
Chapter 2

MIDDLEWARE

This chapter introduces the reader to the notion of middleware. The essential
role of middleware is to manage the complexity and heterogeneity of distributed
infrastructures. On the one hand, middleware offers programming abstractions
that hide some of the complexities of building a distributed application. On the
other hand, there is a complex software infrastructure that implements these
abstractions. With very few exceptions, this infrastructure tends to have a large
footprint. The trend today is toward increasing complexity, as products try to
provide more and more sophisticated programming abstractions and incorporate
additional layers.

We advance chronologically and discuss briefly the earliest types of middle-
ware targeted at distributed application development in Section 1 . They are also
referred to as conventional middleware and comprise the remote procedure call
(RPC), transaction processing monitors, object brokers, object monitors and
message-oriented middleware.

Conventional middleware is intended to facilitate the development of dis-
tributed applications from scratch. With the proliferation of distributed appli-
cations in companies, there arose the need for the integration of such appli-
cations as opposed the development from scratch. That triggered further the
evolution of middleware leading to message brokers and workflow management
systems to support enterprise application integration. Both types are discussed
in Section 2.

The need to integrate applications is not limited to the boundaries of a
single company, however. Similar advantages can be obtained from inter-
enterprise (or business-to-business, short B2B) application integration as from
intra-enterprise application integration. Therefore, the latest breed of middle-
ware was developed to enable B2B integration. Application servers and Web
services belong in this category. We have a closer look at both in Section

12 SEMANTIC MANAGEMENT OF MIDDLEWARE

3. In order to limit the scope and hence the size of the problem we focus on
application servers and Web services and neglect newer kinds of middleware.
Examples for newer kinds are grid and peer-to-peer middleware [Junginger and
Lee, 20041, which are also not yet mature enough.

A closer look at application servers and Web services reveals that both types
are suffering from increasing complexity. Application servers bundle more
and more functionality. Web services are almost universally being built as
additional tiers over existing middleware platforms, e.g., application servers,
which are already too complex and cumbersome. The complexity of developing
and managing distributed applications with application servers is countered
by the usage of deployment descriptors. Deployment descriptors are usually
XML-files that reduce the amount of coding by specifying orthogonal issues
in an declarative and application-independent way. In a similar vain, the Web
service community is currently developing a set of standards, denoted WS*, to
manage aspects, such as coordination or composition.

Although deployment descriptors and WS* descriptions constitute a very
flexible way of developing and administrating a distributed application, we
demonstrate by example that there are still many management efforts to be
expended by developers and administrators. The reason is that the conceptual
model underlying the different descriptions is only implicit. Hence, its bits and
pieces are difficult to retrieve, survey, check for validity and maintain. This ob-
servation serves as input to Chapter 4 where we propose semantic management
with the help of explicit conceptual models, i.e., ontologies (cf. Chapter 3).

Parts of this chapter provide an overview of middleware based on the signif-
icant book of [Alonso et a]., 20041. There are also parts based on [Mahmoud,
20041, as well as [Bernstein, 1996, Campbell et al., 19991. The example of
deployment descriptors is taken from [Oberle et al., 2005~1, the one of WS*
descriptors from [Oberle et al., 2005al.

1 Middleware for Distributed Application Development
The essential role of middleware is to manage the complexity and hetero-

geneity of distributed infrastructures, thereby providing a simpler programming
environment for distributed application developers. It is therefore useful to de-
fine middleware as any software layer that is placed above the infrastructure
of a distributed system - the network and operating system - and below the
application layer [Campbell et al., 19991.

Middleware platforms appear in many guises and it is sometimes difficult to
identify their commonalities. Before addressing concrete types of middleware,
it is worthwhile to spend some time clarifying the general aspects underlying
all middleware platforms.

On the one hand, middleware offers programming abstractions that hide
some of the complexities of building a distributed application. Instead of the

Middleware 13

programmer having to deal with every aspect of a distributed application, it is
the middleware that takes care of some of them. Through these programming
abstractions, the developer has access to functionality that otherwise would
have to be implemented from scratch.

On the other hand, there is a complex software infrastructure that implements
the abstractions mentioned above. With very few exceptions, this infrastructure
tends to have a large footprint. The trend today is toward increasing complexity,
as products try to provide more and more sophisticated programming abstrac-
tions and to incorporate additional layers. This makes middleware platforms
very complex software systems [Alonso et al., 20041.

This section discusses the middleware used to construct distributed systems
from scratch, i.e., middleware for distributed application development (also
called conventional middleware). We further discuss middleware for enterprise
application integration and business-to-business (B2B) integration in Sections 2
and 3, respectively. During our discussion we keep an eye on the paradigm shifts
regarding the types and granularity of software building blocks because they
influenced the evolution of middleware. As depicted in Figure 2.1, software
building blocks evolved from procedures to objects, workfows, components
and finally to services.

Use
------ timeline
--+ basis for - .@- subsumed by

Brokers

Software
Building
Blocks

>

I

Figure 2.1. Types of middleware and historical overview.

