
Chapter 2

Line Search

2.1 Introduction

Line search, also called one-dimensional search, refers to an optimization pro-
cedure for univariable functions. It is the base of multivariable optimization.
As stated before, in multivariable optimization algorithms, for given xk, the
iterative scheme is

xk+1 = xk + αkdk. (2.1.1)

The key is to find the direction vector dk and a suitable step size αk. Let

φ(α) = f(xk + αdk). (2.1.2)

So, the problem that departs from xk and finds a step size in the direction
dk such that

φ(αk) < φ(0)

is just line search about α.
If we find αk such that the objective function in the direction dk is mini-

mized, i.e.,
f(xk + αkdk) = min

α>0
f(xk + αdk),

or
φ(αk) = min

α>0
φ(α),

such a line search is called exact line search or optimal line search, and αk is
called optimal step size. If we choose αk such that the objective function has
acceptable descent amount, i.e., such that the descent f(xk)−f(xk +αkdk) >

72 CHAPTER 2. LINE SEARCH

0 is acceptable by users, such a line search is called inexact line search, or
approximate line search, or acceptable line search.

Since, in practical computation, theoretically exact optimal step size gen-
erally cannot be found, and it is also expensive to find almost exact step
size, therefore the inexact line search with less computation load is highly
popular.

The framework of line search is as follows. First, determine or give an
initial search interval which contains the minimizer; then employ some section
techniques or interpolations to reduce the interval iteratively until the length
of the interval is less than some given tolerance.

Next, we give a notation about the search interval and a simple method
to determine the initial search interval.

Definition 2.1.1 Let φ : R → R,α∗ ∈ [0,+∞), and

φ(α∗) = min
α≥0

φ(α).

If there exists a closed interval [a, b] ⊂ [0,+∞) such that α∗ ∈ [a, b], then
[a, b] is called a search interval for one-dimensional minimization problem
minα≥0 φ(α). Since the exact location of the minimum of φ over [a, b] is not
known, this interval is also called the interval of uncertainty.

A simple method to determine an initial interval is called the forward-
backward method. The basic idea of this method is as follows. Given an
initial point and an initial steplength, we attempt to determine three points
at which their function values show “high–low–high” geometry. If it is not
successful to go forward, we will go backward. Concretely, given an initial
point α0 and a steplength h0 > 0. If

φ(α0 + h0) < φ(α0),

then, next step, depart from α0+h0 and continue going forward with a larger
step until the objective function increases. If

φ(α0 + h0) > φ(α0),

then, next step, depart from α0 and go backward until the objective function
increases. So, we will obtain an initial interval which contains the minimum
α∗.

2.1. INTRODUCTION 73

Algorithm 2.1.2 (Forward-Backward Method)

Step 1. Given α0 ∈ [0,∞), h0 > 0, the multiple coefficient t > 1
(Usually t = 2). Evaluate φ(α0), k := 0.

Step 2. Compare the objective function values. Set αk+1 = αk + hk

and evaluate φk+1 = φ(αk+1). If φk+1 < φk, go to Step 3;
otherwise, go to Step 4.

Step 3. Forward step. Set hk+1 := thk, α := αk, αk := αk+1, φk :=
φk+1, k := k + 1, go to Step 2.

Step 4. Backward step. If k = 0, invert the search direction. Set
hk := −hk, αk := αk+1, go to Step 2; otherwise, set

a = min{α, αk+1}, b = max{α, αk+1},

output [a, b] and stop. �

The methods of line search presented in this chapter use the unimodality
of the function and interval. The following definitions and theorem introduce
their concepts and properties.

Definition 2.1.3 Let φ : R → R, [a, b] ⊂ R. If there is α∗ ∈ [a, b] such that
φ(α) is strictly decreasing on [a, α∗] and strictly increasing on [α∗, b], then
φ(α) is called a unimodal function on [a, b]. Such an interval [a, b] is called
a unimodal interval related to φ(α).

The unimodal function can also be defined as follows.

Definition 2.1.4 If there exists a unique α∗ ∈ [a, b], such that for any
α1, α2 ∈ [a, b], α1 < α2, the following statements hold:

if α2 < α∗, then φ(α1) > φ(α2);

if α1 > α∗, then φ(α1) < φ(α2);

then φ(α) is the unimodal function on [a, b].

Note that, first, the unimodal function does not require the continuity and
differentiability of the function; second, using the property of the unimodal
function, we can exclude portions of the interval of uncertainty that do not

74 CHAPTER 2. LINE SEARCH

contain the minimum, such that the interval of uncertainty is reduced. The
following theorem shows that if the function φ is unimodal on [a, b], then the
interval of uncertainy could be reduced by comparing the function values of
φ at two points within the interval.

Theorem 2.1.5 Let φ : R → R be unimodal on [a, b]. Let α1, α2 ∈ [a, b],
and α1 < α2. Then

1. if φ(α1) ≤ φ(α2), then [a, α2] is a unimodal interval related to φ;

2. if φ(α1) ≥ φ(α2), then [α1, b] is a unimodal interval related to φ.

Proof. From the Definition 2.1.3, there exists α∗ ∈ [a, b] such that φ(α)
is strictly decreasing over [a, α∗] and strictly increasing over [α∗, b]. Since
φ(α1) ≤ φ(α2), then α∗ ∈ [a, α2] (see Figure 2.1.1). Since φ(α) is unimodal
on [a, b], it is also unimodal on [a, α2]. Therefore [a, α2] is a unimodal interval
related to φ(α) and the proof of the first part is complete.

The second part of the theorem can be proved similarly. �

This theorem indicates that, for reducing the interval of uncertainty, we
must at least select two observations, evaluate and compare their function
values.

Figure 2.1.1 Properties of unimodal interval and unimodal function

2.2 Convergence Theory for Exact Line Search

The general form of an unconstrained optimization algorithm is as follows.

Algorithm 2.2.1 (General Form of Unconstrained Optimization)

Initial Step: Given x0 ∈ Rn, 0 ≤ ε � 1.

2.2. CONVERGENCE THEORY FOR EXACT LINE SEARCH 75

k-th Step: Compute the descent direction dk;
Compute the step size αk, such that

f(xk + αkdk) = min
α≥0

f(xk + αdk); (2.2.1)

Set
xk+1 = xk + αkdk; (2.2.2)

If ‖∇f(xk+1)‖ ≤ ε, stop; otherwise, repeat the above steps.
�

Set
φ(α) = f(xk + αdk), (2.2.3)

obviously we have from the algorithm that

φ(0) = f(xk), φ(α) ≤ φ(0).

In fact, (2.2.1) is to find the global minimizer of φ(α) which is rather difficult.
Instead, we look for the first stationary point, i.e., take αk such that

αk = min{α ≥ 0 | ∇f(xk + αdk)T dk = 0}. (2.2.4)

Since, by (2.2.1) and (2.2.4), we find the exact minimizer and the stationary
point of φ(α) respectively, we say that (2.2.1) and (2.2.4) are exact line
searches.

Let 〈dk,−∇f(xk)〉 denote the angle between dk and −∇f(xk), we have

cos〈dk,−∇f(xk)〉 = − dT
k∇f(xk)

‖dk‖‖∇f(xk)‖
. (2.2.5)

The following theorem gives a bound of descent in function values for each
iteration in exact line search.

Theorem 2.2.2 Let αk > 0 be the solution of (2.2.1). Let ‖∇2f(xk +
αdk)‖ ≤ M ∀α > 0, where M is some positive number. Then

f(xk)− f(xk + αkdk) ≥
1

2M
‖∇f(xk)‖2 cos2〈dk,−∇f(xk)〉. (2.2.6)

76 CHAPTER 2. LINE SEARCH

Proof. From the assumptions we have that

f(xk + αdk) ≤ f(xk) + αdT
k∇f(xk) +

α2

2
M‖dk‖2, ∀α > 0. (2.2.7)

Set ᾱ = −dT
k∇f(xk)/(M‖dk‖2); it follows from the assumptions, (2.2.7) and

(2.2.5) that

f(xk)− f(xk + αkdk) ≥ f(xk)− f(xk + ᾱdk)

≥ −ᾱdT
k∇f(xk)−

ᾱ2

2
M‖dk‖2

=
1
2

(dT
k∇f(xk))2

M‖dk‖2

=
1

2M
‖∇f(xk)‖2

(dT
k∇f(xk))2

‖dk‖2‖∇f(xk)‖2

=
1

2M
‖∇f(xk)‖2 cos2〈dk,−∇f(xk)〉.�

Now we are in position to state the convergence property of general un-
constrained optimization algorithms with exact line search. The following
two theorems state the convergence by different forms.

Theorem 2.2.3 Let f(x) be a continuously differentiable function on an
open set D ⊂ Rn, assume that the sequence from Algorithm 2.2.1 satisfies
f(xk+1) ≤ f(xk)∀k and ∇f(xk)T dk ≤ 0. Let x̄ ∈ D be an accumulation
point of {xk} and K1 be an index set with K1 = {k | limk→∞ xk = x̄}. Also
assume that there exists M > 0 such that ‖dk‖ < M,∀k ∈ K1. Then, if d̄ is
any accumulation point of {dk}, we have

∇f(x̄)T d̄ = 0. (2.2.8)

Furthermore, if f(x) is twice continuously differentiable on D, then

d̄T∇2f(x̄)d̄ ≥ 0. (2.2.9)

Proof. It is enough to prove (2.2.8) because the proof of (2.2.9) is similar.
Let K2 ⊂ K1 be an index set with d̄ = limk∈K2 dk. If d̄ = 0, (2.2.8) is

trivial. Otherwise, we consider the following two cases.

2.2. CONVERGENCE THEORY FOR EXACT LINE SEARCH 77

(i) There exists an index set K3 ⊂ K2 such that limk∈K3 αk = 0. Since
αk is an exact step size, then ∇f(xk +αkdk)T dk = 0. Since ‖dk‖ is uniformly
bounded above and αk → 0, taking the limit yields

∇f(x̄)T d̄ = 0.

