
Chapter 2 

Independence and Strong Convergence 

This chapter is devoted t o  the fundamental concept of independence and to 
several results based on it, including the Kolmogorov strong laws and his three 
series theorem. Some applications t o  einpiric distributions, densities, queueing 
sequences and random walk are also given. A number of important results, 
included in the problems section, indicate the profound impact of the concept 
of independence on the subject. All these facts provide deep motivation for 
further study and development of probability theory. 

2.1 Independence 

If A and B are two events of a probability space (R ,  C, P), it is natural to  
say that A is independent of B whenever the occurrence or nonoccurrence of 
A has no influence on the occurrence or nonoccurrence of B.  Consequently 
the uncertainty about joint occurrence of both A and B must be higher than 
either of the individual events. This means that the probability of a joint 
occurrence of A and B should be "much smaller" than either of the individual 
probabilities. This intuitive feeling can be formalized mathematically by the 
equation 

for a pair of events A, B. How should intuition translate for three events 
A, B, C if every pair among them is independent? The following ancient ex- 
ample, due to  S. Bernstein, shows that,  for a satisfactory mathematical ab- 
straction, more care is necessary. Thus if R = {dl, w2, w3, w4), C = P ( f l ) ,  the 
power set, let each point carry the same weight, so that 

Let A = {dl, w2), B = {wl, w3), and C = {w4, wl). Then clearly P ( A  n B) = 

P ( A ) P ( B )  = i, P ( B n C )  = P ( B ) P ( C )  = i, and P ( C n A )  = P(C)P(A)  = i .  
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But P (A  n B n C)  = i, and P (A)P(B)P(C)  = i. Thus A, B ,  C are not 
independent. Also A, ( B  n C)  are not independent, and similarly B ,  ( C  n A) 
and C, (A n B )  are not independent. 

These coiisideratioiis lead us to introduce the precise coiicept of mutual 
iiidependeiice of a collection of events by not pairwise but by systems of equa- 
tions so that the above anomaly cannot occur. 

Definition 1 Let (R,  C, P) be a probability space and {Ai, i E I )  c P(0) 
be a family of events. They are said to be pairwise independent  if for each 
distinct i ,  j in I  we have P(Ai n Aj) = P(A,)P(Aj).  If A,,, . . . ,A,", are n 
(distinct) events, n > 2, then they are mutua l ly  independent  if 

holds simultaneously for each rn = 2,3, ..., n. The whole class {Ai, i E I )  is 
said to be mutually independent if each finite subcollectioii is mutually inde- 
pendent in the above sense, i.e., equations (1) hold for each n > 2. Similarly if 
{Ai, i E I) is a collection of families of events from C then they are mutually 
independent if for each n,  Ai, E Ai, we have the set of equations (1) holding 
for Ai,, k = 1, ..., m, 1 < m 5 n. Thus if Ai E Ai then {Ai, i E I )  is a mutually 
independent family. [Following custom, we usually omit the word "mutually" .] 

It is clear that the (mutual) independence concept is given by a system 
of equations (1) which can be arbitrarily large depending on the richness of 
C.  Indeed for each n events, (1) is a set of 2" - n - 1 equations, whereas the 

n 
pairwise case needs only ( ) equations. Similarly %-wisen iiidependeiice has 

2 
n 

( r n )  
equations, and it does not imply other independences if 2 < m < n is 

a fixed number m. It is the strength of the (mutual) concept that allows all 
n > 2. This is the mathematical abstraction of the intuitive feeling of inde- 
pendence that experience has shown to be the best possible one. It seems to 
give a satisfactory approxiination to the heuristic idea of iiidepeiideiice in the 
physical world. In addition, this mathematical formulation has been found 
successful in applications to such areas as number theory, and Fourier analy- 
sis. The notion of independence is fundamental to probability theory 
and distinguishes it from measure theory. The coiicept translates itself 
to random variables in the following form. 

Definition 2 Let (0, C ,  P) be a probability space and {Xi, i E I )  be 
abstract random variables on R into a measurable space (S, A). Then they 
are said to be mutua l ly  independent  if the class {B, i E I )  of 0-algebras in C 
is mutually independent in the sense of Definition 1, where Bi = x i 1 ( A ) ,  the 
a-algebra generated by X,, i E I .  Pairwise independence is defined similarly. 



2.1 Independence 35 

Taking S = R(orRn) and A as its Bore1 a-algebra, one gets the corresponding 
concept for real (or vector) random families. 

It is perhaps appropriate at this place to  observe that inany such (inde- 
pendent) families of events or raiidoin variables on an (fl ,  C, P) need not exist 
if (0, C) is not rich enough. Since 0 and 0 are clearly independent of each 
event A E R,  the set of equations (1) is non vacuous. Consider the trivial 
example R = (0, 11, C = P(0) = (0, {0), {I), R),  P({O)) = p = 1 - P({1)), 
0 < p < 1. Then, omitting the 0, f l ,  there are no other independent events, and 
if X, : f l  + R, i = l , 2 ,  defined as X1 (0) = 1 = X2 (1) aiid X I  (1) = 2 = X2(0), 
then X I ,  X2 are distinct raiidoin variables, but they are not independent. Any 
other random variables defined on R can be obtained as functions of these two, 
and it is easily seen that there are no nonconstant independent random vari- 
ables on this R.  Thus (R,  C, P) is not rich enough to support nontrivial (i.e., 
nonconstant) independent raiidoin variables. We show later that a probability 
space can be enlarged to have more sets, so that one can always assume the 
existence of enough independent families of events or random variables. We 
now consider some of the profound consequences of this mathematical formal- 
ization of the natural concept of mutual independence. It may be noted that 
the latter is also termed statistical (stochastic or probabilistic) independence 
to  contrast it with other concepts such as linear independence aiid functional 
independence. [The functions X I ,  X2 in the above illustration are linearly in- 
dependent but not mutually (or statistically) independent! See also Problem 

1.1 
To understand the implications of equations ( I ) ,  we coiisider different 

forms (or consequences) of Defiiiitioiis 1 aiid 2. First note that if {A,, i E 
I} c C is a class of mutually iiidepeiideiit events, then it is evident that 
{a(A,),i  E I) is an independent class. However, the same cannot be said 
if the singleton Ai is replaced by a bigger family Gi = {A:, j E Ji) c C, 
where each Ji has at least two elements, i E I, as simple examples show. Thus 
{o(Gi),  i E I} need not be independent. On the other hand, we can make the 
following statements. 

Theorem 3 (a) Let {A, Bi, i E I) be classes of events from (R,  C,  P) 
such that they are all mutually independent in the sense of Definition 1. If 
each Bi, i E I ,  is a n-class, then for any subset J of I ,  the generated a-algebra 
a(B,, i E J) and A are independent of each other. 

(b) Definition 2 with S = R reduces to the statement that for each fi- 
nite subset i l ,  . . . , i n  of I and random variables x,, , . . . ,Xi , ,  , the collection 
of events {[Xi, < X I , .  . . ,Xi,, < xn] ,x j  E R, j = 1, ..., n,n  > 1) forms an 
independent class. 

Proof (a) Let B = a(B,, i E J), J c I .  If A E A, Bj E Bj1 
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are independeiit by hypothesis, i.e., (1) holds. We need to  show that 

If B is of the form B1 n . . . n B,, where Bi E Bi, i E J, then (2) holds 
by (1). Let D be the collection of all sets B which are finite intersections of 
sets each belonging to a Bj, j E J. Since each Bj is a T-class, it follows that 
2) is also a T-class, and by the preceding observation, (2) holds for A aiid 
Dl so that they are independent. Also it is clear that Bj c D, j E J. Thus 
a(Bj ,  j E J) c a(D).  We establish (2) for A and a(D)  to  complete the proof 
of this part, and it involves another idea often used in the subject in similar 
arguments. 

Define a class G as follows: 

B = {B E a(D)  : P ( A  n B )  = P(A)P(B) ,  A E A). (3) 

Evidently D c G. Also R E G, and if B1, Bz E with B1 n Bz = 0, then 

P((B1 u Bz) n A) = P(B1 n A) + P ( B 2  n A) (since the B, n A are disjoint) 

= P(B1) P (A)  + P(B2) P(A) [ by definition of (3)] 

Hence B1 U B2 E G. Similarly if B1 > Bz, B, E G, then 

P((B1 - B2) n A) = P ( B l  n A) - P(B2  n A) (since El n A 3 B2 n A) 

Thus El - B2 E G. Finally, if B, E G, B, c we can show, from the 
fact that P is 0-additive, that limn En = U,>lBn E G. Hence G is a A-class. 
Since B > D, by Proposition 1.2.8b, G > ;(Dl. But (3) implies G and A 
are independent. Thus A and a(D)  are independent also, as asserted. Note 
that since J c I is an arbitrary subset, we need the full hypothesis that 
{A, B,, i E I) is a mutually independeiit collection, aiid not a mere two-by- 
two independence. 

(b) It is clear that Definition 2 implies the statement here. Conversely, let 
B1 be the collection of sets {[X,, < X I ,  x E R), and 
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It is evident that B1 and B2 are T-classes. Indeed, 

and similarly for B2. Hence by (a),  B1 and a ( & )  are independent. Since 
B1 is a T-class, we also get, by (a) again, that o(B1)  and 0 ( B 2 )  are inde- 
pendent. But a(&)  = x ; ' ( ~ ) [ =  o ( X i , ) ] ,  and 0 ( B 2 )  = o ( u ~ = ~ x ~ , ' ( R ) ) [ =  
a(Xi , ,  . . . , X,, , )] ,  where R is the Borel a-algebra of R. 

Heiice if A1 c a ( X i , ) ,  A j  c xcl(R)(= o ( X z J ) )  c o ( B z ) ,  then Al and 
{ A z ,  ..., A,} are independent. Thus 

p ( A l  n . . . n A,) = P ( A l )  . P(A2  n . . . n A,). (4) 

Next consider Xi, and (Xi , ,  . . . , X i , , ) .  The above argument can be applied to 
get 

P ( A 2  n . . . n A,) = P ( A 2 )  . P ( A ,  n . . . n A,). 

Coiitinuiiig this finitely inany times aiid substituting in (4), we get (1) .  Heiice 
Definition 2 holds. This completes the proof. 

The above result says that we can obtain (1)  for random variables if we 
assume the apparently weaker coiiditioii in part (b) of the above theorem. 
This is particularly useful in computations. Let us record some consequences. 

Corollary 4 Let {Bi, i E I )  be an arbitrary collection of mutually inde- 
pendent T-classes in (R, C ,  P ) ,  and Ji c I ,  Jl n J2 = 0. If 

then B1 and Ga are independent. The same is true if ';fi = n ( B j 1  j c J,), i = 

1,2, are the generated T-classes. 

If X ,  Y are independent random variables, f ,  g are any pair of real Borel 
fuiictioiis on R,  then f o X ,  g o Y are also independent random variables. 
This is because ( f  o X ) - ' ( R )  = X p l ( f p ' ( R ) )  c X p l ( R ) ,  and similarly 
( g o y ) '  (R)  c Y p l  (R); aiid X p l  (R) ,  Y p l  (R) are independent 0-subalgebras 
of C .  The same argument leads to the following: 

Corollary 5 If X I ,  . . . , X ,  are mutually independent random variables 
on (a, C ,  P )  and f : R h  R ,  g : R n p b  R are any Borel functions, then 
the random variables f ( X I ,  . . . , X k ) ,  g(Xk+',.  . . , X,) are independent; and 
a ( X 1 , .  . . , X k ) ,  a(Xk+' , .  . . , X,) are independent a-algebras, for any k > 1. 

Another consequence relates to distribution functions and expectations 
when the latter exist. 
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Corollary 6 If X1 . . . X, are independent random variables on (0, C,  P) ,  
then their joint distribution is the product of their individual distributions: 

= PIX, < z,] 

If, moreover, each of the random variables is integrable, then their product 
is integrable and we have 

Proof By Theorem 3b, (1) and (5) is each equivalent to independence, 
and so the image functions Fx ,,,,., x,, and nr=l Fx, are identical. In Defi- 
nition 2.2 the distribution function of a single random variable is given. The 
same holds for a (finite) random vector, and FX,,..,,x7, is termed a joint distri- 
bution function of XI ,  . . . , X,. The result on image measures (Theorem 1.4.1) 
connects the integrals on the R-space with those on Rn,  the range space of 
(XI ,  . . .  ,Xn) .  

We now prove (6). Taking f (z) = 1x1, f : B + R+ being a Bore1 function, 
by Corollary 5, IX1 , . . . , IXn I are also mutually independent. Then by (5) and 
Tonelli's theorem, 

[by Theorem 1.4.li with G as the image law] 

+ z ,dGx,  (,,), (by Tonelli's theorem) 
a=l 

n 

= E ( I X ~ I ) ,  [by Theorem 1.4.lil. 
i=l  
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Since the right side is finite by hypothesis, so is the left side. Now that 
n r = l  = X,I is integrable we can use the same computation above for X, 

n and Fx,, ..,x,, (= n,=, Fx,), and this time use Fubini's theorem in place of 
Tonelli's. Then we get (6) in place of (7). This proves the result. 

Note.  It must be remembered that a direct application of Fubini's theorem 
is not  possible in the above argument since the integrability of I n r = l  XiI has 
to be established first for this result (cf. Theorem 1.3.11). In this task we need 
Tonelli's theorem for nonnegative random variables, and thus the proof caiiiiot 
be shortened. Alternatively, oiie can prove (6) first for simple random variables 
with Theorem 3b, and then use the Lebesgue monotone (or dominated) coii- 
vergence theorem, essentially repeating part of the proof for Tonelli's theorem. 

We shall now establish oiie of the most surprising consequences of the iii- 
dependelice concept, the zero-one law. If X I ,  X2 , .  . . is a sequence of random 
variables, then n,"==, o(Xi,  i > n) is called the tail a-algebra of {X,, n > 1). 

Theorem 7 (Kolmogorov's Zero-One Law) A n y  event  belonging t o  the 
tail a-algebra of a sequence of independent random variables o n  (0, C ,  P) has 
probability either zero o r  one. 

Proof Denote by 7 = a (Xk ,  k > n), the tail a-algebra of the se- 
quence. Then by Theorem 3a, a(X,) and a ( X k ,  k > n + 1) are independent 
a-algebras for each n > 1. But 7 c a(Xk ,  k > n + I ) ,  so that a(X,) and 
7 are independent for each n. By Theorem 3a again 7 is independelit of 
a(o(X,) ,n > 1) = a(X,, n > 1). However, 7 C o(X,,n > 1) also, so that 7 
is independent of itself! Hence A E 7 implies 

thus we must have P(A)  = 0 or 1, completing the proof. 

An immediate consequence is that any fuiictioii measurable relative to 7 
of the theorem must be a coilstant with probability one. Thus lim sup, X,, 
lim inf, X, (and limn X, itself, if this exists) of independent random variables 
are constants with probability one. Similarly if 

then C r = l  Xn(w) converges iff w E A, for each n,  i.e., iff w E A = An. 
Since clearly A, E o(Xk ,  k > n), A E 7, so that P(A)  = 0 or 1. Thus for 

independent X, the series C,"==, X, converges with probability 0 or 1. The 
following form of the above theorem is given in Tucker (1967). 
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Corollary 8 Le t  I be a n  arbitrary inf ini te  index  set,  and  {Xi, i E I) be 
a family  of independent  r a n d o m  variables o n  ( Q , C ,  P ) .  If 3 i s  the  directed 
(by inclusion)  set  of all finite subsets of I ,  the  (generalized) tail  a-algebra i s  
defined as  

T h e n  P takes  only  0 and 1 values o n  '&. 

Proof The argument is similar to  that of the theorem. Note that lo and 
BJ = a ( X i , i  E J) are independent for each J E 3, as in the above proof. 
So by Theorem 3a, '& and B = a(BJ, J E 3) are independent. But clearly 
B = a(Xi ,  i E I), so that '& c B. Hence the result follows as before. 

Let us now show that independent random variables can be assumed to 
exist on a probability space by a process of enlargement  of the  space b y  ad- 
junct ion.  The procedure is as follows: Let (R,  C, P) be a probability space. If 
this is not rich enough, let (R,, C,, P,), i = 1, ..., n,  be n copies of the given 

n 
space. Let (fi, 2, P) = ( x T = ~ Q ~ ~  Ci, Pi) be their Cartesian prod- 
uct. If XI ,  ..., Xn are random variables on (R,  C, P), define a "new" set of 
functioiis XI, ..., X, on (f l ,  C, P) by the equations 

Then for each a E R, 

which is a measurable rectangle and hence is in 2 .  Thus xi is a random 
variable. Also, since Pi = P, we deduce that 

by Fubini's theorem and the fact that Pi(Ri) = 1. Consequently the xi are 
independent (cf. Theorem 3b) and each xi has the same distribution as X,. 
Thus by enlargement of (fl ,  C, P) to (dl C, P), we have n independent ran- 
dom variables. This procedure can be employed for the existence of any finite 
collection of independent random variables without altering the probability 
structure (see also Problem 5 (a)). The results of Section 3.4 establishing the 
Kolmogorov- Bochner theorem will show that this enlargement can be used 
for a n y  collection of random variables (countable or not). Consequently, we 
can and do develop the theory without any question of the richness of the 
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underlying a-algebra or of the existence of families of independent random 
variables. 

The following elementary but powerful results, known as the Borel-Cantelli 
l emmas ,  are true even for the weaker pairwise independent events. Recall that 
liinsup, A, = {w : w E A, for infinitely inany n ) .  This set is abbreviated as 
{A,, i.0.) [= {A, occurs infinitely often)]. 