14 SEMANTIC MANAGEMENT OF MIDDLEWARE

TP Monitors In the early days of corporate IT, computer architectures were
mainframe-based and interaction took place through terminals that only
displayed the information as prepared by the mainframe.

Transaction processing monitors (TP Monitors), also called transaction pro-
cessing middleware or simply transaction middleware, were initially de-
signed to allow mainframes to support as many concurrent users as possible.
As part of this task, TP monitors also needed to deal with multi-threading
and data consistency, thereby extending core functionality with the concept
of transactions. They are the oldest and best-known form of middleware.
Today, distributed transaction monitors are prevailing to enable transactions
spanning several isolated database management systems. [Gray and Reuter,
1993, Tai, 20041

IBM CICS' was the first commercial product offering transaction protected
distributed computing on an IBM mainframe. Nowadays, every major soft-
ware vendor offers its own product, e.g., Microsoft Transaction Server
(MTS)~ or BEA ~ u x e d o . ~ Sun's Java Transaction API (JTA)~ specifies
standard Java interfaces between transaction monitors and involved parties.

RPC-based systems When the decentralization of corporate IT took place as
a consequence of the introduction of the PC, functionality began to be dis-
tributed across a few servers. In order to realize distributed applications,
developers were in need of a powerful abstraction mechanism to hide the
tedious communication details.

The remote procedure call (RPC) responded to this need and was originally
presented in [Birrell and Nelson, 19841 as a way to transparently call a
procedure located on another machine. RPC established first the notion of a
client (the program that calls a remote procedure) and a server (the program
that implements the remote procedure being invoked). It also introduced
many concepts still widely used today: the interface definition language
(IDL), name and directory services, dynamic binding and service interfaces.
Today, RPC systems are used as a foundation for almost all other forms of
middleware, including Web services middleware (cf. Section 3.2).

Several RPC middleware infrastructures were developed that supported a
wealth of functionality, e.g., the Distributed Computing Environment (DCE)
provided by the Open Software Foundation (OSF) [Houston, 19961.

'Customer Information and Control System, cf. http: //www. ibm. com/software/htp/cics/
2http: //msdn.microsoft . codlibrary
3http: //www. beasys . com/products/tuxedo
4http: //java. sun. com/products/jta/

Middleware 15

Object Brokers RPC was designed and developed at a time when the pre-
dominant programming languages were procedural languages, i.e., software
building blocks were procedures. With the advent of object-oriented (0 0)
languages, the object became the software building block, encapsulating
data and behavior.

Platforms were developed to support the invocation of remote objects, thereby
leading to object brokers. These platforms were more advanced in their spec-
ification than most RPC systems, but they did not significantly differ from
them in terms of implementation. In practice, most of them used RPC as
the underlying mechanism to implement remote object calls. [Alonso et al.,
20041

The most popular class of object brokers are those based on the Common
Object Request Broker Architecture (CORBA),' defined and standardized
by the Object Management Group (OMG).

Object Monitors When object brokers tried to specify and standardize the
functionality of middleware platforms, it soon became apparent that much
of this functionality was already available from TP Monitors. At the same
time, TP monitors, initially developed for procedural languages, had to be
extended to cope with object-oriented languages.

The result of these two trends was the convergence between TP monitors
and object brokers that resulted in hybrid systems called object monitors.
Object monitors are, for the most part, TP monitors extended with object-
oriented interfaces. Vendors found it easier to make a TP monitor look like a
standard-compliant object broker than to implement object brokers with all
the features of a TP monitor and the required performance. [Alonso et al.,
20041

Examples of object monitors are Iona's O ~ ~ ~ X O T M . ~ The aforementioned
TP monitors, MTS from Microsoft and Tuxedo from BEA, can be classified
as object monitors as well.

Message-oriented Middleware (MOM) The previous types of middleware
are based on synchronous method invocation, where a client application
invokes a method offered by a specific service provider. When the service
provider has completed its job, it returns the response to the client. This
rather "closely coupled" and "blocking" interoperability soon became too
limiting for software developers.

5http: //www , omg . org/corba/
6http: //www. iona. com/products/orbix. htm

16 SEMANTIC MANAGEMENT OF MIDDLEWARE

The answer to this limit was message-oriented middleware, enabling clients
and servers7 to communicate via messages, i.e., structured data sets typically
characterized by a type and name-value-pairs. This kind of communication
is made possible by message queues controlled by the MOM. Queues can be
shared among multiple applications; recipients can decide when to process
messages and do not have to listen continuously; priorities can be assigned,
to name but a few advantages of this approach. [Curry, 2004bl

TIBETX from Tibco has been a popular product throughout the nineties.*
Implementations of the Java Message Service (JMS)~ can be regarded as
message oriented middleware. Also, CORBA provides its own messaging
service.