(ii) Case of lim infk∈K2 αk = ᾱ > 0. Let K4 ⊂ K2 be an index set of k
with αk ≥ ᾱ/2,∀k ∈ K4. Now assume that the conclusion (2.2.8) is not true,
then we have

∇f(x̄)T d̄ < −δ < 0.

So, there exist a neighborhood N(x̄) of x̄ and an index set K5 ⊂ K4 such
that when x ∈ N(x̄) and k ∈ K5,

∇f(x)T dk ≤ −δ/2 < 0.

Let α̂ be a sufficiently small positive number, such that for all 0 ≤ α ≤ α̂
and all k ∈ K5, xk + αdk ∈ N(x̄). Take α∗ = min(ᾱ/2, α̂), then from
the non-increasing property of the algorithm, exact line search and Taylor’s
expansion, we have

f(x̄)− f(x0) =
∞∑

k=0

[f(xk+1)− f(xk)]

≤
∑

k∈K5

[f(xk+1)− f(xk)]

≤
∑

k∈K5

[f(xk + α∗dk)− f(xk)] (2.2.10)

=
∑

k∈K5

∇f(xk + τkdk)T α∗dk (2.2.11)

≤
∑

k∈K5

−
(

δ

2

)
α∗

= −∞,

where 0 ≤ τk ≤ α∗. The above contradiction shows that (2.2.8) also holds
for case (ii).

The proof of (2.2.9) is similar. It is enough to note using the second-order
form of the Taylor expansion instead of the first-order form in (2.2.11). In
fact, from (2.2.10) we have

f(x̄)− f(x0)

78 CHAPTER 2. LINE SEARCH

≤
∑

k∈K5

[f(xk + α∗dk)− f(xk)]

=
∑

k∈K5

[
∇f(xk)T (α∗dk) +

(α∗)2

2
dT

k∇2f(xk + τkdk)dk

]
for 0 ≤ τk ≤ α∗

≤
∑

k∈K5

(α∗)2

2
dT

k∇2f(xk + τkdk)dk for 0 ≤ τk ≤ α∗

≤
∑

k∈K5

[
−1

2

(
δ

2

)
(α∗)2

]

= −∞. (2.2.12)

We also get a contradiction which proves (2.2.9). �

Theorem 2.2.4 Let ∇f(x) be uniformly continuous on the level set L =
{x ∈ Rn | f(x) ≤ f(x0)}. Let also the angle θk between −∇f(xk) and the
direction dk generated by Algorithm 2.2.1 is uniformly bounded away from
90◦, i.e., satisfies

θk ≤
π

2
− µ, for some µ > 0. (2.2.13)

Then ∇f(xk) = 0 for some k; or f(xk) → −∞; or ∇f(xk) → 0.

Proof. Assume that, for all k, ∇f(xk)
= 0 and f(xk) is bounded below.
Since {f(xk)} is monotonic descent, its limit exists. Therefore

f(xk)− f(xk+1) → 0. (2.2.14)

Assume, by contradiction, that ∇f(xk) → 0 does not hold. Then there
exists ε > 0 and a subset K, such that ‖∇f(xk)‖ ≥ ε∀k ∈ K. Therefore

−∇f(xk)T dk/‖dk‖ = ‖∇f(xk)‖ cos θk ≥ ε sin µ
∆= ε1. (2.2.15)

Note that

f(xk + αdk)
= f(xk) + α∇f(ξk)T dk

= f(xk) + α∇f(xk)T dk + α[∇f(ξk)−∇f(xk)]T dk

≤ f(xk) + α‖dk‖
(
∇f(xk)T dk

‖dk‖
+ ‖∇f(ξk)−∇f(xk)‖

)
, (2.2.16)

2.2. CONVERGENCE THEORY FOR EXACT LINE SEARCH 79

where ξk lies between xk and xk + αdk. Since ∇f(x) is uniformly continuous
on the level set L, there exists ᾱ such that when 0 ≤ α‖dk‖ ≤ ᾱ, we have

‖∇f(ξk)−∇f(xk)‖ ≤
1
2
ε1. (2.2.17)

By (2.2.15)–(2.2.17), we get

f

(
xk + ᾱ

dk

‖dk‖

)
≤ f(xk) + ᾱ

(
∇f(xk)T dk

‖dk‖
+

1
2
ε1

)

≤ f(xk)−
1
2
ᾱε1.

Therefore
f(xk+1) ≤ f

(
xk + ᾱ

dk

‖dk‖

)
≤ f(xk)−

1
2
ᾱε1,

which contradicts (2.2.14). The contradiction shows that ∇f(xk) → 0. We
complete this proof. �

In the remainder of this section, we discuss the convergence rate of min-
imization algorithms with exact line search. For convenience of the proof of
the theorem, we first give some lemmas.

Lemma 2.2.5 Let φ(α) be twice continuously differentiable on the closed
interval [0, b] and φ′(0) < 0. If the minimizer α∗ ∈ (0, b) of φ(α) on [0, b],
then

α∗ ≥ α̃ = −φ′(0)/M, (2.2.18)

where M is a positive number such that φ′′(α) ≤ M, ∀α ∈ [0, b].

Proof. Construct the auxiliary function

ψ(α) = φ′(0) + Mα,

which has the unique zero

α̃ = −φ′(0)/M.

Noting that φ′′(α) ≤ M , it follows that

φ′(α) = φ′(0) +
∫ α

0
φ′′(α)d α ≤ φ′(0) +

∫ α

0
Md α = ψ(α).

80 CHAPTER 2. LINE SEARCH

Setting α = α∗ in the above inequality and noting that φ′(α∗) = 0, we obtain

0 ≤ ψ(α∗) = φ′(0) + Mα∗

which is (2.2.18). �

Lemma 2.2.6 Let f(x) be twice continuously differentiable on Rn. Then for
any vector x, d ∈ Rn and any number α, the equality

f(x + αd) = f(x) + α∇f(x)T d + α2
∫ 1

0
(1− t)[dT∇2f(x + tαd)d]dt (2.2.19)

holds.

Proof. From calculus, we have

f(x + αd)− f(x)

=
∫ 1

0
df(x + tαd)

= −
∫ 1

0
[α∇f(x + tαd)T d]d(1− t)

= −[(1− t)α∇f(x + tαd)T d]10 +
∫ 1

0
(1− t)d[α∇f(x + tαd)T d]

= α∇f(x)T d + α2
∫ 1

0
[(1− t)dT∇2f(x + tαd)d]dt. �

Lemma 2.2.7 Let f(x) be twice continuously differentiable in the neighbor-
hood of the minimizer x∗. Assume that there exist ε > 0 and M > m > 0,
such that

m‖y‖2 ≤ yT∇2f(x)y ≤ M‖y‖2, ∀y ∈ Rn (2.2.20)

holds when ‖x− x∗‖ < ε. Then we have

1
2
m‖x− x∗‖2 ≤ f(x)− f(x∗) ≤ 1

2
M‖x− x∗‖2 (2.2.21)

and
‖∇f(x)‖ ≥ m‖x− x∗‖. (2.2.22)

2.2. CONVERGENCE THEORY FOR EXACT LINE SEARCH 81

Proof. From Lemma 2.2.6 we have

f(x)− f(x∗)

= ∇f(x∗)T (x− x∗) +
∫ 1

0
(1− t)(x− x∗)T∇2f(tx + (1− t)x∗)(x− x∗)dt

=
∫ 1

0
(1− t)(x− x∗)T∇2f(tx + (1− t)x∗)(x− x∗)dt. (2.2.23)

Note that (2.2.20) and the integral mean-value theorem give

m‖x− x∗‖2
∫ 1

0
(1− t)dt

≤
∫ 1

0
(1− t)(x− x∗)T∇2f(tx + (1− t)x∗)(x− x∗)dt

≤ M‖x− x∗‖2
∫ 1

0
(1− t)dt. (2.2.24)

Then combining (2.2.23) and (2.2.24) yields (2.2.21).
Also, using Taylor expansion gives

∇f(x) = ∇f(x)−∇f(x∗) =
∫ 1

0
∇2f(tx + (1− t)x∗)(x− x∗)dt.

Then

‖∇f(x)‖‖x− x∗‖ ≥ (x− x∗)T∇f(x)

=
∫ 1

0
(x− x∗)T∇2f(tx + (1− t)x∗)(x− x∗)dt

≥ m‖x− x∗‖2

which proves (2.2.22). �

Now we are in the position to give the theorem about convergence rate
which shows that the local convergence rate of Algorithm 2.2.1 with exact
line search is at least linear.

Theorem 2.2.8 Let the sequence {xk} generated by Algorithm 2.2.1 con-
verge to the minimizer x∗ of f(x). Let f(x) be twice continuously differen-
tiable in a neighborhood of x∗. If there exist ε > 0 and M > m > 0 such that
when ‖x− x∗‖ < ε,

m‖y‖2 ≤ yT∇2f(x)y ≤ M‖y‖2, ∀y ∈ Rn (2.2.25)

holds, then the sequence {xk}, at least, converges linearly to x∗.

82 CHAPTER 2. LINE SEARCH

Proof. Let limk→∞ xk = x∗. We may assume that ‖xk − x∗‖ ≤ ε for k
sufficiently large. Since ‖xk+1 − x∗‖ < ε, there exists δ > 0 such that

‖xk + (αk + δ)dk − x∗‖ = ‖xk+1 − x∗ + δdk‖ < ε. (2.2.26)

Note that φ(α) = f(xk +αdk), φ′(α) = ∇f(xk +αdk)T dk, φ
′(0) = ∇f(xk)T dk

and |φ′(0)| ≤ ‖∇f(xk)‖‖dk‖. We have φ′(0) < 0,

ρ‖∇f(xk)‖‖dk‖ ≤ −φ′(0) ≤ ‖∇f(xk)‖‖dk‖, for some ρ ∈ (0, 1) (2.2.27)

and
φ′′(α) = dT

k∇2f(xk + αdk)dk ≤ M‖dk‖2.

