden
section method, let the interval of uncertainty be [ak, bx|. Take two observa-
tions A, ug € [ak, bg) and A\ < pg. Evaluate ¢(A;) and ¢(ug). By Theorem
2.1.5, we have

Case 1 if ¢(A\x) < ¢(ur), then set api1 = ag, bpy1 = pg;
Case 2 if ¢(\g) > ¢(uk), then set a1 = A, brr1 = by

How to choose the observations Ar and ui? We require that \p and puy
satisfy the following conditions:
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1. The distances from A\; and py to the end points of the interval [ay, by]
are equivalent, that is,

b — A\, = g — ag. (2.3.1)

2. The reduction rate of the intervals of uncertainty for each iteration is
the same, that is

bit1 — ap1 = 7(bk — ax), 7 € (0,1). (2.3.2)

3. Only one extra observation is needed for each new iteration.

Now we consider Case 1. Substituting the values of Case 1 into (2.3.2) and
combining (2.3.1) yield

M — A = T(bk—ak),
by — Ak = pg — ag.

Arranging the above equations gives

A = ap+ (1 — T)(bk — ak), (233)
pe = ag+ 7(by — ag). (2.3.4)
Note that, in this case, the new interval is [ag41,bg+1] = [ag, ). For fur-

ther reducing the interval of uncertainty, the observations Ax11 and pgy1 are
selected. By (2.3.4),

Pl = Gyl + T(bpt1 — Gky1)
ak + 7(k — ax)
ar + 7(ag + 7(bg, — ax) — ax)

= ap+7%(by — ap). (2.3.5)
If we set
=1-r1, (2.3.6)
then
Hk+1 = ag + (1 — T)(bk — ak) = A. (237)

It means that the new observation ujy; does not need to compute, because
tr+1 coincides with Ag.
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Similarly, if we consider Case 2, the new observation Agi; coincides with
1. Therefore, for each new iteration, only one extra observation is needed,
which is just required by the third condition.

What is the reduction rate of the interval of uncertainty for each iteration?
By solving the equation (2.3.6), we immediately obtain

—1+45
=—F

T

Since 7 > 0, then take

pobeman  VEo1 e (2.3.8)
by, — ag 2

Then the formula (2.3.3)-(2.3.4) can be written as

A = ap+ 0.382(bk — ak), (2.3.9)
U = ai+ 0.618(bk — ak). (2.3.10)

Therefore, the golden section method is also called the 0.618 method.

Obviously, comparing with the Fibonacci method below, the golden sec-
tion method is more simple in performance and we need not know the number
of observations in advance.

Since, for each iteration, the reduction rate of the interval of uncertainty
is 7 = 0.618, then if the initial interval is [a1, b1], the length of the interval
after n-th iteration is 7 1(b; — a1). Therefore the convergence rate of the
golden section method is linear.

Algorithm 2.3.1 (The Golden Section Method)

Step 1. Initial step. Determine the initial interval [aq1,b1] and give
the precision 6 > 0. Compute initial observations A1 and

Hi:

A = a1+ 0.382(b1 — (Il),
= ai;+ 0.618(b1 — al),

evaluate ¢(A1) and ¢(py), set k= 1.

Step 2. Compare the function values. If () > ¢(ux), go to Step
3;if 9(Ak) < @), go to Step 4.
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Step 3. (Case 2) If by — N\, < 0, stop and output py; otherwise, set

g1 7= Ay b1 i= by A1 := g,
P(Akt1) = d(pr)s 1 = k41 + 0.618(bg+1 — ak+1).

Evaluate ¢(ug41) and go to Steps.

Step 4. (Case 1) If pp — ax, < 6, stop and output \i; otherwise set

Q41 i= Ak, bpg1 = [k, Pt i= Mg,
A(prr1) = ¢(Ak), Aeg1 = apy1 + 0.382(bps1 — A1)

FEvaluate ¢(Ag4+1) and go to Step 5.

Step 5. k:=k+1, go to Step 2. O

2.3.2 The Fibonacci Method

Another section method which is similar to the golden section method is the

Fibonacci method. Their main difference is in that the reduction rate of

the interval of uncertainty for the Fibonacci method does not use the golden

section number 7 ~ 0.618, but uses the Fibonacci number. Therefore the

reduction of the interval of uncertainty varies from one iteration to another.
The Fibonacci sequence {Fy} is defined as follows:

Fo=F =1, (2.3.11)
Fop1=Fp+Fpq, k=1,2,---. (2.3.12)

If we use F,,_j/F,_k+1 instead of 7 in (2.3.3)(2.3.4), we immediately obtain
the formula

F,_
A = ap+ (1— n—k )(bk—ak) (2.3.13)
n—k+1
F,_i_
= ap+ nkl(bk—ak),k:L ,n—1,
Fn—k—H
ur = ag+ (bp —ag), k=1,--- ,n—1, (2.3.14)
Fok+1

which is called the Fibonacci formula.
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As stated in the last section, in Case 1, if p(A\g) < ¢(ug), the new interval
of uncertainty is [ag+1, bgt+1] = [ak, pi]. So, by using (2.3.14), we get

bk+1 — Q41 = (bk - CLk) (2315)
which gives a reduction in each iteration. This equality is also true for Case
2.

Assume that we ask for the length of the final interval no more than 9,
i.e.,

b, — a, <0.
Since
F
bp —an = f;(bn—l - an—l)
R FE Py
= BE R -a)
1
then )
Fy 2 = = (2.3.17)

Therefore, given initial interval [a1,b;] and the upper bound § of the length
of the final interval, we can find the Fibonacci number F;, and further n from
(2.3.17). Our search proceeds until the n-th observation. The procedure
of the Fibonacci method is similar to Algorithm 2.3.1. We leave it as an
exercise.