2. Middleware for Enterprise Application Integration
The types of middleware discussed so far were originally intended to develop

applications from scratch or to integrate database or file servers. The increasing
use of such middleware led to the proliferation of distributed applications in
companies. Each of the applications provided a higher level of abstraction, and,
thus an added value. However, the functionality provided by these applications
soon became the subject of further integration. The advantage of application
integration is a higher level of abstraction that can be used to hide complex ap-
plication and integration logic. The disadvantage is that now integration is not
limited to database or file servers, but also to applications themselves. Unfortu-
nately, while for databases there has been a significant effort to standardize the
interfaces of specific types of databases, the same cannot be said of applications.
As long as the integration of applications takes place within a single middleware
platform, no significant problem should appear. Once the problem became the
integration of applications provided by different middleware platforms, there
was almost no infrastructure available that could help reduce the heterogeneity
and standardize the interfaces, as well as the interactions between the systems.

The need for such enterprise application integration (EAI) further triggered
the evolution of middleware, extending its capabilities to cope with applica-
tion integration, as opposed to the development of new application logic. Such
extensions involve significant changes in the way middleware is used. This
section briefly discusses message brokers as the most versatile platform for
integration and workflow management systems as the tools to make the inte-
gration logic explicit. Note that both types of middleware can also be used to
develop distributed applications anew instead of integrating existing ones.

' ~ o t e that the distinction between clients and service providers becomes purely conceptual in the case of
MOM. From the perspective of the middleware, all objects look alike.
8ht tp : //www. t i bco . com
'http: / / java . sun. com/products/jms/

Middleware 17

Message Brokers Message-oriented middleware (MOM) is rather static with
regard to the selection of the queues to which the messages are delivered.
For a generic EAI setting however, we need flexible and dynamic means for
communication between arbitrary heterogeneous applications.

In response to those needs, message brokers extend MOM with the capability
of routing, filtering and even processing the messages. In addition, most
message brokers provide adapters that mask the heterogeneity and make
it possible to access all kinds of applications with the same programming
model and data exchange format. The combination of these two factors is
seen as the key to supporting EAI. [Alonso et al., 20041

Some of the best-known message brokers include IBM WebSphere MQ,'O
MSMQ by ~icrosof t" or BEA WebLogic 1ntegration.12

Workflow Management Systems (WfMS) While message brokers are suc-
cessful in providing flexible communication among heterogenous applica-
tions, the integration logic is still hard-coded and, thus, difficult to maintain.

Workflow management systems tackle the other side of the application in-
tegration problem: that of facilitating the definition and maintenance of the
integration logic. Business processes are formally defined as a workflow
and executed by a workflow engine. Workflows are seen as software build-
ing blocks for "programming in the large" because they compose coarse-
grained activities and applications that can last hours. In addition, workflows
compose large software modules, which are typically entire applications.
[van der Aalst and van Hee, 2002, Georgakopoulos et al., 19951

Examples of leading commercial workflow systems include WebSphere MQ
~ o r k f l o w ' ~ by IBM and Microsoft BizTalk ~rchestrat ion. '~

3. Middleware for B2B Application Integration
So far we have studied middleware for creating and integrating distributed

applications within the boundaries of a company. The need to integrate, how-
ever, is not limited to the systems within a single company. Similar advantages
can be obtained from inter-enterprise (or business-to-business, short B2B) ap-
plication integration as from intra-enterprise application integration.

With the Web being pervasively available, it goes without saying that some
of the same technologies that enabled information sharing on the Web also form
the basis for this kind of B2B application integration. In particular, HTTP is the

I0http: //www. ibm. com/software/integration/wmq/
"http: //www.microsoft . com/msmq
12http: //www. bea. com/products/weblogic/integration
I3http: //www . ibm. com/webspheremq/workf low
I4http: //msdn.microsoft . com/library/

18 SEMANTIC MANAGEMENT OF MIDDLEWARE

basic protocol for applications to interact, and XML documents are the standard
way to exchange information.

The need for B2B application integration triggered the evolution of mid-
dleware. Application servers and Web services provided the solution to the
new requirements. Because this work focuses on application servers and Web
services, we discuss them in more detail in the following sections. Note that
both types of middleware can, of course, be used to develop distributed applica-
tions anew and to integrate applications within the boundaries of an enterprise.
Most of the work on workflow management of the early nineties migrated to
Web-based infrastructure in the late nineties to provide technical capabilities
required for B2B applications.

3.1 Application Servers
The increasing use of the Web as a channel to access information systems

forced conventional middleware platforms to provide support for Web access.
This support is typically associated with application servers. Also, they foster
component-based software engineering and introduce the use of deployment
descriptors, all of which are discussed below.

The core functionality of an application server can be described by examining
the major competing alternatives: application servers based on Sun's J ~ E E ' ~
and Microsoft's M NET.'^ Both are similar in terms of their functionality. How-
ever, we focus on J2EE in this section without loss of generality. Basically,
J2EE is defined by a set of API specifications that is implemented by vendors.
Examples are IBM websphereI7 or the open-source application server JBOSS. '~

Components and Frameworks
With the increasing complexity in system requirements and the tight de-

velopment budget constraints, the process of programming applications from
scratch is becoming less feasible. As we have seen throughout this chapter,
the granularity of software building blocks ever increased and also influenced
the evolution of middleware. Constructing applications from a collection of
reusable components and frameworks is emerging as a popular approach to
software development. This way of constructing applications can be seen as a
new paradigm proposing that software should be built by gluing prefabricated
components together as in the field of electronics or mechanics.

