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SURPLUS-SHARING LOCAL GAMES
IN DYNAMIC EXCHANGE PROCESSES

Henry Tulkens, Shmuel Zamir
Review of Economic Studies, XLVI (2), n° 143, 305-314 (1979).

A well-known property of so-called “MDP processes”! is monotonicity in terms of
the utilities of the agents, due to the sharing among the latter of a “surplus” of numeraire
generated at each point of their trajectories. In this paper, we focus our attention on
the somewhat neglected question of how this sharing takes place, and we propose to use
game-theoretic concepts and methods for answering it. A byproduct of this enquiry is
the formulation of a “nontatonnement” process that seems to be of independent interest.

1. Introduction®

Call a “distribution profile”” (for the surplus) the n-dimensional
vector 8" where Sf-v =0,i=1,2,...,nand Y, SIN = 1, and denote by
the number ®Y(x)=0 the amount of numeraire surplus generated at
point x of a trajectory of some MDP process.

Champsaur (1976) has demonstrated that for an n-consumer econ-
omy (with or without public goods), every Paretian utility vector individu-
ally rational with respect to some initial allocation can be reached by some
MDP process with a constant distribution profile 8" applied to the surplus
at all points along the trajectory. A consequence of this theorem is that

* Thanks are due especially to V. Bohm, C. d’Aspremont, E. Loute, and the editor, as
well as to P. Champsaur, J. Dreze, J. Edmonds, H. Moulin and G. Steenbeckeliers for
helpful discussions. This research was supported in part by the Ford Foundation (Pro-
gram for Research in International Economic Order), and presented at seminars in Paris,
Jerusalem and Louvain, as well as the Helsinki 1976 meeting of the Econometric Society.

' For introductory surveys and early references, see Malinvaud (1972, Chapter 8) and
Milleron (1972, Section V). The most recent contribution is Champsaur, Dréze and Henry
(1977).
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from the consumer’s point of view, the choice of this fixed vector has
relevance only with respect to the limit point of the process: as soon as 6"
is agreed upon—and this must occur before the process can start—the
corresponding final outcome is determined. A further consequence is,
however, that no social dynamics are actually taking place during the
realization of the process; the only dynamics involved are that of the
computer programme solving the appropriate differential equations.

In order that some form of social interaction be taken into account
within the dynamics of MDP processes, one may consider that each allo-
cation along a trajectory is a state of the economy that is actually taking
place. In this perspective, the choice of a distribution profile for sharing the
surplus at any allocation should naturally be considered as being deter-
mined by the bargaining power of the individuals and coalitions at that
moment, and not any more by their power at the initial position of the
economy. In other words, it is suggested here that the distribution profile
8" be chosen at each point along the process, according to characteristics of
the social conflict at that point. The “surplus-sharing local games” are
developed below for systematically exploring this idea.

As early as 1971, Dreze and de la Vallée Poussin had put forward
(in Section III of their paper) the idea of associating game-theoretic
considerations with trajectories of their process. The object of their en-
quiry is different from ours, however: dealing with public goods, they
define local games whose purpose is to characterize the behavior of the
agents as far as preference revelation is concerned. These are essentially
noncooperative games, and subsequent writings of Roberts (1979) and
Schoumaker (1979) suggest calling them “incentives local games”. By
contrast, our ‘“‘surplus-sharing” games are cooperative ones (they may
be seen equivalently as games with or without side payments; see §(i) in
Section 3.4 on this point).

On the other hand, the nature of our approach has proved most
fruitful so far for the case of a pure exchange economy with private goods
only: we shall thus consider here a particular type of MDP process
adapted to pure exchange, leaving for a future occasion the extension to
processes with public goods.

In Section 2, the economy and the process are defined. Surplus-
sharing local games are introduced in Section 3: their imputations are
shown to induce game-theoretical selections of profiles 8 (x), at each
point x of some MDP trajectory, and solution concepts such as the
core, the Shapley value and the nucleolus are proposed. In Section 4, we
verify that processes determined by these solution concepts, i.e. with
variable 8" (x), have a uniquely determined solution and converge to a
Pareto-efficient allocation. Section 5, finally, is devoted to interpretative
considerations.
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2.  The economy and the process

Consider a pure exchange economy & = {(Z, ui(x;), w;)|i € N},
where N is the set of agents (indexed i =1,...,n,n=|N|), Z; C [Rf
denotes i’s consumption set (of which x; is a typical element), and [Rf is
the H-dimensional commodity space, commodities being indexed by
h=1,..., H; ui(x;) is the utility function of agent i, defined on Z;, and
w; € Rf his initial endowment of commodities.