Letting F}, = r* and substituting in (2.3.11)-(2.3.12), we get

r2—r—1=0. (2.3.18)

Solving (2.3.18) gives

(2.3.19)

Then, the general solution of the difference equation Fy1q = Fj, + Fy_1 is

Fj, = Arf + Brb. (2.3.20)
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Using the initial condition Fy = F; =1, we get

A="L p__"

V5’ V5

Substituting in (2.3.20) gives

k+1 k+1
Fp, = \}5 { (1 +2‘/5> — (1 2\/5> } : (2.3.21)

_ Fq Vb1
lim = =T
k—oo F} 2

Hence

(2.3.22)

This shows that, when k — oo, the Fibonacci method and the golden section
method have the same reduction rate of the interval of uncertainty. There-
fore the Fibonacci method converges with convergence ratio 7. It is worth
mentioning that the Fibonacci method is the optimal sectioning method for
one-dimensional optimization and it requires the smallest observations for a
given final length ¢, and that the golden section method is approximately
optimal. However, since the procedure of the golden section method is very
simple, it is more popular.

2.4 Interpolation Method

Interpolation Methods are the other approach of line search. This class of
methods approximates ¢(a) = f(z + ad) by fitting a quadratic or cubic
polynomial in « to known data, and choosing a new a-value which mini-
mizes the polynomial. Then we reduce the bracketing interval by comparing
the new a-value and the known points. In general, when the function has
good analytical properties, for example, it is easy to get the derivatives, the
interpolation methods are superior to the golden section method and the
Fibonacci method discussed in the last subsection.

2.4.1 Quadratic Interpolation Methods

1. Quadratic Interpolation Method with Two Points (I).
Given two points a, @z, and their function values ¢(a1) and ¢(a2), and the
derivative ¢/(aq) (or ¢'(as)). Construct the quadratic interpolation function
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q(a) = aa® 4 ba + ¢ with the interpolation conditions:

gr) = aai +bay+c=p(a),
g(a) = a3 +bas+ ¢ = ¢(az), (2.4.1)
¢ (1) = 2aa;+b=¢ ().

Write ¢1 = ¢(n), d2 = ¢(a2), ¢’ = ¢'(c1), and ¢’y = ¢'(a2). Solving (2.4.1)

$1— 2 — ¢ (a1 — )

S
|

—(01 — a2)? )
P1— 2 — ¢ 1 (a1 — )
b = ¢ 2
d) 1 + (al _ Oé2)2 «
Hence
_ b
a = ——
2a

1 ' Haq — ag)?
- a;+- ¢1(1/ 2)
201 —ag — ¢ (a1 — az)

_ 1 (o1 — as)d'y
= - 9 ¢/1 _ $1=¢2 (2'4‘2)

a1 —a

Then we get the following iteration formula:

s = o Ll — 1)y
ktl =Sk 75 & — P—Pr—1 °

A —CQk—1

(2.4.3)

where ¢ = ¢(ag), dpr—1 = ¢(ar_1), and ¢’y = ¢' ().

After finding the new ay.1, we compare agy1 with ap and ag_1, and
reduce the bracketing interval. The procedure will continue until the length
of the interval is less than a prescribed tolerance.

2. Quadratic Interpolation Method with Two Points (II).

Given two points oy, g, and one function value ¢(a1) (or ¢(ae) ), and two
derivative values ¢'(a) and ¢'(ag). Construct the quadratic interpolation
function with the following conditions:

glar) = aof+bay+c=¢(a),

¢ (1) = 2aa;+b=¢ (1), (2.4.4)
d(a2) = 2aas+b= ¢ (a3).
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Precisely, with the same discussion as above we obtain

_ b o —a
= —— = - '. 2.4.5
«Q 2a aq ¢/1 - ¢/2 ¢ 1 ( )
Therefore the iteration scheme is
ap — Q-1 /
Q1 =0 — 7@, (2.4.6)
¢ —

which is also called the secant formula. The formula (2.4.5) can also be got
by setting L(a) = 0 where L(«) is the Lagrange interpolation formula

(a—a1)¢'y — (a— az)¢’y

Q2 —

L(a) =

(2.4.7)

which interpolates the derivative values of ¢'(«) at two points o1 and «s.

In the following discussion, for convenience, we call the quadratic inter-
polating method (I) the quadratic interpolation formula, and the quadratic
interpolation method (II) the secant formula. Next, we turn to the conver-
gence of the quadratic interpolating method with two points.

Theorem 2.4.1 Let ¢ : R — R be three times continuously differentiable.
Let o* be such that ¢'(a*) = 0 and ¢"(a*) # 0. Then the sequence {ay}

generated from (2.4.6) converges to o™ with the order 1+T‘/5 ~ 1.618 of con-
vergence rate.

Proof. By the representation of residual term of the Lagrange interpola-
tion formula

1
Ry(a) = ¢'(a) — L(a) = 58" (§)(a — ar)(a — ap-1), £ € (@, a1, ag).
(2.4.8)
Setting @ = a4+1 and noting that L(agy1) = 0, we have

¢ (oy1) = %¢///(§)(ak+1 —ap)(ape1r — ag—1), £ € (p—1, g, apy1), (2.4.9)

Substituting (2.4.6) into (2.4.9) yields

2
35 ¢ e (ak,l,ak,akﬂ). (2.4.10)

(¢,k - ¢/k—1>

¢ (apg1) = %(b///(g)(b/k(blk—l (o) = ar-1)
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We know from the mean-value theorem of differentiation that

(i::zkk_ll = ¢"(%), %o € (-1, %), (2.4.11)
¢i=¢i = ¢(a") = (i — a")¢"(&), (2.4.12)

where & € (a;,a*),i = k — 1,k,k + 1. Therefore it follows from (2.4.10)-
(2.4.12) that

18O )
s 2 (€ ) [0 (E0)P

Let ¢; = |oy; — a*|, (i = k — 1,k,k + 1). In the intervals considered, let

(a — a™)(ag—1 — a®). (2.4.13)

0 <mg < |¢"(a)] < Mz, 0 <my < |¢"(a)| < My,

K1 =mam?/(2M3), K = MoM}/(2m3).
Then

Ki|ag — o||ag—1 — | < |ags1 — | < Koy, — a*||ag—1 — ™|, (2.4.14)
Noting that ¢” and ¢" are continuous at o*, we get

Qi1 — Oé* 1 (ZSI//(OJ*)

- L7 2.4.15
(o — a*)(ag—1 — a¥) 2 ¢"(a¥) ( )