Then, by Lemma 2.2.5, we know that the minimizer αk of φ(α) on [0, αk + δ]
satisfies

αk ≥ α̃k =
−φ′(0)
M‖dk‖2

≥ ρ‖∇f(xk)‖
M‖dk‖

∆= ᾱk. (2.2.28)

Set x̄k = xk + ᾱkdk. Obviously, it follows from (2.2.26) that ‖x̄k − x∗‖ < ε.
Therefore,

f(xk + αkdk)− f(xk)
≤ f(xk + ᾱkdk)− f(xk)

= ᾱk∇f(xk)T dk + ᾱ2
k

∫ 1

0
(1− t)dT

k∇2f(xk + tᾱkdk)dkdt (from Lemma 2.2.6)

≤ ᾱk(−ρ)‖∇f(xk)‖‖dk‖+
1
2
Mᾱ2

k‖dk‖2 (from (2.2.25) and (2.2.27))

≤ − ρ2

2M
‖∇f(xk)‖2 (from (2.2.28))

≤ − ρ2

2M
m2‖xk − x∗‖2 (from (2.2.22))

≤ −
(

ρm

M

)2

[f(xk)− f(x∗)] (from (2.2.21)).

The above inequalities give

f(xk+1)− f(x∗) = [f(xk+1)− f(xk)] + [f(xk)− f(x∗)]

≤
[
1−

(
ρm

M

)2
]

[f(xk)− f(x∗)]. (2.2.29)

2.2. CONVERGENCE THEORY FOR EXACT LINE SEARCH 83

Set

θ =

[
1−

(
ρm

M

)2
] 1

2

. (2.2.30)

Obviously θ ∈ (0, 1). Therefore (2.2.29) can be written as

f(xk)− f(x∗) ≤ θ2[f(xk−1)− f(x∗)]
≤ · · ·
≤ θ2k[f(x0)− f(x∗)]. (2.2.31)

Furthermore, by (2.2.21), we have

‖xk − x∗‖2 ≤ 2
m

[f(xk)− f(x∗)]

≤ 2
m

θ2[f(xk−1)− f(x∗)]

≤ 2
m

θ2 M

2
‖xk−1 − x∗‖2

which implies that

‖xk − x∗‖ ≤
√

M

m
θ‖xk−1 − x∗‖ (2.2.32)

and that the sequence {xk}, at least, converges linearly to x∗. �

In the end of this section, we give a theorem which describes a descent
bound of the function value after each exact line search.

Theorem 2.2.9 Let αk be an exact step size. Assume that f(x) satisfies

(x− z)T [∇f(x)−∇f(z)] ≥ η‖x− z‖2. (2.2.33)

Then

f(xk)− f(xk + αkdk) ≥
1
2
η‖αkdk‖2. (2.2.34)

Proof. Since αk is an exact step size, then

∇f(xk + αkdk)T dk = 0. (2.2.35)

84 CHAPTER 2. LINE SEARCH

Therefore, it follows from the mean-value theorem, (2.2.35) and (2.2.33) that

f(xk)− f(xk + αkdk) =
∫ αk

0
−dT

k∇f(xk + tdk)dt

=
∫ αk

0
dT

k [∇f(xk + αkdk)−∇f(xk + tdk)]dt

≥
∫ αk

0
η(αk − t)dt‖dk‖2

=
1
2
η‖αkdk‖2. (2.2.36)

This completes the proof. �

2.3 The Golden Section Method and the Fibonacci
Method

The golden section method and the Fibonacci method are section methods.
Their basic idea for minimizing a unimodal function over [a, b] is iteratively
reducing the interval of uncertainty by comparing the function values of the
observations. When the length of the interval of uncertainty is reduced to
some desired degree, the points on the interval can be regarded as approxi-
mations of the minimizer. Such a class of methods only needs to evaluate the
functions and has wide applications, especially it is suitable to nonsmooth
problems and those problems with complicated derivative expressions.

2.3.1 The Golden Section Method

Let
φ(α) = f(x + αd)

be a unimodal function on the interval [a, b]. At the iteration k of the golden
section method, let the interval of uncertainty be [ak, bk]. Take two observa-
tions λk, µk ∈ [ak, bk] and λk < µk. Evaluate φ(λk) and φ(µk). By Theorem
2.1.5, we have

Case 1 if φ(λk) ≤ φ(µk), then set ak+1 = ak, bk+1 = µk;

Case 2 if φ(λk) > φ(µk), then set ak+1 = λk, bk+1 = bk.

How to choose the observations λk and µk? We require that λk and µk

satisfy the following conditions:

2.3. SECTION METHODS 85

1. The distances from λk and µk to the end points of the interval [ak, bk]
are equivalent, that is,

bk − λk = µk − ak. (2.3.1)

2. The reduction rate of the intervals of uncertainty for each iteration is
the same, that is

bk+1 − ak+1 = τ(bk − ak), τ ∈ (0, 1). (2.3.2)

3. Only one extra observation is needed for each new iteration.

Now we consider Case 1. Substituting the values of Case 1 into (2.3.2) and
combining (2.3.1) yield

µk − ak = τ(bk − ak),
bk − λk = µk − ak.

Arranging the above equations gives

λk = ak + (1− τ)(bk − ak), (2.3.3)
µk = ak + τ(bk − ak). (2.3.4)

Note that, in this case, the new interval is [ak+1, bk+1] = [ak, µk]. For fur-
ther reducing the interval of uncertainty, the observations λk+1 and µk+1 are
selected. By (2.3.4),

µk+1 = ak+1 + τ(bk+1 − ak+1)
= ak + τ(µk − ak)
= ak + τ(ak + τ(bk − ak)− ak)
= ak + τ2(bk − ak). (2.3.5)

If we set
τ2 = 1− τ, (2.3.6)

then
µk+1 = ak + (1− τ)(bk − ak) = λk. (2.3.7)

It means that the new observation µk+1 does not need to compute, because
µk+1 coincides with λk.

86 CHAPTER 2. LINE SEARCH

Similarly, if we consider Case 2, the new observation λk+1 coincides with
µk. Therefore, for each new iteration, only one extra observation is needed,
which is just required by the third condition.

What is the reduction rate of the interval of uncertainty for each iteration?
By solving the equation (2.3.6), we immediately obtain

τ =
−1±

√
5

2
.

Since τ > 0, then take

τ =
bk+1 − ak+1

bk − ak
=
√

5− 1
2

≈ 0.618. (2.3.8)

Then the formula (2.3.3)–(2.3.4) can be written as

λk = ak + 0.382(bk − ak), (2.3.9)
µk = ak + 0.618(bk − ak). (2.3.10)

Therefore, the golden section method is also called the 0.618 method.
Obviously, comparing with the Fibonacci method below, the golden sec-

tion method is more simple in performance and we need not know the number
of observations in advance.

Since, for each iteration, the reduction rate of the interval of uncertainty
is τ = 0.618, then if the initial interval is [a1, b1], the length of the interval
after n-th iteration is τn−1(b1 − a1). Therefore the convergence rate of the
golden section method is linear.

Algorithm 2.3.1 (The Golden Section Method)

Step 1. Initial step. Determine the initial interval [a1, b1] and give
the precision δ > 0. Compute initial observations λ1 and
µ1:

λ1 = a1 + 0.382(b1 − a1),
µ1 = a1 + 0.618(b1 − a1),

evaluate φ(λ1) and φ(µ1), set k = 1.

Step 2. Compare the function values. If φ(λk) > φ(µk), go to Step
3; if φ(λk) ≤ φ(µk), go to Step 4.

2.3. SECTION METHODS 87

Step 3. (Case 2) If bk − λk ≤ δ, stop and output µk; otherwise, set

ak+1 := λk, bk+1 := bk, λk+1 := µk,

φ(λk+1) := φ(µk), µk+1 := ak+1 + 0.618(bk+1 − ak+1).

Evaluate φ(µk+1) and go to Step5.

Step 4. (Case 1) If µk − ak ≤ δ, stop and output λk; otherwise set

ak+1 := ak, bk+1 := µk, µk+1 := λk,

φ(µk+1) := φ(λk), λk+1 := ak+1 + 0.382(bk+1 − ak+1).

Evaluate φ(λk+1) and go to Step 5.

Step 5. k := k + 1, go to Step 2. �

2.3.2 The Fibonacci Method

Another section method which is similar to the golden section method is the
Fibonacci method. Their main difference is in that the reduction rate of
the interval of uncertainty for the Fibonacci method does not use the golden
section number τ ≈ 0.618, but uses the Fibonacci number. Therefore the
reduction of the interval of uncertainty varies from one iteration to another.

The Fibonacci sequence {Fk} is defined as follows:

F0 = F1 = 1, (2.3.11)
Fk+1 = Fk + Fk−1, k = 1, 2, · · · . (2.3.12)

If we use Fn−k/Fn−k+1 instead of τ in (2.3.3)–(2.3.4), we immediately obtain
the formula

λk = ak +
(

1− Fn−k

Fn−k+1

)
(bk − ak) (2.3.13)

= ak +
Fn−k−1

Fn−k+1
(bk − ak), k = 1, · · · , n− 1,

µk = ak +
Fn−k

Fn−k+1
(bk − ak), k = 1, · · · , n− 1, (2.3.14)

which is called the Fibonacci formula.

88 CHAPTER 2. LINE SEARCH

As stated in the last section, in Case 1, if φ(λk) ≤ φ(µk), the new interval
of uncertainty is [ak+1, bk+1] = [ak, µk]. So, by using (2.3.14), we get

bk+1 − ak+1 =
Fn−k

Fn−k+1
(bk − ak) (2.3.15)

which gives a reduction in each iteration. This equality is also true for Case
2.