An allocation is a vector x = (X,..., Xj,..., X) € RﬁH such that
X; € Zi, Vi € N. An allocation is feasible if ) ,_y xis = D _;cy win for every
h. Let X denote the set of feasible allocations. An allocation x is efficient if
it is feasible and there exists no alternative allocation x’ € X for which
ui(x}) Z ui(x;), Vi € N with strict inequality for at least one i. Finally a
feasible allocation x is individually rational with respect to some other
allocation y € X if it is such that u;(x;) = u;(y;), Vi € N.

Assumption 1. ¥Nie N, X'; = [R{f.
Assumption 2. ¥Yi € N, w; is in the interior of Z;.

Assumption 3. ¥i € N, u;(x;) is strictly quasi-concave, twice continuously
differentiable, and such that

uil( —def 8ui/8xl-l) >0 VX,' € gf,‘,

where for x; on the boundary of %f we take for u;; the one-sided
derivative.

Assumption 4. Yi € N, {x;|x; € Rf and u;(x;) = ui(w;)} N GRE =0.

These assumptions are stronger than those usually made in this field
(especially Assumption 4, which says that for each i, the indifference
surface though w; does not touch the coordinate hyperplanes x; = 0).
However, for testing the local games concept of Section 3, they offer the
advantage of yielding a system of differential equations with classical
properties. It is quite possible that similar results hold under weaker
assumptions.

To define the process, let ¢ €[0,+ co0) be a time variable and
x(1) € [R{’fl an allocation at some time ¢ = 0.

Define
malx(n)] = 2l 0in Zf zN... H
au[/axil xi(1) = [O: + C;O),
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the marginal rate of substitution of agent i between commodities / and 1,
evaluated at point x;(¢). (We write only 7r;;, when no confusion can arise as
to this point and when the time argument is immaterial.) Define also

7 =(1/m> my h=2,... H 2.
ieN
As usual, a dot over a time-dependent variable will denote the
operator d/dt.
For the above economy, a particular® version of the exchange
planning process of Malinvaud (1972, Chapter 8) consists of the following
system of differential equations:

Process M:
Y = a(my — 7)) Vie Nyh=2,..., H, } ..(22)
Xil = = D _ps1 TinXin +6Na Donp 2jen (Tin — aMy Vie N, ...(2.3)

where SfVEOViEN, ZiGNSN =1,0<a< 400, and ¢ € [0, + o).

i

Using vector notation, the system is of the form x = f(x; 8"), with
N=@Y,...,8Y,...,8Y).

Since in (2.2-2.3) for every i each variable 7y, h=2,..., H is a
function of x; € 4;, the function f(-; 6") is defined on the product set
X =1Len%; = R’fl , due to Assumption 1.

Given Assumptions 1-4, existence and uniqueness of a solution
x[t; 8", x(0)], as well as convergence to an efficient allocation which is
individually rational with respect to x(0), are properties that can be
inferred from the literature cited earlier; they also derive directly from
the arguments made in Section 4 below.

Remark 2.1. Without loss of generality, we shall assume throughout that
the speed of adjustment parameter a is equal to 1 in process M. Henceforth,
we shall thus ignore it, except for the observations made in Section 3.4.

3. Surplus-sharing local games
3.1 The need for cooperation in carrying out the process
Consider any allocation x € X, and a process M defined at that

point. For each agent i, the speed of utility changes entailed at x by the
process is of the form

2 In Malinvaud’s text, i is taken to be a weighted average. Some of the results below
on local games will make clear the special interest of the simple average used here.
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it = un(x)8N OV (x) = 0 ...(3.D)

where ®"(x) is defined by

0V (x) = Z Z(wj,z — )2 ...(3.2)
h#1 jeN

It was suggested by Malinvaud that the last expression be inter-
preted as a ““social surplus” accruing to the agents from the reallocation
specified at point x. This surplus is measured in units of commodity 1 per
unit of time; according to equation (2.3) its distribution among the
members of N is determined by the distribution profile 5"