Theorem 9 (i) (First Borel-Cantelli Lemma). Let {A,, n > 1) be a 
sequence of events  in ( R ,  C ,  P) such that C;==, P(A,) < oo. T h e n  

P(1im sup A,) = P(A,, i.0. ) = 0. 
n 

(ii) (Second Borel-Cantelli Lemma). Let {A,, n > 1 )  be a sequence of 
pairwise independent events  in (a, C ,  P) such that  C,"==, P(A,) = oo. T h e n  
P(A,, 2.0.) = 1. 

(iii) I n  particular, if {A,, n > 1) i s  a sequence of (pairwise o r  mutual ly)  in-  
dependent events, t h e n  P(A,, 2.0.) = 0 o r  1 according t o  whether Cr=l P(A,) 
i s < o o  o r = o o .  

Proof (i) This simple result is used more often than the other more in- 
volved parts, since the events need not be (even pairwise) independent. By 
definition, A = limsup, A, = U k r n  Ak ' Uk>, Ak for all n > 1. Hence 
by the a-subadditivity of P, we have 

Letting n + oo,  and using the convergence of the series Cr=l P(Ak) ,  the 
result follows. 

(ii) (After Chung, 1974) Let {A,,n > 1) be pairwise independent. By 
Problem 1 of Chapter 1 ,  we have 

A = [A,, i.o.1 iff XA = lim sup xA7, 
n 

Hence 
P(A) = 1 iff P[lim sup xA7, = 11 = 1 

n 

Now we use the hypothesis that the series diverges: 
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where S, = Cr=l XA, and the monotonicity of S, is used above. With (11) 
and the pairwise independence of A,, we shall show that 

P([ lim S, = oo]) = 1. 
n-00 

which in view of (10) proves the assertion. 
Now given N > 0, we have by ceby~ev's inequality, with E = N2/-, 

Equivalently, 

To simplify this we need to evaluate Var S,. Let p, = P(A,). Then 

If In = )cA,, - p,, then the 1, are orthogonal random variables. In fact, using 
the inner product notation, 

= P(A, n A,) - p,p, = 0, if n # rn (by pairwise independence) 

Thus 

Since by (11) E(S,) 7 oo, (15) yields Z / V ~ T S ~ / E ( S ~ )  5 (E(s,))-'/~ + 0. 
Thus given N > 1, and 0 < a1 = a / N  for 0 < a! < 1, there exists no = 

no(n ,N)  such that n > no +- Jv~~s,/E(s,) < a1 < 1. Since n l  = n/N,  
we get 

N 5 aE(S,), n > no. 
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Consequeiitly (12) implies, with 1 > /3 = 1 - a > 0 and the monotonicity of 
Sn7 (i.e., Sn T)  

Let n + cm, and then N + cm (so that /3 4 1); (17) gives P[lim,,, S, = 

oo] = 1. This establishes the result because of (10). 
(iii) This is an immediate consequence of (ii), and again gives a zero- 

one phenomenon! However, in the case of mutual independence, the proof is 
simpler than that of (ii), and we give the easy argument here, for variety. Let 
A: = En. Then En, n > 1, are independent, since {o(A,), n > 1) forins an 
independent class. Let P(A,) = a,. To show that 

it suffices to  verify that,  for each n > 1, P(Uk,, Ak) = 1, or equivalently 

Now for any n 2 1, 

= liin n (1 - air) (by independelice of Ek ) 
m i 0 0  

00 a 

- x a k )  = 0 ( since x a; = oo by hypothesis). 
k=n+l k = l  

This completes the proof of the theorem. 

Note 10 The estimates in the proof of (ii) yield a stronger statement 
than we have asserted. One can actually show that  

s n  P [  liin - = 11 = 1. 
n-m E(Sn) 

In fact, (12) implies for each n and N ;  
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Since V~TS , / (E (S , ) )~  + 0 as n + oo, for each fixed N ,  this gives 

S n  1 p[lim sup - < 1 ] > 1 - - ,  
n E(Sn) - N 2  

and letting N + oo, we get 

s, liin sup - < 1 a.e. 
n E(Sn) 

On the other hand by (17), P[P < S,/E(S,)] > 1 - 1/N2, n > no. Hence for 
each fixed N ,  this yields 

1 
P < liminf - sn ] > I p F .  [ E(Sn) 

Now let N + ce aiid note that p + 1; then by the monotonicity of events 
in brackets of (19) we get 1 < lim inf, [Sn/E(Sn)] a.e. These two statements 
imply the assertion. 

Before leaving this section, we present, under a stronger hypothesis than 
that of Theorem 7, a zero-one law due to  Hewitt aiid Savage (1955), which is 
useful in applications. We include a short proof as in Feller (1966). 

Definition 11 If X I ,  . . . , X ,  are random variables on (0, C, P), then they 
are symmetric (or symmetrically dependent) if for each permutation i l ,  . . . , i n  
of (1 ,2 , .  . . , n),  the vectors (X,, , . . . , X,,,) aiid (XI , .  . . , X,) have the same 
joint distribution. A sequence {X,, n > 1) is symmetric if {Xk, 1 5 k 5 n)  is 
symmetric for each n > 1. 

We want to  consider some functions of X = {X,, n > 1). Now X : 0 + 

R" = x E l R i ,  where Ri = R is an illfinite vector. If B" = is the 
(usual) product a-algebra, then 

Let g : 0 + R be Co-measurable. Then by Proposition 1.2.3 there is a Bore1 
function h : R" + R (i.e., h is B"-measurable) such that g = h o X = 

h(Xl ,Xz , .  . .). Thus if {X,, n > 1) is a symmetric sequence, then each Co- 
measurable g is symmetric l, so that 

In detail, this means if g : lWW i R, then g(X1,. . . , X,, X,+I, . . .) = 

g(X,, , . . . , X,,, , X,+I,. . .) for each permutation ( i l , .  . . , i,) of ( 1 , 2 , .  . . , n), each 
n >  1. 
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for each finite permutation. Let A E Co. Then A is a s y m m e t r i c  even t  if X A  

is a symmetric fuiictioii in the above sense. The following result is true: 

Theorem 12 (Hewitt-Savage Zero-One Law). If X I ,  X2,  . . . are indepen-  
den t  w i th  a c o m m o n  distribution, t h e n  every s y m m e t r i c  set  in 

has  probability zero o r  one.  

Proof Recall that if p : Co x Co + R+ defined by p(A,B) = P(AAB) 
with A as symmetric difference, then (C, p) is a (semi) metric space on which 
the operations U, n,  and A are continuous. Also, Ur=l  a(X1, . . . , X,) c Co 
is a dense subspace, in this metric. 

Heiice if A E Co, there exists A, E o(X1, .  . . , X,) such that p(A, A,) + 0, 
and by the definition of o(X1, .  . . , X,) there is a Borel set B, C Rn such that 
A, = [ (XI , .  . . , X,) E B,]. Since 

X = (XZ1, . . . , X2,, , Xn+l . . .) and X = (Xi ,  . . . , X,, Xn+ l .  . .) 

have the same (finite dimensional) distributions, because the X, are identi- 
cally distributed, and we have for any B E Bm, P(X E B )  = P ( X  E B). In 
particular, if the permutation is such that A, = [(X2,, X a n - ~ ,  . . . , X,+I) E 
B,], then A, and A, are independent and p(A, A,) + 0 as n. + oo again. 

Indeed, let T be the 1-1 measurable permutation mapping TA, = A, and 
TA = A since A is symmetric. So 

Hence also A, n A, + A n  A = A, by the continuity of n in the p-metric. But 

by independence. 
Letting n + oo, and noting that the metric function is also contiiiuous in 

the resulting topology, it follows that A, + A in p +- P(A,) + P(A).  Heiice 

lim P(A, n A,) = P ( A  n A) = lim P(A,) . P(A,) = P ( A ) ~  
, 1 0 0  , 1 0 0  

Thus P (A)  = P(AI2 so that P(A)  = 0 or 1, as asserted. 

R e m a r k s  (1) It is not difficult to  verify that if S, = EL=, X k ,  X k  as in the 
theorem, then for any Borel set B, the event [S, E B i.o.1 is not necessarily a 
tail event but is a symmetric one. Thus this is covered by the above theorem, 
but not by the Kolmogorov zero-one law. 
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(2) Note 10, as well as part (ii) of Theorem 9, indicate how several weaken- 
i n g ~  of the independence condition can be formulated. A number of different 
extensions of Borel-Cantelli lemmas have appeared in the literature, and they 
are useful for special problems. The poiiit here is that the concept of inde- 
pendence, as given in Defiiiitioiis 1 and 2, leads t o  some very striking results, 
which then motivate the introduction of different types of dependences for a 
sustained study. In this chapter we present only the basic results founded on 
the independence hypothesis; later on we discuss how some natural extensions 
suggest themselves. 

2.2 Convergence Concepts, Series, and Inequalities 

There are four coilvergelice concepts often used in probability theory. They 
are poilitwise a.e., in mean, in probability, aiid in distribution. Some of these 
have already appeared in Chapter 1. We state them again and give some inter- 
relations here. It turns out that for sums of independent (integrable) random 
variables, these are all equivalent, but this is a relatively deep result. A partial 
solution is given in Problem 16. Several inequalities are needed for the proof 
of the general case. We start with the basic Kolmogorov inequality aiid a few 
of its variants. As consequences, some important "strong limit laws" will be 
established. Applications are given in Section 2.4. 

Definition 1 Let {X, Xn,  n  > 1) be a family of random variables on a 
probability space (R, C, P ) .  

(a) X, + X pointwise a.e. if there is a set N E C, P ( N )  = 0 aiid 
Xn(w) + X ( w ) ,  as n +  oo, for eachw E R - N .  

(b) The sequence is said to  converge t o  X in probability if for each E > 0, 
P 

we have limn,, P [ X n  - XI > E ]  = 0, symbolically written as Xn + X (or 
as p limn Xn = X )  . 

(c) The sequence is said to  converge in distribution to  X ,  often written 
D 

Xn + X if FX,, (z) + &(z) at all points z E R for which z is a continu- 
ity poiiit of Fx, where FX,, , FX are distribution functions of X, and X (cf. 
Definition 2.2). 

(d) Finally, if {X,Xn,  n > 1) have p-moments, 0 < p < oo, then the 
LJ' 

sequence is said to  tend to X in pth order mean, written Xn + X,  if 
E ( X n  - X P )  + 0. If p = 1, we simply say that Xn + X in mean. 

The first two as well as the last convergences have already appeared, and 
these are defined and profitably employed in general analysis on arbitrary 
measure spaces. However, on finite measure spaces there are some additional 
relations which are of particular interest in our study. The third concept, on 
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the other hand, is somewhat special t o  probability theory since distribution 
functions are image probability measures on R. This plays a pivotal role in 
probability theory, and so we study the concept in greater detail. 

Some ainplification of the conditioiis for "in distribution" is in order. If 
X = a  a.e., then Fx(z) = 0 for z < a ,  = 1 for z > a .  Thus we are asking that 

D 
for X, + a ,  Fx,, (2) + F,(z) for z < a and for z > a but not at z = a ,  the 
discoiitiiiuity point of Fx. Why? The restriction on the set is that it should 
be only a "continuity set" for the limit function Fx. This condition is arrived 
at after noting the "natural-looking" conditions proved themselves useless. 
For instance, if X, = a, a.e., and a, + a as numbers, then Fx,, (z) + 

Fx (z) for all z E R - {a), but FX,, (a) f +  Fx (a),  siiice IFx,, (a),  n > 1) 
is an oscillating sequence if there are infinitely inany n on both sides of a.  
Similarly, if {X, = a,, n > 1) diverges, it is possible that {Fx,,(x), n > 1) 
may converge for each x E R to a function taking values in the open interval 
( 0 , l ) .  Other unwanted exclusions may appear. Thus the stipulated condition 
is weak enough to  ignore such uninteresting behavior. But it is not too weak, 
siiice we do want the convergence on a suitable dense set of R. (Note that 
the set of discontinuity points of a monotone function is at  most countable, 
so that the continuity set of Fx is R - { that countable set ).) Actually, 
the condition comes from the so-called simple convergence on Coo(R), the 
space of contiiiuous fuiictioiis with compact supports, which translates to  the 
condition we gave for the distribution fuiictioiis on R according to a theorem 
in abstract analysis. For this reason N. Bourbaki actually calls it the vague 
convergence, and others call it the weak-star convergence. We shall use the 
terminology introduced in the definition and the later work shows how these 
last two terms can also be justifiably used. 

The first three convergences are related as follows: 

Proposition 2 Let X, and X be random variables on (R ,  C, P). Then 
P D 

X, i X a.e. + X, + X + X, + X. If, moreover, X = a a.e., where 
D P 

a E R, then X, i X + X, i X also. In  general these implications are not 
reversible. (Here, as usual, the limits are taken as n + oo.) 

Proof The first implication is a standard result for any finite measure. In 
fact, if X, + X a.e., then there is a set N E C, P ( N )  = 0, and on R - N ,  
X,(w) + X(w). Thus lim sup, X,(w) = X(w), w E R - N ,  and for each E > 0, 

Hence the set has measure zero. Since P is a finite measure, this implies 
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< P ( N )  = 0. (1) 

Consequently, 

P 
Thus Xn i X ,  and the first assertion is proved. 

For the next implication, let Fx ,  Fx,, be the distribution functions of X  
and X,, and let a,  b  be continuity points of Fx with a  < b. Then 

[ X  < a] = [ X  < a , X n  < b] U [ X  < a , X n  > b] 

c [ X ,  < b] u [ X  < a , X n  > b], 

so that computing probabilities of these sets gives 

P 
Also, since Xn + X ,  with E = b  - a  > 0,  one has from the inclusion 

[ X  < a , X n  > b] c [IX, X I  > b a ] ,  

l imP[X < a , X n  > b] = O .  
n (4 )  

Thus ( 3 )  becomes 
Fx ( a )  < liin iiif FX,, (b) . 

n ( 5 )  

Next, by an identical computation, but with c, d  ( c  < d )  in place of a,  b  and 
X,, X  in place of X ,  X n  in ( 3 ) ,  one gets 

Fx,, ( c )  I F x ( d )  + P [ X n  < c, X  > dl. ( 6 )  

The last term tends to zero as n + cm, as in (4). Consequently ( 6 )  becomes 

liin sup Fx,, (c )  I Fx (d ) .  ( 7 )  
n 

From (5) and ( 7 )  we get for a  < b  I 

Fx ( a )  I lim inf Fx,, (b) 
n 

c  < d,  

< lim sup F X , ~  (b) 
n 

< lim sup Fx,, (c )  < FX ( d )  . 
n 
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Letting a 1' b = c and d J c, where b = c is a continuity point of Fx, (8) gives 
D 

lim, Fx,, (b) = Fx(b ) ,  so that X, + X ,  since such points of continuity of Fx 
are everywhere dense in R. 

If now X = a a.e., then for each E > 0, 

= 1 - Fx,, (a + E) + FX,, (a - E) + 0 as n + oo, 

since 

P 
and a! * E are points of continuity of Fx for each E > 0. Thus X + a. This 
completes the proof except for the last comment, which is illustrated by the 
following simple pair of standard counter-examples. 

Let X,, X be defined on (R,  C, P) as two-valued random variables such 
1 that P([X, = a]) = = P([X, = b]),a < b, for all n. Next let P ( [ X  = 

b]) = = P ( [ X  = a]). Then for each n,  w E 0, for which X,(w) = a (or 
b) ,  we set X(w) = b (or a) ,  respectively. Thus {w : IX, - Xl(w) > E) = fl 
if 0 < E < b - a ,  aiid X, f i  X in probability. But Fx,, = Fx, so that 

D 
X, + X trivially. This shows that the last implication callnot be reversed in 
general. Next, consider the first one. Let R = [O, 11, C = Bore1 0-algebra of R,  
and P = Lebesgue measure. For each n > 1, express n in a binary expansion, 
n = 2r + k, 0 < k < 2r, r > 0. Define f, = XA,, , where A, = [k/2r, (k+ 1)/2']. 
It is clear that f, is measurable, and for 0 < E < 1, 

But f,(w) f +  0 for any w E R. This establishes all assertions. (If we are 
allowed to change probability spaces, keeping the same image measures of the 
random variables, these problems become less significant. Cf. Problem 5 (b).) 

In spite of the last part, we shall be able to  prove the equivalence to  a 
subclass of random variables, namely, if the X, form a sequence of partial 
sums of independent random variables. For this result we need to develop 
probability theory much further, aiid thus it is postponed until Chapter 4. 
(For a partial result, see Problem 16.) Here we proceed with the iinplicatioiis 
that do not refer to "convergence in distribution." 

The following result is of interest in many calculations. 

Proposi t ion 3 (F. Riesz). Let {X, X,, n > 1) be random variables on 
P 

(R,  C, P) such that X, + X .  Then there exists a subsequence {X,, , k > 1) 
with X,, + X a.e. as k + oo. 
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Proof Since for each E > 0, P [ X ,  - XI > E] + 0, let n1 be chosen such 
that n > n1 + P[IX, - XI > 11 < ,and if n l  < na < . . . < nk are selected, 
let nk+l > nk be chosen such that 

If Ak = [IX,, - XI > 1/2kp1], Bk = U,,,A,, then for w E B i ,  X,, - 

- 

Xl(w) < 1/2'-' for all r > k .  Hence if B = limn B, = Uk2, Ak, theii 
for w E BC,  X,, (w) + X(w) as r + cm. But we also have B c B, for all n ,  
so that 

Thus {x,",, r > 1) is the desired subsequence, completing the proof. 

Remark  We have not used the finiteness of P in the above proof, and the 
result holds on noiifiiiite measure spaces as well. (Also there can be infinitely 
many such a.e. convergent subsequences.) But the next result is strictly for 
(finite or) probability measures only. 

Recall that a sequence {X,, n > 1) on (R,  C, P) converges P-uni formly to 
X if for each E > 0, there is a set A, E C such that P(A,) < E aiid on R A E ,  
X, + X uniformly. We then have 

Theorem 4 (Egorov). Let {X,X,,n > 1) be a sequence of random 
variables o n  (R ,  C, P). T h e n  X, + X a.e. iff the sequence converges t o  X 
P-uniformly.  