Assume that we ask for the length of the final interval no more than δ,
i.e.,

bn − an ≤ δ.

Since

bn − an =
F1

F2
(bn−1 − an−1)

=
F1

F2

F2

F3
· · · Fn−1

Fn
(b1 − a1)

=
1
Fn

(b1 − a1), (2.3.16)

then
Fn ≥

b1 − a1

δ
. (2.3.17)

Therefore, given initial interval [a1, b1] and the upper bound δ of the length
of the final interval, we can find the Fibonacci number Fn and further n from
(2.3.17). Our search proceeds until the n-th observation. The procedure
of the Fibonacci method is similar to Algorithm 2.3.1. We leave it as an
exercise.

Letting Fk = rk and substituting in (2.3.11)-(2.3.12), we get

r2 − r − 1 = 0. (2.3.18)

Solving (2.3.18) gives

r1 =
1 +

√
5

2
, r2 =

1−
√

5
2

. (2.3.19)

Then, the general solution of the difference equation Fk+1 = Fk + Fk−1 is

Fk = Ark
1 + Brk

2 . (2.3.20)

2.4. INTERPOLATION METHOD 89

Using the initial condition F0 = F1 = 1, we get

A =
r1√
5
, B = − r2√

5
.

Substituting in (2.3.20) gives

Fk =
1√
5

⎧⎨
⎩
(

1 +
√

5
2

)k+1

−
(

1−
√

5
2

)k+1
⎫⎬
⎭ . (2.3.21)

Hence

lim
k→∞

Fk−1

Fk
=
√

5− 1
2

= τ. (2.3.22)

This shows that, when k →∞, the Fibonacci method and the golden section
method have the same reduction rate of the interval of uncertainty. There-
fore the Fibonacci method converges with convergence ratio τ . It is worth
mentioning that the Fibonacci method is the optimal sectioning method for
one-dimensional optimization and it requires the smallest observations for a
given final length δ, and that the golden section method is approximately
optimal. However, since the procedure of the golden section method is very
simple, it is more popular.

2.4 Interpolation Method

Interpolation Methods are the other approach of line search. This class of
methods approximates φ(α) = f(x + αd) by fitting a quadratic or cubic
polynomial in α to known data, and choosing a new α-value which mini-
mizes the polynomial. Then we reduce the bracketing interval by comparing
the new α-value and the known points. In general, when the function has
good analytical properties, for example, it is easy to get the derivatives, the
interpolation methods are superior to the golden section method and the
Fibonacci method discussed in the last subsection.

2.4.1 Quadratic Interpolation Methods

1. Quadratic Interpolation Method with Two Points (I).
Given two points α1, α2, and their function values φ(α1) and φ(α2), and the
derivative φ′(α1) (or φ′(α2)). Construct the quadratic interpolation function

90 CHAPTER 2. LINE SEARCH

q(α) = aα2 + bα + c with the interpolation conditions:

q(α1) = aα2
1 + bα1 + c = φ(α1),

q(α2) = aα2
2 + bα2 + c = φ(α2), (2.4.1)

q′(α1) = 2aα1 + b = φ′(α1).

Write φ1 = φ(α1), φ2 = φ(α2), φ′
1 = φ′(α1), and φ′

2 = φ′(α2). Solving (2.4.1)
gives

a =
φ1 − φ2 − φ′

1(α1 − α2)
−(α1 − α2)2

,

b = φ′
1 + 2

φ1 − φ2 − φ′
1(α1 − α2)

(α1 − α2)2
α1.

Hence

ᾱ = − b

2a

= α1 +
1
2

φ′
1(α1 − α2)2

α1 − α2 − φ′
1(α1 − α2)

= α1 −
1
2

(α1 − α2)φ′
1

φ′
1 − φ1−φ2

α1−α2

. (2.4.2)

Then we get the following iteration formula:

αk+1 = αk −
1
2

(αk − αk−1)φ′
k

φ′
k −

φk−φk−1

αk−αk−1

. (2.4.3)

where φk = φ(αk), φk−1 = φ(αk−1), and φ′
k = φ′(αk).

After finding the new αk+1, we compare αk+1 with αk and αk−1, and
reduce the bracketing interval. The procedure will continue until the length
of the interval is less than a prescribed tolerance.

2. Quadratic Interpolation Method with Two Points (II).
Given two points α1, α2, and one function value φ(α1) (or φ(α2)), and two
derivative values φ′(α1) and φ′(α2). Construct the quadratic interpolation
function with the following conditions:

q(α1) = aα2
1 + bα1 + c = φ(α1),

q′(α1) = 2aα1 + b = φ′(α1), (2.4.4)
q′(α2) = 2aα2 + b = φ′(α2).

2.4. INTERPOLATION METHOD 91

Precisely, with the same discussion as above we obtain

ᾱ = − b

2a
= α1 −

α1 − α2

φ′
1 − φ′

2

φ′
1. (2.4.5)

Therefore the iteration scheme is

αk+1 = αk −
αk − αk−1

φ′
k − φ′

k−1

φ′
k (2.4.6)

which is also called the secant formula. The formula (2.4.5) can also be got
by setting L(α) = 0 where L(α) is the Lagrange interpolation formula

L(α) =
(α− α1)φ′

2 − (α− α2)φ′
1

α2 − α1
(2.4.7)

which interpolates the derivative values of φ′(α) at two points α1 and α2.
In the following discussion, for convenience, we call the quadratic inter-

polating method (I) the quadratic interpolation formula, and the quadratic
interpolation method (II) the secant formula. Next, we turn to the conver-
gence of the quadratic interpolating method with two points.

Theorem 2.4.1 Let φ : R → R be three times continuously differentiable.
Let α∗ be such that φ′(α∗) = 0 and φ′′(α∗)
= 0. Then the sequence {αk}
generated from (2.4.6) converges to α∗ with the order 1+

√
5

2 ≈ 1.618 of con-
vergence rate.

Proof. By the representation of residual term of the Lagrange interpola-
tion formula

R2(α) = φ′(α)− L(α) =
1
2
φ′′′(ξ)(α− αk)(α− αk−1), ξ ∈ (α, αk−1, αk).

(2.4.8)
Setting α = αk+1 and noting that L(αk+1) = 0, we have

φ′(αk+1) =
1
2
φ′′′(ξ)(αk+1 − αk)(αk+1 − αk−1), ξ ∈ (αk−1, αk, αk+1), (2.4.9)

Substituting (2.4.6) into (2.4.9) yields

φ′(αk+1) =
1
2
φ′′′(ξ)φ′

kφ
′
k−1

(αk − αk−1)2

(φ′
k − φ′

k−1)2
, ξ ∈ (αk−1, αk, αk+1). (2.4.10)

92 CHAPTER 2. LINE SEARCH

We know from the mean-value theorem of differentiation that

φ′
k − φ′

k−1

αk − αk−1
= φ′′(ξ0), ξ0 ∈ (αk−1, αk), (2.4.11)

φ′
i = φ′

i − φ′(α∗) = (αi − α∗)φ′′(ξi), (2.4.12)

where ξi ∈ (αi, α
∗), i = k − 1, k, k + 1. Therefore it follows from (2.4.10)-

(2.4.12) that

αk+1 − α∗ =
1
2

φ′′′(ξ)φ′′(ξk)φ′′(ξk−1)
φ′′(ξk+1)[φ′′(ξ0)]2

(αk − α∗)(αk−1 − α∗). (2.4.13)

Let ei = |αi − α∗|, (i = k − 1, k, k + 1). In the intervals considered, let

0 < m2 ≤ |φ′′′(α)| ≤M2, 0 < m1 ≤ |φ′′(α)| ≤M1,

K1 = m2m
2
1/(2M3

1), K = M2M
2
1 /(2m3

1).

Then

K1|αk − α∗||αk−1 − α∗| ≤ |αk+1 − α∗| ≤ K|αk − α∗||αk−1 − α∗|. (2.4.14)

Noting that φ′′ and φ′′′ are continuous at α∗, we get

αk+1 − α∗

(αk − α∗)(αk−1 − α∗)
→ 1

2
φ′′′(α∗)
φ′′(α∗)

. (2.4.15)

Therefore

ek+1 =
∣∣∣∣ φ′′′(η1)
2φ′′(η2)

∣∣∣∣ ekek−1
∆= Mekek−1, (2.4.16)

where η1 ∈ (αk−1, αk, α
∗), η2 ∈ (αk−1, αk), M = |φ′′′(η1)/2φ′′(η2)|. The above

relations indicate that there exists δ > 0 such that, when the initial points
α0, α1 ∈ (α∗ − δ, α∗ + δ) and α0
= α1, the sequence {αk} → α∗.

Next, we consider the convergence rate. Set εi = Mei, yi = ln εi, i =
k − 1, k, k + 1, then

εk+1 = εkεk−1, (2.4.17)

yk+1 = yk + yk−1. (2.4.18)

Obviously, (2.4.18) is the equation that the Fibonacci sequence satisfies, and
its characteristic equation is

t2 − t− 1 = 0 (2.4.19)

2.4. INTERPOLATION METHOD 93

whose solutions are

t1 =
1 +

√
5

2
, t2 =

1−
√

5
2

. (2.4.20)

Therefore the Fibonacci sequence {yk} can be written as

yk = Atk1 + Btk2, k = 0, 1, · · · , (2.4.21)

where A and B are coefficients to be determined. Obviously, when k →∞,

ln εk = yk ≈ Atk1. (2.4.22)

Since
εk+1

εt1
k

≈ exp(Atk+1
1)

[exp(Atk1)]t1
= 1,

then
ek+1

et1
k

≈ M t1−1 (2.4.23)

which implies that the convergence rate is t1 = 1+
√

5
2 ≈ 1.618. �

This theorem tells us that the secant method has superlinear convergence.