A (software) component is a functional discrete block of logic. Components
can be full applications or encapsulated functionality that can be used as part of

I 5 ~ a v a 2 Enterprise Edition, cf. http: //java. sun. com/j2ee/
I6http: //www.microsof t . com/net/
I7http: //WWW. ibm. com/sof tware/websphere/
IXhttp: //www. jboss . org

Middleware 19

a larger application, enabling the construction of applications using components
as software building blocks. Components have a number of benefits as they
simplify application development and maintenance, allowing systems to be
more adaptive and to respond rapidly to changing requirements. Reusable
components are designed to encompass a reusable block of software, logic or
functionality.

If components are analogous to building blocks, frameworks can be seen
as the cement that holds them together. Frameworks are a collection of inter-
faces and interaction protocols that define how components interact with each
other and the framework itself. In essence, frameworks allow components to
be plugged into them. Examples of component frameworks include Enter-
prise JavaBeans (EJB)'~ in the case of J2EE and the Component Object Model
(coM)~' from Microsoft. Frameworks are most often integrated in application
servers. [Curry, 2004al

Application Servers as "Web-enabled" Middleware and Frameworks
Application servers incorporate the Web as a key access channel to the

functionality implemented using conventional middleware, leading to "Web-
enabled" middleware. Incorporating the Web as an access channel has several
important implications. The most significant one is that the presentation logic
of the application acquires a much more relevant role than in conventional mid-
dleware. This is a direct consequence of how HTTP and the Web work, where
all forms of information exchange take place through documents. Preparing,
dynamically generating, and managing these documents constitute main re-
quirements to be met by an application server. An application server intends to
support multiple types of clients including mobile phones, applications, such as
those encountered in conventional middleware, Web services clients, i.e., ap-
plications that interact with the server through standard Web services protocols
(cf. Section 3.2) and Web browsers. Web browsers are by far the most common
type of clients. They interact with the application server via its Web server and
receive statically or dynamically generated HTML pages.

Figure 2.2 depicts the API's of the presentation logic layer in the case of
J2EE. Dynamic pages are generated by ~ervlets ,~ ' viz., Java code that handles
HTTP requests and generally responds with HTML to be rendered by a request-
ing browser. A closely related technology is the JavaServer Pages (J S P) . ~ ~ JSP
is based on servlets, but is more convenient by including Java-code in an HTML
page. Support for parsing and transforming XML documents independent of

19http: //java. sun. com/products/ejb/
20http: //www .microsof t . com/com/
2'http: // java. sun. con/products/servlet
22http: //java. sun. com/products/jsp

20 SEMANTIC MANAGEMENT OF MIDDLEWARE

a specific XML processing implementation is provided by Java API for XML
Processing (JAXP) .~~ ~ a v a ~ a i l ~ ~ provides platform-independent and protocol-
independent means to build mail and messaging applications. Furthermore,
the Java Authentication and Authorization Service (J A A S) ~ ~ enables develop-
ers to authenticate users and enforce access controls upon those users in their
applications. By abstracting from the complex underlying authentication and
authorization mechanisms, JAAS minimizes the risk of creating security vul-
nerabilities in application code.

Servlets fa\JavaServer Pages (JSP) 1
Java API for XML 1 Javahlail 1
Processing (JAXP)

1 Java Authentication and Authorization Service 1
(JAAS) 4

Enterprise Java Java Transaction
Beans (EJB)

Java Naming and Java Message Directory Interface
Service (JMS)

Java 2 Connector
Connectivity (JDBC) Architecture (J2CA)

presentation
logic
layer

application
logic
layer

access to
resource layer

Figure 2.2. J2EE API's divided into layers. [Alonso et al., 20041

At the application layer, application servers conceptually resemble conven-
tional middleware. The functionality provided is similar to that of TP monitors,
CORBA and message brokers. However, component-based software engineer-
ing is typically fostered by application servers, which therefore provide a cor-
responding framework.

The middle section of Figure 2.2 depicts the API's of the application logic
layer in the case of J2EE. We can find conventional middleware, such as JTA
and JMS, together with directory services accessible via JNDI (cf. Section

23http: //java. sun. com/xml/jaxp/
"http: //java. sun. com/products/javamail/
25http://java.sun.com/products/jaas/

Middleware 21

1). The framework for software components in the form of the Enterprise
JavaBeans (EJB) container is a basic part of J2EE-based application servers.
Specific EJB components are deployed in this container and contain the bulk
of application logic. Some application servers use the recent Java Management
Extensions (J M X) ~ ~ technology to put EJB container, directory services and
the like in coarser grained components, called managed beans (short MBeans).
In contrast to EJB, JMX provides its own framework for such managed beans.
The difference is that MBeans can be deployed, undeployed and monitored at
run time. They also support interface evolution by a looser coupling.