Proof One direction is simple. In fact, if X, + X P-uniformly, then for 
E = l / nO  there is an A,, E C with P(A,,) < l / nO  and X,(w) + X(w) 
uniformly on R - A,,. If A = n,,, A,, theii P(A) = 0, aiid if w E fl - A, 
theii X,(w) + X(w), i.e., the sequence converges a.e. The other direction is 
non-trivial. 

Thus let X, i X a.e. Then there is an N E C, P ( N )  = 0, and X,(w) + 

X(w) for each w E R - N.  If k > 1, m > 1 are integers and we define 

1 
Ak,, = {w E 0-  N :  IX,(w) - X ( w )  < - for all n > k), 

m 

then the facts that X, + X on 0 - N and Ak,, c &+I,, imply that 
R - N = U:=, Ak,, for all m > 1. Consequently for each E > 0, and each 
m > 1, we can find a large enough ko = k o ( ~ ,  m) such that Aka,, has large 

00 measure, i.e., P ( R  - Ak,,,) < €12". If A, = Urn=, Aio(E,m),m then 
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On the other hand, n > ko(&, m)  + IX,(w) - X(w) 1 < l l m  for w E Ak,,,. 
Thus 

for every m > 1, so that X, + X uniformly on A:. This completes the proof. 

Also, the following is a simple consequence of Markov's inequality. 

c 
R e m a r k  Le t  {X,Xn,  n > 1) c P ( Q ,  C ,  P) such  tha t  X, + X ,  p > 0. 

T h e n  X, 3 X.  

Proof Given E > 0, we have 

by the pth mean convergence hypothesis. Note that there is generally no re- 
lation between mean convergence and pointwise a.e., since for the latter the 
random variables need not be in any LP, p > 0. 

We now specialize the convergence theory if the sequences are partial sums 
of independent  random variables, and present important consequences. Some 
further, less sharp, assertions in the general case are possible. Some of these 
are included as problems at the end of the chapter. 

At the root of the pointwise convergence theory, there is usually a "max- 
imal inequality," for a set of random variables. Here is a generalized version 
of ~eby#ev ' s  inequality. The latter was proved for only one r.v. We thus start 
with the fundamental result: 

Theorem 5 (Kolmogorov's Inequality). Let  X I ,  X2,.  . . be a sequence 
of independent  r a n d o m  variables o n  (a, C,  P) wi th  m e a n s  PI,  = E ( X k )  and 
variances a; = V a r X k .  If S, = Xk and E > 0, t h e n  

Proof If n = 1, then (10) is ~ e b y ~ e v ' s  inequality, but the present result is 
deeper than the former. The proof shows how the result may be generalized 
to  certain nonindependent cases, particularly to  martingale sequences, to  be 
studied in the next chapter. 

Let A = {w : maxllks, ISk(w) - E(Sk)l > E}. We express A as a disjoint 
union of n events; such a decomposition appears in our subject on several 
occasions. It became one of the standard tools. [It is often called a process of 
disjunctif ication of a compound event such as A.] Thus let 
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and for 1 < k < n,  

In words, Ak is the set of w such that S k ( w )  - E(Sk)l exceeds E for the first 
time. It is clear that the Ak are disjoint, Ak E C ,  and A = UL=l Ak. Let 
Y ,  = X, - p, and S, = xi=l Yk, so that E(s,) = 0, VarS, = VarS,. Now 
consider 

n 

(Yk+l + . . . + Y,,)~ dP, since Sn = Sk + Y,, 
i=k+l 

(since h ~ ,  Sk and Y,, i > k + 1, are independent) 

Adding on 1 < k < n,  we get 

Siiice VarS, = xy=l VarX,, by independelice of the Xi, this gives ( lo) ,  and 
completes the proof. 

Remark The only place in the above proof where we use the independence 
hypothesis is to go from (11) to  the next line to conclude that 

Any other hypothesis that guarantees the nonnegativity of this term gives the 
corresponding maximal inequality. There are several classes of iioiiindepeiident 
random variables iiicludiiig (positive sub-) C2-martingale sequences giving 
such a result. This will be seen in the next chapter. 
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All the strong convergence theorems that follow in this section are due to  
Kolmogorov. 

Theorem 6 Let XI ,  X2, . . . be a sequence of independent random variables 
on  (a, C ,  P) with means p l ,  p2,. . . , and variances a:, a;, . . . . Let 

and a2 = C,"==, a:. Suppose that a2 < ce and Cp=l  pk  converges. Then  
Cp=l  X k  converges a.e. and i n  the mean of order 2 to  a n  r.v. X .  Moreover, 
E ( X )  = C p = l  pk ,  Va rX  = a2 ,  and for any E > 0,  

Proof It should be shown that limn Sn exists a.e. If this is proved, since 
C r = l  pk converges, we get 

n n 

lim x Xk = lim Sn + lim x pk = X exists a.e. 
n n+cx n+m 

k=l k=l 

But the sequence {Sn(w), n > 1) of scalars converges iff it satisfies the Cauchy 
criterion, i.e., iff inf, supk S m + k ( ~ ) - S m ( ~ )  = 0 a.e. Thus let E > 0 be given, 
and by Theorem 5, 

Hence letting k + ce in (13) and noting that the events 

form an increasing sequence, we get 

It follows that 

Letting E /' GO, since 02 < GO, the right side of (15) goes to  zero, so 
that limsup,,,IS, -SmI < cc a.e. But IS, 5 Sn  -Sm + ISml, so 
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< SmI + limsup S, - Sml 
n>m 

< Sml + sup IS,-Sm < cm a.e. 
n)m 

Thus liin sup, Sn, liin inf, Sn must be finite a.e. Also 

as m + cm for each E > 0. It follows that limsup, Sn = lim inf, Sn a.e., and 
the limit exists as asserted. 

If we let m = 0 in (14) and Xo = 0, then (14) implies (12). It remains to 
establish mean convergence. In fact, consider for rn < n,  with = X, -p,, 

n 

E((s,-s,,)') = E( (xm+,+ .  . .+x,)") = x a: + 0 as m , n  + cm. (17) 
k=m+l 

Thus S, + S in L2(P) ,  and hence also in L1(P), since I f I l  < I f l a  for 
any f E L2. It follows that E (S2) = limn E (S;) = limn x i = l  a; = a2, and 
E(S) = limn E(Sn) = 0. But X = S + C;=, pn,  so that E ( X )  = C;==, p,. 
This completes the proof. 

Remarks (1) If we are given that limn x r = l  Xk  exists in L2 and x:=l p, 
converges, then Sn = x i = l ( X k  - pk)  + S in L2 also, so that a: = 
E(s;) + E ( s ~ )  = a2. Thus C k = l  a; < cm. Hence by the theorem Cr!l XI, 
also exists a.e. 

(2) If the hypothesis of iiidepeiideiice is simply dropped in the above the- 
orem, the result is certainly false. In fact let X, = Xln ,  where E ( X )  = 0, 
0 < VarX = a2 < oo, so that x r = l  pk = 0 and 

00 But Xn = X x r = l  1/n, diverges a.e., on the set where X > 0, a.e. 
A partial converse of the above theorem is as follows. 

Theorem 7 Let {X,, n > 1) be a uniformly bounded sequence of in- 
dependent random variables on  (R, C ,  P) with means zero and variances 
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{a:, n > 1). I f  x:=l X, converges on a set of positive measure, then 
x r = l  a; < ce, and hence the series actually converges a.e. on the whole 
space 0. 

Proof Let Xo = 0 and S, = C r = l  XX,. If A is the set of positive measure 
on which S, i S a.e., then by Theorem 4 (of Egorov), there is a measurable 
subset A c A of arbitrarily small measure such that if Bo = A - A C A, 
we have P(Bo) > 0 and S, i S on Bo uniformly. Since S is an r.v., we can 
find a set B c Bo of positive measure (arbitrarily close t o  that of Bo), aiid a 
positive number d such that  IS, 1 5 d < ce on B. Thus if 2 -; nr=o[lS,l 5 dl, 
then 2 E C ,  2 1 B ,  aiid ~ ( 2 )  > P(B) > 0. 

Let A, = n;=,[Slcl I dl, so that A, J A. If C, = A, - A,+1, and 
Co = C,, which is a disjoint union, let a, = JA,, S;dP. Clearly a, I 
d2P(A,) < d2, so that {a,, n 2 1) is a bounded sequence. Consider 

However, 

I x;dp  = E(XA , b + ,  x;) = aip(~,- l )  by independence of X A , , ~ ~  and X,, 
A,,-I 

and 

1 &S,-ldP = E(X,)E(XA~,+,S,-~)  = 0, 
A,,-I 

since E(X,) = 0. Thus by noting that  P(AnP1) > P(A,), (18) becomes, with 
these simplifications and the hypothesis that X,I < c < ce a.e., 
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Summing over n = 1 ,2 , .  . . , m, we get (ao = 0) 

Hence recalling that am < d 2 ,  one has 

Since P(Z) > 0, (19) implies that Cr=l a: < oo. This yields the last state- 
ment and, in view of Theorem 6, completes the proof. 

As an immediate consequence, we have 

Corollary 8 I f  {X,, n > 1) is  a uni formly bounded sequence of indepen- 
dent  random variables o n  (0, C, P) with E(X,) = 0, n > 1, then  Cr=l X, 
converges with probability 0 o r  1. 

We are now in a position to  establish a very general result on this topic. 

Theorem 9 (Three Series Theorem). Let {X,,n > 1) be a sequence of 
independent random variables o n  (0, C, P). T h e n  Cr=l X, converges a.e. iff 
the following three series converge. For some (and then  every)  0 < c < cm, 

(i) Cr=i P([IXnl > el), 
(4 C:=1 E ( X i ) ,  
(iii) Xr=l cr2(Xi), 
where X i  i s  the truncat ion of X, at c, so that  X i  = X, if X ,  < C ,  and 

= 0 otherwise. 

Proof Sufficiency is immediate. In fact, suppose the three series converge. 
By (i), and the first Borel-Cantelli lemma, P[limsup, IX,I > c] = 0, so that 
for large enough n,  X, = X i  a.e. Next, the convergence of (ii) and (iii) imply, 
by Theorem 6, Cr=l X i  converges a.e. Since X, = X i  for large n,  Cz=l X, 
itself converges a.e. Note that c > 0 is arbitrarily fixed. 

Conversely, suppose Czl X, converges a.e. Then limn X, = 0 a.e. Hence 
if A,,, = [X, # X i ]  = [IX, > c] for any fixed c > 0, then the A,,, are inde- 
pendent and P[limsup, A,,,] = 0. Thus by the second Borel-Cantelli lemma 
(cf. Theorem 1.9iii), P(A,,,) < cm, which proves (i). Also, X i  
converges a.e., since for large enough n,  X i  and X, are equal a.e. But now 
the XE are uniformly bounded. We would like to  reduce the result to  The- 
orem 7. However, E(X:) is not necessarily zero. Thus we need a new idea 
for this reduction. One considers a sequence of independent random variables 
X; which are also independent of, but with the same distributions as, the 
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X:-sequence. Now, the given probability space may not support two such se- 
quences. In that case, we enlarge it by adjunction as explained after Corollary 
8 in the last section. The details are as follows. 

Let (fi, 2?, P) = (a, C, P) @ (R,  C, P), and let Xk, X:; be defined on fi 
by the equatioiis 

X;(W) = Xg(wl), X;(W) = Xg(w2), where w = (wl, w2) E d. (20) 

It is trivial to  verify that {XA, n > 11, {Xi ,  n > 1) are two mutually inde- 
pendent sequences of random variables on (fi, 2, P), XkI < c, i = 1,2,  and 
have the same distributions. Thus if 2, = Xk - X:, n > 1, then E(Z,) = 0, 
VarZ, = VarXk + VarX: = 2a: (x:), and {Z,, n > 1) is a uniformly 
bounded (by 2c) independent sequence to  which Theorem 7 applies. Hence, 
by that result, C,"==, VarZ, < oo, so that C,"==, a i (~ : )  < cc, which is (iii). 

Next, if Y, = X: - E(X:), then E(Y,) = 0, Vary, = VarX:, so that 
a2(yn) < oo. Hence by Theorem 6, C r = l  Y, converges a.e. Thus we 
00 00 have E(X:) = C;==, X i  - Y,, and both the series on the right 

converge a.e. Thus the left side, which is a series of constants, simply con- 
verges and (ii) holds. Observe that if the result is true for one 0 < c < oo, 
then by this part the three series must converge for every 0 < c < cc. This 
completes the proof. 

Remarks (1) If any one of the three series of the above theorem diverges, 
then En,, X, diverges a.e. This means the set [C,"==, X, converges] has prob- 
ability zero, so that the zero-one criterion obtains. The proof of this statement 
is a simple consequence of the preceding results (since the convergence is de- 
termined by C k > ,  XI, for large n) ,  but not of Theorem 1.12. 

(2) Observe that the convergence statements on series in all these theorems 
relate to  unconditional convergence. It is not absolute convergence, as simple 
examples show. For instance, if a, > 0, C,"==, a, = oo, but 

then the independent random variables X, = *a, with equal probability on 
(0, E, P) satisfy the hypothesis of Corollary 8 and so C r = l  X, converges a.e. 
But it is clear that C r = l  X,I = C r = l  lanl = cc a.e. The point is that X, E 
L2(R,  C, P) and the series C;==, X, converges uncoiiditioiially in L2(P) ,  but 
not absolutely there if the space is infinite dimensional. In fact, it is a general 
result of the Banach space theory that the above two convergences are unequal 
in general. 

(3) One can present easy sufficient conditions for absolute convergence 
00 of a series of random variables on (0, C ,  P). Indeed, X, converges 

absolutely a.e. if C,"==, E(IX,) < oo. This is true since E(C,"_, IX,) = 

C,"==, E ( X ,  I )  < cc by the Lebesgue dominated convergence theorem, and 
since Y = C r = l  IX, is a (positive) r.v. with finite expectation, P [ Y  > A] < 
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E(Y)/X + 0 as X + oo, so that 0 5 Y < oo a.e. Here X, need not be in- 
dependent. But the integrability condition is very stringent. Such results are 
"nonprobabilistic" in nature, and are not of interest in our subject. 

A natural question now is to know the properties of the limit r.v. X = 

C,"==, X, in Theorem 9 when the series converges. For example: if each X, has 
a countable range, which is a simple case, what can one say about the distri- 
bution of X ?  What can one say about Y = Cr=l anXn, where Cr=l a: < oo, 
E(X,) = 0, E(X2) = 1, and X, are independent? 

Not much is known about these queries. Some special cases are studied, 
and a sample result is discussed in the problems section. For a deeper analysis 
of special types of random series, one may refer to Kahaiie (1985). We now 
turn to the next important aspect of averages of independent random vari- 
ables, which has opened up interesting avenues for probability theory. 

2.3 Laws of Large Numbers 

Very early in Section 1.1 we indicated that probability is a "long-term aver- 
age." This means that the averages of "successes" in a sequence of independent 
trials "converge" to a number. As the preceding section shows, there are three 
frequently used types of convergences, namely, the pointwise a.e., the stochas- 
tic (or "in probability") convergence, and the distributional convergence, each 
one being strictly weaker than the preceding one. The example following the 

D 
proof of Proposition 2.2 shows that X, + X does not imply that the X,(w) 
need to  approach X(w) for any w E fl. So in general it is better to consider 
the a.e. and "in probability" types for statements relating to outcomes of w. 
Results asserting a.e. convergence always imply the "in probability" state- 
ments, so that the former are called strong laws and the latter, weak laws. If 
the random variables take only two values (0, I),  say, then the desired conver- 
gence in probability of the averages was first rigorously established by James 
Bernoulli in about the year 1713, and the a.e. convergence result for the same 
sequence was obtained by E. Bore1 only in 1909. 

Attempts to prove the same statements for general random variables, with 
range space R, and the success thus achieved constitute a general story of the 
subject at hand. In fact, P. L. ceby#ev seems to have devised his inequality 
for extending the Bernoulli theorem, and established the following result in 
1882. 

Proposition 1 ( ~ e b ~ ~ e v ) .  Let XI ,  X2,.  . . be a sequence o f  independent 
random variables o n  (R, C ,  P )  with means  p1, p2, . . . and variances a:, a;, . . . , 
such that  if Sn = C:'=,XXi, one has 02(s,)/n2 + 0 as n + oo. T h e n  the 
sequence obeys the weak law of large numbers (WLLN), which means,  given 
E > 0, we have 
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Proof By ~ e b ~ ~ e v ' s  inequality (1) follows at once. 

Note that if all the X, have the same distribution, then they have equal 
moments, i.e., a: = 022 = ... = a2, SO that 02(sn) = Cr=l 022 = na2 ,  and 
a2(Sn)/n2 = a 2 / n  + 0 is automatically satisfied. The result has been im- 
proved in 1928 by A. Khintchine, by assuming just one moment. For the 
proof, he used a truncation argument, originally introduced in 1913 by A. A. 
Markov. Here we present this proof as it became a powerful tool. Later we see 
that the result can be proved, using the characteristic function technique, in 
a very elementary manner, and even with a slightly weaker hypothesis than 
the existence of the first moment [i.e., only with the existence of a derivative 
at the origin for its Fourier transform; that does not imply E ( X )  exists]. 

Theo rem 2 (Khintchine)  Let X I ,  X 2 , .  . . be independent random vari- 
ables on (a, C ,  P) with a common distribution [i.e., P[X, < z] = F(z), z E R, 
for n > 11 and with one moment finite. Then the sequence obeys the WLLN. 