3. Quadratic Interpolation Method with Three Points.
Given three distinct points α1, α2 and α3, and their function values. The
required interpolation conditions are

q(αi) = aα2
i + bαi + c = φ(αi), i = 1, 2, 3. (2.4.24)

By solving the above equations, we obtain

a = −(α2 − α3)φ1 + (α3 − α1)φ2 + (α1 − α2)φ3

(α1 − α2)(α2 − α3)(α3 − α1)
,

b =
(α2

2 − α2
3)φ1 + (α2

3 − α2
1)φ2 + (α2

1 − α2
2)φ3

(α1 − α2)(α2 − α3)(α3 − α1)
.

Then

ᾱ = − b

2a

=
1
2

(α2
2 − α2

3)φ1 + (α2
3 − α2

1)φ2 + (α2
1 − α2

2)φ3

(α2 − α3)φ1 + (α3 − α1)φ2 + (α1 − α2)φ3
(2.4.25)

=
1
2
(α1 + α2) +

1
2

(φ1 − φ2)(α2 − α3)(α3 − α1)
(α2 − α3)φ1 + (α3 − α1)φ2 + (α1 − α2)φ3

.(2.4.26)

94 CHAPTER 2. LINE SEARCH

Equations (2.4.25) and (2.4.26) are called the quadratic interpolation formula
with three points. The above formula can also be obtained from considering
the Lagrange interpolation formula

L(α) =
(α− α2)(α− α3)

(α1 − α2)(α1 − α3)
φ1+

(α− α1)(α− α3)
(α2 − α1)(α2 − α3)

φ2+
(α− α1)(α− α2)

(α3 − α1)(α3 − α2)
φ3,

(2.4.27)
and setting L′(α) = 0.

Algorithm 2.4.2 (Line Search Employing Quadratic Interpolation with Three
Points)

Step 0. Given tolerance ε. Find an initial bracket {α1, α2, α3} con-
taining α∗; Compute φ(αi), i = 1, 2, 3.

Step 1. Use the formula (2.4.25) to produce ᾱ;

Step 2. If (ᾱ−α1)(ᾱ−α3) ≥ 0 go to Step 3; otherwise go to Step 4;

Step 3. Construct new bracket {α1, α2, α3} from α1, α2, α3 and ᾱ.
Go to Step 1.

Step 4. If |ᾱ− α2| < ε, stop; otherwise go to Step 3. �

Figure 2.4.1 is a diagram for the quadratic interpolation line search with
three points.

The following theorem shows that the above algorithm has convergence
rate with order 1.32.

Theorem 2.4.3 Let φ(α) have continuous fourth-order derivatives. Let α∗

satisfy φ′(α∗) = 0 and φ′′(α∗)
= 0. Then the sequence {αk} generated from
the formula (2.4.25) has convergence rate with order 1.32.

Proof. By Lagrange interpolation formula (2.4.27), we have

φ(α) = L(α) + R3(α), (2.4.28)

where

R3(α) =
1
6
φ′′′(ξ(α))(α− α1)(α− α2)(α− α3). (2.4.29)

2.4. INTERPOLATION METHOD 95

Since 0 = φ′(α∗) = L′(α∗) + R′
3(α

∗), we get

φ1
2α∗ − (α2 + α3)

(α1 − α2)(α1 − α3)
+ φ2

2α∗ − (α3 + α1)
(α2 − α3)(α2 − α1)

+φ3
2α∗ − (α1 + α2)

(α3 − α1)(α3 − α2)
+ R′

3(α
∗) = 0. (2.4.30)

Noting that (2.4.25) can be rewritten as

α4 =
1
2

φ1(α2+α3)
(α1−α2)(α1−α3) + φ2(α3+α1)

(α2−α3)(α2−α1) + φ3(α1+α2)
(α3−α1)(α3−α2)

φ1

(α1−α2)(α1−α3) + φ2

(α2−α3)(α2−α1) + φ3

(α3−α1)(α3−α2)

, (2.4.31)

it follows from (2.4.30) and (2.4.31) that

α∗ − α4 =
1
2

R′
3(α

∗)
φ1

(α1−α2)(α1−α3) + φ2

(α2−α3)(α2−α1) + φ3

(α3−α1)(α3−α2)

. (2.4.32)

Let ei = α∗ − αi, i = 1, 2, 3, 4. It follows from (2.4.32) that

e4[−φ1(e2 − e3)− φ2(e3 − e1)− φ3(e1 − e2)]

= −1
2
R′

3(α
∗)(e1 − e2)(e2 − e3)(e3 − e1). (2.4.33)

Noting that φ′(α∗) = 0, it follows from Taylor expansion that

φi = φ(α∗) +
1
2
e2
i φ

′′(α∗) + O(e3
i). (2.4.34)

Neglecting the third-order term and substituting (2.4.34) into (2.4.33) give

e4 =
1

φ′′(α∗)
R′

3(α
∗). (2.4.35)

Also, by the Lagrange interpolation formula, we have

R′
3(α) =

1
6
φ′′′(ξ(α))[(α− α2)(α− α3) + (α− α1)(α− α3)

+(α− α1)(α− α2)] +
1
24

φ(4)(η)(α− α1)(α− α2)(α− α3),

which implies

R′
3(α

∗) =
1
6
φ′′′(ξ(α∗))(e1e2 + e2e3 + e3e1) +

1
24

φ(4)(η)e1e2e3. (2.4.36)

96 CHAPTER 2. LINE SEARCH

Neglecting the fourth-order derivative term, it follows from (2.4.35) and
(2.4.36) that

e4 =
φ′′′(ξ(α∗))
6φ′′(α∗)

(e1e2 + e2e3 + e3e1) = M(e1e2 + s2e3 + e3e1),

where M is some constant. In general, we have

ek+2 = M(ek−1ek + ekek+1 + ek+1ek−1). (2.4.37)

Since ek+1 = O(ek) = O(ek−1) when ek → 0, there exists M̄ > 0 such that

|ek+2| ≤ M̄ |ek−1||ek|,

i.e.,
M̄ |ek+2| ≤ M̄ |ek−1|M̄ |ek|.

When |ei|, (i = 1, 2, 3) are sufficiently small such that

δ = max{M̄ |e1|, M̄ |e2|, M̄ |e3|} < 1,

one has
M̄ |e4| ≤ M̄ |e1|M̄ |e2| ≤ δ2.

Set
M̄ |ek| ≤ δqk , (2.4.38)

then
M̄ |ek+2| ≤ M̄ |ek|M̄ |ek−1| ≤ δqkδqk−1 ∆= δqk+2 ,

hence
qk+2 = qk + qk−1, (k ≥ 2) (2.4.39)

where q1 = q2 = q3 = 1. Obviously, the characteristic equation of (2.4.39) is

t3 − t− 1 = 0 (2.4.40)

with one root t1 ≈ 1.32 and other two conjugate complex roots, |t2| = |t3| < 1.
The general solution of (2.4.39) has form

qk = Atk1 + Btk2 + Ctk3, (2.4.41)

where A,B and C are coefficients to be determined. Clearly, when k →∞,

qk+1 − t1qk = Btk2(t2 − t1) + Ctk3(t3 − t1) → 0.

2.4. INTERPOLATION METHOD 97

Figure 2.4.1 Flow chart for quadratic interpolation method
with three points

98 CHAPTER 2. LINE SEARCH

So, when k is sufficiently large, we have

qk+1 − t1qk ≥ −0.1. (2.4.42)

Note from (2.4.38) that |ek| ≤ (1/M̄)δqk
∆= Bk, (k ≥ 1). Then, by (2.4.42),

when k is sufficiently large,

Bk+1

Bk
=

δqk+1/M̄

δt1qk/(M̄)t1
= M̄ t1−1δqk+1−t1qk ≤ δ−0.1M̄ t1−1,

which indicates that the convergence order t1 ≈ 1.32. �

2.4.2 Cubic Interpolation Method

The cubic interpolation method approximates the objective function φ(α) by
a cubic polynomial. To construct the cubic polynomial p(α), four interpo-
lation conditions are required. For example, we may use function values at
four points, or function values at three points and a derivative value at one
point, or function values and derivative values at two points. Note that, in
general, the cubic interpolation has better convergence than the quadratic
interpolation, but that it needs computing of derivatives and more expensive
computation. Hence it is often used for smooth functions. In the following,
we discuss the cubic interpolation method with two points.

We are given two points a and b, the function values φ(a) and φ(b), and
the derivative values φ′(a) and φ′(b) to construct a cubic polynomial of the
form

p(α) = c1(α− a)3 + c2(α− a)2 + c3(α− a) + c4 (2.4.43)

where ci are the coefficients of the polynomial which are chosen such that

p(a) = c4 = φ(a),
p′(a) = c3 = φ′(a),
p(b) = c1(b− a)3 + c2(b− a)2 + c3(b− a) + c4 = φ(b),
p′(b) = 3c1(b− a)2 + 2c2(b− a) + c3 = φ′(b). (2.4.44)

From the sufficient condition of the minimizer, we have

p′(α) = 3c1(α− a)2 + 2c2(α− a) + c3 = 0 (2.4.45)

and
p′′(α) = 6c1(α− a) + 2c2 > 0. (2.4.46)

2.4. INTERPOLATION METHOD 99

Solving (2.4.45) yields

α = a +
−c2 ±

√
c2
2 − 3c1c3

3c1
, if c1
= 0, (2.4.47)

α = a− c3

2c2
, if c1 = 0. (2.4.48)

In order to guarantee the condition (2.4.46) holding, we only take the
positive in (2.4.47). So we combine (2.4.47) with (2.4.48), and get

α− a =
−c2 +

√
c2
2 − 3c1c3

3c1
=

−c3

c2 +
√

c2
2 − 3c1c3

. (2.4.49)

When c1 = 0, (2.4.49) is just (2.4.48). Then the minimizer of p(α) is

ᾱ = a− c3

c2 +
√

c2
2 − 3c1c3

. (2.4.50)

The minimizer in (2.4.50) is represented by c1, c2 and c3. We hope to
represent ᾱ by φ(a), φ(b), φ′(a) and φ′(b) directly.