Therefore &)
Ck+1 — ’2¢/,(7Z712) €LCr—1 é Mekek_l, (2.4.16)

where my € (ag_1,ag,a®),n2 € (agp_1,01), M = |¢"(11)/2¢" (n2)|. The above
relations indicate that there exists 0 > 0 such that, when the initial points
ap, a1 € (of —6,a* 4+ 6) and o # a1, the sequence {ax} — a*.
Next, we consider the convergence rate. Set ¢, = Me;,y; = lne;,i =
k—1,kk+1, then
€kt1 = €xEE_1, (2.4.17)

Yk+1 = Yk + Yr—-1- (2.4.18)

Obviously, (2.4.18) is the equation that the Fibonacci sequence satisfies, and
its characteristic equation is

t2—t—1=0 (2.4.19)
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whose solutions are

Lty = . (2.4.20)
Therefore the Fibonacci sequence {yx} can be written as
ype = AtV + Bt k=0,1,---, (2.4.21)

where A and B are coefficients to be determined. Obviously, when k& — oo,

Ine, = yp ~ At (2.4.22)
Since .
€kl exp(At; ™) _
e lexp(Atf)r 7
then e
+1 _
=~ MhT (2.4.23)
€k

which implies that the convergence rate is t; = 1+—2\/5 ~1.618. O
This theorem tells us that the secant method has superlinear convergence.

3. Quadratic Interpolation Method with Three Points.
Given three distinct points aq,as and a3, and their function values. The
required interpolation conditions are

q(og) = aa? + bay + ¢ = Pp(ay), i =1,2,3. (2.4.24)
By solving the above equations, we obtain

(a2 —az)pr + (a3 — a1)g2 + (1 — a2)¢3

T (1 — ag)(a2 — asz)(ag — a1) ’
- (a5 — a3)¢1 + (a3 — af) g2 + (af — a3)¢3
(1 — az)(az — az)(as — a1)
Then
_ b
5=_2
2a
_ 1(af —ad)¢1 + (0f — af)do + (of — 03)ds (2.4.25)
2 (g —az)d1 + (a3 — a1)da + (a1 — a2)¢3 o
_ 1 1 (91 — ¢2) (a2 — a3) (a3 — 1)
— 2(a1 + ag) + 2 (g —o)d1 1+ (s —o)ba 1 (o1 = a2)¢3(.2.4.26)
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Equations (2.4.25) and (2.4.26) are called the quadratic interpolation formula
with three points. The above formula can also be obtained from considering
the Lagrange interpolation formula

B (a0 — ag)(a — a3) (a—ag)(a—a3) (a—ag)(a—ag)
Lle) = (1 —az)(ar — Oé:a)(ler(O@ —a1)(ag — a3)¢2+(a3 —a1)(az — a2)¢3’
(2.4.27)

and setting L'(a) = 0.

Algorithm 2.4.2 (Line Search Employing Quadratic Interpolation with Three
Points)

Step 0. Given tolerance €. Find an initial bracket {aq, a9, a3} con-
taining o*; Compute ¢(ay),i = 1,2, 3.

Step 1. Use the formula (2.4.25) to produce &;
Step 2. If (a —ay)(@—ag) > 0 go to Step 3; otherwise go to Step 4;

Step 3. Construct new bracket {ai1,as, a3} from ai,as, a3 and a.
Go to Step 1.

Step 4. If | — as] < €, stop; otherwise go to Step 3. O

Figure 2.4.1 is a diagram for the quadratic interpolation line search with
three points.

The following theorem shows that the above algorithm has convergence
rate with order 1.32.

Theorem 2.4.3 Let ¢(a) have continuous fourth-order derivatives. Let o
satisfy ¢'(a*) = 0 and ¢"(a*) # 0. Then the sequence {a} generated from
the formula (2.4.25) has convergence rate with order 1.32.

Proof. By Lagrange interpolation formula (2.4.27), we have
¢(a) = L) + R3(a), (2.4.28)

where

Rs3(a) = é(;ﬁ’”(f(oz))(a —ap)(a—ag)(a — ag). (2.4.29)
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Since 0 = ¢'(a*) = L'(a*) + R5(a*), we get

20 — (a3 + )

(a2 — ag)(ag — a1)

+ R(a*) = 0. (2.4.30)

20* — (ag + a3)
(1 — az)(a1 — as)
20 — (a1 + a2)
s (a3 — ar)(as — az)

b1

+ 2

Noting that (2.4.25) can be rewritten as

¢1(az+as) + d2(aztar) + ¢3(oitaz)
g = 1 lai—as)(a1-ag) T (az—ag)(az—a1) " (az—a1)(es—az) (2.4.31)
2 ¢1 + ( ¢2 + ( ¢3 ’ o

(a1—az)(a1—agz) ag—az)(az—ay) az—aq)(az—az)

it follows from (2.4.30) and (2.4.31) that

1 / *
o —ay = R3(? ) - . (24.32)

(061—012)(1041—043) T (ae—as)(az—ar) T (as—a1)(as—az)

Let e; = o — a,1 = 1,2, 3,4. It follows from (2.4.32) that

ea[—¢1(e2 — e3) — pa(e3 —e1) — ¢3(e1 — e2)]
= —%Rg(a*)(el —e2)(e2 —e3)(es —e1). (2.4.33)

Noting that ¢'(a*) = 0, it follows from Taylor expansion that

1
¢i = p(a®) + 563 (o) 4+ O(ed). (2.4.34)
Neglecting the third-order term and substituting (2.4.34) into (2.4.33) give
1
= ———Ri(a"). 2.4.35
€4 ¢H(O¢*) 3(a”) ( )
Also, by the Lagrange interpolation formula, we have
1
Ry(a) = 9" (€)@ — az)(a —az) + (a = ar)(a - a3)

o~ an)(a— a)] + 6@~ @)@ - az)(a — as),

which implies

Ry(a”) = é¢///(§(a*))(€162 + ezez +eser) + 2—14¢(4) (n)e1ezes. (2.4.36)
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Neglecting the fourth-order derivative term, it follows from (2.4.35) and
(2.4.36) that

_ ¢"(&(a"))

e4 = 7(6162 + eges + 6361) = M(€162 + soe3 + 6361),

69" ()
where M is some constant. In general, we have
ert2 = M(er_1ep + ereri1 + eryi1ep—1)- (2.4.37)
Since epy1 = O(ex) = O(ex_1) when e — 0, there exists M > 0 such that
lerva| < Mleg—1llexl,

ie.,
Mlegya| < Mleg—1|M|eg|.

