Chapter 2

Independence and Strong Convergence

This chapter is devoted to the fundamental concept of independence and to
several results based on it, including the Kolmogorov strong laws and his three
series theorem. Some applications to empiric distributions, densities, queueing
sequences and random walk are also given. A number of important results,
included in the problems section, indicate the profound impact of the concept
of independence on the subject. All these facts provide deep motivation for
further study and development of probability theory.

2.1 Independence

If A and B are two events of a probability space (£2, X, P), it is natural to
say that A is independent of B whenever the occurrence or nonoccurrence of
A has no influence on the occurrence or nonoccurrence of B. Consequently
the uncertainty about joint occurrence of both A and B must be higher than
either of the individual events. This means that the probability of a joint
occurrence of A and B should be “much smaller” than either of the individual
probabilities. This intuitive feeling can be formalized mathematically by the
equation

P(AN B) = P(A)P(B)

for a pair of events A, B. How should intuition translate for three events
A, B,C if every pair among them is independent? The following ancient ex-
ample, due to S. Bernstein, shows that, for a satisfactory mathematical ab-
straction, more care is necessary. Thus if 2 = {w1,we, ws,wa}, ¥ = P(£2), the
power set, let each point carry the same weight, so that

P({w;}) = iz —1,..,4.

Let A ={wi,wa}, B ={w1,ws}, and C = {wy,w1}. Then clearly P(AN B)

P(A)P(B) =1, P(BNC) = P(B)P(C) = 1, and P(CNA) = P(C)P(A) = ;
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But P(ANBNC) = %, and P(A)P(B)P(C) = %. Thus A, B,C are not
independent. Also A, (B N C) are not independent, and similarly B, (C N A)
and C, (AN B) are not independent.

These considerations lead us to introduce the precise concept of mutual
independence of a collection of events by not pairwise but by systems of equa-

tions so that the above anomaly cannot occur.

Definition 1 Let (£2, X, P) be a probability space and {4;,i € I} C P(£2)
be a family of events. They are said to be pairwise independent if for each
distinet 4,7 in I we have P(A; N A;) = P(A)P(A;). If A;,,..., A;, aren
(distinct) events, n > 2, then they are mutually independent if

P<m@-k> = I Pau) (1
k=1 k=1

holds simultaneously for each m = 2,3, ...,n. The whole class {A;,i € I} is
said to be mutually independent if each finite subcollection is mutually inde-
pendent in the above sense, i.e., equations (1) hold for each n > 2. Similarly if
{A;,i € I} is a collection of families of events from X' then they are mutually
independent if for each n, 4;, € A;, we have the set of equations (1) holding
for A;,,k=1,....,m,1 <m <n. Thusif A; € A; then {A;,¢ € T}is a mutually
independent family. [Following custom, we usually omit the word “mutually”.]

It is clear that the (mutual) independence concept is given by a system
of equations (1} which can be arbitrarily large depending on the richness of
Y. Indeed for each n events, (1) is a set of 2™ — n — 1 equations, whereas the

. n . - s
pairwise case needs only ( 9 } equations. Similarly “m-wise” independence has

( :7711) equations, and it does not imply other independences if 2 < m < n is

a fixed number m. It is the strength of the (mutual) concept that allows all
n > 2. This is the mathematical abstraction of the intuitive feeling of inde-
pendence that experience has shown to be the best possible one. It seems to
give a satisfactory approximation to the heuristic idea of independence in the
physical world. In addition, this mathematical formulation has been found
successful in applications to such areas as number theory, and Fourier analy-
sis. The notion of independence is fundamental to probability theory
and distinguishes it from measure theory. The concept translates itself
to random variables in the following form.

Definition 2 Let (§2, X, P) be a probability space and {X;,i € I} be
abstract random variables on {2 into a measurable space (5,.4). Then they
are said to be mutually independent if the class {B,i € I'} of o-algebras in X
is mutually independent in the sense of Definition 1, where B; = X~ L(A), the
o-algebra generated by X;,¢ € I. Pairwise independence is defined similarly.
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Taking § = R(orR™) and A as its Borel g-algebra, one gets the corresponding
concept for real (or vector) random families.