Proof We use the preceding result in the proof for the truncated functions 
and then complete the argument with a detailed analysis. Let E > 0, S > 0 be 
given. Define 

Ug = X k ~ [ ~ ~ h  < n 6 ] ,  Vp = Xk~[lX~l>n6],  PI 
so that Xk = Uk + Vk. Let F be the common distribution function of the 
X k .  Since E ( X k l )  < GO, we have M = E(IXkl) = JR z ldF(z )  < GO, by 
the fundamental (image) law of probability. If p = E ( X k )  = JR zdF(z)  and 
pk = E (UE) , then 

and by the dominated convergence theorem, we have 

Thus there is N1 such that n > Nl + /A; - pi < &/2. Note that p; depends 
only on n, and hence not on k, because of the common distribution of the X k .  
Similarly 

By hypothesis U,", U,", . . . are independent (bounded) random variables with 
means pd and variances bounded by n6M. Let TG = U," + . . . + U g  and 
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W z  = V;L + . . . + V z .  Then by the preceding proposition, or rather the 
ceby;ev's inequality, 

On the other hand, adding and subtracting n p  and using the triangle inequal- 
ity gives 

Thus if n > Nl, we have, with the choice of Nl after (2), on the set 

the following: 

Hence for n > N1 this yields 

But by definition Sn = T: + Wz,  n > 1, so that 

Choose N2 such that n > N2 '.J ~ ~ l s l > n s l  .rldF(.r) < S2, which is possible 

since M = E ( X k l )  < oo. Thus for n > N2, P[V," # 0] 5 S2/(n6) = 6/n by 
(7). Consequently, 
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If N = max(N1, N 2 )  and n > N ,  then (5) and (8) give for ( 6 )  

Letting n + oo aiid then 6 + 0 in (9), we get the desired conclusion. 

It is important to  notice that the independence hypothesis is used only 
in (4) in the above proof in deducing that the variance of Tc = the sum of 
variances of U r .  But this will follow if the Uf;n are uncorrelated for each n. 

In other words, we used only that 

= I z l > n 6 ]  
x ( 1  ydFxJ (Y)  = IL:IIL:r*. 

[lvlIm61 

Now this holds if Xi, X j  are independent when i # j .  Thus the above proof 
actually yields the following stronger result, stated for reference. 

Corollary 3 Let X I ,  X2,  . . . be a pairwise independent sequence of ran- 
d o m  variables o n  (a, C, P )  with a c o m m o n  distribution having one m o m e n t  
finite. T h e n  the sequence obeys the WLLN. 

In our development of the subject, the next result serves as a link be- 
tween the preceding considerations and the "strong laws." It was obtained 
by A. Rajchman in the early 1930's. The hypothesis is weaker than pairwise 
independence, but demands the existence of a uniform bound on variances, 
aiid then yields a stronger conclusion. The proof uses a different technique, of 
interest in the subject. 

Theorem 4 Let {Xn ,n  > 1) be a sequence of uncorrelated ran- 
d o m  variables o n  (a, C, P )  such that  a2(Xn)  < M < oo, n > 1. T h e n  
[S, - E(Sn)] /n  + 0 i n  L2-mean ,  as well as a.e. [ T h e  pointwise convergence 
s tatement  is  the definition of the strong law of large numbers ( S L L N )  of a 
sequence.] 

Proof The first statement is immediate, since 
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by the uncorrelatedness hypothesis of the X, and the uniform boundedness 
of a2(Xk) .  This, of course, implies by Proposition 1 that the WLLN holds for 
the sequence. The point is that the a.e. convergence also holds. 

Consider now, by ~ e b y ~ e v ' s  inequality, for any E > 0, 

Hence by the first Borel-Cantelli lemma, letting Yk = Xk - E(Xk)  and 

3, = Yk (so that the Yk are orthogonal), one has P ( [  s n 2  I > n2&], i.0.) = 

0, which means sn2/n2 + 0 a.e. This is just an illustration of Proposition 2.3. 
With the bouiidedness hypothesis we show that the result holds for the 

full sequence g,/n and not merely for a subsequence, noted above. 
For each n > 1, coiisider n2 < k < (n + 1)' and gk/k Then 

- - 
and let T, = max,a<l;<(,+l)a Sk  - Sn2. Since as k + ce the first term on 
the right + 0 a.e., (shown above) it suffices to establish Tn/n2 + 0 a.e. To 
use the orthogonality property of the Yk, consider T:. We have 

and so for n > 2, since a2(x) = a2(x,) < M ,  

This crude estimate is sufficient to show, as before, that 

by Markov's inequality and (12). Thus En,, PIITn > n2€] < ce and the 
Borel-Cantelli lemma again yields p[ITn/n2 > E ,  i.o.1 = 0. Hence Tn/n2 + 0 
a.e. and by (11) Sk/k + 0 a.e., proving the result. 
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We now strengthen the probabilistic hypothesis from uncorrelatedness to  
mutual independence and weaken the moment condition. The resulting state- 
ment is significantly harder to  establish. It will be obtained in two stages, 
and both are of independent interest. They have been proved in 1928 by A. 
Kolmogorov, and are sharp. We begin with an elementary but powerful result 
from classical summability theory. 

Proposition 5 (Kronecker's Lemma). Let a l ,  a2 ,  . . . be a sequence of 
numbers such that C,,,(a,/n) converges. Then 

- 

Proof Let so = 0, s, = C:=,(ak/k), and R, = ak. Then s, 4 s 
by hypothesis. Also, ak = k(sk - sk-I), so that 

Hence 

because s, + s +- for any E > 0, there is no[= no(€)] such that n > no +- 
Is, - sI < E ,  and hence 

as n + cm. [This is called (c ,  1)-convergence or Cesciro summability of s,.] 
Since E > 0 is arbitrary, the result follows. 

Theorem 6 (First form of SLLN). If X I ,  X2,  . . . is a sequence of indepen- 
dent random variables on (0, C ,  P) with means zero and variances a:, a;, . . . , 
satisfying C r = l ( a i / n 2 )  < cm, then the sequence obeys the SLLN, i.e., 

a.e. a s n  + oo. 

Proof Let Y, = X,/n. Then the Y,, n > 1, are independent with means 
zero, and C:=l a2(y,) = Cr=l(a:/n2) < cm. Thus by Theorem 2.6, C r = l  Y, 
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converges a.e. Hence x r= l (X , /n )  converges a.e. By Kronecker's lemma, 
( l / n )  x i = l  Xk + 0 a.e., proving the theorem. 

This result is very general in that there are sequences of independeiit 
random variables {X,, n > 1) with means zero and finite variances o:, o;, . . . 
satisfying x:=l(ai/n2) = oo for which the SLLN does not hold. Here is a 
simple example. Let XI ,  X2,  . . . be independent two-valued random variables, 
defined as 

1 
P( [Xn = n])  = P([Xn = -n]) = -. 

2 

Hence E(X,) = 0, a2(X,) = n2, SO that x r=l [a2(X, ) /n2]  = +oo. If the 
sequence obeys the SLLN, then Xk) /n  + 0 a.e. This implies 

hence PIIXn > n,i.o.] = 0. By independence, this and the second Borel- 
Caiitelli lemma yield C,"==, P[ IX,  > n] < oo. However, by definition 
P[lX,I > n] = 1, and this contradicts the preceding statement. Thus 
(1/n) x r = l  Xk f )  0 a.e., and SLLN is not obeyed. 

On the other hand, the above theorem is still true if we make minor relax- 
ations on the means. For instance, if {X,, n > 1) is independent with means 
{p,, n > 1) aiid variances {a::, n > 1) such that (i) C,"==, 0: < oo aiid (ii) if 
either p, i 0 or just (1112) C;=, pk + 0 as n + ce, then ( l l n )  C;=, Xk + 0 
a.e. Indeed, if Y, = X, - p,, then {Y,, n > 1) satisfies the conditions of the 
above result. Thus ( l / n )  x i = l  Yk = (1112) Xk - ( l l n )  x i = l  pk + 0 a.e. 
If pk + p,  then (1/n) C i = l  pk + p by (14). Here p = 0. The same holds if we 
only demanded ( l l n )  EL=, pk + 0. In either case, then, ( l l n )  C;=, X k  + 0 
a.e. However, it should be remarked that there exist independeiit syininetric 
two-valued X,, n > 1, with x , ,1 [02(~ , ) /n2]  = ce obeying the SLLN. Ex- 
amples can be given to this effect, if we have more information on the growth 
of the partial sums {S,, n > I),  through, for instance, the laws of the iterated 
logarithm. An important result on the latter subject will be established in 
Chapter 5. 

The following is the celebrated SLLN of Kolmogorov. 

Theorem 7 (Main SLLN). Let  {X,, n > 1) be independent  r a n d o m  vari- 
ables o n  (R, C ,  P) wi th  a c o m m o n  distribution and Sn = EL=, Xk.  T h e n  
Sn/n  i a o ,  a constant ,  a.e. i f f  E(IX1) < +ce, in which case a0 = E(X1).  
O n  the  o ther  hand ,  i f  E(IXII) = +GO, t h e n  limsup,(S,l/n) = +oo a.e. 

Proof To prove the sufficiency of the first part, suppose E (X1 l )  < oo. We 
use the truncation method of Theorem 2. For simplicity, let E(X1) = 0, since 
otherwise we consider the sequence Yk = XI, - E(X1). For each n, define 
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Thus X, = U, + V, and {U,, n > I}, {Vn,n > 1) are independent se- 
quences. First we claim that liinsup, VnI = O a.e., ilnplyillg ( l l n )  EL=l Vk -+ 

O a.e. That is to say, P([Vn # 01, i.0.) = 0. By independence, and the Borel- 
Cantelli lemma, this is equivalent to  showing E r = l  PIIVn > 01 < oo. 

Let us verify the convergence of this series: 

= C P I X 1  I > n] (since the Xi have the same distribution) 

00 

= C nan,n+i ( where ak,k+l = P[k. < 1x1 < k + 11) 

Next consider the bounded sequence {U,, n > 1) of independent random 
variables. If pn = E(Un), then 

by the dominated convergence theorem. Hence ( l l n )  EL=, PI, + 0. Thus by 
the remark preceding the statement of the theorem, if E,"==, [02 (un)/n2]  < oo, 
then (1112) C:=l Un + 0 a.e., and the result follows. 

We verify the desired convergence by a computation similar to that used 
in (15). Thus 

= Axl l<nl 

X ; ~ P  ( by the common distribution of the Xn) 
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Hence 

00 00 n-1 x 5 H a k , k + l  [ using the notation of (15)]  
n=l n2 n=l k=O n2 

Thus . n . n . n 

as n + GO. 
Conversely, suppose that S n / n  + a o ,  a constant, a.e. We observe that 

so that liin sup, ( X ,  1 In) = 0 a.e. Again by the Borel-Cantelli lemma, this is 
equivalent to  saying that C r = l  P I I X n  > n] < oo. But 

00 

= x nan,,,+l [ as shown for (15)] 
n=l 

Hence E ( I X 1 )  < oo. Then by the sufficiency ( l / n ) S n  + E ( X 1 )  a.e., so that 
a0 = E ( X l ) ,  as asserted. 

For the last part, suppose that E ( X I I )  = +oo, so that E ( X l l / a )  = +GO 

for any a > 0. Then the computation for (16) implies 
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since the X, have the same distribution. Consequently, by the second Borel- 
Cantelli lemma, we have 

P ( [ X ,  I > a n ] ,  2.0.) = 1. (17) 

But IS, - SnPII = IXnI > a n  implies either IS,I > an /2  or ISnP1I > an/2.  
Thus (17) and this give 

Heiice for each a > 0 we can find an A, E C ,  P(A,) = 0, such that 

1 %  a limsup- > - on R - A,. 
n n 2  

Letting a run through the rationals and setting A = UCYE ratiollalS A", we 
get P(A) = 0, and on R - A, limsup,(lS,/n) > k for every k > 0. Heiice 
liin sup,(IS, I n )  = +oo a.e. This completes the proof of the theorem. 

The above result contains slightly more information. In fact, we have the 
following: 

Corollary 8 Let {X,;n > 1) be as i n  the theorem with E(X1l)  < oo. 
T h e n  IS, /n  + E(X1) i n  L1 (P) -mean  ( i n  addition t o  the a. e. convergence). 

Proof Since the Xn are i.i.d., so are the Xn l ,  n > 1, and they are clearly 
independent. Moreover, by i.i.d. P[-x < X, < x] = P[-x < X1 < x]. Indeed 

=S, x[lxl<xldF(X)(  since X, has F as its d.f. for all n > 1) 

= P [ I X l  < x] (by the image law). 

By the SLLN, S,/n + E(X1) a.e., so that S n l / n  + IE(X1)l a.e. Given E > 0, 
choose xo > 0 such that 

n 
If SA = C k = l  and S: = Sn-SA, then {SA/n, n > 1) is uniformly 
bounded, so that it is uniformly integrable. But 
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uniformly in n. Thus {( l /n )S t ,  n > 1) is also uniformly integrable. Conse- 
quently { ( l /n )SnI ,  n > 1) is a uniformly integrable set. Hence the result 
follows by Vitali's theorem and the limits must agree, as asserted. 

R e m a r k  See also Problem 10 for similar (but restricted to  finite measure 
or probability spaces) convergence statements of real analysis, without men- 
tion of independence. 

These results and their methods of proofs have been extended in various 
directions. The idea of investigating the averages (both the WLLN and SLLN) 
has served an important role in creating the modern ergodic theory. Here the 
random variables X n  are derived from one fixed function X1 : R + R in terms 
of a measurable mapping T : R + 0 [TP1(C) c C] which preserves measure, 
meaning P = P o T p l ,  or P(A)  = P(Tpl (A)) ,  A E C. Then 

where T 2  = T O T  and Tn  = ToTnpl ,  n > 1. Since X1 : R + R and T : f l  + R 
are both measurable, so that (Xl o T)-I (B) = TP1 (XP1 (B)) c TP1 (C) c C,  
where B is the Bore1 a-algebra of R, X2 is an r.v., and similarly Xn is an r.v. 
For such a sequence, which is no longer independent, the prototypes of the 
laws of large numbers have been proved. These are called ergodic theorems. 
The correspoiideiits of weak laws are called mean ergodic theorems and those 
of the strong laws are termed individual ergodic theorems. This theory has 
branched out into a separate discipline, leaning more toward measure theoretic 
functional analysis than probability, but still retaining important connections 
with the latter. For a brief account, see Section 3 of Chapter 7. 

Another result suggested by the above theorem is to  investigate the growth 
of sums of independent random variables. How fast does Sn cross some pre- 
scribed bound? The laws of the iterated logarithm are of this type, for which 
more tools are needed. We consider some of them in Chapters 5 and later. We 
now turn to  some applications. 

2.4 Applications to Empiric Distributions, Densities, 
Queueing, and Random Walk 

(A) Empiric Distributions 

One of the important and popular applications of the SLLN is to  show that 
the empiric distribution converges a.e. and uniformly to the distribution of 
the random variable. To make this statement precise, coiisider a sequence 
of random variables X I ,  X2,  . . . on (f l ,  C, P) such that P[Xn < z] = F(z), 
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z E R, n > 1; i.e., they are identically distributed. If we observe "the seg- 
ment" X I , .  . . , Xn, then the empir ic  distribution is defined as the "natural" 
proportion for each outcome w E R : 

1 
Fn (z, w) = - { number of Xi (w) < z} . 

n (1) 

Equivalently, let us define 

We have the following important result, obtained in about 1933. 

Theo rem 1 (Glivenko-Cantelli). Let  X I ,  X 2 , .  . . be independent  and 
identically distributed (i.i.d.) r a n d o m  variables o n  (a, C,  P ) .  Let  F be the i r  
c o m m o n  distribution funct ion,  and if the  first n - r a n d o m  variables are "ob- 
served" ( termed a r a n d o m  sample of size n ) ,  let Fn be the  empir ic  distribution 
determined by (1) [or (211 for  this  segment .  T h e n  

lim sup IFn (z , . ) -F (z ) l=O = l .  
n - a  -a<,<, I 

Proof Since the X, are identically distributed with a common distribution, 
the same is clearly true of the Y ,  given by (2). Indeed, 

for all i > 1. Hence by the (special case of) SLLN, we get 

We need to prove the stronger assertion on a.e. uniform convergence in z 
for (4), which is (3). This is more involved and is presented in three steps. 

1. Let 0 < k < r be integers and z k , r  be a real number such that 

for definiteness [and use F(-oo) = lim,,-, F(z) = 0, F ( + m )  = lim,,+, F(z) = 

11. Also define 
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and 
Ha,, = {w : n-00 lim F,(zi,, + 0, w) = F ( z k , ,  + 0)) . 

The11 by (4), P ( E k , , )  = 1 = P(Hk,,), 1 < k < r. Let 

2. We have P(ET) = 1 and if E = nzl E,, then P(E) = 1. In fact, if 
A, B E C, P(A)  = 1 = P(B), then clearly 

Hence P (A  n B) = 1. By induction, with A = Ek,T, B = Hk,T, k = 1, . . . , r, 
it follows that P(E,) = l , r  > 1. Since E = nZ1 B, = limn,, B,, where 

n 
B, = L E,, it also follows that P(E) = limn P(Bn) = 1. 

Let us express E in a different form. First note that E, is given by 

then S E C, because if 

clearly S c 3, and by the density of rationals in R, s c S also follows. Since 
s E C, so is S E C. We need to establish the following result. 

3. E c S, so that 1 = P(E) 5 P(S) 5 1. For, if we let z E (zk , , , zk+l , , ) ,  

then by the monotonicity of Fn and F, we get 
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This is clearly possible since F ( X ~ + ~ , , )  5 (k  + l ) / r  and F(xk, ,  + 0 )  > k l r .  
Hence ( 6 )  may be written 

aiid in a similar way 

Combining these two sets of inequalities we get for a.a. (w)  

Since r > 1  is arbitrary, the left-side inequality holds if the right-side inequal- 
ity does, for almost all w. Hence w E E + w  E s = S .  Thus E c S ,  and the 
theorem is proved. 