When |e;|, (i = 1,2, 3) are sufficiently small such that

§ = max{M|e1|, M|ez|, Mles|} <1,

one has B B B
Mleq| < Mey|Mles| < 6%
Set B
Meg| < 0%, (2.4.38)
then
Mexya| < Mlep|M|ep_r| < 59 5% 2 sak+e,
hence
Qe+2 = Q@ + -1, (k> 2) (2.4.39)
where ¢; = g2 = g3 = 1. Obviously, the characteristic equation of (2.4.39) is
t3—t—1=0 (2.4.40)
with one root ¢; ~ 1.32 and other two conjugate complex roots, |to| = |t3| < 1.

The general solution of (2.4.39) has form
qr = Aty + Bts + Ctf, (2.4.41)
where A, B and C are coefficients to be determined. Clearly, when k& — oo,

Qri1 — t1qr = Bth(ta —t1) + Cth(ts — t1) — 0.
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Given a, h,e

!

Decide search interval

[ﬂl y g |a3]

Yes

97

a:=(a, +a;)/2; ¢:=¢(a)

No

|
——( la—a, | <€

Yes
bpe-its) Ma—ea) 0 )—

No Yes Yes

a i =a azi= @y i I

P =9 P5i=0, P =0,
a, i =a Py =@

No

A: =200 (a,—ay)+ 92 (e —a,)+93(a; —a,)]

A=0 ¢
No

Yes

a:=[9, (o} —ai)+o, (af

—at)+e;(e? —af)l/A

C (a—a,) (ﬂr—nr3}<0 ?

No

' Yes

¢:=¢la)

Figure 2.4.1 Flow chart for quadratic interpolation method

with three points
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So, when k is sufficiently large, we have

Qe+1 — t1gr = —0.1. (2.4.42)

Note from (2.4.38) that |eg| < (1/M)5% 2 By, (k> 1). Then, by (2.4.42),
when £k is sufficiently large,
Bt 5Qk+1/M

B - 5t1qk/(M)t1 = MU §a Tt < 5*0.1]\_4“717
k

which indicates that the convergence order t; &~ 1.32. O

2.4.2 Cubic Interpolation Method

The cubic interpolation method approximates the objective function ¢(a) by
a cubic polynomial. To construct the cubic polynomial p(«), four interpo-
lation conditions are required. For example, we may use function values at
four points, or function values at three points and a derivative value at one
point, or function values and derivative values at two points. Note that, in
general, the cubic interpolation has better convergence than the quadratic
interpolation, but that it needs computing of derivatives and more expensive
computation. Hence it is often used for smooth functions. In the following,
we discuss the cubic interpolation method with two points.

We are given two points a and b, the function values ¢(a) and ¢(b), and
the derivative values ¢/(a) and ¢'(b) to construct a cubic polynomial of the
form

pla) =ci(a—a)P +ec(a—a)+cs(a—a)+ ¢ (2.4.43)

where ¢; are the coefficients of the polynomial which are chosen such that
p(a) = ca = ¢(a),
p'(a) = c3 = ¢'(a),
p(b) = c1(b—a)® + ca(b—a)® + c3(b — a) + c1 = ¢(b),
p'(b) = 3ci1(b— a)® 4 2c2(b—a) + c3 = ¢'(b). (2.4.44)
From the sufficient condition of the minimizer, we have

p(a) =3ci(a—a)® +2c(a—a) +c5=0 (2.4.45)

and
p"(a) = 6c1(a — a) + 2¢o > 0. (2.4.46)
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Solving (2.4.45) yields

a = a+ , if ¢1 #0, (2.4.47)

a = a——, if¢; =0. (2.4.48)

In order to guarantee the condition (2.4.46) holding, we only take the
positive in (2.4.47). So we combine (2.4.47) with (2.4.48), and get

—cy +1/c3 — 3cics —c3
a—a= = . (2.4.49)
3c1 co + /3 — 3cics

When ¢; =0, (2.4.49) is just (2.4.48). Then the minimizer of p(«) is

a=a-— 63 (2.4.50)

co + \/cg —3cics

The minimizer in (2.4.50) is represented by c1,co and c3. We hope to
represent @ by ¢(a), #(b), ¢'(a) and ¢'(b) directly.

Let
=302 ) -9 0)
w? = 22 — ¢/ (a)¢/ (D). (2.4.51)
By use of (2.4.44), we have
= 3W =3[c1(b — a)? + ca(b— a) + c3),

s—¢'(a) — ¢'(b) = ca(b—a) + cs,
w? = 22— ¢'(a)d(b) = (b—a)*(c - Beicy).

w
(b—a)ea =z —c3, \/C3 — 3cie3 = o
[ - zZzH+w-c
Co + C% - 361C3 == Ta:s (2452)

Then

and so
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Using ¢3 = ¢'(a) and substituting (2.4.52) into (2.4.50), we get

a—a= m (2.4.53)
which is
oy = —b—a)g@)d ) _ —(b— a) (% — w?)
(z+w—4¢'(a)d’'(b)  ¢'(b)(z+w) — (22 —w?)
= W (2.4.54)

Unfortunately, the formula (2.4.54) is not adequate for calculating &, because
its denominator is possibly zero or merely very small. Fortunately, it can be
overcome by use of (2.4.53) and (2.4.54), and we have

5—a — —(b—a)¢'(a) _ (b—a)(w — 2)
z+w—¢'(a)  ¢0)—2z+w
(b—a)(—9¢'(a) + w — 2)

¢'(b) — ¢'(a) + 2w

B . ) tztw
= (b—a) (1 P OETIOE 2w> : (2.4.55)
Gat(b—a) @z (2.4.56)

¢'(b) = ¢'(a) + 2w’

In (2.4.55) and (2.4.56), the denominator ¢'(b) — ¢'(a) 4+ 2w # 0. In fact,
since ¢/(a) < 0 and ¢/(b) > 0, then w? = 22 — ¢'(a)¢’(b) > 0. Taking w > 0,
it follows that the denominator ¢/(b) — ¢'(a) + 2w > 0.