With this interpretation in mind, the question naturally arises
whether all agents i € N will agree to carry out this exchange. One may
think of at least two categories of reasons for explaining why some agents
would refuse to trade: (i) they may object to the use of process M itself as a
means for commodity reallocation (e.g. they would not reveal their coef-
ficients ;;); or (ii) while accepting that the process be used, they may
object to the distribution profile 6, which is seen by (3.1) to be the key
factor in determining each agent’s utility increase. In this paper, we
propose to concentrate on this second kind of objection; we therefore
assume, from this point on, that all agents agree on the use of process M.

For any subset (or “coalition”) S of agents, S C N, objecting to a
given distribution profile can be rationalized in various ways: for instance,
8" may be seen by some agents as “inequitable’’; or, some agents may feel
that they could do better on their own. In both cases, there is an under-
lying reference to the fact that alternatives are open to them, as well as to
the possible outcomes of such alternatives. Given our assumption of
general agreement on the use of process M, such alternatives seem to be
naturally described, for each S, by the notion of a process restricted to a
coalition S. In such a process, the coalition .S follows exactly the procedure
described above, assuming only that S replaces N as the set of traders.
Formally, the coalition S proceeds according to the system:

Process M®:

X5 = (mp—w)VieS;h=2,..., H, ...(3.3)
X == Tk 87 Y Yjes (mn — m) Vi€ S. ...(3.4)
where
'ﬁ-;? = (I/S)Z'ﬂjh; h=2,...,H;s=1S|;

=

5720 VieSand » & =1
ieS
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Such a process can be defined for any non-empty coalition S C N
and any starting allocation x € X. Just as in process M, there is in any
process M3 a social surplus ®° being generated, defined as

O => ) (mn— ), ... (3.5)

WAl jes

and shared among the members of S according to some distribution
profile 8% = (8515, cee, 8‘S)

Both ®°(x) and 8% summarize the outcome of the alternatives
considered by S at x. Hence, the problem of finding at x a profile 6" (x)
that raises no objection in this sense may be seen as one of sharing the
surplus ®"(x) in such a way that for all agents i € N, and for all subsets
S C N, the alternatives represented by the surpluses ®(x) and profiles 6°
be adequately taken into account. This points directly to a formulation in
terms of n-person cooperative games.

3.2 Local games: definition, imputations and distribution profiles

Definition 3.1. For every allocation x € X, the characteristic function
v( - ; x) defined by v(S; x) = O5(x)SEN, defines a “surplus-sharing local
game”. Notice that v( - ; x) is O-normalized, i.e. v({i}; x) =0 Vi € N.

Let y(x) € R denote an imputation for the game v(-; x), i.e. an
n-vector such that > .y yi(x) = OV(x) and yi(x)=0Vie N. Let also
Y(x) C R’} be the set of imputations for v( - ; x).

It is easy to see that the selection of an imputation in Y(x) amounts
to selecting a distribution profile 6" (x) for the surplus ®"(x). Indeed,
given y(x), one may define 6?7 (x)Vi € N as

N i) i)
8;' (x) S e ...(3.6)
andclearly ),y Sﬁv (x) = 1. In other words, there is at any x € X, a natural
one-to-one mapping between the set of imputations Y(x) and the set of
distribution profiles for the surplus ®"(x). Thus, the game-theoretic ap-
proach to the problem of choosing at any x a satisfactory distribution
profile " (x)—or a set of such profiles—essentially consists of selecting a
point—or a set of points—in the set of imputations of the side payment
local game defined at x, that is, selecting a solution concept for this game.

3.3 Solution concepts for the local games v(-; x)

Among the many conceivable reasons why a coalition S might
object to a given distribution profile 8" (x)—that is, to an imputation
y(x)—a most intuitive one is the consideration of what this coalition
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could achieve on its own. In the general theory of n-person games, this idea
has for a long time been referred to by the notion of “blocking’; in the
side payment case, it may also be expressed (and be given a scalar
measure) by the notion of “‘excess of a coalition with respect to an
imputation”. Formally, for any y € Y and SEN, such excess is defined by

oS.y) =v(S) =y

icS
with e(S,y) > 0 meaning that S can improve upon (or “block’) the imput-
ation y, while e(S,y) = 0 implies that S cannot. From the excess notion, one
is led to the definition of two well known solution concepts, viz. the core
due to Gillies (1959) and the nucleolus,* due to Schmeidler (1969).