It is perhaps appropriate at this place to observe that many such (inde-
pendent) families of events or random variables on an (2, X, P) need not exist
if (£2,%) is not rich enough. Since § and 2 are clearly independent of each
event A € (2, the set of equations (1) is non vacuous. Counsider the trivial
example 2 = {0,1}, X =P(2) = {0, {0}, {1}, 2}, P{O}) =p=1— P({1}),
0 < p < 1. Then, omitting the @, {2, there are no other independent events, and
X, : 2 —>R,i=1,2,defined as X1(0) = 1 = Xo(1) and X;(1) = 2 = X»(0),
then X7, X5 are distinct random variables, but they are not independent. Any
other random variables defined on {2 can be obtained as functions of these two,
and it is easily seen that there are no nonconstant independent random vari-
ables on this £2. Thus (£2, X, P) is not rich enough to support nontrivial (i.e.,
nonconstant) independent random variables. We show later that a probability
space can be enlarged to have more sets, so that one can always assume the
existence of enough independent families of events or random variables. We
now consider some of the profound consequences of this mathematical formal-
ization of the natural concept of mutual independence. It may be noted that
the latter is also termed statistical (stochastic or probabilistic) independence
to contrast it with other concepts such as linear independence and functional
independence. [The functions X7, Xs in the above illustration are linearly in-
dependent but not mutually (or statistically) independent! See also Problem
1.]

To understand the implications of equations (1), we consider different
forms (or consequences) of Definitions 1 and 2. First note that if {A4;,4 €
It € X is a class of mutually independent events, then it is evident that
{o(4,),i € I} is an independent class. However, the same cannot be said
if the singleton A; is replaced by a bigger family G; = {A},j € Ji} C X,
where each J; has at least two elements, ¢ € I, as simple examples show. Thus
{0(G:),7 € It need not be independent. On the other hand, we can make the
following statements.

Theorem 3 (a) Let {A B;,i € I} be classes of events from (02, X, P)
such that they are all mutually independent in the sense of Definition 1. If
each B;,1 € I, is a w-class, then for any subset J of I, the generated o-algebra
o(B;,i € J) and A are independent of each other.

(b) Definition 2 with S = R reduces to the statement that for each fi-
nite subset i1,...,i, of I and random variables X;,,...,X;,, the collection
of events {[X;, < z1,...,X;, < xn],z; € R,j =1,...,n,n > 1} forms an
independent class.

Proof (a) Let B=o(B,icJ),J CI.IfAc A B;cB;,

J€ {1 vdnr C J,
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then

{A7 Bj1 3ty Bjn}
are independent by hypothesis, i.e., (1) holds. We need to show that

P(ANB)=P(A)P(B), Ac A B¢ B. 2)

If B is of the form By N ... N B,,, where B; € B;, ¢ € J, then (2) holds
by (1). Let D be the collection of all sets B which are finite intersections of
sets each belonging to a B;,j € J. Since each B, is a m-class, it follows that
D is also a m-class, and by the preceding observation, (2) holds for A and
D, so that they are independent. Also it is clear that B; C D,j € J. Thus
o(Bj,j € J) C o(D). We establish (2) for A and o(D) to complete the proof
of this part, and it involves another idea often used in the subject in similar
arguments.
Define a class G as follows:

G={Be€o(D): P(ANnB)=P(A)P(B),A € A}. (3)
Evidently D C G. Also 2 € G, and if By, By € G with By 1 By = 0, then
P((B1UBa)NA)=P(B1NA)+ P(BanA) (since the B; N A are disjoint)
= P(B1)P(A) + P(B2)P(A) | by definition of (3)]
= P(By U By)P(A).
Hence B; U By € G. Similarly if By D Ba, B; € G, then
P((By —B2)NA)=P(BynNA)— P(ByNA) (since BfN AD By N A)
— (P(By) - P(B2))P(A)
— P(B, — By)P(A).

Thus B; — Bs € G. Finally, if B, € G,B,, C B,41, we can show, from the
fact that P is o-additive, that lim, B, = U,>1By, € G. Hence G is a A-class.
Since G O D, by Proposition 1.2.8b, G O o(D). But (3) implies G and A
are independent. Thus A and (D) are independent also, as asserted. Note
that since J C [ is an arbitrary subset, we need the full hypothesis that
{A,B;,i € T} is a mutually independent collection, and not a mere two-by-
two independence.

(b) Tt is clear that Definition 2 implies the statement here. Conversely, let
B be the collection of sets {[X;, < z],z € R}, and

By = U[XZJ <.I‘j],.1?j cR
j=2
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It is evident that B; and By are m-classes. Indeed,
[X:, <2]N[X;, <y] =[X;, <min(z,y)] € By,

and similarly for Bs. Hence by (a), By and o(B2) are independent. Since
By is a w-class, we also get, by (a) again, that o(B;) and o(B2) are inde-
pendent. But ¢(B1) = X;I(R)[: o(X;,)], and o(Bs) = U(U?=2X;1(R))[:
o(Xi,,...,X;, )], where R is the Borel o-algebra of R. '

Hence if A; € o(X;,), 45 € X;I(R)(: o(Xi,;)) C o(Bz), then A; and
{As, ..., A, } are independent. Thus

P(AIN...NAy) = P(A1) - P(As 1.1 Ap). (4)

Next consider X, and (X;,,...,X;, ). The above argument can be applied to
get

P(As(1...NAy) = P(As) - P(A31... N Ayp).