In the same way as we did in the last subsection, we can discuss the
convergence rate of the cubic interpolation method. Similar to (2.4.16), we
can obtain

ers1 = M(exej_; + efep—1),

where M is some constant. We can show that the characteristic equation is
2 —t—2=0,

which solution is t = 2. Therefore the cubic interpolation method with two
points has convergence rate with order 2.
Finally, we give a flow diagram of the method in Figure 2.4.2.
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Given initial point e, initial step h, ,accuracy e

|
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No Yes

h:=hi h:=—1hl

ty =pyths 9, =0(y) s @) =9 (n,)
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e ¢2'+z(‘+z
?, —p, +2w
ari=p +lb—a)z
e =00 e =0 ()

h:=hi/10 - —

Figure 2.4.2 Flow chart for cubic interpolation method with two points

2.5 Inexact Line Search Techniques

Line search is a basic part of optimization methods. In the last sections we
have discussed some exact line search techniques which find «a; such that

f(xk + Oékdk) = gl;gf(xk + Ozdk),

or

aj = min{a| V f(zy + adi) d, =0, a > 0}.

However, commonly, the exact line search is expensive. Especially, when an
iterate is far from the solution of the problem, it is not effective to solve
exactly a one-dimension subproblem. Also, in practice, for many optimiza-
tion methods, for example, Newton method and quasi-Newton method, their
convergence rate does not depend on the exact line search. Therefore, as
long as there is an acceptable steplength rule which ensures that the objec-
tive function has sufficient descent, the exact line search can be avoided and
the computing efforts will be decreased greatly. In the following, we define
gr = V f(xr,) without special indication.
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2.5.1 Armijo and Goldstein Rule

Armijo rule [4] is as follows: Given 3 € (0,1),p € (0,3),7 > 0, there exists
the least nonnegative integer my, such that

flax) = flap + B7rdy) > —pB™" gy di. (2.5.1)
Goldstein (1965) [157] presented the following rule. Let
J={a>0] f(zr+ ad;) < f(zk)} (2.5.2)

be an interval. In Figure 2.5.1 J = (0,a). In order to guarantee the objective
function decreases sufficiently, we want to choose « such that it is away from
the two end points of the interval J. The two reasonable conditions are

fxr + ady) < f(zr) + pagy di (2.5.3)

and
flxp + ady) > f(z) + (1 = p)agl dy, (2.5.4)
which exclude those points near the right end-point and the left end-point,
where 0 < p < 3, All o satisfying (2.5.3)-(2.5.4) constitute the interval
Ja = [b,c]. We call (2.5.3)-(2.5.4) Goldstein inexact line search rule, in brief,
Goldstein rule. When a step-length factor « satisfies (2.5.3)-(2.5.4), it is

called an acceptable step-length factor, and the obtained interval Jo = [b, ¢]
is called an acceptable interval.

fley+ad,)

flx) + pgls,

e
|

IN | Az +(-a)gl's
| “H]"‘“-.N lt S5k 2k

o e b c a "

Figure 2.5.1 Inexact line search

As before, let ¢(a) = f(xp + adg). Then (2.5.3) and (2.5.4) can be
rewritten respectively

¢(0) + parg'(0), (2.5.5)
¢(0) + (1 — p)age'(0). 2.5.6

<
>
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Note that the restriction p < % is necessary. In fact, if ¢(«) is a quadratic
function satisfying ¢/(0) < 0 and ¢”(0) > 0, then the global minimizer a* of
¢ satisfies

#(a) = 6(0) + 5076/ (0).

Hence o* satisfies (2.5.5) if and only if p < % The restriction p < % will
also finally permit o = 1 for Newton method and quasi-Newton method.
Therefore, without the restriction p < %, the superlinear convergence of the

methods will not be guaranteed.

2.5.2 Wolfe-Powell Rule

As shown in Figure 2.5.1, it is possible that the rule (2.5.4) excludes the
minimizing value of a outside the acceptable interval. Instead, the Wolfe-
Powell rule gives another rule to replace (2.5.4):

Gir1de > ogidy, o € (p,1), (2.5.7)
which implies that
¢ (ar) = [Vf(xr+ardy)] dp > oV () di
o/ (0) > ¢/ (0). (2.5.8)

It shows that the geometric interpretation of (2.5.7) is that the slope ¢'(ay)
at the acceptable point must be greater than or equal to some multiple o €
(0,1) of the initial slope. The rule (2.5.3) and (2.5.7) is called the Wolfe-
Powell inexact line search rule, in brief, the Wolfe-Powell rule, which gives
the acceptable interval Js = [e, ¢| that includes the minimizing values of a.

In fact, the rule (2.5.7) can be obtained from the mean-value theorem
and (2.5.4). Let oy, satisfy (2.5.4). Then

ap[V [z + Opardy)) dr = f(ox + ardy) — f(x)
> (1= p)oVf(zx) dy
which shows (2.5.7). Now we show the existence of ay, satisfying (2.5.3) and

(2.5.7). Let &y, satisfy the equality in (2.5.3). By the mean-value theorem
and (2.5.3), we have

&k [V f(zn + Opapde)Tde = f(ag + andy) — (k)
p6ueV f ()" di,
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where ), € (0,1). Let p < o < 1, and note that V f(z3)"dy < 0, we have
[Vf(l’k + dekdk)]Tdk = pr(.CUk)Tdk > O'Vf(l’k)Tdk

which is just (2.5.7) if we set a = rdi. The discussion above also shows
that the requirement p < o < 1 is necessary, such that there exists steplength
factor «y satisfying the Wolfe-Powell rule.