Let

s = 3
φ(b)− φ(a)

b− a
, z = s− φ′(a)− φ′(b),

w2 = z2 − φ′(a)φ′(b). (2.4.51)

By use of (2.4.44), we have

s = 3
φ(b)− φ(a)

b− a
= 3[c1(b− a)2 + c2(b− a) + c3],

z = s− φ′(a)− φ′(b) = c2(b− a) + c3,

w2 = z2 − φ′(a)φ′(b) = (b− a)2(c2
2 − 3c1c3).

Then
(b− a)c2 = z − c3,

√
c2
2 − 3c1c3 =

w

b− a
,

and so
c2 +

√
c2
2 − 3c1c3 =

z + w − c3

b− a
. (2.4.52)

100 CHAPTER 2. LINE SEARCH

Using c3 = φ′(a) and substituting (2.4.52) into (2.4.50), we get

ᾱ− a =
−(b− a)φ′(a)
z + w − φ′(a)

, (2.4.53)

which is

ᾱ− a =
−(b− a)φ′(a)φ′(b)

(z + w − φ′(a))φ′(b)
=

−(b− a)(z2 − w2)
φ′(b)(z + w)− (z2 − w2)

=
(b− a)(w − z)
φ′(b)− z + w

. (2.4.54)

Unfortunately, the formula (2.4.54) is not adequate for calculating ᾱ, because
its denominator is possibly zero or merely very small. Fortunately, it can be
overcome by use of (2.4.53) and (2.4.54), and we have

ᾱ− a =
−(b− a)φ′(a)
z + w − φ′(a)

=
(b− a)(w − z)
φ′(b)− z + w

=
(b− a)(−φ′(a) + w − z)

φ′(b)− φ′(a) + 2w

= (b− a)
(

1− φ′(b) + z + w

φ′(b)− φ′(a) + 2w

)
, (2.4.55)

or

ᾱ = a + (b− a)
w − φ′(a)− z

φ′(b)− φ′(a) + 2w
. (2.4.56)

In (2.4.55) and (2.4.56), the denominator φ′(b)− φ′(a) + 2w
= 0. In fact,
since φ′(a) < 0 and φ′(b) > 0, then w2 = z2 − φ′(a)φ′(b) > 0. Taking w > 0,
it follows that the denominator φ′(b)− φ′(a) + 2w > 0.

In the same way as we did in the last subsection, we can discuss the
convergence rate of the cubic interpolation method. Similar to (2.4.16), we
can obtain

ek+1 = M(eke
2
k−1 + e2

kek−1),

where M is some constant. We can show that the characteristic equation is

t2 − t− 2 = 0,

which solution is t = 2. Therefore the cubic interpolation method with two
points has convergence rate with order 2.

Finally, we give a flow diagram of the method in Figure 2.4.2.

2.4. INTERPOLATION METHOD 101

102 CHAPTER 2. LINE SEARCH

Figure 2.4.2 Flow chart for cubic interpolation method with two points

2.5 Inexact Line Search Techniques

Line search is a basic part of optimization methods. In the last sections we
have discussed some exact line search techniques which find αk such that

f(xk + αkdk) = min
α≥0

f(xk + αdk),

or

αk = min{α| ∇f(xk + αdk)T dk = 0, α ≥ 0}.

However, commonly, the exact line search is expensive. Especially, when an
iterate is far from the solution of the problem, it is not effective to solve
exactly a one-dimension subproblem. Also, in practice, for many optimiza-
tion methods, for example, Newton method and quasi-Newton method, their
convergence rate does not depend on the exact line search. Therefore, as
long as there is an acceptable steplength rule which ensures that the objec-
tive function has sufficient descent, the exact line search can be avoided and
the computing efforts will be decreased greatly. In the following, we define
gk = ∇f(xk) without special indication.

2.5. INEXACT LINE SEARCH TECHNIQUES 103

2.5.1 Armijo and Goldstein Rule

Armijo rule [4] is as follows: Given β ∈ (0, 1), ρ ∈ (0, 1
2), τ > 0, there exists

the least nonnegative integer mk such that

f(xk)− f(xk + βmτdk) ≥ −ρβmτgT
k dk. (2.5.1)

Goldstein (1965) [157] presented the following rule. Let

J = {α > 0 | f(xk + αdk) < f(xk)} (2.5.2)

be an interval. In Figure 2.5.1 J = (0, a). In order to guarantee the objective
function decreases sufficiently, we want to choose α such that it is away from
the two end points of the interval J . The two reasonable conditions are

f(xk + αdk) ≤ f(xk) + ραgT
k dk (2.5.3)

and
f(xk + αdk) ≥ f(xk) + (1− ρ)αgT

k dk, (2.5.4)

which exclude those points near the right end-point and the left end-point,
where 0 < ρ < 1

2 , All α satisfying (2.5.3)-(2.5.4) constitute the interval
J2 = [b, c]. We call (2.5.3)-(2.5.4) Goldstein inexact line search rule, in brief,
Goldstein rule. When a step-length factor α satisfies (2.5.3)-(2.5.4), it is
called an acceptable step-length factor, and the obtained interval J2 = [b, c]
is called an acceptable interval.

Figure 2.5.1 Inexact line search

As before, let φ(α) = f(xk + αdk). Then (2.5.3) and (2.5.4) can be
rewritten respectively

φ(αk) ≤ φ(0) + ραkφ
′(0), (2.5.5)

φ(αk) ≥ φ(0) + (1− ρ)αkφ
′(0). (2.5.6)

104 CHAPTER 2. LINE SEARCH

Note that the restriction ρ < 1
2 is necessary. In fact, if φ(α) is a quadratic

function satisfying φ′(0) < 0 and φ′′(0) > 0, then the global minimizer α∗ of
φ satisfies

φ(α∗) = φ(0) +
1
2
α∗φ′(0).

Hence α∗ satisfies (2.5.5) if and only if ρ < 1
2 . The restriction ρ < 1

2 will
also finally permit α = 1 for Newton method and quasi-Newton method.
Therefore, without the restriction ρ < 1

2 , the superlinear convergence of the
methods will not be guaranteed.

2.5.2 Wolfe-Powell Rule

As shown in Figure 2.5.1, it is possible that the rule (2.5.4) excludes the
minimizing value of α outside the acceptable interval. Instead, the Wolfe-
Powell rule gives another rule to replace (2.5.4):

gT
k+1dk ≥ σgT

k dk, σ ∈ (ρ, 1), (2.5.7)

which implies that

φ′(αk) = [∇f(xk + αkdk)]T dk ≥ σ∇f(xk)T dk

= σφ′(0) > φ′(0). (2.5.8)

It shows that the geometric interpretation of (2.5.7) is that the slope φ′(αk)
at the acceptable point must be greater than or equal to some multiple σ ∈
(0, 1) of the initial slope. The rule (2.5.3) and (2.5.7) is called the Wolfe-
Powell inexact line search rule, in brief, the Wolfe-Powell rule, which gives
the acceptable interval J3 = [e, c] that includes the minimizing values of α.

In fact, the rule (2.5.7) can be obtained from the mean-value theorem
and (2.5.4). Let αk satisfy (2.5.4). Then

αk[∇f(xk + θkαkdk)]T dk = f(xk + αkdk)− f(xk)
≥ (1− ρ)αk∇f(xk)T dk

which shows (2.5.7). Now we show the existence of αk satisfying (2.5.3) and
(2.5.7). Let α̂k satisfy the equality in (2.5.3). By the mean-value theorem
and (2.5.3), we have

α̂k[∇f(xk + θkα̂kdk)]T dk = f(xk + α̂kdk)− f(xk)
= ρα̂k∇f(xk)T dk,

2.5. INEXACT LINE SEARCH TECHNIQUES 105

where θk ∈ (0, 1). Let ρ < σ < 1, and note that ∇f(xk)T dk < 0, we have

[∇f(xk + θkα̂kdk)]T dk = ρ∇f(xk)T dk > σ∇f(xk)T dk

which is just (2.5.7) if we set αk = θkα̂k. The discussion above also shows
that the requirement ρ < σ < 1 is necessary, such that there exists steplength
factor αk satisfying the Wolfe-Powell rule.

It should point out that the inequality requirement (2.5.7) is an approxi-
mation of the orthogonal condition

gT
k+1dk = 0

which is satisfied by exact line search. However, unfortunately, one possible
disadvantage of (2.5.7) is that it does not reduce to an exact line search in
the limit σ → 0. In addition, a steplength may satisfy the Wolfe-Powell rule
(2.5.3) and (2.5.7) without being close to a minimizer of φ. Luckily, if we
replace (2.5.7) by using the rule

|gT
k+1dk| ≤ −σgT

k dk, (2.5.9)

the exact line search is obtained in the limit σ → 0, and the points that are
far from a stationary point of φ will be excluded. Therefore the rule (2.5.3)
and (2.5.9) is also a successful pair of inexact line search rules which is called
the strong Wolfe-Powell rule. Furthermore, we often employ the following
form of the strong Wolfe-Powell rule:

|gT
k+1dk| ≤ σ|gT

k dk| (2.5.10)

or

|φ′(αk)| ≤ σ|φ′(0)|. (2.5.11)

In general, the smaller the value σ, the more exact the line search. Nor-
mally, taking σ = 0.1 gives a fairly accurate line search, whereas the value
σ = 0.9 gives a weak line search. However, taking too small σ may be unwise,
because the smaller the value σ, the more expensive the computing effort.
Usually, ρ = 0.1 and σ = 0.4 are suitable, and it depends on the specific
problem.