Continuing this finitely many times and substituting in (4), we get (1). Hence
Definition 2 holds. This completes the proof.

The above result says that we can obtain (1) for random variables if we
assume the apparently weaker condition in part (b) of the above theorem.
This is particularly useful in computations. Let us record some consequences.

Corollary 4 Let {B;,i € I} be an arbitrary collection of mutually inde-
pendent w-classes in (2,35, P), and J; C I,J1NJo=0. If

gi = J(BJ77 S Jl)77/ = 1727

then G1 and Ga are independent. The same is true of G, = n(B;,j € J;),i =
1,2, are the generated m-classes.

If X,Y are independent random variables, f, g are any pair of real Borel
functions on R, then f o X, g oY are also independent random variables.
This is because (f o X) " 1(R) = X {(f Y(R)) ¢ X Y(R), and similarly
(goY) Y (R) c Y Y(R); and X 1(R), Y 1(R) are independent o-subalgebras
of X. The same argument leads to the following:

Corollary 5 If Xi,...,X,, are mutually independent random wvariables
on (£2,X,P) and [ : RF — R, g : R* % — R are any Borel functions, then
the random wvariables f(X1,...,Xg), 9(Xpt1,.-.,Xn) are independent; and
(X1, Xi), 0(Xky1,...,X,) are independent o-algebras, for any k > 1.

Another consequence relates to distribution functions and expectations
when the latter exist.
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Corollary 6 If Xy ... X, are independent random variables on (£2, X, P),
then their joint distribution is the product of their individual distributions:

Fx,.  x,(@1,...,2n) = P[X1 <a1,...,Xn < 2]

i=1

=

FX,-, (.I,‘l),l‘l e R. (5)
i=1
If, moreover, each of the random variables is integrable, then their product
is tntegrable and we have

E (H Xi> =1 Ex0). (6)
i=1 i=1

Proof By Theorem 3b, (1) and (5) is each equivalent to independence,
and so the image functions Fx, . x, and H?:l Fx, are identical. In Defi-
nition 2.2 the distribution function of a single random variable is given. The
same holds for a (finite) random vector, and Fx, . x, is termed a joint distri-
bution function of X1, ..., X,. The result on image measures (Theorem 1.4.1)
connects the integrals on the §2-space with those on R", the range space of
(X1,..., Xn).

We now prove (6). Taking f(z) = |z|, f : R — R being a Borel function,
by Corollary 5, | X1/, ..., |X,| are also mutually independent. Then by (5) and
Tonelli’s theorem,

T
E <H|Xi|> :/ 1 Xq|... | X,|dP
i=1 2
:/’ -171---xndG|X1\,...7\X”|($17---7xn)7
R}

[by Theorem 1.4.1i with G as the image law]
= /R x1... 2 dG x| (21) .. ., dGx, (0), [by (5)],
i

- H /R* z;dG|x,|(z;), (by Tonelli’s theorem)
i—1

= HE(lel), [by Theorem 1.4.1i]. (7
i=1
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Since the right side is finite by hypothesis, so is the left side. Now that
[T, = |X;| is integrable we can use the same computation above for X;
and Fx, . x,(= [li—; Fx,), and this time use Fubini’s theorem in place of
Tonelli’s. Then we get (6) in place of (7). This proves the result.

Note. It must be remembered that a direct application of Fubini’s theorem
is not possible in the above argument since the integrability of | [}, X;| has
to be established first for this result (¢f. Theorem 1.3.11). In this task we need
Tonelli’s theorem for nonnegative random variables, and thus the proof cannot
be shortened. Alternatively, one can prove (6) first for simple random variables
with Theorem 3b, and then use the Lebesgue monotone (or dominated) con-
vergence theorem, essentially repeating part of the proof for Tonelli’s theorem.

We shall now establish one of the most surprising consequences of the in-
dependence concept, the zero-one law. If X1, X5, ... is a sequence of random
variables, then ('_; o(X;,i > n) is called the tail o-algebra of {X,,n > 1}.

Theorem 7 (Kolmogorov’s Zero-One Law) Any event belonging to the
tail o-algebra of a sequence of independent random variables on (£2, X, P) has
probability either zero or one.