Alternatively, an explicit set of axioms can be stated, which a
solution should satisfy to be considered as acceptable: the Shapley
value,” due to Shapley (1953), is such a solution concept, which is essen-
tially cooperative in nature; the axioms from which it is derived are
sometimes interpreted as reflecting some notion of equity in the sharing
of v(N) among the n players.

As is established by the just quoted authors, the nucleolus always
exists, and the Shapley value is always well defined for all side payment
games; moreover, both are unique-point solution concepts. The core, on
the other hand, may be empty; when it is not, it may consist of more than
one imputation.

Consequently, both the nucleolus and the Shapley value can be used
as solution concepts for the local games v(-; x). As far as the core is
concerned, its non-emptiness for these games is established by the follow-
ing result.

Theorem 3.2. For every local game v( - ;x), the imputation w(x) € Y(x)
defined by

w0 =Y (my—m)) VieN
h#1

belongs to the core.

3 For a definition, see the proof of Theorem 3.2 below.

* The nucleolus may be defined as follows: given an imputation y, let 8(») be a vector in
[Riffl, whose components are the 2" — 1 excesses {e(S; y)}, SC N, S # @, arranged
in non-decreasing order; consider then any pair of imputations, say x and y: 6(x) is
said to be larger than 6(y) in the lexicographic order [notation: 6(x) >, 6(y)] if
die {1, 2,...,2" — 1} such that 6;(x) > 6;(y) and 6;(x) = 6;(y) Vj < i; the nucleolus of a
side payment game is the set of imputations v € Y such that the vector 6(v) is minimal in
the lexicographic order on Ri’”l.

> The Shapley value is the imputation defined by the function

®:(v) = Zsen((s = Dl — 9)!/nh[n(S) = w(S\{i})]. Vi € N.
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Proof. In terms of excesses, the core is defined as the set of imputations
y € Y such that for every coalition SEN, e(S,y) =0. In the case of local
games v( - ; x), excesses with respect to the imputation u(x) are of the form:

oS, w(x) = 0°5(x) = > w()

iceS

= D _@un—m)=> (ma—m)| ¥S<N.

h#1 | ieS ieS

That this expression is non-positive follows from the fact that each
sum Y, (7 — 73)* within the square brackets is the second moment of
the {m;},.g with respect to their arithmetic mean ﬁ',f. Now, it is well
known that in general, among all second moments, the minimal is the
one taken with respect to the simple arithmetic mean. Therefore,
s (s — N )?> cannot be smaller than Y ies (min — ﬁ,f)z -

Besides the imputation w(x), the nucleolus—denoted by w(x)—is
another selection in the core of any local game v( - ;x): indeed, according
to Schmeidler’s 1969 Theorem 4, the nucleolus always belongs to the core
of a game, when the core is non-empty. The Shapley value, on the other
hand, does not have this property.

3.4 Other aspects of the local games v(-; x)

(i) The local games considered so far belong to the class of side
payment games; however, they could also be formulated as non-side pay-
ment games, defined by
VS(x) = {i® € RY|385 for which u;8505(x) =i’ Vie S}, VS < N.

I’S(x) is thus the set of all vectors of speeds of utility increases
achievable by coalition S. However, this formulation is basically equiva-
lent to the side payment one, due to the obvious one-to-one correspond-
ence between the set Y(x) of imputations of the side payment game, and
the Pareto surface of the non-side payment game: to y(x) € Y(x), there
corresponds the point

i = [uny1(X), ..., unyix), . . ., Ya(X)],

which is clearly on the Pareto surface of V"(x). In fact, the non-side
payment local games mentioned here are a special case of Billera’s 1970 -
hyperplane games.

(i1)) From the argument used in the proof of Theorem 3.2, it appears
that the games v( - ;x) are in fact the sum of H—1 games whose character-
istic function, defined by
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u(S) =Y (mi — m),

ieS
is simply the variance, multiplied by s, of the collection of numbers
{min}ics- From the properties of the variance, it can easily be derived
that these games are superadditive, monotonic, and balanced in the sense
of Shapley (1967).