It should point out that the inequality requirement (2.5.7) is an approxi-
mation of the orthogonal condition

ng+1dk =0

which is satisfied by exact line search. However, unfortunately, one possible
disadvantage of (2.5.7) is that it does not reduce to an exact line search in
the limit ¢ — 0. In addition, a steplength may satisfy the Wolfe-Powell rule
(2.5.3) and (2.5.7) without being close to a minimizer of ¢. Luckily, if we
replace (2.5.7) by using the rule

\9F 1 dy| < —ogldy, (2.5.9)

the exact line search is obtained in the limit o — 0, and the points that are
far from a stationary point of ¢ will be excluded. Therefore the rule (2.5.3)
and (2.5.9) is also a successful pair of inexact line search rules which is called
the strong Wolfe-Powell rule. Furthermore, we often employ the following
form of the strong Wolfe-Powell rule:

|98 1dk| < ol|gi dy| (2.5.10)

or

¢/ (ax)] < al¢'(0)]. (2.5.11)

In general, the smaller the value o, the more exact the line search. Nor-
mally, taking ¢ = 0.1 gives a fairly accurate line search, whereas the value
o = 0.9 gives a weak line search. However, taking too small o may be unwise,
because the smaller the value o, the more expensive the computing effort.
Usually, p = 0.1 and ¢ = 0.4 are suitable, and it depends on the specific
problem.
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2.5.3 Goldstein Algorithm and Wolfe-Powell Algorithm

Although it is possible that the minimizing value of & may be excluded by the
rule (2.5.4), it seldom occurs in practice. Therefore, Goldstein rule (2.5.3)-
(2.5.4) is a frequently used rule in practice. The overall structure is illustrated
in Figure 2.5.2 and the details of the algorithm are described in Algorithm
2.5.1.

Choose initial data
ay =0, @ =02, >0

Compute ¢(0), ¢'(0)

1

Compute ¢ (a)

(2.5.4

{ (a, +a;)/2, if ay <t
Holds?

tee, else

Yes

/ a, =a, slni/

Figure 2.5.2 Flow chart for Goldstein inexact line search

Algorithm 2.5.1 (Inexact Line Search with Goldstein Rule)

Step 1. Choose initial data. Take initial point ag in [0,400) (or
[0, naz]). Compute ¢(0),¢'(0). Given p € (0,3),t > 1. Set
ag = 0,by := +00 (01 Qmaz), k := 0.

Step 2. Check the rule (2.5.3). Compute ¢p(oy). If

p(ar) < ¢(0) + pay¢'(0),
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go to Step 3; otherwise, set agy1 = ag,bpyr1 = ayg, go to
Step 4.

Step 3. Check the rule (2.5.4). If
¢(ax) = ¢(0) + (1 = p)axg'(0),

stop, and output ay; otherwise, set axi1 = g, bgy1 = by.
If by41 < 400, go to Step 4; otherwise set ag41 1= tag, k =
k+1, go to Step 2.

Step 4. Choose a new point. Set

_ Gg41 + bggr
ak+1 = f?

and k:=k+1, go to Step 2. O

Similarly, we give in Figure 2.5.3 the diagram of the Wolfe-Powell algo-
rithm.

Choose initial data
@, =0, ay=cc, a0

f=fx, f I=£Id;

i

Compute f=f(x+ad,)

A
Compute a:

@ —ay

A b —
=ty " Fif
I +— .

la —;r]-J_.I;‘ ;

Yes

Compute g=glx+ ad,)

and f'=gd,
SL‘f.al =a
| Compute a: - -f“:f =
(a—ea))f h=f
e=gt—— A
Uy =7 ) Gt

Yes

Set e, =a, stop
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Figure 2.5.3 Flow chart for Wolfe-Powell inexact line search

2.5.4 Backtracking Line Search

In practice, frequently, we also use only the condition (2.5.3) if we choose
an appropriate o which is not too small. This method is called backtracking
line search. The idea of backtracking is, at the beginning, to set a = 1. If
x + ady is not acceptable, we reduce « until zj + ady, satisfies (2.5.3).

Algorithm 2.5.2
Step 1. Given p € (0, %),O <l<u<l, seta=1.

Step 2. Test
flog + ady) < f(z) + pagf dy;

Step 3. If (2.5.3) is not satisfied, set a := wo,w € [l,u], and go to
Step 2; otherwise, set ay := o and Tpy1 = T + apdi. O

In Step 3 of the above algorithm, the quadratic interpolation can be used
to reduce a. Let

¢(a) = flzy + ady). (2.5.12)
At the beginning, we have
$(0) = f(xx), ¢'(0) = V f(zx)" dy. (2.5.13)
After computing f(xy, + dj), we have
¢(1) =[xk + di). (2.5.14)

If f(xg + di) does not satisfy (2.5.3), the following quadratic model can be
used to approximate ¢(«):

m(a) = [(1) — ¢(0) — ¢'(0)]a® + ¢ (0)ar + $(0), (2.5.15)

which obeys the three conditions in (2.5.13)-(2.5.14). Setting m/(a) = 0 gives

)
T T~ 0l0) — $ 0 (2:5:10)
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which can be taken as the next value of a.

In order to prevent o from being too small and not terminating, some
safeguards are needed. For example, given the least step minstep, if (2.5.3)
is not satisfied but ||ady|| < minstep, the line search stops.

In summary, in this section we introduced three kind of inexact line search
rules:

1. Goldstein rule: (2.5.3)-(2.5.4).

2. Wolfe-Powell rule: (2.5.3) and (2.5.7); Strong Wolfe-Powell rule: (2.5.3)
and (2.5.9).

3. Backtracking rule (also called Armijo rule): (2.5.3) or (2.5.1).

The above three inexact line search rules are frequently used in optimization
methods below.

2.5.5 Convergence Theorems of Inexact Line Search

In the final subsection we establish convergence theorems of inexact line
search methods. To prove the descent property of the methods, we try to
avoid the case in which the search directions s = ajd;. are nearly orthogonal
to the negative gradient —gg, that is, the angle 6 between s, and —g; is
uniformly bounded away from 90°,

s

On < 5 — i, Vh (2.5.17)

where i1 > 0,0y, € [0, 5] is defined by

cos O, = —git sx/ (|9l lIsx])), (2.5.18)

because, otherwise, g,{sk will approach zero and so s is almost not a descent
direction.
A general descent algorithm with inexact line search is as follows:

Algorithm 2.5.3
Step 1. Given xg € R™*,0<e < 1,k:=0.