Proof Denote by T = (72, 0(Xy,k > n), the tail o-algebra of the se-
quence. Then by Theorem 3a, ¢(X,,) and o(X, k > n + 1) are independent
o-algebras for each n > 1. But T C o(Xj,k > n + 1), so that o(X,,) and
7T are independent for each n. By Theorem 3a again 7 is independent of
o(o(Xp),n > 1) =o(Xn,n >1). However, T C o(X,,n > 1) also, so that 7
is independent of itself! Hence A € 7 implies

P(A) = P(AN A) = P(A)P(A) = P(A)?
thus we must have P(A) =0 or 1, completing the proof.

An immediate consequence is that any function measurable relative to 7
of the theorem must be a constant with probability one. Thus lim sup,, X,,
liminf, X, (and lim,, X, itself, if this exists) of independent random variables
are constants with probability one. Similarly if

Ap=H{w: ZXk )| < oo},

k>n

then >">° | X, (w) converges iff w € A, for each n, Le., iff w e A =", A,.

Since clearly A, € o(Xi,k > n), A € T, so that P(A) =0or L Thus for
independent X,, the series ZZOZI X, converges with probability 0 or 1. The
following form of the above theorem is given in Tucker (1967).
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Corollary 8 Let I be an arbitrary infinite index set, and {X;,i € I} be
a family of independent random variables on (2,3, P). If F is the directed
(by inclusion) set of all finite subsets of I, the (generalized) tail o-algebra is
defined as

To=[Wo(Xii¢ J):JeF} (®)
Then P takes only 0 and 1 values on Ty.

Proof The argument is similar to that of the theorem. Note that 75 and
By = o(X;,i € J) are independent for each J € F, as in the above proof.
So by Theorem 3a, 7y and B = ¢(B;,J € F) are independent. But clearly
B =o0(X;,i €1), so that 7y C B. Hence the result follows as before.

Let us now show that independent random variables can be assumed to
exist on a probability space by a process of enlargement of the space by ad-
junction. The procedure is as follows: Let ({2, 3], P) be a probability space. If
this is not rich enough, let (£2;, %, P;),i = 1,...,n, be n copies of the given
space. Let (02,5, P) = (x212:, I i, @, P;) be their Cartesian prod-
uct. If Xi,..., X, are random variables on (2,5, P}, define a “new” set of
functions X1, ..., X,, on (£2, X, P) by the equations

Xi(w) = Xi(ws), w=(wi,.own) €02, i=1,...,n.

Then for each a € R,

{w: Xi(w) < a} = {w: X;(w) < a}
=1 X ... X201 %X [X; < a] X 241 X 00X 2,

which is a measurable rectangle and hence is in 2. Thus X; is a random
variable. Also, since P; = P, we deduce that

n
P[Xl < a,l,XQ < O/Q,...,Xn < an] = HP[Xz < ai], (9)
=1

by Fubini’s theorem and the fact that P;({2;) = 1. Consequently the X, are
independent (cf. Theorem 3b) and each X; has the same distribution as X;.
Thus by enlargement of (2, X, P) to (2,5, P), we have n independent ran-
dom variables. This procedure can be employed for the existence of any finite
collection of independent random variables without altering the probability
structure (see also Problem 5 (a)). The results of Section 3.4 establishing the
Kolmogorov- Bochner theorem will show that this enlargement can be used
for any collection of random variables (countable or not). Consequently, we
can and do develop the theory without any question of the richness of the
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underlying o-algebra or of the existence of families of independent random
variables.

The following elementary but powerful results, known as the Borel-Cantelli
lemmas, are true even for the weaker pairwise independent events. Recall that
limsup,, A, = {w : w € A, for infinitely many n}. This set is abbreviated as
{4,, 1.0.} [= {4, occurs infinitely often}].

Theorem 9 (i) (First Borel-Cantelli Lemma). Let {4,,n > 1} be a
sequence of events in (£2, X, P) such that 3,7 | P(A,) < co. Then

P(limsup 4,) = P(4,, Lo.)=0.

(ii) (Second Borel-Cantelli Lemma). Let {A,,n > 1} be a sequence of
pairwise independent events in (2, X, P) such that 3" | P(A,) = co. Then
P(A,, i.0.)=1.

(iii) In particular, if {An,n > 1} is a sequence of (pairwise or mutually) in-
dependent events, then P(A,,, 1.0.) = 0 or 1 according to whether > >~ | P(A,)
is < 00 or = 00.

Proof (i) This simple result is used more often than the other more in-
volved parts, since the events need not be (even pairwise) independent. By
definition, A =limsup,, A, = (),,>1 Upsn Ak € U, A for all n > 1. Hence
by the o-subadditivity of P, we have

P(A) < P( ] 4 < imk),n > 1.
k>n k=n

Letting n — oo, and using the convergence of the series Y~ | P(Ax), the
result follows.