Finally, J2EE addresses the problem of connecting to the resource layer. Two
standards are leveraged in this case: (i) Java Database Connectivity (J D B C) ~ ~
that enables developers to access almost any relational database, and (ii) the
J2EE Connector Architecture (J ~ c A) ~ ' that is a generalization of JDBC in that
it defines how to build arbitrary resource adapters.

As the complexity of J2EE shows, a significant aspect of application servers
is the bundling of more and more functionality within the middleware plat-
form. This is consistent with the trend toward providing integrated support for
many different middleware abstractions that we have witnessed in conventional
middleware. In fact, as software vendors continue to extend their middleware
offerings and package them in many different ways, it becomes hard even to
distinguish what is inside an application server and what is not. In many cases,
the name originally given to the application server (e.g., IBM WebSphere) has
been progressively used to label every middleware product offered by a com-
pany. For example, IBM messaging and workflow platforms are now marketed
under the name WebSphere MQ.

Deployment Descriptors
Application servers try to tame the increasing complexity of their bundled

functionality by managing orthogonal issues in an application independent way.
They introduce vertical services, e.g., load balancing, pooling, caching, trans-
actions, session management, user rights and persistence, that span all layers.
Thus, the responsibility is shifted from the development to the deployment
process, i.e., "the process whereby software is installed into an operational
environment" according to the J2EE glossary.

XML files are used to describe how components and applications should be
deployed and how vertical services should be configured. Such deployment
descriptors29 direct deployment tools to deploy a component, an application

26http: //java. sun. com/products/JavaManagement/
27http: //java. sun. com/products/jdbc
28http: //java. sun. com/j2ee/connector/
*"~EE deployment descriptor, http: //java. sun. com/j2ee/j2ee- 1-4-fr-spec. pdf

22 SEMANTIC MANAGEMENT OF MIDDLEWARE

or a vertical service with specific options and describe specific configuration
requirements that a deployer must resolve.

While it is always a good idea to reduce the amount of source code that has
to be written, the deployment process can be quite tricky in itself. Deploy-
ment tools merely act as an input mask, which generates the specific XML
syntax for the user. This is definitely a nice feature; however, the developer
must fully understand the quite complicated concepts that lie behind the options
for the transactional behavior, for instance, and juggle all of them at the same
time. The current deployment tools do not help to avoid or even actively repair
configurations that may cause harmful system behavior. Even worse, this prob-
lem is duplicated, as there is a plethora of deployment descriptors for different
kinds of components (servlets, EJBs, MBeans) and vertical services (security,
transactions, etc.).

We here present a case of how tricky the deployment process can become.
It is the interesting case of indirect permissions due to context switches (cf.
Figure 2.3). As an example, consider the anonymous user who accesses a Web
shop by the HTTP basic authentication. The script on this page, say a servlet,
might connect to the CustomerEnt ityBean, an EJB, which in turn accesses the
Customer table in the database. We assume that the database is only accessible
by dbuser. Therefore, the EJB performs an explicit context switch (which is
frequently described as the run-as paradigm). The call succeeds, because the
user information will be propagated and the call will also be executed using the
dbuser's credentials. This case is definitely not a bug; however, it remains a
pure manual and tedious task for the administrator of the application server to
keep track of such indirect permissions. [Oberle et al., 2005~1

(orr3tQ
Customer

anonymous CustomerEntityBean -?
dbuser

Figure 2.3. Example of indirect permission. [Oberle et al., 2005~1

In this example, the administrator needs to analyze two different deployment
descriptors, as well as the source code to discover the situation outlined above.
First, the deployment descriptor of the servlet container (web. xml) states that
only authenticated users may access the WebShopServlet:

Middleware

Example 2.1 (web. xml)

Second, the WebShopServlet itself accesses the CustomerEntityBean. The
servlet's doGet () method serves the incoming HTTP requests. In our case it
queries user account information out of the Customer table by means of the
bean in order to display it to the user. After retrieving a handle to the bean via
the Home interface, the getCustomerName 0 method of the bean is invoked
by the servlet.

Example 2.2 (WebShopServlet . j ava)
public class WebShopServlet extends HttpServlet (
public void doGet(HttpServ1etRequest request,
HttpServletResponse response)

<
. . .
//get customer info via CustomerEntityBean
CustomerObject cObject = cHome.create()
out.println(c0bject.getCustomerName())

Third, the deployment descriptor of the CustomerEntityBean, called ej b-
-jar. xml, states that the bean performs a context switch via the <run-as-
-specif ied-identity> tag. It thus accesses thedatabase table withdbuser's
credentials:

24 SEMANTIC MANAGEMENT OF MIDDLEWARE

Example 2.3 (e j b- j ar . xml)
. . .
<e jb- j ar>
<enterprise-beans>
cent ity>
cejb-name>CustomerEntityBean</ejb-name>
~ejb-class>edu.unika.aifb.CustomerEntityBe~~/ejb-class~
. . .
<security-identity>
<run-as-specified-identity>
<role-name>dbuser</role-name>
</run-as-specified-identity>