Remark: The einpiric distribution has found substantial use in the statis- 
tical method known as the "Bootstrap". In the theory of statistics, bootstrap- 
ping is a method for estimating the sampling distribution of an estimator by 
"resampling" with replacement from the original sample. 

In the proof of the theorem, one notes that the detailed analysis was needed 
above in extending the a.e. coilvergelice of (4)  for each x  to uniform conver- 
gence in x  over R. This extension does not involve any real probabilistic ideas. 
It is essentially classical analysis. If we denote by C the class of all intervals 
(-cm, x ) ,  and denote by 

aiid similarly 
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then p,(A) is a sample "probability" of A [i.e., p,(.)(w) is a probability for 
each w E R, and pn(A)(.) is a measurable function for each Borel set A]; 
and p is an ordinary probability (that is, determined by the common image 
measure). Then (3) says the following: 

P [  lim sup p ,  (A) - 
nioo AEC 

This form admits an extension if XI ,  X 2 , .  . . are random vectors. But here 
the correspondent for C must be chosen carefully, as the result will not be true 
for all collections because of the special sets demanded in Definition 2.1 (see 
the couiiterexample following it). For instance, the result will be true if C is 
the (corresponding) family of all half-spaces of Rn. But the following is much 
more general and is due to  R. Ranga Rao, A n n .  Math.  Statist.  33 (1962), 
659-680. 

Theorem 2 Let X I ,  X 2 , .  . . be a sequence of independent random vectors 
o n  ( R ,  C ,  P) with values in Rm, and for each Borel set A c Rm, we have 
p(A) = P[X, E A], n > 1, so that they  have the c o m m o n  image measure p 
(or  distribution). Let p,(A) be the empiric distribution based o n  the sample 
(or  initial segment)  of size n (i.e.  on,  X I , .  . . , X,) so that  

If C is  the class of measurable convex sets from Rm whose boundaries have 
zero measure relative t o  the nonatomic  part of p, then  

P lim suplpn(A) - p ( A )  = O  = 1. lniw AEC 1 
We shall not present a proof of this result, since it needs several other 

auxiliary facts related to convergence in distribution, which have not been es- 
tablished thus far. However, this result, just as the preceding one, also starts 
its analysis from the basic SLLN for its probabilistic part. 

(B) Density Estimation 

Another application of this idea is to estimate the probability density by a 
method that is essentially due to Parzen (1962). 

Suppose that P [ X  < z] = Fx(z) is absolutely contiiiuous relative to the 
Lebesgue measure on R, with density f (u)  = (dFx/dz)(u), and one wants 
to find an "empiric density" of f( . )  in the manner of the Glivenko-Cantelli 
theorem. One might then consider the "empirical density" 
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and find conditions for f,(x, h) + f (x) a.e. as n + cc and h + 0. In contrast 
to the last problem, we have two limiting processes here which need additional 
work. Thus we replace h by h, so that as n + cm, h, + 0. Since F,(x) itself 
is an w-function, we still need extra conditions. Writing &(x) for f,(x, h,), 
this quotient is of the form 

for a suitable iioiiiiegative function K( . ) ,  called a kernel. The approximations 
employed in Fourier integrals [cf. Bochner (1955)], Chapter I) give us some 
clues. Examples of kernels K( t )  are (i) ep", (ii) e p t ~ [ t 2 0 1 ,  (iii) X [ ~ , I ] ,  and (iv) 
1/(1 + t2).  In this way we arrive at the following result of Parzen. [Actually 
he assumed a little more on K ,  namely, that K, the Fourier transform of K ,  
is also absolutely integrable, so that the examples (ii) and (iii) are not admit- 
ted. These are included in the following result. However, the ideas of proof 
are essentially his.] 

Theorem 3 Let XI, X2,  . . . be independent identically distributed random 
variables on (0, C,  P) whose common distribution admits a uniformly con- 
tinuous density f relative to the Lebesgue measure on the line. Suppose that 
K : R + R+ is a bounded continuous function, except for a finite set of dis- 
continuities, satisfying the conditions: (i) JR K(t)dt  = 1 and (ii) ItK(t)l + 0 
as It + cm. Define the "empiric density" f, : R x R + R+ by 

where h, is a sequence of numbers such that nh: + oo, but h, + 0 as n + cm. 
Then 

lim sup I f , ( x ) f ( z ) l = O  = l .  
n+oopm<x<m I 

Proof The argument here is somewhat different from the previous one, 
and it will be presented again in steps for convenience. As usual, let E be the 
expectation operator. 

1. Consider 

We assert that g,(x) + f (x )  uniformly in x E R as n + cm. For using the 
i.i.d. hypothesis, 
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it suffices to show that v,(z) + f (x) uniformly. Then since g, is a (C, 1)- 
average like v,, it follows that g,(x) + f (x)  in the same sense. Since f is 
assumed to be uiiiforinly coiitinuous aiid integrable (and a probability den- 
sity), it is easily seen that f is also bounded. Thus consider 

But, given E > 0, there is a 6, > 0 such that f (x - t )  - f(x)l < E for t l  < 6 
by the uniform continuity of f .  Thus 

+ li (k) k d t  

t sup luK(u)lL/  f( t )dt  
lu26/h, ,  6 R 

since f is bounded. Letting n + oo, so that h, + 0, by (i) aiid (ii) both the 
second and third terms go to zero. Since the right side is independent of x ,  it 
follows that vn(x) + f (x) uniformly in x, as n -+ oo. 

2. We use now a result from Fourier transform theory. It is the following. 
Let K ( U )  = JR emXK(x)dxj then one has the inversion, in the sense that for 
almost every x E R (i.e., except for a set of Lebesgue measure zero) 
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Results of this type for distribution functions, called "inversion formulas," 
will be established in Chapter 4. If K is assumed integrable, then the above 
integral can be replaced by ( 1 1 2 ~ )  J R e - i u x ~ ( u ) d u  = K(z) a.e. so (16) is 
the (C, 1)-summability result for integrals, an exact analog for series that  we 
noted in the preceding step. 

Let 4, (u) = ( l l n )  Ckl ewx~. Then e m X ~  = cos u x j  + i sin u x j  is a 
bounded complex random variable and, for different j ,  these are identically 
distributed. Thus applying the SLLN to the real and imaginary parts, we get 

lim &(u) = E(+l (u)) = ~ ( e " ~ ~ )  a.e.[P]. 
n i m  

(17) 

If w E 0 is arbitrarily fixed, then $,(u) can be regarded as 

where Fn is the einpiric distribution of the X,. Now using the "iiiversion 
formula" (16) for k, we can express f, as follows: 

with t j  = z - X, (w) and 6 = h,a, 

[ by the inversion formula, a.e. (Lebesgue measure)] 

= fn(z?(w? l by(W1. (19) 

We need this formula t o  get uniform convergence of f, (z) to f (z).  

3. The preceding work can be used in our proof in the following manner. 
By Markov's inequality 
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where the limit can be brought outside of the P-measure by Fatou's lemma. 
(Note that the sup inside the square brackets is bounded by hypothesis and 
is a measurable function, by the same argument as in step 2 of the proof of 
Theorem 1. The existelice of limit in (20) will be proved.) We now show that 
the right side of (20) is zero, so that (12) results. But if I . 1 1 ,  is the uniform 
(or supremum) norm over R, then 

and x H gn(x) = E(fn(x))  is a constant function (independent of w). By 
step 1, the last term goes to  zero as n + oo, and hence its expectation will 
go to  zero by the dominated convergence since the terms are bounded. Thus 
it suffices to  show that the expectation of the first term also tends to  zero 
uniformly in x. Consider 

where we used (19) aiid the fact that g,(z) = E(  f,(z)), which is again ob- 
tained from (19) with E(&(u)) .  With the same computation, first using the 
Fubini theorem and then the dominated convergence theorem to  interchange 
integrals on [-a, a] x R, we can pass to  the limit as a + cc through a sequence 
under the expectation. Thus 

(22) 
But by (171, $,(u) - E($,(u)) = I & ( u )  - ~ ( e ~ ~ ~ ~ ) 1  + 0 a.e., and since 

these quantities are bounded, this is also true boundedly. Thus by letting 
n + oo in both sides of (22) and noting that the limits on a and n are on 
independent sets, it follows that the right side of (22) is zero a.e. By the 
uniform bouiidedness of the left-side norms in (221, we can take expectations, 
aiid the result is zero. 

Thus E(I fn( . )  - f ( . ) I u )  + 0 as n + cc, and the right side of (20) is zero. 
This completes the proof. 

Remark Evidently, instead of (171, even WLLN is sufficient for (22). 
Also, using the CBS-inequality in (22) aiid taking expectations, one finds 
that Var(q5,) < M1/n and this yields the same conclusion without even using 
WLLN. (However, this last step is simply the proof of the WLLN, as given by 
ceby;ev.) It is clear that considerable analysis is needed in these results, after 
einployiiig the probabilistic theorems in key places. Many of the applicatioiis 
use such procedures. 
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(C) Queueing 

We next present a typical application to  queueing theory. Such a result was 
originally considered by A. Kolmogorov in 1936 aiid is equivalent to  a one- 
server queueing model. It admits exteiisions aiid raises many other problems. 
The formulation using the current terminology appears to  be due to  D. V. 
Lindley. 

A general queueing system consists of three elements: (i) customers, (ii) 
service, aiid (iii) a queue. These are generic terms; they can refer to  people at a 
service couiiter, or planes or ships arriving at a port facility, etc. The arrival of 
customers is assumed to be random, and the same is true of the service times 
as well as waiting times in a queue. Let ak be the interarrival time between 
the kth and the (k + 1)th customer, bk the service time, and Wk the waiting 
time of the kth customer. When customer one arrives, we assume that there 
is no waiting, since there is nobody ahead of this person. Thus it is reasonable 
to  assume a0 = Wo = 0. Now bk + Wk is the length of time that the (k + 11th 
customer has to  wait in the queue before the turn comes at the service counter. 
We assume that the interarrival times ak are independent nonnegative random 
variables with a common distribution, and similarly, the bk are nonnegative 
i.i.d. and independent of the ak. As noted before, we can assume that the 
basic probability space is rich enough to support such independent sequences, 
as otherwise we can enlarge it by adjunction to  accomplish this. The waiting 
times are also positive random variables. If ak+l > bk + Wk,then the (k + 1)th 
customer obviously does not need t o  wait on arrival, but if ak+l < bk + Wk 
then the person has to  wait bk + Wk - ak+l units of time. Thus 

If we let Xk = bk- 1 - ak , then the Xk are i.i.d. random variables, aiid (23) 
becomes Wo = 0 and Wk+1 = max(Wk + Xk+1, 0), k > 0. Note that whenever 
Wk = 0 for some k, the server is free and the situation is like the one at 
the beginning, so that we have a recurrent pattern. This recurrence is a key 
ingredient of the solution of the problem of finding the limiting behavior of 
the Wk-sequence. It is called the single server queueing problem. 

Consider So = 0, S, = C;=, Xk. Then the sequence {S,, n > 0) is also 
said to  perform a random walk on R, and if Sk E A for some k > 0 and Bore1 
set A, one says that the walk S, visits A at step k. In the queueing situation, 
we have the followiiig statement about the process {W,, n > 0). 

Theorem 4 Let Xk = bkPl - ak, k > 1, and {S,, n > 0) be as above. 
Then for each n > 0, the quantities W, and A(l, = max{Sj, 0 < j < n} are 
identically distributed random variables. Moreover, if F,(x) = P[W, < x], 
then 

lim F,(x) = F ( x )  
n+cx 
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exists for each x, but F (x )  = 0 is possible. If E(X1) exists, then F (x )  - 0, 
x E R, whenever E(X1) > 0, and F(.) defines an honest distribution function 
when E(X1) < 0, i.e., F(+cm) = 1. 

The last statement says that if E(bk) > E(ak) ,  k > 1, so that the expected 
service time is not smaller than that of the interarrival time, then the line of 
customers is certain to grow longer without bound (i.e., with probability 1). 

Proof For the first part of the proof we follow Feller (19661, even though 
it can also be proved by using the method of convolutioiis aiid the fact that 
Wk aiid Xk+1 are independent. The argument to be given is probabilistic aiid 
has independent interest. 

Since Wo = 0 = So, we may express Wn in an alternative form as Wn = 

max{(S, - Sk) : 0 < k < n). In fact, this is trivial for n = 0; suppose it is 
verified for n = m. Then consider the case n = m + 1. Writing S,+l - Sk = 

S, - Sk + X,+l, we have with V for "max" 

Hence the statement is true for all m > 0. On the other hand, X I , .  . . , X, are 
i.i.d. random variables. Thus the joint distribution of X1,X2, .  . . , X n  is the 
same as that of X i ,  X i , .  . . , XA,where X i  = X,, Xh = X,-1,. . . , XA = X I .  
But the joint distribution of Sb, S;, . . . , SA, where Sh = X i  (S& = 01, 
and that of So, S1, .  . . , S, must also be the same. This in turn means, on 
substituting the unprimed variables, that So, S1,. . . , S, aiid SA, Si = S, - 
SnP1, Si = S, - SnPa, .  . . , SA = S, - So are identically distributed. Putting 
these two facts together, we get m a x ~ < k < ~ S L  and maxolk5,(Sn - Sk) = 

Wn are identically distributed. But the ,?b,-s;, . . . , Sh and So, S1,. . . , Sn were 
D 

noted to have the same distribution, so that inaxo<k<, Si = maxo<k<, Sk or 
M, aiid W, have the same distribution. This is thefiist assertion in which we 
only used the i.i.d. property of the X, but not the fact that X, = bnPl - a,. 

The above analysis implies 

But 

so that 

lim max Sk < x , 
n+cc O<k<n I 

F (x )  = liin Fn(x) = P lim max Sk < x = P sup Sk < x , (25) 
n-00 n-oo O<k<n I [k>o I 
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exists, and 0 < F(x )  I l , x  E R. Clearly F ( x )  = 0 for x < 0. On the 
other hand, if E( IX1)  = oo, then by Theorem 2.7, limsup, IS, = +oo a.e. 
which implies (since So = 0) that either limsup, S, = +oo a.e., so that 
sup, S, = +oo a.e., or this caii happen with probability zero. Since F(z) = 0 
for x < 0, we only need to consider z > 0. Thus if sup, S, = +oo a.e., then 
1 - F ( x )  = P [ s ~ p ~ ) ~  S k  > x] = 1, so that F (x )  = 0, x E R. If sup, S, < oo 
a.e., then lim,,, F ( x )  = 1 and F is a distribution function. Note that, since 
supn2o S, is a symmetric function of the random variables X,, which are i.i.d., 
we caii deduce that sup, S, = oo has probability zero or oiie by Theorem 1.12 
so that (25) can be obtained in this way also. 

Suppose that E(IX11) < oo. Then we consider the cases (i) E(X1) > 0, 
(ii) E(X1) < 0, and (iii) E(X1) = 0 separately for calculating the probability 
of A,, where 

Case (i): p = E(X1) > 0: By the SLLN, S,/n + E(X1) a.e., so that for 
sufficiently large n,  S, > E(X1) . a.e. Thus 

for any x E R', and hence P(A,) = 0 , or F ( x )  = 0, x E R', in this case. 

Case (ii): p = E(X1) < 0: Again by the SLLN, S,/n + E(X1) a.e., and 
given E > 0, and S > 0, oiie caii choose NEs such that n > NEs implies 

This may be expressed in the following manner. Let E > 0 be small enough so 
that E(X1) + E < 0. Then for 0 < S < $, choose NEs such that with (261, 

For this NEs, consider the finite set S1, S2,. . . , SNChpl.  Since these are real 
random variables, we can find an x6 E R' such that x > x6 implies 

PISl < 2 , . . . ,  SNely-l < x] > 1 6 .  (28) 

If now 
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then A, = A, n B,, for z > 0. Hence we have 

F(z) = P(A,) = P(A, n B,) 

> 2(1 - 6 )  - 1 = 1 - 2 6  [ b y  ( 2 7 )  and (28) 1 .  
Siiice 0 < S < is arbitrary, we conclude that lim,,, F ix )  = 1, and hence 
F gives an honest distribution in this case. 

Case (iii): E(X1) = 0: Now S, = Cr= l  X,, n > 1, is a symmetrically 
dependent sequence of random variables and So = 0. Thus sup,,, S, > 0 
a.e., aiid siiice we caii assume that X I  $ 0 a.e., all the S, do ilot vanish 
identically a.e. Consider the r.v. Y = limsup, S,. Then Y[= Y(S,, n > I)]  is 
symmetrically dependent on the S, and is measurable for the tail a-algebra. 
Hence, by Theorem 1.12 it is a coilstant = ko a.e. It will be seen later (cf. 
Theorem 8 below) that,  siiice S,/n + 0, a.e. by the SLLN, S, takes both 
positive aiid negative values infinitely often. Thus ko > 0. But then 

0 < Y = lim sup S, 
n) 1 

= lim sup(X1 + . . . + X,) = X1 + liin sup(X2 + . . . + X,) 
n) 1 n y 2  

Siiice Y = ko a.e. and X1 is a real nonzero r.v., (29) caii hold only if ko = +GO. 
Now [lim sup,,l S, = +oo] C [sup,,o S, = GO], aiid so we are back in the 

situation treated in case (i), i.e., F(z) -- 0, z E R. This completes the proof 
of the theorem. 