Step 2 If ||V f(xk)|| < e, stop; otherwise, find a descent direction
di, such that dLV f(zy) < 0.
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Step 3 Find the steplength factor oy, by use of Goldstein rule (2.5.3)-
(2.5.4) or Wolfe-Powell rule (2.5.3) and (2.5.7).

Step 4 Set xp+1 = xp + apdi; k= k+ 1, go to Step 2. O

In Algorithm 2.5.3, dj, is a general descent direction provided it satisfies
dFV f(zr) <0, and oy is a general inexact line-search factor provided some
inexact line search rule is satisfied. So, this algorithm is a very general
algorithm, that is, it contains a great class of methods.

Now, we establish the global convergence of the general descent algorithm
with inexact line search.

Theorem 2.5.4 Let ay, in Algorithm 2.5.3 be defined by Goldstein rule (2.5.3)-
(2.5.4) or Wolfe-Powell rule (2.5.3) and (2.5.7). Let also sy satisfy (2.5.17).
If Vf exists and is uniformly continuous on the level set {z| f(x) < f(xo)},
then either V f(x) = 0 for some k, or f(x) — —oo,or V f(zy) — 0.

Proof. Let oy be defined by (2.5.3)-(2.5.4). Assume that, for all &k, g, =
Vf(xr) # 0 (whence s = agdy # 0) and f(zy) is bounded below, it follows
that f(zg) — f(zk41) — 0, hence —gi sy — 0 from (2.5.3).

Now assume that g — 0 does not hold. Then there exist ¢ > 0 and a
subsequence such that [|gy|| > € and ||s;]| — 0. Since 6, < T — p, we get

cos Oy, > cos(g — p) = sin u,

hence
—gk sk > sin | gi ||| skll > e sin pl|si |-

But the Taylor series gives

flari1) = flaw) + 9(&) sk,

where &, is on the line segment (z1,2r41). By uniform continuity, we have
9(&k) — g when s — 0. So

f(@isr) = f(@r) + g7 sk + o(lIskl)-

Therefore we obtain

fxr) = f(wgs1)

T
—9k Sk

— 1,
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which contradicts (2.5.4). Hence, g — 0, and the proof is complete.
Similarly, instead of (2.5.4), if we use (2.5.7), we can get global conver-
gence of the Wolfe-Powell algorithm. The proof is essentially the same as
above. We need only to note that, by uniform continuity of g(x), it follows
that
ghs15k = i sk + o(llskl),

such that .
Ji+15k
ThALT
95 Sk
This contradicts ngHsk/g,{sk < o < 1 given by (2.5.7). Hence gy — 0.
Therefore, the global convergence theorem also holds when a4 is defined by

Wolfe-Powell rule (2.5.3) and (2.5.7). O
Next, we give the convergence theorems with the Wolfe-Powell rule.

Theorem 2.5.5 Let f: R™ — R be continuously differentiable and bounded
below, and let V f be uniformly continuous on the level set = {x| f(x) <

f(zo)}. Assume that ay, is defined by Wolfe-Powell rule (2.5.3) and (2.5.7).
Then the sequence generated by Algorithm 2.5.8 satisfies

V()T sk

lim =0, 2.5.19
e ™ sl (25.19)

which means
IV f(xr)|| cos O — 0. (2.5.20)

Proof. Since Vf(z3)Ts, < 0 and f is bounded below, then the sequence
{z1} is well-defined and {z1} C Q. Also, since {f(xy)} is a descent sequence,
hence it is convergent.

We now prove (2.5.19) by contradiction. Assume that (2.5.19) does not
hold. Then there exist € > 0 and a subsequence with index set K, such that

V() sk

>e, ke K.
skl

From (2.5.3), one has

V (k) sk

f@r) = f(@rg1) = pllskl (— sl

) > pllsklle-
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Since also {f(xy)} is a convergent sequence, then {s; : k € K} converges to
zero. Also by (2.5.7), we have

(1= o) (=Vf(xx)"sk) < (VF(ap +sx) = Vf(ar) sp, k= 0.

Therefore

V()T sy
lskll 1

! IV St i)~ VAl ke K. (25.21)

However, since we have proved {sx|k € K} — 0, then the right-hand side
of (2.5.21) goes to zero by the uniform continuity of V f on the level set (.
Hence there is a contradiction which completes the proof. O

Note that (2.5.19) implies

IV f ()| cos b — 0,

which is called the Zoutendijk condition, where 6; is the angle between
—Vf(z) and sg. If cosfy > § > 0, we have limy_,o ||V f(zx)| = 0. Also,
if the assumption of uniform continuity is replaced by Lipschitz continuity,
the theorem is also true. In the theorem below, we prove this case. We first
prove a lemma which gives a bound of descent for a single step.

Lemma 2.5.6 Let f: D C R" — R be continuously differentiable, also let
V f(z) satisfy Lipschitz condition
IVF(y) = V)| < Mlly — =],

where M > 0 is a constant. If f(zi + ady) is bounded below and oo > 0, then
for all ag, > 0 satisfying (2.5.3) and (2.5.7), we have

fla) = flox + ardr) 2 BIIV £ (@) cos®(dx, =V f(x)), (2.5.22)
where B > 0 is a constant.
Proof. From Lipschitz condition of Vf and (2.5.7) we have

apM||di||* = di [V f(ex + ardy) = Vf(z1)] = —(1 = 0)dg V f (),

that is

ulldel] > el ) cos(d, V(@)

= 2TV S o)l cosld, V7 ().

\%
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Using (2.5.3) yields

Flaw) = f(oe + apdy) > —appdf V f (x1)
= app|ldil||V f(zk)|| cos(dy, =V f ()

> IV ()| costds, ~V f(x)) IV (o)l cosla, ~ )
= 9 )| cos? (e~ ),

which is (2.5.22) in which 8 =p(1 —0)/M. O

Theorem 2.5.7 Let f(z) be continuously differentiable on R"™, and let V f(x)
satisfy Lipschitz condition

IVf(z) = Vil < Mz —yll. (2.5.23)

Also let oy, in Algorithm 2.5.8 be defined by Wolfe-Powell rule (2.5.3) and
(2.5.7). If the condition (2.5.17) is satisfied, then, for the sequence {xy}
generated by Algorithm 2.5.3, either V f(xy) = 0 for some k, or f(xy) —
—00, or Vf(zy) — 0.