</security-identity>
</entity>

</enterprise-beans)
</e jb- jar>

Assessing such situations for any user, any EJB and any database table be-
comes an impossible task for developers and administrators. Rather, it is de-
sirable to query a system from different perspectives, e.g., "Are there any users
with indirect permission to resources? And i f yes, what are those resources?"
or "Are there any indirect permissions on the Customer table? And ifyes, who
are the users?' Such a system requires the explication of the conceptual model
underlying the different descriptions. Each deployment descriptor introduces
its own conceptual model implicitly in the corresponding XML-DTD. There-
fore, it is difficult to arrive at conclusions that are a result of an integration of
such descriptors. Consequently, Chapter 4 proposes the usage of ontologies to
support developers and administrators in these tasks.

As we introduce in Chapter 3, ontologies are a means to formally specify
a coherent conceptual model with logic-based semantics. The modelling of
the computational domain has to be done rigorously, because we encounter
fundamental ontological questions: What is the difference between the users in
the operating system, in the database system and within the application server's
realm (where users are calledprincipals)? Are there any conceptual differences
except their placement in a different realm? Also, we might be interested in
the relationship between a user in an information system and the corresponding
natural person. To infer the total of access rights granted for a natural person
who might have several user accounts in and across information systems, might
reveal further security holes.

Middleware 25

3.2 Web Services

The types of middleware discussed so far are all based on tightly-coupled
software building blocks (procedures, objects, workflows and components).
That means interfaces between the different software building blocks of an
application are closely interrelated in function and form, thus making them
brittle when any form of change is required to parts or the whole application.

The need for B2B applications to adapt to changing environments is a key
reason that made loosely-coupled systems attractive. In this section we explain
how Web services came about and how they may meet the new requirements.
First, one has to understand the paradigm of service-oriented architectures,
which factorizes the functionality in loosely-coupled services. A second aspect
is the way that Web services redesign the conventional middleware protocols.
Finally, standardization plays a major role, which led to a set of specifications
of different Web services aspects, labelled WS*.

Service-Oriented Architectures (SOA)

Today, businesses have to adopt quickly to changing environments, such as
changing policies, business strengths, business focus, partnerships or industry
standing. Businesses that are able to act flexibly in relation to their environment
where change occurs as required, are called "on demand" businesses. They
triggered the need for loosely-coupled systems in order to become more agile
with respect to changing environments.

The SOA paradigm is the answer to this and other needs. The functionality
of a distributed system is split into services instead of tightly-coupled objects
or components. Sewices are loosely-coupled, autonomous and independent
software building blocks. In order to work on a global scale, standards have
to be defined for service invocation, description, discovery, coordination and
composition.

SOA-based systems do not exclude the possibility that individual services
can themselves be built with object-oriented design. It allows objects within
the system and is as such object-based, but not as a whole object-oriented.
The difference is that many aspects that were hard-coded before have to be
specified dynamically and declaratively. One needs to specify how the overall
application performs its workflow between services. The workflow may include
services not just between departments, but even with other external partners.
Policies have to be defined as to how relationships between services should
transpire. All this has to work in an environment of trust and reliability, which
is given implicitly when business partners know each other and agree on terms
beforehand. [IBM developerworks, 2004al

26 SEMANTIC MANAGEMENT OF MIDDLEWARE

Web Services as Middleware for SOA-based Systems
The Web-based middleware for SOA-based systems is called Web services.

Web services subsume a set of protocols and XML-languages for interface
description, invocation, discovery and composition of services. The minimalist
Web services middleware is comprised of SOAP (Simple Object-based Access
Protocol [Gudgin et al., 2003]), the standard for the invocation, and WSDL
(Web Service Description Language [Christensen et al., 2001]), the standard
for the interface description. Further standards for discovery, coordination and
composition are being developed at the time of writing, as discussed below.30

The evolutionary nature of Web services presents them as extensions to con-
ventional middleware that provides a set of simple interfaces for interactions
across the Internet. These extensions make Web-based integration possible at
least in simple scenarios (such as EAI or closed communities of business part-
ners). SOAP and WSDL constitute yet another tier on the internal middleware
of an organizational unit (cf. ~ i ~ u r e 2 . 4) .

External Middleware

Transaction Monitor, Directory Service, Workflow Engine, ...

I Internet

Internal Middleware I

Transaction Monitor
Directory Service
Workflow Engine
...

Service Service @Q
...

Transaction Monitor
Directory Service
Workflow Engine
...

Internal Middleware 1
Organizational Unit, Organizational Unit,

Figure 2.4. Internal vs. external middleware. [Alonso et al., 20041

Two organizational units are able to perform application integration if they
both agree on using SOAP and WSDL, even if they use different internal mid-
dleware. For example, Web services might draw from components residing in
application servers (internal middleware) distributed over different organiza-
tional units and heterogeneous platforms. Application servers are an obvious

30~essage-oriented middleware is sometimes considered as middleware for SOA-based systems, too. In
fact, it defines similar concepts, but lacks the standardization necessary to realize SOA-based systems on a
global scale. We discuss these matters in the next section.