The preceding result raises several related questions, some of which are 
the following. When E(X1) < 0, we saw that the waiting times W, + W in 
distribution where W is a (proper) r. v. Thus, in this case, if Q, is the number 
of customers in the queue when the service of the nth customer is completed, 

D 
then Q, is an r.v. But then what is the distribution of Q,, and does Q, + Q? 
Siiice Q, is no more than k iff the coinpletioii of the nth customer service time 
is no more than the interarrival times of the last k customers, we get 

P[Qn < k] =P[Wn + bn I a,+l + .  . . +an+k]. (30) 

The random variables on the right are all independent, and thus this may 
D 

be calculated explicitly in principle. Moreover, it can be shown, siiice W, + 

W aiid the b, aiid a, are identically distributed, that Q, 2 Q from this 
expression. 
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Other questions, such as the distribution of the times that W, = 0, sug- 
gest themselves. Many of these results use some properties of convolutions 
of the image measures (i.e., distribution functions) on R, and we shall omit 
coilsideration of these specializatioiis here. 

All of the above discussioiis concerned a single-server queueing problem. 
But what about the analogous problem with many servers? This is more 
involved. The study of these problems has branched out into a separate dis- 
cipline because of its great usefulness in real applications. Here we consider 
only one other aspect of the above result. 

(D) Fluctuation Phenomena 

In Theorem 4 we saw that the behavior of the waiting time sequence is gov- 
erned by S, = EL=, Xk,  the sequence of partial sums of i.i.d. random vari- 
ables. In Section 2 we considered the convergence of sums of general iiide- 
pendent random variables, but the surprising behavior of i.i.d. sums was iiot 
analyzed more thoroughly. Such a sequence is called a random walk. Here we 
include an introduction to  the subject that will elaborate on the proof of The- 
orem 4 and complete it. The results are due to  Chung and Fuchs. We refer to  
Chuiig (1974). For a detailed analysis of the subject, and its relation to  the 
group structure of the range space, see Spitzer (1964). 

Thus if X,, n > 1, are i.i.d., and {S, = Xk,  n > 1) is a random 
walk sequence, let Y = limsup, X,. We showed in the proof of Theorem 4 
[Case (iii)] that Y = X1 + Y and Y is a "permutation invariant" r.v. Then 
this equation implies Y = ko a.e. (= *oo possibly), by the Hewitt-Savage 
zero-one law. If X1 = 0 a.e., theii by the i.i.d. condition, all X, = 0 a.e., so 
that S, = 0 for all n (and Y = 0 a.e.). If X I  $ 0 a.e., theii ko = o o  or +ce 
only. If ko = -m,  then clearly -ce 5 lim inf, S, 5 lim sup, S, = -m,  so 
that limn,, S, = -ce a.e.; or if ko = + m ,  then liminf, S, can be + m ,  in 
which case S, + +ce a.e., or liminf, S, = o o  < liinsup, S, = +ce. Since 
liin sup, (S,) = - liin iiif, (-S,), no other possibilities can occur. In the case 
c e  = lim inf, S, < lim sup, S, = +ce a.e. (the interesting case), we can 
look into the behavior of {S,, n > 1) and analyze its fluctuations. 

A state x E R is called a recurrent poant of the range of the sequence if for 
each E > 0, P[IS, - x < E, 2.0.1 = 1, i.e., the random walk visits x infinitely 
often with probability one. Let R be the set of all recurrent points of R. A 
point y E R is termed a possible value of the sequence if for each E > 0, there 
is a k such that P[Sk - yl < E] > 0. We remark that by Cases (i) and (ii) 
of the proof of Theorem 4, if E(X1) > 0 or < 0, then lim,,, S, = +ce or 
= -ce respectively. Thus fluctuations show up only in the case E(X1) = 0 
when the expectation exists. However, E(IX1 I )  < oo will iiot be assumed for 
the present discussion. 

Theorem 5 For the random walk {S,,n > I),  the set R of recurrent 
values (or points) has the following description: Either R = 0 or R c R is  a 
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closed subgroup. I n  the  case R # 0, R = (0) iff XI = 0 a.e., and if XI  # 0 
a.e., we  have e i ther  R = R o r  else R = { n d  : n = 0, *1, 4 ~ 2 , .  . .), the  infinite 
cyclic group generated by a n u m b e r  d > 0. 

Proof Suppose R # 0. If z, E R and z, + z E R, then given E > 0, there 
is n, such that n > n, + x,  - xll < E. Thus letting S,(w) = z,, we get 
S n ( w )  -21 < E, n > n,(w), for almost all w,  and hence if I = (z - E , X  + E),  

then P[Sn E I, i.o.1 = 1. Since E > 0 is arbitrary, x E R,  and so R is closed. 
To prove the group property, let z E R aiid y E R be a possible value of 

the random walk. We claim that z - y E R. Indeed for each E > 0, choose rn 
such that PIISm - y < E] > 0. Since z is recurrent, P[S, - zl < ~ , i . o . ]  = 1. 
Or equivalently P[S, - zl < E, finitely many n only ] = 0. Let us consider, 
since [IS, - x < E for finitely many n] = [IS, - X I  > E for all but finitely 
many n] ,  

P[IS, - X I  < E, finitely often ] 

m+n 
= PIISm-yI < E]P XI, - (z - y) < 2 ~ ,  finitely often , I 

(by the independence of Sm and Sm+, - Sm). (31) 

By hypothesis P[Sm - y < E ]  > 0, and this shows that the second factor of 
(31) is zero. But by the i.i.d. hypothesis, Sn aiid Sm+, - Sm have the same 
distribution. Hence P[IS, - (z - y) I < 2 ~ ,  finitely many n] = 0, and z - y E R. 
Since y = z is a possible value, 0 E R always, aiid z - (z - y) = y E R. 
Similarly 0 - y E R and so R is a group. As is well known, the only closed 
subgroups of R are those of the form stated in the t h e ~ r e m , ~  and R = (0) if 
X1 = 0 a.e. In the case that X1 # 0 a.e., there is a possible value y E R of 
the random walk, aiid y E R by the above analysis. Thus R = (0) iff XI  = 0 
a.e. It is of interest also to note that uiiless the values of the r.v. X1 are of 
the form nd, n = 0, 4Z1,*2,. . . , R = R itself. This completes the proof. 

It is clear from the above result that 0 plays a key role in the recurrence 
pheiioineiioii of the random walk. A characterization of this is available: 

Theorem 6 Let  {X,, n > 1) be i.i.d. r a n d o m  variables o n  ( R ,  C ,  P) and  
{S,, n > 0) be the  corresponding r a n d o m  walk sequence. If  for  a n  E > 0 we 

"ndeed,if R # 0, because it is a closed subgroup of R, let d  = inf{x E R , x  > 
0). Then d 2 0 and there exist d, t R,d, I d. If d = 0, we can verify that 
{kd,,k= 0,*1,*2 , . . .  ; n  2 1) isdense i n R  and c R+ R=R. Ifd > 0,then 
{ n d ,  n = 0 ,  *I,. . .) c R and is all of R. There are no other kinds of groups. Note 
that if R f 0 every possible value is also a recurrent value of the random walk. 
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then 0 is not a recurrent value of {S,, n > 0). If, on the other hand,for every 
E > 0 it is true that the series in (32) diverges, then 0 is recurrent. [It follows 
from (36) below that if the series (32) diverges for one E > 0, then the same 
is true for all E > 0.1 

Proof If the series in (32) converges, then the first Borel-Cantelli lemma 
implies P[IS, < E, finitely often ] = 1 so that 0 6 R. The second part is 
harder, since the events {[IS, < ~ ] , n  > 1) are not independent. Here one 
needs to show that P[IS, < E, i.o.1 = 1. We consider the complementary 
event aiid verify that it has probability zero, after using the structure of the 
S, sequence. 

Consider for any fixed k > 1 the event Ah defined as 

A g  = [SmI < E, IS, > & , n  > m + k]. (33) 

Then Ak  is the event that the S, will not visit (-E, E) after the (m + k - 1)th 
trial, but visits at the mth trial [from the (m + l ) t h  to (m + k - l ) t h  trials, 
it may or may not visit]. Hence Ah ,  Ah+k,  Ah+,k,. . . are disjoint events for 
rn > 1 aiid fixed k > 1. Thus 

But for each k > 1, [IS, < E] and [IS, S m  5 2 ~ ,  n > rn + k] are independent, 
aiid Ak  > [lSmI < E] n [IS,-Sml > 2 ~ , n  > r n + k ] ,  k > 1, since IS, > 
(IS,-SmI - SmI) > 2 ~ - E  = E, on the displayed set. Hence, with independence, 
(34) becomes 

But 

= P[Sn > 2 ~ ,  n > k] (by the i.i.d. condition). 
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Hence 
00 

C P[Sm < E ]  . P[S, > 2 ~ , n  > k] 5 2k. 
m=l 

Since we may take the second factor on the left out of the summation, and 
since the sum is divergent by hypothesis, we must have PISnI > 2 ~ ,  n > k] = 0 
for each k. Hence taking the limit as k + oo, we get 

P[lS, > 26, finitely often ] = P U [IS, 1 > 2 ~ ]  = 0, 
[ k >  ] 

or P[IS,I < E, i.o.1 = 1 for any E > 0. This means 0 E R and completes the 
proof of the theorem. 

Suppose, in the above, the X, : R + R' are i.i.d. random vectors 
and Sn = C r = l  Xi.  If IXi is interpreted as the maximum absolute value 
of the k components of Xi,  and Sn visits (-E, E) means it visits the cube 
(-E, E ) ~  c R' (i.e., IS, < E), then the preceding proof holds verbatim for 
the k-dimensional random variables, and establishes the corresponding result 
for the k-dimensional random walk. We state the result for reference as follows: 

Theorem 7 Let {X,, n > 1) be 2.i.d. k-vector random variables on 
(a, E, P) and S, = Cy=L=, Xi, SO = 0, where k > 1. Then 0 is a recurrent 
value of the k-random walk {S,, n > 0) iff for any E > 0, 

Moreover, the set of all recurrent values R forms a closed subgroup of the 
additive group IKk. 

The proof of the last statement is the same as that for Theorem 5 ,  which 
has a more precise description of R in case k = 1. 

If R = 0 , then the random walk is called transient, and is termed recurrent, 
(or persistent) if R # 0. 

We can now present a sufficient condition for the recurrence of a random 
walk, and this completes the proof of case (iii) of Theorem 4. 

Theorem 8 Let S, = X1 + . . . + X,, {X,, n > 1, 2.i.d.) be a (real) 

random walk sequence on (0, C ,  P) such that S,/n 3 0. Then the walk is 
recurrent. 

Remark As noted prior to  Theorem 3.2, this condition holds for certain 
symmetric random variables without the existence of the first moment. On the 
other hand, if E ( IX1)  < cm, then it is always true by the WLLN (or SLLN). 
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We shall establish the result with the weaker hypothesis as stated. The proof 
uses the linear order structure of the range of S,. Actually the result itself is 
not valid in higher dimensions (2 3). It is true in 2-dimensions, but needs a 
different method with characteristic functions (cf. Problem 21.) 

Proof We first establish an auxiliary inequality, namely, for each E > 0, 

1 P[lSml < k] 52" P[lSm < & I ,  r , k  > 1, integers. (36) 

If this is granted, the result can be verified (using an argument essentially 
due to Chung and Ornsteill (1962)) as follows: We want to  show that (32) 
fails. Thus for any integer b > 0, let r = kb in (36). Then 

because (mlb) 5 k. By hypothesis Sm/m 3 0, so that P [ ( S m ( / m  < ~ / b ]  + 1 
as rn i oo. By the (C, 1)-suminability, 

Hence (37) becomes on letting k -+ cc 

Since b > 0 is arbitrary, (32) fails for each E > 0, and so {S,, n 2 1) is 
recurrent. 

It remains to establish (36). Consider, for each integer m, [ r n ~  < Sn < 
(m + I)&] and write it as a disjoint union: 

n 

[ m ~  ': Sn < (rn + I)€] = U [ r n ~  < Sn < (rn + I)€] ? Akl (38) 
k=O 

where A. = [me < So < (rn + l ) ~ ]  and for k > 1, Ak = [ S k  [ r n ~ ,  (m + 
I)€) ,  S j  @ [ r n ~ ,  (m + I)€) ,  0 < j 5 k - 11. Thus Ak is the w-set for which S k  

enters the interval [ m ~ ,  (m + l ) ~ ]  for the first time. Then 
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[since onAk,m6 5 Sn, Sk < (m + l ) ~  + Sn - Sk  < E] 

(since Ak is determined by XI, . . . , XI ,  

aiid heiice is independent of Sn - Sk for n > k )  

= x C P(Ak)PIIS,,r: < el (by the i.i.d. property) 

T 

5 C P [ ~ s ~  < €1 (siiice the Ak are disjoint). 
j=O 

(39) 

Summing for m = - k  to  k  - 1, we get 

This proves the inequality (361, and heiice also the theorem. 

It is now natural to  investigate several other properties of recurrent random 
walks, such as the distribution of the first entrance time TA of the process into 
a given Bore1 set A c R, finding conditions on X in order that E(TA) < oo 
or = oo, aiid P[TA < oo] = 1. Conversely, the recurrence aiid traiisieiice of a 
random walk determines the structure of the range space R or Rn on a general 
locally compact group G. However, these questions need for their consider- 
ation certain analytic tools that we have not yet developed. In particular, 
a detailed study of characteristic functions aiid distribution functions is an 
essential first step, and this is undertaken in Chapter 4. It is then necessary 
to  study further properties of sums of independent but not necessarily iden- 
tically distributed random variables, continuing the work of Section 2. Here 
the most striking result, which we have not yet touched upon, is the law of 
the iterated logarithm. This is a strong limit theorem, based on the existence 
of two moments, but for its proof we also need the work on the central limit 
problem. Thus the results of this chapter are those obtainable only by means 
of the basic techniques. We need to continue expanding the subject. First a 
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weakening of the concept of independence is needed. Then one proceeds to 
a study of the central limit problem and the (distributional or) weak limit laws. 

Exercises 
1. (a) Let (0, C, P) be a probability space with 0 having at least three 

points. If X : 0 + R is a random variable taking three or more distinct 
values, verify that 1, X , X 2  are linearly independent (in the sense of linear 
algebra) but will be stochastically independent only if X is two valued and 
X 2  is a coilstant with probability 1, in which case 1 , X , X 2  are not linearly 
independent. Give an example satisfying the latter conditions. On the other 
hand, if X, Y are stochastically independent and not both are constant, then 
they are linearly independent, whenever X # 0 and Y # 0. 

(b) Consider f l  = {1,2,3,4,5} with P({i}) = 115 for i = 1,2,3,4,5.  
Is it possible to find events A, B of 0 so that A and B are independent? 
The answer to  this simple and interesting problem is no. A probability space 
(0, C, P) is called a "dependent probability space" if there are no nontrivial 
independent events in fl ,  (R,  C, P) is called an independent space otherwise. 
R. Shiflett aiid H. Schultz (1979) introduced this coiicept where they studied 
both finite and countably iiifiiiite settings for R. Show that if R is finite so 
that R = {1,2,.  . . , n )  with P({i)) = l / n  for i = 1 ,2 , .  . . , n  then (R,  C, P) 
is a dependent probability space if and only if n is prime. Additional results 
on finite dependent spaces with uniform probabilities caii be found in the 
article by Shiflett aiid Schultz aiid in the work of Eiseiiberg aiid Ghosh (1987). 
Recently, W.F. Edwards (2004) investigated the case of the space (fl ,  C, P) 
with R = {1,2,3, .  . .) and the measure P not uniform as follows. Show that 
if 0 = {1,2,3, .  . .) with P({i)) = pi > pi+l = P({i + 1)) for all i and if 

then (0, C, P) is an independent space. The hypothesis in this last statement 
is sufficient but not necessary which caii be seen by showing if f l  = {1,2,3, .  . .} 
with pi = (1 r ) r e l  for 0 < r < 1, i = 1 ,2 , .  . . , then (f l ,  C, P) is an indepeii- 
dent space. These results give an idea of the interest that is associated with 
the question, "Are there necessary and sufficient conditions for a probability 
space (0, C, P) to be dependent?" 

( c )  One result without a restriction on the cardinality of R can be ob- 
tained by showing that (fl ,  C, P) is an independent probability space if aiid 
only if there exists a partition of 0 into four nontrivial events A, B ,  C and D 
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for which P(A) P ( B )  = P ( C )  P (D) .  [A related idea was considered by Chen, 
Rubin and Vitale (1997) who show that if the collection of pairwise indepen- 
dent events are identical for two measures, then the measures coincide. These 
are just some of the ideas associated with independent probability spaces. 
This type of inquiry can be continued with a serious investigation.] 

2. Let 4 : R+ + R+ be an increasing continuous convex or concave 
function such that $(O) = 0, with $(-x) = 4(x) ,  and in the convex case 
4(2z) < c4(x), z > 0, 0 < c < oo. If Xi : w + R, i = 1,2,  are two random 
variables on (R, C, P) such that E(4(X,)) < cc, i = 1,2,  theii verify that 
E (4(X1 + Xa))  < cc and that the converse holds if XI ,  X2 are (stochastically) 
independent. [Hint: For the converse, it suffices to consider 1x2 > no > 1. 
Thus 

for an A, = [Xzl < n],  no > n > 0. Note that the converse becomes trivial if 
Xi > 0 instead of the independence condition.] 

3. The preceding problem can be strengthened if the hypothesis there 
is strengthened. Thus let X1,X2 be independent and E(X1) = 0. If now 
4 : R+ + R+ there is restricted to a continuous convex function and 

E(4(X1 + X2)) < oo, then E(4(X2)) < E($(Xl + X2)). If E(X2) = 0 
is also assumed, theii E(4(Xi) )  < E(4(X1 + X2)),  i = 1,2. [Hint: Use 
Jenseii's inequality, and the fundamental law of probability, (Theorem 1.4.1) 
in 4(x) = 4(E (X2 + 2)) < E(4(z + Xz))  and integrate relative to dFxl (z) , 
then use Fubini's theorem.] 