(iii) If the assumption that the speed of adjustment ¢ = 1 for every
process M® were relaxed, and replaced by that of an arbitrary collection of
positive coefficients 4 = {a5} ¢y, the characteristic function of the local
games would read v(S; x, 4) = a’ 05(x) VS C N. In this more general
setting, it can be shown that the above results on the core imputation u (and
on balancedness) still hold, provided that the collection 4 be such that

a¥ = max {a%}.
SCN

On the other hand, if the collection A4 is such that @® = ps VS S N,
where 0 < p < 400 and s = |S|, the local games v( - ; x, 4) appear to be
convex in the sense of Shapley (1971); in this case the Shapley value also
belongs to the core of the game. However, it is not easy to provide a
convincing economic interpretation of adjustment speeds which vary with
the size of each coalition, at least in a continuous time context. An
attempt in that direction, and proofs of the preceding propositions can
be found in Tulkens and Zamir (1976, pp. 27-33).

4. Strategically stable processes

Given the exchange process of Section 2, and the solution concepts
exhibited in Section 3 for the local games, we are now in a position to
combine the two. We want to describe processes whose trajectories are
determined by these solution concepts.

Specifically, we suggest the following modification of process M:
at each point x(f) on the trajectory, the profile 6" (¢) is selected accord-
ing to some solution concept of the local game v( -; x(¢)) at that point.
Given the three concepts discussed above, namely the nucleolus v(x),
the Shapley value ¢(x), and the imputation w(x) which is in the core,
we can define three processes: process M — v, process M — ¢, and process
M — w. The first of these is defined by the following differential equa-
tions:

fp=mp—w, VieNh=2... H, (40

X = — Y makn +8]()0V(x), VieN, . (42)
h#1
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where 6”(x) = (8](x), ..., 6/(x),..., 8,(x)) is derived from the imputation
v(x) of the local game v( - ; x) through the mapping (3.6), and O~ (x) is
defined as in (3.2).

The processes M — ¢ and M — p are defined by a system of equa-
tions similar to (4.1-4.2), the only difference being that 6”(x) is replaced
by 6%(x) [respectively 8*(x)], derived through the mapping (3.6) from the
Shapley value [respectively from the imputation w(x)] of the game v( - ; x).

These three processes are well defined, since 8”(x), 8%(x), and 8*(x)
are uniquely determined for each x. Their solutions, if they exist, may be
called “‘strategically stable”, in the game-theoretic sense of the corre-
sponding distribution profile.

Existence and uniqueness of solutions for these new processes fol-
low from known theorems on systems of differential equations (see e.g.
Nemytskii and Stepanov (1960), or Champsaur, Dréze and Henry (1977)):
indeed, given Assumptions 1-4, the right-hand sides of (4.1-4.2) can be
shown® to be Lipschitzian for all three processes (that the Lipschitz
property holds in particular for 6”(x) derives from the piecewise linearity
of the nucleolus, viewed as a function v(u(-; x)) of the characteristic
function of the game, as shown by Charnes and Kortanek (1969) and
Kohlberg (1971).

We can claim in addition that for each of these processes, the
solution converges, as it does for the original process M, to a unique
efficient allocation. To show this, one may either introduce a Lyapunov
function such as ),y ui(x;(¢)), and apply Theorem 6.1 of Champsaur,
Dréze and Henry (1977), or demonstrate directly the following rather easy
steps’: (i) that the solution remains in a compact set, whence it has at least
one accumulation point; (ii) that every accumulation point is an efficient
allocation; (iii) that if the limit point of this process is an efficient alloca-
tion, it is unique.