Middleware 27

target to support such a "wrapping" by SOAP and WSDL, as they provide the
basic infrastructure (Web server, XML parsers, etc.). In most cases, the de-
veloper is only required to mark a certain method with meta-tags in the source
code. The application server cares for automatically generating the WSDL
description and handling the SOAP messages.

The new tiers Web services add to the already overly complex internal mid-
dleware lead to significant performance overhead and increase the complexity of
developing, tuning, maintaining, and evolving multi-tier systems. Translation
to and from XML, tunnelling of invocations through SOAP, clients embedded
in Web servers and many of the technologies typical of Web services do not
come for free. Furthermore, Web services will introduce additional, external
middleware, thus adding extra complexity.

The revolutionary view sees Web services as radically changing the way
integration is achieved. The assumption seems to be that once SOAP and WSDL
are used, then Web services will facilitate the development of infrastructures
that support programmatic application integration, dynamic B2B marketplaces
and the seamless integration of IT infrastructures from different c ~ o ~ e r a t i o n s . ~ '
However, the autonomous nature of such SOA-based systems demands the
redesign of the middleware protocols to work in a loosely-coupled fashion and
across organizational units.

Internal middleware protocols were designed based on assumptions that do
not hold in cross-organizational interactions. For example, they assumed a
central transaction coordinator and the possibility for this coordinator to lock
resources indefinitely. Lack of trust and confidentiality issues often make a
case against a central coordinator and, therefore, middleware protocols must
now be redesigned to work in a fully distributed fashion and must be extended
to allow more flexibility in terms of locking resources. Similar arguments can
be made for all interaction and coordination protocols and, in general, for many
of the other properties provided by conventional and internal middleware, such
as reliability and guaranteed delivery. What was then achieved by a centralized
platform must now be redesigned in terms of protocols that can work in a
decentralized setting and across trust domains. One example of such "external"
middleware is UDDI (Universal Description Discovery & Integration [UDDI
Coalition, 2000]), allowing the discovery of Web services.

In order to facilitate application integration with Web services on a global
scale, the external Web services middleware must rely on standards. These
standards shape the current Web services landscape to a large extent. We have
introduced SOAP, WSDL, as well as UDDI so far. We introduce additional
ones in the next subsection.

3 1 ~ o d a y , Web services are not as revolutionary as one may think. They are mostly used in the evolutionary
way for conventional EAI.

28 SEMANTIC MANAGEMENT OF MIDDLEWARE

WS*
Having an SOA and redefining the middleware protocols is not sufficient to

address loosely-coupled and dynamic application integration on a global scale,
unless the language and protocols become standardized and widely adopted.
Consortia, such as the Organization for the Advancement of Structured Infor-
mation Standards (OASIS)~~ or the World Wide Web Consortium (w ~ c) , ~ ~
attempt to standardize all the different aspects beyond invocation (SOAP), de-
scription (WSDL) and discovery (UDDI). The commitment for standardization
does not necessarily mean that there will be one specification for each aspect,
however. Below, we give an incomplete overview of the aspects that are cur-
rently being specified. Altogether, they form an inscrutable set and are labelled
WS*. [Alonso et al., 20041

WS-Coordination The primary goal of this specification is to create a frame-
work for supporting coordination protocols. In this regard, it is intended as
a meta-specification that will govern specifications that implement concrete
forms of coordination protocols. [Cabrera et al., 20031

WS-Transaction WS-Transaction is an example of a concrete coordination
protocol specified by means of WS-Coordination. WS-Transaction is split
into the WS-AtomicTransaction protocol for short duration transactions and
WS-BusinessActivity to enable existing workflow systems to wrap their
proprietary mechanisms and interoperate across trust boundaries. [Cabrera
et al., 20041

WS-BPEL The Business Process Execution Language for Web Services (WS-
BPEL) is the de facto standard for specifying service composition. It also
allows specifying coordination between Web services, thus acting as an
alternative to WS-Coordination. [Andrews et al., 20051

WS-Security WS-Security is an extension to SOAP for end-to-end applic-
ation-level security that is otherwise ignored by underlying protocols, such
as HTTPS. It adds to SOAP the mechanisms of signatures and encryption.
[Atkinson et al., 20021

WS-Policy is a proposal for a framework through which Web services can
express their requirements, capabilities and preferences (commonly referred
to as "policies") to each other in an interoperable manner. It defines a set of
generic constructs for defining and grouping policy assertions. [Bajaj et al.,
2004, Alonso et al., 20041

32http: / /www. oasis-open. org
33http: //www. w 3 . org

Middleware 29

WS-Trust The Web Services Trust Language (WS-Trust) uses the secure mes-
saging mechanisms of WS-Security to define additional primitives and ex-
tensions for security token exchange to enable the issuance and dissemi-
nation of credentials within different trust domains. [BEA Systems et al.,
20041

Other aspects and specifications include WS-Addressing, WS-Attachments,
WS-Eventing, WS-Federation, WS-Inspection, WS-Manageability, WS-Meta-
DataExchange, WS-Notification, WS-Routing, and many more. An overview
is given in [IBM developerworks, 2004bl.