4. (a) Let I = [O, 11, B = Bore1 a-algebra of I, and P = Lebesgue mea- 
sure on I. Let XI ,  . . . , Xn be i.i.d. random variables on (a, C, P) with their 
common distribution F(z) = PIX1 < z] = x, 0 < z < 1 (and = 0 for 
x < 0, = 1 for x > 1). Define Yl = min(X1, ..., X,), and if Y ,  is defined, let 
Y,+l = min{Xk > Y ,  : 1 < k < n}. Then (verify that) Yl < Y2 < . . . < Y, 
are random variables, called order statistics from the d.f. F ,  and are not in- 
dependent. If FY,,,..,~~, is their joint distribution, show that 

From this deduce that, for 0 < a < b < 1, i = 1 , .  . . , n,  

and that for 0 < a  < b < c <  1 , 1  < i < j  < n,  
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n! 
- 

(i - l ) ! ( j  - i - l)!(n - j)!  

[Note that for 0 < yl < yz < . . . < y, < 1, for small enough E > 0 such that 
[Yi,  Y, + E] are disjoint for 1 < i I n,  we have 

P[Yi I Y ,  I Yi  + E i 7 1  I i < n] 
- - C P [ ~ j  I xiI I Y j  + E j ,  1 I j < n], 

all perlnutations 
( i ~ ,  ..., i,,) of (1,2 ,..., 7 ~ )  

where the X, are i.i.d. for each permutation, and that there are n! permuta- 
tions.] 

(b) Let 21, .  . . , Zn be i.i.d, random variables on (0, C,  P) with their com- 
mon distribution F on R contiiiuous aiid strictly increasing. If Xi = F(Zi) ,  
1 < i < n,  show that X I , .  . . , X, are random variables satisfying the hy- 
pothesis of (a). Deduce from the above that if 2, is the ith-order statistic of 
(21, . . . , Z,), then 

Similarly, obtain the corresponding formulas of (a) for the 2,-sequence. 

5. (a) Following Corollary 1.8 we have discussed the adjunction procedure. 
Let X I ,  X2,  . . . , be any sequence of random variables on (a, C, P). Let F,(z) = 

P[X, < x], i = 1,2,  . . . . Then using the same procedure, show that there is 
another probability space (fi, 2, P) and a mutually independent sequence of 
random variables Yl, Y2,. . . on it such that P[Y, < x] = F,(x), x E R, n > 1. 
[Hint: Since Fn is a d.f., let pn(A) = JA ddF,(x), A c R Borel, X, = identity 

on R. Then (R, B, p,) is a probability space and X, is an r.v. with Fn as its 
d.f. Consider, with the Fubini-Jessen theorem, the product probability space 
(dl c, P) = @,21(R,, B,, pn) ,  where R, = R, Bn = B. If L;) = (1~1~x2, .  . .) E 

W fi = R , let Yn(L;)) = nth coordinate of L;) [= xn = K_(L;))]. Note that the Y, 
are independent random variables on (fi, El P) aiid P[Y, < z] = p, [x, < 
x] = F,(x),x E R , n  > 1.1 

(b) (Skorokhod) With a somewhat different specialization, we can make, 
the following assertion: Let XI ,  X 2 . .  . be a sequence of random variables on 
(R,  C, P) which converge in distribution to an r.v. X .  Then there is another 
probability space (R', C', P') and random variables Yl, Y2, . . . on it such that 
Y, + Y a.e. and P[X, < x] = Pf[Y, < x] ,x  E R,for n > 1. Thus X,,Y, 
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have the same distributions and the (stronger) pointwise convergence is true 
for the Y,-sequence. (Compare this with Proposition 2.2.) [Sketch of proof: 
Let Fn(x) = P[Xn  < x], F (x )  = P [ X  < x], x E R, n > 1. If Yn, Y are inverses 
to F,, F, theii Y,(z) = inf{y E R : F,(yL> z}; aiid similarly for Y. Clearly 
Yn, Y are Borel functions on (0 , l )  + R. Since Y,(z) < y iff F,(y) > z, 
we have, on letting R1 = (0, I ) ,  C1 = Borel a-algebra of R', with P I  as the 
Lebesgue measure, P1[Yn < y] = Pf [x  : x < Fn(y)] = Fn(y); and similarly for 
P1[Y < y] = F(y) .  Since F,(x) + F ( x )  at all continuity points of F, let x be a 
continuity point of F. If the F, are strictly increasing, theii Yn = F;' and the 
result is immediate. In the general case, follow the argument of Proposition 
2.2, by showing that for a < b < c < dl 

and then setting b = c, a continuity point of F; let a 1' b and d J c, so that 
Yn(c) + Y(c). Since the discontinuities of F are countable aiid form a set of 
P I  measure zero, the assertion follows. Warning: In this setup the Y, will not 
be independent if Y is iioiiconstant (or X is nonconstant).] 

( c )  The following well-known construction shows that the preceding part 
is an illustration of an important aspect of our subject. Let (R,  C) be a mea- 
surable space and Bi E C be a family of sets indexed by D c R such that 
for i ,  j E D , i  < j + Bi c Bj. Then there exists a unique random variable 
X : R + R such that {w : X(w) < i} c Bi aiid {w : X(w) > i} c B,". 
[Verify this by defining X(w) = inf{i E D : w E B,} and that X is measur- 
able for C.] If P : C + R+ is a probability and D is countable, {Bi, i E D} 
is increasing P a.e. (i.e., for i < j, P(Bi  - Bj) = 0), then the variable X 
above satisfies {w : X(w) < i} = Bi, a.e. and {w : X(w) > i} = B,", i E D. 
(See e.g., Royden (1968, 1988), 11.2.10.) Suppose that there is a collection 
of such families {B?,i E D = R, n > I} c C. Let X, be the correspond- 
ing random variable constructed for each n,  and let F,(x) = P(Bg)  where 
-oo < x < oo. Show that Fn = P o  X i 1 ,  determined by the collection, and 
that for n l ,  . . . , n,, xi E R, m > 1 one has 

defines an m-dimensional (joint) distribution of (X,, , . . . , Xntrb)  so constructed. 
[This construction of distributions will play a key role in establishing a general 
family of random variables, or processes, later (cf., Theorem 3.4.10). 

(d) Here is a concrete generation of independent families of random vari- 
ables already employed by N. Wiener (cf. Paley aiid Wiener (1934), p. 143), 
and emphasized by P. Lkvy ((1953), Sec. 2.3). It also shows where the prob- 
abilistic concept enters the construction. Let Yl, . . . , Yn be functions on (0,l) 
each represented by its decimal expansion 
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a,,, taking values 0 ,1 , .  . . , 9  each with probability &, independent of one 
another. (This is where probability enters!) Then each Y, is uniformly dis- 
tributed and they are mutually independent. (Clearly binary or ternary etc. 
expaiisioiis can be used in lieu of decimal expansion. Unfortunately, no recipe 
exists for choosing a,,, here. A similar frustration was (reportedly) expressed 
by A. Einstein regarding his inability to  find a recipe for a particular Brownian 
particle to  be in a prescribed region, but only a probability of the event can be 
given. [cf., Science, 30 (20051, pp. 865-890, special issue on Einstein's legacy].) 
If {F,, n > 1) is a sequeiice of distribution functions on R, let Fll be the geii- 
eralized inverse of F, as defined (in part (b)) above. Let X, = F;l(Y,), n > 1. 
Then {X,, n > 1) is a sequeiice (of mutually independent) random variables 
with distributions F,. [It is even possible t o  take a single uniformly distributed 
random variable Y by reordering a,,, into a single sequence {bk,  k > 1) so 
that Y = ~ r = ~  h, by excluding the terminating decimal expaiisioiis which 
are countable aiid hence coiistitute a set of (Lebesgue) measure zero, and 
then X, = F;l(Y), n > I.] It should be observed that in the representation 
of X, as a mapping of (Yl, . . . , Y,) [or of Y] by I, which is one-to-one, there 
are infinitely many representations, while a unique distribution obtains if it 
is nondecreasing, such as I?;'. This fact is of interest in applications such as 
those implied in part (b) above. 

The followiiig example is considered by Wiener (in the book cited above, 
p. 146). Let Yl, Y2 be independent uniformly distributed random variables on 
(0,l)  aiid define R = ( log Yl) +, and Q = 27rY2 and let X1 = R cos 0, X2  = 

R sin 8. Then the Jacobian is easily computed, and one has dyldyz = ~ r - ( x ~ + z ~ )  
dxldx2 so that X I ,  X2 are independent normal random variables generated 
by Yl, Y2. Extending this procedure establish the followiiig n-dimensional 
version. Let Yl, . . . , Y, be independent uiiiforinly distributed raiidoin vari- 
ables on (0,1), Q1, = 2TYk+1 and X1 = Rsin QnP1 . . . sin 82 sin 81; X2  = 

R sin 8,-1 . . . sin 82 cos 81, . . . , X,-1 = R sin 8,-1 cos 8,-2, and X, = R cos 8,-1 
where R = (-2 log ~ 1 ) ; .  The Jacobian is much more difficult, [use induc- 
tion], but is nonvanishing, giving a one-to-one mapping. (With R = 1, the 
trailsformatioil has Jacobian to  be (-l)"(siii Ql)"(sin 82)" . . . sin QnP1 cos 8, 
so that it is 1-1 between the open unit n-ball and the open rectangle 
0 < 8, < T, z = 1 , .  . . n.) This shows that the @, sequence (different from the 
F,) can be somewhat involved, but the procedure is quite general as noted by 
N. Wiener whose use in a construction of Brownian motion is now legendary, 
aiid was emphasized by P. Lkvy later. [In the last chapter we again coiisider 
the Brownian motion construction with a more recent and (hopefully) simpler 
method.] 

6. (a) (Jessen-Wintner) If {X,, n > 1) is a sequeiice of independent count- 
ably valued raiidoin values on (a, C ,  P) such that S, = C;=, Xk + S a.e., 
then the distribution of S on R is either (i) absolutely coiitinuous or singular 
relative to  the Lebesgue measure or (ii) P[S = j] > 0 for a countable set of 
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points j E R, and no mixed types can occur. [Hints: Let G c R be the group 
generated by the ranges of the Xn,  so that G is countable. Note that for any 
Borel set B ,  the vector sum G + B = {x + y : x E G, y E B )  is again Borel. 
If no = {W : S,(W) + S(W)), then let A = {w : S(W) E (G + B )  n Ro), 
and verify that A is a tail event, so that P(A)  = 0 or 1 by Theorem 1.7. 
Indeed, if gl - g, E G, then gl E G + B for some Borel set B iff gz E G + B .  
Now if Sn = S - (S - Sn) E G, then S - Sn E G + B ,  and conversely. But 
S - Sn E no. Hence A = [S - Sn E G + B] n Go, so that A is a tail event, 
and P(A)  = 0 or 1. This implies either S is countably valued or else, since 
P (Ro)  = 1, P[S E G + B ]  = 0 for each countable B .  In this case P[S E B] = 0 
for each countable B ,  so that S has a continuous distribution, with range non- 
countable. Consequently, either the distribution of S is singular relative to  the 
Lebesgue measure, or it satisfies P[S E G + B] = 0 for all Borel B of zero 
Lebesgue measure. Since G is countable, this again implies P[S E G + B]  = 0, 
so that P[S E B] = 0 for all Lebesgue iiull sets. This means the distribution 
of S is absolutely coiitinuous. To see what type is the distribution of S, we 
have to exclude the other two cases, and no recipe is provided in this result. 
In fact this is the last result of Jessen-Wintrier's long paper (1935).] 

(b) To decide on the types above, we need to resort to other tricks, and 
some will be noted here. Let {X,, n > 1) be i.i.d. random variables with 

Let Sn = EL=l xk/2'. Then Sn + S a.e. (by Theorem 2.6). Also IS 5 1 a.e. 
Prove that the S distribution is related to that of U - V, where U aiid V are 
independent random variables on the Lebesgue unit interval [O, I ] ,  with the 
uniform distribution F, i.e., F ( x )  = 0 if x < 0, = x if 0 < x < 1, aiid F (x )  = 1 
for x > 1, and hence has an absolutely continuous distribution. [Hints: Note 
that if Fu, Fv are the distributions of U, V, then FrJ+v can be obtained by 
the image law (cf. Theorem 1.4.1) as a convolution: 

(sillce FrJ,v = FrJ . Fv by independence) 

Thus Fu+v is continuous if at least one of FrJ, Fv is continuous. Next verify 
that if x = Er=l ~ ~ / 2 ~ ,  where &I, = 0 ,1  is the dyadic expansion of 0 < x < 1, 
then (as in the construction of Problem 5 (d) above) 
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with p as the Lebesgue measure. Deduce that U has the same distribution 
as the identity mapping I : ( 0 , l )  + ( 0 , l )  with Lebesgue measure.](Explicit 
calculation with ch.f. is easier and will be noted in Exercise 4.11.) 

( c )  By similar indirect arguments verify the following: (i) If {X,, n > 1) is 
as above, then S, = EL=, x k / 3 b  S a.e. aiid S has a singular distribution. 
(ii) (P. Lkvy) If Y,, n = 1 , 2 , .  . . , are independent with values in a countable 
set C c R, and if there is a convergent set of numbers cn E C such that 

then S = Cr!l Yk exists a.e., and S takes only countably many values with 
positive probability. 

(d) The proofs of Theorem 2.6 aiid 2.7 used the Kronecker lemma and 
the (c, 1)-summability. Thus the Kolomogorov SLLN (Theorem 2.7) can be 
considered as a probabilistic analog of the classical (c, 1)-summability in the 
sense that a sequence {X,, n > 1) of i.i.d. r.v.s on (R, C ,  P) obeys the (c, 1)- 
pointwise a.e. iff E(X1) = p E R exists. Since classical analysis shows that 
(c, 1)-summability implies (c, p)-summability for p > 1, one can expect a sim- 
ilar result for i.i.d sequences. In fact the following precise version holds. Let 
p, p E R, p > 1. Verify the following equivalences for i.i.d. r.v.s: 

(i) {X,, n > 1) obeys the SLLN, 
(ii) E(X1) = p,  
(iii) {X,, n > 1) obeys (c, 1)-summability a.e. with limit p ,  
(iv) {X,, n > 1) obeys (c,p)-summability a.e. with limit p ,  

i.e., lim ~ ( k + ~ - l ) ~ n p k = p a . e . ,  "+" ('"3 k=O 

(v) {X,, n > 1) obeys Abel mean a.e. with value p,  

00 

i.e., lim (1 - A )  Aixi = p a.e.. 
O S X T l  i= 1 

[Hints: The classical theories on summability imply that (i) +- (iii) +- (iv) 
+- (v) and Theorem 2.7 gives (i) @ (ii). So it suffices t o  show (v) +- (ii). 
For ordinary sequences of reals, Abel convergence does not imply even (c, 1)- 
convergence. (Here the converse holds if the sequence is bounded in addition, 
as shown by J.E. Littlewood.) But the i.i.d. hypothesis implies the converse 
a.e. as follows. Using the method of Theorem 2.9, called symmetrization, let 
X: = X, - XA where Xn aiid XA are i.i.d. (one may use enlargement of 
the basic probability space as in the proof of 2.9, where X i  is denoted as 2, 
there), and (v) can be expressed if 1 - X = l l m ,  m > 1 as 
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1 O0 1 i lim -x(l--)~'=~-~=O, 
m-oo m 

i=l m " 

or alternately 

Theii Y, + 2, + 0 a.e. as m + oo, and Y,, 2, are independent. Verify that 
for each E > 0, P[Z,I > E] + 0 as m + cc. Then using Slutzky's Theorem 
and stochastic calculus (Problems 9(b) and l l ( c )  below) suitably conclude 
that Ym + 0. Next Y, = Ym - AX; + 0 and finally that X&/m + 0 also 
as m + oo. [This needs some more work!] Theii by the Borel-Cantelli lemma, 
deduce that E (X1 l )  < oo, as in the proof of Theorem 3.7. Hence SLLN holds. 
Thus the equivalence follows. The above sketch is a paraphrase of T.  L. Lai 
(1974). Can we replace mutual independence here by pairwise independence, 
as in Corollary 3.3 if we only ask for WLLN?] 

7. This problem illustrates the strengths and limitations of our a.e. con- 
vergence statements. Let (R,  C ,  P) be the Lebesgue unit interval, so that 
R = ( 0 , l )  and P = Lebesgue measure on the completed Borel a-algebra C. 
If w E 0, expand this in decimals: w = 0.x1x2.. . SO that if X,(w) = x,, then 
X, : 0 + {0,1, . . . ,9} is a r.v. Verify that {X,, n > 1) is an i.i.d. sequence 
with the common distribution F ,  given by F(y)  = (k+1)/10, for k 5 y < k+ l ,  
k = 0 ,1 , .  . . ,9 ;  = 0 if y < 0; = 1 for y > 9. Let Sk(.) be the Dirac delta func- 
tion, and consider Sk(Xn). Then P[Sk(X,) = 11 = 1/10, P[fik(X,) = 01 = 

9/10, and Sk (X,), n > 1, are i.i.d., for each k = 0,1, . . . ,9 .  If kl,  k2, . . . , k, are 
a fixed r-tuple of integers such that 0 < ki < 9, define (cf. Problem 5 (d) also) 

Show that the E,,,, n > 1, are bounded uncorrelated random variables for 
which we have ( l l m )  C z l  E,,, + 1/10, a.e. as m + oo (apply Theorem 
3.4), r = 1,2,  . . .. This means for a.a. w E f l ,  the ordered set of numbers 
(kl, . . . , k,) appears in the decimal expailsion of w with the asymptotic rela- 
tive frequency of 1/10'. Every number w E R for which this holds is called a 
normal number. It follows that CT=l E,,, + cc as m + cc for a.a.(w) (as in 
the proof of Theorem 4.4); thus E,,, = 1 infinitely often, which means that the 
given set (kl,  . . . , k,) in the same order occurs infinitely often in the expansion 
of each normal number, and that almost all w E f l  are normal. [This fact was 
established by E. Borel in 1909.1 However, there is no known recipe to  find 
which numbers in 0 are normal. Since the transcendental (T - e )  E (0, I ) ,  it 
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is not known whether T - e is normal; otherwise it would have settled the old 
question of H. Weyl: Is it true or false that in the decimal expansion of the 
irrational number T, the integers 0 ,1 , .  . . , 9  occur somewhere in their natural 
order? This question was raised in the 1920's to counter the assertion of the 
logicians of Hilbert's school asserting that every statement is either "true" or 
"false," i.e., has only two truth values. As of now we do not know the definitive 
answer to Weyl's question, even though T has been expanded to over lo5 dec- 
imal places and the above sequence still did not appear! [See D. Shanks and J. 
W. Wrench, Jr.  (1962). Math. Computation 16, 76-89, for such an expansion 
of n. On the other hand, it is known that 0.l23456789lOlll2l3l4l5l6l7 ..., 
using all the natural numbers, is normal. Recently two Japanese computer 
scientists seem to have shown that the answer is 'yes' after expanding T for 
several billions of decimal places. See, e.g. J.M. Borwain (1998), Math. Intel- 
ligence~, 20, 14-15.] 