5.  Interpretative concluding remarks
5.1 Local vs. global approaches

In contrast with the “global” games usually associated with an
economy, the local games presented in this paper are characterized by
the myopic nature of their imputations. Indeed, they shift the attention
from the utility levels of the agents at the point where the MDP process
stops, to the rate at which these utilities increase at any one moment of

® This is done in Tulkens and Zamir (1976, Lemma 4.1 and Appendix 1).
7 These steps are developed in Tulkens and Zamir (1976, Lemmas 4.2 and 4.5, and
Theorem 4.6).
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time, before the limit point is reached. This implies that as regards the
limit point itself, no particular game theoretical property (other than
Pareto efficiency and individual rationality with respect to the initial
point) is to be expected from the solution of our strategically stable
processes: for instance, the solution of processes such as M —v or M — pu,
whose trajectory is determined by imputations in the core of the local
games, does not, in general, converge to an allocation in the core of the
economy.®

The interest of the local approach is to be found, instead, in the
same reason why iterative processes of the MDP type have been conceived
of, namely the ignorance by the agents of where an efficient allocation is
located. Given this circumstance, myopic behavior finds a justification if,
following some maximin rule of decision making under uncertainty, the
agents always take the view that the next step may be the last.”

5.2 Choosing between solution concepts

As three “strategically stable” exchange processes have been exhib-
ited, one may wonder whether one of them is, in some sense, “better’” than
the others. The answer to this question can only be a general one; indeed,
each of the solution concepts v, ¢, or u for the local games corresponds to
a different characterization of the role of coalititions in the social process
under consideration, viz.: minimizing the strongest objection in the case of
the nucleolus, averaging out the contribution of each player to the various
coalitions he can join in the case of the Shapley value, and impossibility of
blocking in the case of core imputations. The fact that v and ¢ are
different imputations in general, and that ¢» may not belong to the core,
shows that the corresponding criteria are to some extent incompatible.
The necessary choice between them can only be based on assumptions
pertaining to the collective behavior of members of coalitions, assump-
tions that neither economic analysis, nor game theory seem to be currently
able to provide.

5.3 A price interpretation of process M — u

A closer look at the structure of commodity exchanges under the
process M — u leads, finally, to a further interpretation, that goes in a
different direction. With every feasible allocation x, suppose that there

. . . o, . H .
is associated a strictly positive price vector p(x) € RY, normalized by

8 This point has been checked by means of several numerical examples that can be
found in Appendix 2 of Tulkens and Zamir (1976).
® We owe this point to the editor.
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assuming pi(-) = 1. Given any such vector (with the argument x deleted
unless it is necessary), the budget constraint of every consumer i, solved
for x;;, reads

Xil = w1 + th(wih — Xin)- .5
h#1
Introducing this expression in the utility function wu;(x;1, ..., Xig)
and differentiating yields
du; = un[ Y (i — pa)dxp). (52)
h#1

Assume now that each consumer i, when he holds the bundle x;, and
faces the price system p, seeks the local reallocation of his budget that
maximizes his utility change du;. It is well known that the vector with this
property is the gradient vector, which in the case of (5.2) is proportional
to the one defined by

dx,-h:(ﬁih—ph),hzz,...,H. (53)
For the numeraire, one immediately derives from (5.1) that
dxil = - thdxih
hA1

== th(ﬂ'ih — Ph)-
h#1

Now, if at every feasible allocation x(¢) the price system p(x(7)) is
chosen such that

px(1) = ) (x(0), h=2,..., H,

the behavioral assumption just made implies that the consumers make
local transactions specified by

. (5.4)

)'C,']1:(7Tl'/1—ﬁ'}]lv),h:2,...,H;iEN, (55)
Xi = _Zh7é1 ’ﬁ';lv(’ﬂih —’ﬁ']]lv), ieN. ...(5.6)

But (5.5) is identical to (4.1), and (5.6) is easily seen to be equivalent
to (4.2) with

8(x) = (/0" (x)

for each i. These spontaneous transactions are exactly those determined
by the process M — .

Implicit in this process, there is thus a continuous price adjustment
mechanism, which is reminiscent of the “Edgeworth barter process”
formulated in discrete time by Uzawa (1962, Sections 2 and 3): indeed,
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in this author’s terminology, a “transaction rule” is specified by (5.5) and
(5.6), and a “‘price adjustment function” is given at each x(z) by

Dh :%ﬁ:%Zm

ieN
—1yy oy
n i = Oxi o
1 H
5 Z Z(Wihk — TR X, h=2,..., H,
nien =
where
u; ou; \ !
e = (=) hk=1,2,... H (57
ik et OxinOxik <8x,-1> (5.7)

Contrary to the Walrasian rule of excess demands (which are iden-
tically zero in this model), and more in a Marshallian spirit, this price
adjustment rule depends exclusively upon preference characteritics of the
agents.
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