Proof.  Assume that Vf(zy) # 0,Vk. By Lemma 2.5.6, we have

Flar) = f(@re1) = Beos® O ||V f (x|, (2.5.24)

where 3 = p(1 — 0)/M is a positive constant being independent of k. Then,
for all £ > 0, we have

k—1
f(zo) — flzr) = [f(xi) — f(@is1)]
i=0
k-1
> ﬁorgiingVf(xi)HQ > cos® 6;. (2.5.25)
== i=0

Since 6y, satisfies (2.5.17), this means that

o0
Z cos® 0, = +o0. (2.5.26)
k=0

Then it follows from (2.5.25) that either V f(zy) — 0 or f(z) — —oo. This
completes the proof. O
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In fact, Theorem 2.5.7 is a direct result coming from (2.5.20) and the
angle condition (2.5.17).

Finally, we derive an estimate of descent amount of f(z) under inexact
line search.

Theorem 2.5.8 Let oy, satisfy (2.5.3). If f(x) is a uniformly convex func-
tion, i.e., there exists a constant n > 0 such that

(y—2) [V fy) = V(=) =nlly -z (2.5.27)
or there exist positive constants m and M (m < M), such that
mlyl* < y"Vf(z)y < Mlly|*. (2.5.28)

Then

flag) = flog + agdy) > ledi?, (2.5.29)

Mmoo
1+ M/m

where p is defined in (2.5.3).

Proof. We divide into two cases.
First, assume that d{Vf(xk + agdy) < 0. In this case we have

F@n) = flag + ardy) = /0 ATV (g + g )dt
= [V andh) — Vo + )t

1
= - d||?
277”05143 k”

PI llods 2. (2.5.30)

14+ /M/m

Second, assume that di'V f(x) + ardy) > 0. Then there exists 0 < a* <
a, such that dL'V f(zy + a*dy) = 0. So, it follows from (2.5.28) that

v

Flaw) — s +ad) < L M]Jo"dy | (2531)

and
1
flag + agdy) — f(zr + a™dy) > 57””(0% — a*)dkHQ. (2.5.32)
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Since f(xp + axdy) < f(zg), it follows from (2.5.31) and (2.5.32) that

ay < (1 + \/g) a*. (2.5.33)

Hence
flan) — flan +apdy) > —owpdl V f(z)
> appdl [V f(zp + o di) — V f(2z)]
> npaga®||dy?
R E— P (2.5.34)
L++/M/m

Hence (2.5.29) holds in both cases. This completes the proof. O

In this chapter we have discussed exact and inexact line search techniques
which guarantee monotonic decrease of the objective function. On the other
hand it is found that enforcing monotonicity of the function values may con-
siderably slow the rate of convergence, especially in the presence of narrow
curved valleys. Therefore, it is reasonable to present a nonmonotonic line
search technique for optimization which allows an increase in function value
at each step, while retaining global convergence. Grippo etc. [164] general-
ized the Armijo rule to the nonmonotone case and relaxed the condition of
monotonic decrease. Several papers also deal with these techniques. Here we
only state the basic result of nonmonotonic line search as follows.

Theorem 2.5.9 Let {x} be a sequence defined by
Tt1 = Tk + axdy, di # 0.

Let 7 > 0,0 € (0,1),7 € (0,1) and let M be a nonnegative integer. Assume
that

(i) the level set Q = {z | f(x) < f(xo)} is compact;

(ii) there exist positive numbers ¢y, ca such that

Vfap) dy < —er||V f )| (2.5.35)
ldill < 2|V f () l; (2.5.36)
(iii) oy, = o T, where hy is the first nonnegative integer h, such that

flap+o"rdy) < max [f(zp)] + 70" 7V f (2x) " dy, (2.5.37)
0<j<m(k)
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where m(0) =0 and 0 < m(k) < min[m(k — 1) + 1, M],k > 1.
Then the sequence {xy} remains in 0 and every accumulation point T
satisfies V f(z) = 0.

Proof. See Grippo etc. [164]. O

Exercises

1. Let f(x) = (sinz)®tan(1 — 2)e3"®. Find the maximum of f(z) in [0, 1]
by use of the 0.618 method, quadratic interpolation method, and Goldstein
line search, respectively.

2. Write the Fibonacci algorithm and its program in MATLAB (or FOR-
TRAN, C).

3. Let ¢(t) = e7* + €. Let the initial interval be [—1,1].
(1) Minimize ¢(t) by 0.618 method.

(2) Minimize ¢(t) by Fibonacci method.

(3) Minimize ¢(t) by Armijo line search.

4. Let ¢(t) = 1 — te~**. Let the initial interval be [0,1]. Try to minimize
¢(t) by quadratic interpolation method.

5. Let ¢(t) = —2t3 + 212 — 60t + 50.

(1) Minimize ¢(t) by Armijo rule if ¢o = 0.5 and p = 0.1.

(2) Minimize ¢(t) by Goldstein rule if to = 0.5 and p = 0.1.

(3) Minimize ¢(t) by Wolfe rule if tg = 0.5,p = 0.1, and ¢ = 0.8.

6. Let f(z) = xf + 22 + 22. Given current point x;, = (1,1)7 and
=(-3,-1)T. Let p=0.1,0 = 0.5.

(1) Try using the Wolfe rule to find a new point xj1.

(2) Set @« = 1, = 0.5, = 0.1 respectively, describe that for which «
satisfies the Wolfe rule and for which « does not satisfy the Wolfe rule.

dy,

7. Show that if 0 < o < p < 1, then there may be no steplengths that
satisfy the Wolfe rule.

8. Describe the outline of Theorem 2.5.4.
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9. Prove the other form of Theorem 2.5.5: Let f : R™ — R be continu-
ously differentiable and bounded below, and let V f be Lipschitz continuous
on the level set Q = {z | f(x) < f(xo)}. Assume that « is defined by Wolfe-
Powell rule (2.5.3) and (2.5.7). Then the sequence generated by Algorithm

2.5.3 satisfies .
lim Vi(@r) sk _ 0.
k—too ||skl|

which means
IV f(zk)| cos b — 0.
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