106 CHAPTER 2. LINE SEARCH

2.5.3 Goldstein Algorithm and Wolfe-Powell Algorithm

Although it is possible that the minimizing value of α may be excluded by the
rule (2.5.4), it seldom occurs in practice. Therefore, Goldstein rule (2.5.3)-
(2.5.4) is a frequently used rule in practice. The overall structure is illustrated
in Figure 2.5.2 and the details of the algorithm are described in Algorithm
2.5.1.

Figure 2.5.2 Flow chart for Goldstein inexact line search

Algorithm 2.5.1 (Inexact Line Search with Goldstein Rule)

Step 1. Choose initial data. Take initial point α0 in [0,+∞) (or
[0, αmax]). Compute φ(0), φ′(0). Given ρ ∈ (0, 1

2), t > 1. Set
a0 := 0, b0 := +∞ (or αmax), k := 0.

Step 2. Check the rule (2.5.3). Compute φ(αk). If

φ(αk) ≤ φ(0) + ραkφ
′(0),

2.5. INEXACT LINE SEARCH TECHNIQUES 107

go to Step 3; otherwise, set ak+1 := ak, bk+1 := αk, go to
Step 4.

Step 3. Check the rule (2.5.4). If

φ(αk) ≥ φ(0) + (1− ρ)αkφ
′(0),

stop, and output αk; otherwise, set ak+1 := αk, bk+1 := bk.
If bk+1 < +∞, go to Step 4; otherwise set αk+1 := tαk, k :=
k + 1, go to Step 2.

Step 4. Choose a new point. Set

αk+1 :=
ak+1 + bk+1

2
,

and k := k + 1, go to Step 2. �

Similarly, we give in Figure 2.5.3 the diagram of the Wolfe-Powell algo-
rithm.

108 CHAPTER 2. LINE SEARCH

Figure 2.5.3 Flow chart for Wolfe-Powell inexact line search

2.5.4 Backtracking Line Search

In practice, frequently, we also use only the condition (2.5.3) if we choose
an appropriate α which is not too small. This method is called backtracking
line search. The idea of backtracking is, at the beginning, to set α = 1. If
xk + αdk is not acceptable, we reduce α until xk + αdk satisfies (2.5.3).

Algorithm 2.5.2

Step 1. Given ρ ∈ (0, 1
2), 0 < l < u < 1, set α = 1.

Step 2. Test
f(xk + αdk) ≤ f(xk) + ραgT

k dk;

Step 3. If (2.5.3) is not satisfied, set α := ωα, ω ∈ [l, u], and go to
Step 2; otherwise, set αk := α and xk+1 := xk + αkdk. �

In Step 3 of the above algorithm, the quadratic interpolation can be used
to reduce α. Let

φ(α) = f(xk + αdk). (2.5.12)

At the beginning, we have

φ(0) = f(xk), φ′(0) = ∇f(xk)T dk. (2.5.13)

After computing f(xk + dk), we have

φ(1) = f(xk + dk). (2.5.14)

If f(xk + dk) does not satisfy (2.5.3), the following quadratic model can be
used to approximate φ(α):

m(α) = [φ(1)− φ(0)− φ′(0)]α2 + φ′(0)α + φ(0), (2.5.15)

which obeys the three conditions in (2.5.13)-(2.5.14). Setting m′(α) = 0 gives

α̂ = − φ′(0)
2[φ(1)− φ(0)− φ′(0)]

, (2.5.16)

2.5. INEXACT LINE SEARCH TECHNIQUES 109

which can be taken as the next value of α.
In order to prevent α from being too small and not terminating, some

safeguards are needed. For example, given the least step minstep, if (2.5.3)
is not satisfied but ‖αdk‖ < minstep, the line search stops.

In summary, in this section we introduced three kind of inexact line search
rules:

1. Goldstein rule: (2.5.3)-(2.5.4).

2. Wolfe-Powell rule: (2.5.3) and (2.5.7); Strong Wolfe-Powell rule: (2.5.3)
and (2.5.9).

3. Backtracking rule (also called Armijo rule): (2.5.3) or (2.5.1).

The above three inexact line search rules are frequently used in optimization
methods below.

2.5.5 Convergence Theorems of Inexact Line Search

In the final subsection we establish convergence theorems of inexact line
search methods. To prove the descent property of the methods, we try to
avoid the case in which the search directions sk = αkdk are nearly orthogonal
to the negative gradient −gk, that is, the angle θk between sk and −gk is
uniformly bounded away from 90o,

θk ≤
π

2
− µ, ∀k (2.5.17)

where µ > 0, θk ∈ [0, π
2] is defined by

cos θk = −gT
k sk/(‖gk‖‖sk‖), (2.5.18)

because, otherwise, gT
k sk will approach zero and so sk is almost not a descent

direction.
A general descent algorithm with inexact line search is as follows:

Algorithm 2.5.3

Step 1. Given x0 ∈ Rn, 0 ≤ ε < 1, k := 0.

Step 2 If ‖∇f(xk)‖ ≤ ε, stop; otherwise, find a descent direction
dk such that dT

k∇f(xk) < 0.

110 CHAPTER 2. LINE SEARCH

Step 3 Find the steplength factor αk by use of Goldstein rule (2.5.3)-
(2.5.4) or Wolfe-Powell rule (2.5.3) and (2.5.7).

Step 4 Set xk+1 = xk + αkdk; k := k + 1, go to Step 2. �

In Algorithm 2.5.3, dk is a general descent direction provided it satisfies
dT

k∇f(xk) < 0, and αk is a general inexact line-search factor provided some
inexact line search rule is satisfied. So, this algorithm is a very general
algorithm, that is, it contains a great class of methods.

Now, we establish the global convergence of the general descent algorithm
with inexact line search.

Theorem 2.5.4 Let αk in Algorithm 2.5.3 be defined by Goldstein rule (2.5.3)-
(2.5.4) or Wolfe-Powell rule (2.5.3) and (2.5.7). Let also sk satisfy (2.5.17).
If ∇f exists and is uniformly continuous on the level set {x| f(x) ≤ f(x0)},
then either ∇f(xk) = 0 for some k, or f(xk) → −∞,or ∇f(xk) → 0.

Proof. Let αk be defined by (2.5.3)-(2.5.4). Assume that, for all k, gk =
∇f(xk)
= 0 (whence sk = αkdk
= 0) and f(xk) is bounded below, it follows
that f(xk)− f(xk+1) → 0, hence −gT

k sk → 0 from (2.5.3).
Now assume that gk → 0 does not hold. Then there exist ε > 0 and a

subsequence such that ‖gk‖ ≥ ε and ‖sk‖ → 0. Since θk ≤ π
2 − µ, we get

cos θk ≥ cos(
π

2
− µ) = sin µ,

hence
−gT

k sk ≥ sin µ‖gk‖‖sk‖ ≥ ε sin µ‖sk‖.

But the Taylor series gives

f(xk+1) = f(xk) + g(ξk)T sk,

where ξk is on the line segment (xk, xk+1). By uniform continuity, we have
g(ξk) → gk when sk → 0. So

f(xk+1) = f(xk) + gT
k sk + o(‖sk‖).

Therefore we obtain
f(xk)− f(xk+1)

−gT
k sk

→ 1,

2.5. INEXACT LINE SEARCH TECHNIQUES 111

which contradicts (2.5.4). Hence, gk → 0, and the proof is complete.
Similarly, instead of (2.5.4), if we use (2.5.7), we can get global conver-

gence of the Wolfe-Powell algorithm. The proof is essentially the same as
above. We need only to note that, by uniform continuity of g(x), it follows
that

gT
k+1sk = gT

k sk + o(‖sk‖),

such that
gT
k+1sk

gT
k sk

→ 1.

This contradicts gT
k+1sk/gT

k sk ≤ σ < 1 given by (2.5.7). Hence gk → 0.
Therefore, the global convergence theorem also holds when αk is defined by
Wolfe-Powell rule (2.5.3) and (2.5.7). �

Next, we give the convergence theorems with the Wolfe-Powell rule.

Theorem 2.5.5 Let f : Rn → R be continuously differentiable and bounded
below, and let ∇f be uniformly continuous on the level set Ω = {x | f(x) ≤
f(x0)}. Assume that αk is defined by Wolfe-Powell rule (2.5.3) and (2.5.7).
Then the sequence generated by Algorithm 2.5.3 satisfies

lim
k→+∞

∇f(xk)T sk

‖sk‖
= 0, (2.5.19)

which means
‖∇f(xk)‖ cos θk → 0. (2.5.20)

Proof. Since ∇f(xk)T sk < 0 and f is bounded below, then the sequence
{xk} is well-defined and {xk} ⊂ Ω. Also, since {f(xk)} is a descent sequence,
hence it is convergent.

We now prove (2.5.19) by contradiction. Assume that (2.5.19) does not
hold. Then there exist ε > 0 and a subsequence with index set K, such that

−∇f(xk)T sk

‖sk‖
≥ ε, k ∈ K.

From (2.5.3), one has

f(xk)− f(xk+1) ≥ ρ‖sk‖
(
−∇f(xk)T sk

‖sk‖

)
≥ ρ‖sk‖ε.

112 CHAPTER 2. LINE SEARCH

Since also {f(xk)} is a convergent sequence, then {sk : k ∈ K} converges to
zero. Also by (2.5.7), we have

(1− σ)(−∇f(xk)T sk) ≤ (∇f(xk + sk)−∇f(xk))T sk, k ≥ 0.

Therefore

ε ≤ −∇f(xk)T sk

‖sk‖
≤ 1

1− σ
‖∇f(xk + sk)−∇f(xk)‖, k ∈ K. (2.5.21)

However, since we have proved {sk | k ∈ K} → 0, then the right-hand side
of (2.5.21) goes to zero by the uniform continuity of ∇f on the level set Ω.
Hence there is a contradiction which completes the proof. �

Note that (2.5.19) implies

‖∇f(xk)‖ cos θk → 0,

which is called the Zoutendijk condition, where θk is the angle between
−∇f(xk) and sk. If cos θk ≥ δ > 0, we have limk→∞ ‖∇f(xk)‖ = 0. Also,
if the assumption of uniform continuity is replaced by Lipschitz continuity,
the theorem is also true. In the theorem below, we prove this case. We first
prove a lemma which gives a bound of descent for a single step.