8. The WLLN of Theorem 3.2 does not hold if (even) the symmetric 
moment does not exist. To see this, we present the classical St. Petersburg 
game, called a "paradox," since people applied the WLLN without satisfying 
its hypothesis. Let X be an r.v. such that 

on (R,  C ,  P ) .  Let {X,, n > 1) be i.i.d. random variables with the distribution 
of X .  If S, = CL=,Xk,  show that S,/n f i  a, as n + cm, for aiiy a E R, 
either in probability or a.e. for any subsequence. (Use the last part of Theo- 
rem 3.7.) The game interpretation is that a player tosses a fair coin until the 
head shows up. If this happens on the nth toss, the player gets 2, dollars. If 
aiiy fixed entrance fee per game is charged, the player ultimately wins and the 
house is ruined. Thus the "fair" fee will have to be "infinite," and this is the 

P 
paradox! Show however, by the truncation argument, that S,/(n log2 n) + 2 
as n + cm, where log, n is the logarithm of n to base 2. If the denominator is 

P 
replaced by h(n) SO that (n log, n) /h(n)  + 0, then S,/h(n) + 0 and a.e. In 
fact show that for any sequence of random variables {Y,, n > 1) there exists 
an illcreasing sequence k ,  such that P[IY, > k,, i.o.1 = 0, so that Yn/kn + 0 
a.e. Thus nlog2 n is the correct "normalization" for the St. Petersburg game. 
(An interesting and elementary variation of the St. Petersburg game can be 
found in D.K. Neal, & R.J. Swift, (1999) Missouri J. Math. Sciences, 11, No. 
2, 93-102.) 

9. (Mann-Wald). A calculus of "in probability" will be presented here. 
(Except for the sums, most of the other assertions do not hold on infinite 
measure spaces!) Let {X,, n > 1) and {Y,, n > 1) be two sequences of random 
variables on (0, C ,  P). Then we have the following, in which no assumption 
of independence appears: 
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P 
( a ) X , z X , Y , z Y + X , * Y , z X f  Y,andX,Y,+XY. 
(b) If f : R2 + R is a Bore1 function such that the set of disconti- 

nuities of f is measurable and is of measure zero relative to the Stieltjes 
measure determined by the d.f. FX,Y of the limit vector (X, Y) of (a), theii 

P P 
f (X,, Y,) 2 (X,  Y) under either of the conditions: (i) X, + X ,  Y, + Y 

P 
or (ii) ax, + BY, + a X  + PY for all real a, p. If f is continuous, then 

strengthen this to the assertion that f (X,, Y,) 3 f (X, Y) if coiiditioii (i) 

holds. [Hint: For (ii), use Problem 5(b) aiid the fact that (X,, Y,) 2 (X, Y) 

iff ax, + PY, 2 a X  + PY for all real a, p.] 

10. Suppose that for a sequence {X,,n > 1 , X )  in L1(P) we have 

X, 2 X .  Show it is true that E (X1)  5 liminf, E(IX,),  and if, further, 
the set is uniformly integrable, then E ( X )  = limn E(X,). [Hint: Use Problem 
5 (b) and the image probability Theorem 1.4.1. This strengthening of Vi- 
tali's convergence theorem (and Fatou's lemma) is a iioiitrivial contribution 
of Probability Theory to Real Analysis!] 

11. (a)  If X is an r.v. on (0, C, P), then p(X),  called a median of the 
distribution of X ,  is any number which satisfies the inequalities 

1 1 
P [ X  5 p(X)I 2 5, P [ X  2 p(X)]  > 5. 

Note that a median of X always exists [let p (X)  = inf{a E R : P [ X  5 a] > $) 
and verify that p(X)  is a median and p(aX + b) = ap(X)  + b, for a ,  b E R]. 

D 
If X, + ao, a0 E R, show that p(X,) + a0 

(b) A sequence {X,, n > 1) of random variables is bounded in probability 
if for each E > 0 there is an no[= no(,)] aiid a coilstant Mo[= M o ( ~ ) ]  > 0 such 

P 
that P[IX,  > ME] 5 E for all n > no. Show that if X, 2 X and Y, + 0 

P D 
are two sequences of random variables, then XnYn + 0, X, + Y, + X ,  as 
n + oo and {X,, n > 1) is bounded in probability. If {X,, n > 1) has the 

P P 
latter property aiid Y, + 0, theii XnYn + 0 as n + oo. 

D D 
(c) (Cram&Slutsky) Let X, + X ,  Y, + a ,  where a E R and n + oo. 

Then X,Y, 2 a x ,  aiid if a # 0, X,/Y, 2 X l a ,  so that the distributioiis of 
a x  and X l a  are F(x /a)  and F(ax)  for a > 0, 1 - F(x/a)  and 1 - F(ax)  for 
a < 0. Here again the sequences {X,) and {Y,) need not be independent. 

(d) Let {X,, n > 1) and {Y,, n > 1) be two sequences of random variables 
D 

on (R, C, P) and a, J, 0, /3, J, 0 be numbers, such that (X, -a) /a ,  + X and 

(Y, - b)/pn 2 Y, where a ,  b E R, b # 0. Show that (X, - a)/a,Y, 2 Xlb. 
All limits are taken as n + oo. 

12. (Kolmogorov). Using the method of proof of Theorem 2.7, show that 
if {X,, n > 1) is an independent sequence of bounded random variables on 
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(0, E, P), common bound M and means zero, then for any d > 0 we have, 
with S, = XI,, 

Deduce that if Var(Sn) + oo, then for each d > 0, P[IS, < dl + 0 as n + oo. 

13. (Ottaviaiii). Let {X,,n > 1) be independent random variables on 
(0,E,P) and E > 0 be given. If S, = CL=lXk ,  PIIXk + . . .  +X,I < E] > 
q > 0, 1 < k < n,  show that 

[Note that if Al = [S1l > E],  aiid fo rk  > 1, AI, = [ISkI > E , I S ~  < E , I  < 
j < k - 11, then [JS,J > ~ / 2 ]  3 Uk(Ak n [JXk+l + . . . + X,J < ~ / 2 ] ) .  The 
decomposition of [maxk<, - ISkl > E] is analogous to that used for the proof of 
Theorem 2.5.1 

14. We present two extensioiis of Kolmogorov's inequality for applications. 
(a) Let XI, . . . , X, be iiidepeiideiit random variables on (a, C ,  P) with means 
zero aiid variances o:, . . . , a:. Then the following improved one-sided inequal- 
ity [similar to that of ceby"sv's; this improvement in 1960 is due to A. W. 
Marshall] holds: for E > 0, aiid SI, = ~ f = ,  Xi, one has 

[Hint: Consider f : Rn + R defined by f (zl, . . . z,) = [Czl(~z, + a : ) / ( ~ ~  + 
Cy=l a;)l2, and evaluate E ( f  (XI,  . . . , X,)) with the same decomposition as 
in Theorem 2.5. If n = 1, this reduces to Problem 6 (a) of Chapter 1.1 

(b) Let {X,, n > 1) be independent random variables on (R, C ,  P) as 
above, with zero means and {o:, n > 1) as respective variances. If E > 0, 
S, = C;=, XI,, and a1 > a2 > . . . + 0, show that with simple modifications 
of the proof of Theorem 2.5, 

[This inequality was noted by J. Hiijek and A. Rknyi.] 
(c) If in (b) we take a k  = (no + k - 1 ) ~ ~  for any fixed but arbitrary no > 1, 

deduce that 
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Hence, if C n > l ( a i / n 2 )  < oo, conclude that the sequence {X,, n > 1) obeys 
the SLLN. (Thus we need not use Kronecker's lemma.) 

15. In some problems of classical analysis, the demonstration is facilitated 
by a suitable application of certain probabilistic ideas and results. This was 
long known in proving the Weierstrass approximation of a continuous function 
by Bernstein polynomials. Several other results were noted by K. L. Chung for 
analogous probabilistic proofs. The following is one such: an inversion formula 
for Laplace transforms. Let X1 (A), . . . , Xn(A) be i.i.d. random variables on 
(a, C, P), depending on a parameter A > 0, whose common d.f. F is given 
by F ( x )  = 0 if x < 0; and = AS: ePxtdt if x > 0. If S,(A) = C r = l  Xk(A), 
using the hints given for Problem 6(b) show that the d.f. of S,(X) is F,, where 
Fn(x) = 0 for x < 0, and = [Xn/(n - I)!] J: tn-lepxtdt for x > 0. Deduce that 

P E(S,(A)) = n/A, VarS,(A) = n/A2, so that S,(n/x) + x as n + oo. Using 
the fundamental law of probability, verify that for any bounded continuous 
mapping f : R+ + R+, or f Bore1 satisfying E(f (Sn))2 < ko < cc (cf., 
also Proposition 4.1.3 later) then E(f (S,)) + E(f (x)) = f (x), by uniform 
integrability, (use Scheffk's lemma, Proposition 1.4.6), where 

Hence prove, using Problem 6(b), that for any continuous f E L ~ ( R + )  if f 
is the Laplace trailsforin of f [f(u)  = ST epUt f (t)dt, u > 01 one has the 
illversion 

the limit existing uniformly on compact intervals of R+. [Actually f can be 
in any LP(R+), 1 < p < oo, not just p = 2. The distribution of X1 above is 
called the exponential, aiid that of S, ( A ) ,  the gamma with parameters (n, A) .  
More d.f.s are discussed in Section 4.2 later.] The result above is the classical 
Post- Widder formula. 

16. Let {X,, n > I} be independent random variables on (R, C, P) aiid 

Sn = C i = l  Xk.  Then Sn + S a.e. iff Sn 5 S. This result is due t o  P. Lkvy. 
P D 

(We shall prove later that Sn + S can be replaced here by Sn + S, but more 
tools are needed for it.) [ Hints: In view of Proposition 2.2, it suffices to  prove 

P 
the converse. Now Sn - S + 0 + ISn, n > 1) is Cauchy in probability, so for 
1 > E > 0, there is an no[= no(€)] such that m,  n > no +- PIISn-S, > E] < E. 

Thus P[Sk-SmI > E] > I E  for all rn < k 5 n. Hence by Problem 13 applied 
to  the set {Xj, j > m > no}, we get 

1 E 
max ISk - S, > 2 ~ ]  5 -P[IS, - SmI > E] < -. 

P[m<k<n I - &  1 -E  
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This implies upon first letting n + cm, and then letting m + cm, since the 
0 < E < 1 is arbitrary, that ISk, k > 1) is pointwise Cauchy and hence con- 
verges a.e.1 

17. (P. Lkvy Inequalities). Let X1, . . . , X, be independent random vari- 
ables on (R,  C, P) and Sj = x i = l  Xk.  If a ( X )  denotes a median (cf. Problem 
11 ) of X ,  show that for each E > 0 the following inequalities obtain: 

(a) P[maxllj5,(Sj - p(Sj  - Sn))  > €1 I 2P[Sn > €1; 
(b) P[maxilj5, ISj - p(Sj - S,) > €1 I 2P[IS, > €1. 

[ Hints: Use the same decomposition for inax as we did before. Thus, let 
A, = [S, -S, < p(S, -S,)], so that P(Aj)  > $ , 1  < j < n,  and 

B, = [Sj - p(Sj  - S,) > E, for the first time at j]. 

Then B j  E o(X1, . . . , X,), Aj E O(X,+~ ,  . . . , X,), aiid they are independent; 
U,"=, B j  = B = [max(Sj - p(Sj  - S,)) > E] , a disjoint union. Thus P[Sn > 

n 
E] > C j = l  P ( B j  n A,) > ~ P ( B ) ,  giving (a). Since P(-X) = -p(X),  write 
X j  for X,, 1 I j I n,  in (a) aiid add it to  (a) to obtain (b). Hence if the X, 
are also symmetric, so that p (X)  = 0, (a) aiid (b) take the followiiig simpler 
form: 

(a') P[maxi5jln Sj > E] < 2P[S, > E]; 

(b') P[maxlSjln SjI > E] <2P[ ISn  > &]. I  

18. Let {X,, n > 1) be independent random variables on (R,  C ,  P) with 
zero means aiid variances {o:, n > 1) such that En,, o:/b: < cc for some 
0 < b, I b,+l /' cc. Then (l/b,) EL=, Xk  + 0a . e .  [ Hint: Follow the 
proof of Theorem 3.6 except that in using Kronecker's lemma (Proposition 
3.5) replace the sequelice {n),>l - there by the {b,),>l-sequence - here. The 
same argument holds again.] 

19. Let {X,, n > 1) be i.i.d. and be symmetric, based on (R ,  C, P). If 
S n  = C i = 1  Xk,  show that for each E > 0, 

[Hints: By Problem 17b' and the i.i.d. hypothesis, we have, with So = 0 = Xo, 
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since [maxjln S j  1 > E] > [rnaxj5, IXj > 2~1.  Summing and using the hy- 
pothesis with n for E ,  and a, = PIX1 < 2n] in (40), we get 

The convergeiice of the given series implies PIISn > n ~ ]  + 0 as n + co, 
and then by the (C, 1)-summability the second term in (41) + 1. Hence 

00 E n = l  n P I X 1  > 2n] < co. But this is the same as the last series (by i.i.d.). 
Rewriting P I X 1  I > 2n] as E k > a n  P[k  < IX1 < k + 11 and changing the order 
of summation one gets X1 E L2(P), and by the i.i.d. hypothesis 

The converse here is similar, so that the last equivalence follows. It should 
be remarked that actually all the implicatioiis are equivalences. The difficult 
part (the first one) needs additional computations, and we have not yet devel- 
oped the necessary tools for its proof. This (harder) implication is due t o  Hsu 
and Robbins (1947), and we establish it later, in Chapter 4.1 Show, however, 
what has been given is valid if the symmetry assumption is dropped in the 
hypothesis. 

20. In the context of the preceding problem, we say [after Hsu and Rob- 
bins (1947)l that a sequence {Y,, n > 1) of random variables on (0, C ,  P) 
converges completely if for each E > 0, (*)C;==, PIIYn > E] < co. Show that 
complete convergeiice implies convergeiice a.e. Also, verify that (*) implies 
that the a.e. limit of Yn is necessarily zero. Establish by simple examples 
that the converse fails. [For example, consider the Lebesgue unit interval and 
Yn = n ~ [ ~ , ~ ~ ~ ~ . ]  Show, however, that the converse implication does hold if 
there is a probability space (a1, El, P'), a sequence {Z,, n > 1) of indepen- 
dent random variables on it such that P[Yn < z] = P1[Zn < z], z E R, n > 1, 
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and 2, + 0 a.e. Compare this strengthening with Problem 5. [Hint: Note 
that limsup, 2, = 0 a.e., and apply the second Borel-Cantelli lemma.] 

21. The following surprising behavior of the symmetric random walk se- 
quence was discovered by G. P6lya in 1921. Consider a symmetric random 
walk of a particle in the space R'. If k = 1, the particle moves in unit steps 
to the left or right, from the origin, with equal probability. If k = 2, it moves 
in unit steps in one of the four directions parallel to the natural coordinate 
axes with equal probability, which is 114. In general, it moves in unit steps in 
the 2k directions parallel to the natural coordinate axes each step with prob- 
ability 1/2k. Show that the particle visits the origin infinitely often if k = 1 
or 2, and only finitely often for k = 3. (The last is also true if k > 3.) [Hints: 
If e l , .  . . ,el, are the unit vectors in I K k ,  so that ei = (0, .  . . , 1 , 0 , .  . . ,0 )  with 1 
in the ith place, and X, : R + IW'" are i.i.d., then 

Let S, = Ckl Xj .  Then if k = 1, the result follows from Theorem 4.7, and 
if k = 2 or 3, we need to use Theorem 4.8 and verify the convergence or 
divergence of (35) there. If p, = P[IS, = 01, so that the particle visits 0 at 
step n with probability p,, then the particle can visit 0 only if the positive 
and negative steps are equal. Thus p, = 0 for odd n and pa, > 0. However, 
by a counting argument ("multinomial distribution "), we see that 

Using Stirling's approximation, n! *nnepn, one sees that p, l / n ,  
and so p2, = oo, as desired. If k = 3, one gets by a similar computation 

Again simplification by Stirling's formula shows that '2, l /n3I2, SO that 
Cn2,p2,  < cm (in fact, the series is approximately = 0.53), aiid S, is not 
recurrent. By more sophisticated computations, Chung and Fuchs in their 
work on random walk showed that the same is true if the X, are just i.i.d., 
with E(X1) = 0,O < ~(1x1~) < cm, and no component of X1 is degenerate. 
This problem also shows an intimate relation between the structure of random 
walks and the group theoretical properties of its range (or state space), aiid 
deeper connections with convolution operators on these spaces or the group. 
For a recent contribution on the subject, and several references to the related 
literature on the problems, the reader is referred to Rao (2004a).] 
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