The advantages of WS* are multiple and have already benefited some in-
dustrial cases. Similar to deployment descriptors in application servers, WS*
descriptions manage orthogonal aspects in an application independent way.
XML-files declaratively describe how Web services should be deployed and
configured. Thus, WS* descriptions are exchangeable and developers may use
different implementations for the same Web service description. The disadvan-
tages of WS*, however, are also visible; even though the different standards are
complementary, they must overlap and one may produce models composed of
different WS* descriptions, which are inconsistent, but do not easily reveal their
inconsistencies. The reason is that there is no coherent formal model of WS*
and, thus, it is impossible to ask for conclusions that come from integrating
several WS* descriptions. Thus, discovering such Web Service management
problems or asking for other kinds of conclusions that derive from the integration
of WS* descriptions remains a purely manual task of the software developers
accompanied by little or no formal machinery.

As an example for a trivial conclusion derived from both a WS-BPEL and
WS-Policy description, consider the following case. Let's return to Example
2.1 on page 23 of a web shop and assume we have realized it with internal
and external Web services composed and managed by a WS-BPEL engine.
After the submission of an order, we have to check the customer's credit card
for validity, depending on the credit card type (VISA, Mastercard, etc.). We
assume that credit card providers offer this functionality via Web services.
The corresponding WS-BPEL process checkAccount thus invokes one of the
provider's Web services, depending on the customer's credit card. Example 2.4
shows a snippet of the WS-BPEL process definition.

Example 2.4 (WS-BPEL)
. . .
(process name=" checkAc~ount~~>
<switch . . . >
<case condition=''getVariableData('card')='VISA)">
<invoke partnerLink="toVISAU
p~rtType='~visa: CCPortType"

30 SEMANTIC MANAGEMENT OF MIDDLEWARE

Suppose now that the Web service of one credit card provider, say Master-
Card, only accepts authenticated invocations conforming to Kerberos or X509.
It states such policies in a corresponding WS-Policy document, such as the one
sketched in Example 2.5. The invocation will fail unless the developer ensures
that the policies are met. The developer has to check the policies manually at
development time or has to implement this functionality to react to policies at
run time, assuming that no policy matching engine is in place.

Example 2.5 (WS-Policy)

As we may recognize from this small example, it is desirable to support the
developer with unambiguous specifications and formal machinery to arrive at
such conclusions automatically. This is particularly helpful when we think of
more sophisticated examples where we have large indirect process cascades or
additional WS* descriptors to consider. However, it remains a manual task for
the developer to discover and assess such situations. The reason is that there is
no coherent conceptual model underlying the WS* descriptions - very similar

Middleware 3 1

to the case of deployment descriptors in application servers. As a consequence,
Chapter 4 proposes the usage of ontologies in Web services middleware to
support developers and administrators in performing such tasks.

Ontologies are a means to formally specify conceptual models with logic-
based semantics. The domain of Web services demands a rigorous modelling
because we are confronted with fundamental ontological questions. What is the
difference between a policy of a Web Service and an access right on a software
component? Are they the same? Can workJows of Web services be modelled
such as the invocation chain of software components? Such questions call for a
concise and fundamental introduction of ontologies, which is given in Chapter

4. Summary
In this chapter we have discussed the evolution of middleware providing a

brief overview for the reader. We have advanced from the earliest types of
middleware targeted at distributed application development. With the prolifer-
ation of distributed applications in companies there arose the need for enterprise
application integration. That triggered further the evolution of middleware re-
sulting in middleware for enterprise application integration. Finally, we have
had a closer look at the current state-of-the-art, viz., middleware for business-to-
business (B2B) application integration. Application servers and Web services
belong in this category. Both offer a wealth of functionalities for realizing
business-to-business application integration via the Web. Application servers
bundle more and more functionality and Web services are almost universally
being built as additional layers over existing middleware platforms, which are
already too complex and cumbersome. The complexity iscountered by the us-
age of deployment descriptors that reduce the amount of coding by specifying
orthogonal issues in an application independent way. In a similar vein, the Web
service community is currently developing a set of standards, WS*, to manage
aspects such as coordination or composition.

Though deployment descriptors and WS* descriptions constitute a very flex-
ible way of developing and administrating a distributed application, we have
demonstrated that developers and administrators still need to expend signifi-
cant efforts. The reason is that the conceptual model underlying the different
descriptions is only implicit. Hence, its bits and pieces are difficult to retrieve,
survey and check for validity and maintain. It remains a manual task to arrive at
conclusions that are the result of combining such descriptions. Hence, Chapter
3 introduces the reader to ontologies as a means to formally specify conceptual
models with logic-based semantics. We have also demonstrated that the do-
main of software components and Web services demands a careful and rigorous
ontological modelling.

http://www.springer.com/978-0-387-27630-4