Lemma 2.5.6 Let f : D ⊂ Rn → R be continuously differentiable, also let
∇f(x) satisfy Lipschitz condition

‖∇f(y)−∇f(z)‖ ≤ M‖y − z‖,

where M > 0 is a constant. If f(xk + αdk) is bounded below and α > 0, then
for all αk > 0 satisfying (2.5.3) and (2.5.7), we have

f(xk)− f(xk + αkdk) ≥ β‖∇f(xk)‖2 cos2〈dk,−∇f(xk)〉, (2.5.22)

where β > 0 is a constant.

Proof. From Lipschitz condition of ∇f and (2.5.7) we have

αkM‖dk‖2 ≥ dT
k [∇f(xk + αkdk)−∇f(xk)] ≥ −(1− σ)dT

k∇f(xk),

that is

αk‖dk‖ ≥ 1− σ

M‖dk‖
‖dk‖‖∇f(xk)‖ cos〈dk,−∇f(xk)〉

=
1− σ

M
‖∇f(xk)‖ cos〈dk,−∇f(xk)〉.

2.5. INEXACT LINE SEARCH TECHNIQUES 113

Using (2.5.3) yields

f(xk)− f(xk + αkdk) ≥ −αkρdT
k∇f(xk)

= αkρ‖dk‖‖∇f(xk)‖ cos〈dk,−∇f(xk)〉

≥ ρ‖∇f(xk)‖ cos〈dk,−∇f(xk)〉
1− σ

M
‖∇f(xk)‖ cos〈dk,−∇f(xk)〉

=
ρ(1− σ)

M
‖∇f(xk)‖2 cos2〈dk,−∇f(xk)〉,

which is (2.5.22) in which β = ρ(1− σ)/M . �

Theorem 2.5.7 Let f(x) be continuously differentiable on Rn, and let ∇f(x)
satisfy Lipschitz condition

‖∇f(x)−∇f(y)‖ ≤ M‖x− y‖. (2.5.23)

Also let αk in Algorithm 2.5.3 be defined by Wolfe-Powell rule (2.5.3) and
(2.5.7). If the condition (2.5.17) is satisfied, then, for the sequence {xk}
generated by Algorithm 2.5.3, either ∇f(xk) = 0 for some k, or f(xk) →
−∞, or ∇f(xk) → 0.

Proof. Assume that ∇f(xk)
= 0,∀k. By Lemma 2.5.6, we have

f(xk)− f(xk+1) ≥ β cos2 θk‖∇f(xk)‖2, (2.5.24)

where β = ρ(1− σ)/M is a positive constant being independent of k. Then,
for all k > 0, we have

f(x0)− f(xk) =
k−1∑
i=0

[f(xi)− f(xi+1)]

≥ β min
0≤i≤k

‖∇f(xi)‖2
k−1∑
i=0

cos2 θi. (2.5.25)

Since θk satisfies (2.5.17), this means that

∞∑
k=0

cos2 θk = +∞. (2.5.26)

Then it follows from (2.5.25) that either ∇f(xk) → 0 or f(xk) → −∞. This
completes the proof. �

114 CHAPTER 2. LINE SEARCH

In fact, Theorem 2.5.7 is a direct result coming from (2.5.20) and the
angle condition (2.5.17).

Finally, we derive an estimate of descent amount of f(x) under inexact
line search.

Theorem 2.5.8 Let αk satisfy (2.5.3). If f(x) is a uniformly convex func-
tion, i.e., there exists a constant η > 0 such that

(y − z)T [∇f(y)−∇f(z)] ≥ η‖y − z‖2, (2.5.27)

or there exist positive constants m and M (m < M), such that

m‖y‖2 ≤ yT∇2f(x)y ≤ M‖y‖2. (2.5.28)

Then
f(xk)− f(xk + αkdk) ≥

ρη

1 +
√

M/m
‖αkdk‖2, (2.5.29)

where ρ is defined in (2.5.3).

Proof. We divide into two cases.
First, assume that dT

k∇f(xk + αkdk) ≤ 0. In this case we have

f(xk)− f(xk + αkdk) =
∫ αk

0
−dT

k∇f(xk + tdk)dt

=
∫ αk

0
dT

k [∇f(xk + αkdk)−∇f(xk + tdk)]dt

≥
∫ αk

0
η(αk − t)dt‖dk‖2

=
1
2
η‖αkdk‖2

≥ ρη

1 +
√

M/m
‖αkdk‖2. (2.5.30)

Second, assume that dT
k∇f(xk + αkdk) > 0. Then there exists 0 < α∗ <

αk, such that dT
k∇f(xk + α∗dk) = 0. So, it follows from (2.5.28) that

f(xk)− f(xk + α∗dk) ≤
1
2
M‖α∗dk‖2, (2.5.31)

and
f(xk + αkdk)− f(xk + α∗dk) ≥

1
2
m‖(αk − α∗)dk‖2. (2.5.32)

2.5. INEXACT LINE SEARCH TECHNIQUES 115

Since f(xk + αkdk) < f(xk), it follows from (2.5.31) and (2.5.32) that

αk ≤

⎛
⎝1 +

√
M

m

⎞
⎠α∗. (2.5.33)

Hence

f(xk)− f(xk + αkdk) ≥ −αkρdT
k∇f(xk)

≥ αkρdT
k [∇f(xk + α∗dk)−∇f(xk)]

≥ ηραkα
∗‖dk‖2

≥ ρη

1 +
√

M/m
‖αkdk‖2. (2.5.34)

Hence (2.5.29) holds in both cases. This completes the proof. �

In this chapter we have discussed exact and inexact line search techniques
which guarantee monotonic decrease of the objective function. On the other
hand it is found that enforcing monotonicity of the function values may con-
siderably slow the rate of convergence, especially in the presence of narrow
curved valleys. Therefore, it is reasonable to present a nonmonotonic line
search technique for optimization which allows an increase in function value
at each step, while retaining global convergence. Grippo etc. [164] general-
ized the Armijo rule to the nonmonotone case and relaxed the condition of
monotonic decrease. Several papers also deal with these techniques. Here we
only state the basic result of nonmonotonic line search as follows.

Theorem 2.5.9 Let {xk} be a sequence defined by

xk+1 = xk + αkdk, dk
= 0.

Let τ > 0, σ ∈ (0, 1), γ ∈ (0, 1) and let M be a nonnegative integer. Assume
that

(i) the level set Ω = {x | f(x) ≤ f(x0)} is compact;
(ii) there exist positive numbers c1, c2 such that

∇f(xk)T dk ≤ −c1‖∇f(xk)‖2, (2.5.35)

‖dk‖ ≤ c2‖∇f(xk)‖; (2.5.36)

(iii) αk = σhkτ , where hk is the first nonnegative integer h, such that

f(xk + σhτdk) ≤ max
0≤j≤m(k)

[f(xk−j)] + γσhτ∇f(xk)T dk, (2.5.37)

116 CHAPTER 2. LINE SEARCH

where m(0) = 0 and 0 ≤ m(k) ≤ min[m(k − 1) + 1, M], k ≥ 1.
Then the sequence {xk} remains in Ω and every accumulation point x̄

satisfies ∇f(x̄) = 0.

Proof. See Grippo etc. [164]. �

Exercises

1. Let f(x) = (sin x)6 tan(1− x)e30x. Find the maximum of f(x) in [0, 1]
by use of the 0.618 method, quadratic interpolation method, and Goldstein
line search, respectively.

2. Write the Fibonacci algorithm and its program in MATLAB (or FOR-
TRAN, C).

3. Let φ(t) = e−t + et. Let the initial interval be [−1, 1].
(1) Minimize φ(t) by 0.618 method.
(2) Minimize φ(t) by Fibonacci method.
(3) Minimize φ(t) by Armijo line search.

4. Let φ(t) = 1− te−t2 . Let the initial interval be [0, 1]. Try to minimize
φ(t) by quadratic interpolation method.

5. Let φ(t) = −2t3 + 21t2 − 60t + 50.
(1) Minimize φ(t) by Armijo rule if t0 = 0.5 and ρ = 0.1.
(2) Minimize φ(t) by Goldstein rule if t0 = 0.5 and ρ = 0.1.
(3) Minimize φ(t) by Wolfe rule if t0 = 0.5, ρ = 0.1, and σ = 0.8.

6. Let f(x) = x4
1 + x2

1 + x2
2. Given current point xk = (1, 1)T and

dk = (−3,−1)T . Let ρ = 0.1, σ = 0.5.
(1) Try using the Wolfe rule to find a new point xk+1.
(2) Set α = 1, α = 0.5, α = 0.1 respectively, describe that for which α

satisfies the Wolfe rule and for which α does not satisfy the Wolfe rule.

7. Show that if 0 < σ < ρ < 1, then there may be no steplengths that
satisfy the Wolfe rule.

8. Describe the outline of Theorem 2.5.4.

2.5. INEXACT LINE SEARCH TECHNIQUES 117

9. Prove the other form of Theorem 2.5.5: Let f : Rn → R be continu-
ously differentiable and bounded below, and let ∇f be Lipschitz continuous
on the level set Ω = {x | f(x) ≤ f(x0)}. Assume that αk is defined by Wolfe-
Powell rule (2.5.3) and (2.5.7). Then the sequence generated by Algorithm
2.5.3 satisfies

lim
k→+∞

∇f(xk)T sk

‖sk‖
= 0,

which means
‖∇f(xk)‖ cos θk → 0.

http://www.springer.com/978-0-387-24975-9