(ii) (After Chung, 1974) Let {A,,n > 1} be pairwise independent. By
Problem 1 of Chapter 1, we have

A=1[4,, io] iff x4 =limsupxa,.
n

Hence
P(A)=1 iff P[limsupxa, =1]=1.

Thus
P(lxa, =1, io.])=1 iff P<

> xa, ooD = 1. (10)

Now we use the hypothesis that the series diverges:

> P(A) =3 E(xa,) = lim E(S,)= oo, (11)

n=1
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where S,, = Y_1_; x4, and the monotonicity of S, is used above. With (11)
and the pairwise independence of A,,, we shall show that

P(]lim S, =o0]) =1,
n—00
which in view of (10) proves the assertion.
Now given N > 0, we have by CebySev’s inequality, with € = Ny/VarS,,

PlS, — BSw)| > ] < L5 = .

Equivalently,

PE(S,) — NV VarS, < S, <E(S,)+ Ny VarS,] >1f—. (12)

To simplify this we need to evaluate Var S,. Let p, = P(A,). Then

E(Sy) =Y E(xa) =Y pk (13)
k=1 k=1

If I, = xa, — Pn, then the I, are orthogonal random variables. In fact, using
the inner product notation,

(I, Ip) /(XA,, ) (X Am — Pm)dP
= P(A, N Ap) — pnpm = 0, if n # m (by pairwise independence)

=p(l —pp), ifn=m. (14)

Thus

VarS, = E(S, — E(S.)) (Z Ik)
Syt Zpk(lfpk [by (14) ],
k=1 =

<> e =E(S,), [by (13) ]. (15)
k=1

Since by (11) E(S,) /* oo, (15) yields /VarS,/E(S,) < (E(S,))~1/? — 0.
Thus given N > 1, and 0 < a3 = /N for 0 < o < 1, there exists ng =
no(a, N) such that n > ng = /VarS,/E(S,) < a1 < 1. Since a; = a/N,

we get
VarS, <aE(S,), n>ng. (16)
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Consequently (12) implies, with 1 > 8 =1 — a > 0 and the monotonicity of
S, (Le., Sn 1)

P[BE(S,) < li}Ln Sp] > PIBE(S,) < S, > 1— %, n > no. (17)
Let n — oo, and then N — oo (so that 8 — 1); (17) gives P[limy, .o S =
o] = 1. This establishes the result because of (10).

(iii) This is an immediate consequence of (ii), and again gives a zero-
one phenomenon! However, in the case of mutual independence, the proof is
simpler than that of (ii), and we give the easy argument here, for variety. Let
A% = B,. Then B,,n > 1, are independent, since {6(A,),n > 1} forms an
independent class. Let P(A,) = ay,. To show that

PlA,, i0.]=P {ﬂ U An} =1,

E>1n>k

it suffices to verify that, for each n > 1, P({J,,, 4x) = 1, or equivalently

P|() Bkl =0, n>1
k>n
Now for any n > 1,
m
P = 1 .
(1 Be| = Jim P [ B
k>n k=n+1
m
= lim H (1 — a) (by independence of By, )
m—0o0
k=n-+1
o x
< H e~ (since x > / etdt=1—e"")
k=n+1 0

[e9) oo
= exp <— Z ozk> =0 ( since Zak = 0o by hypothesis).

k=n+1 k=1

This completes the proof of the theorem.

Note 10 The estimates in the proof of (ii) yield a stronger statement
than we have asserted. One can actually show that

Sn
Pl lim

Jim s 1]=1.

In fact, (12) implies for each n and NV,
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Sy, <14 N Vars, Sl L
E(Sn) N2

Since VarS,,/(E(S,))? — 0 as n — oo, for each fixed N, this gives

S, 1
li L _ <> 11— — 1
P 1mnsup BiS,) = 1> NT’ (18)

and letting N — oo, we get

n

(5n)

On the other hand by (17), P[3 < S,,/E(S,)] > 1 —1/N? n > ng. Hence for
each fixed N, this yields

lim sup <1 a.e.
n

- Sn 1
P ﬁShmnme(Sn) zl—m. (19)

Now let N — oo and note that 8 — 1; then by the monotonicity of events
in brackets of (19) we get 1 < liminf, [S,/E(S,)] a.e. These two statements
imply the assertion.

Before leaving this section, we present, under a stronger hypothesis than
that of Theorem 7, a zero-one law due to Hewitt and Savage (1955), which is
uselul in applications. We include a short proof as in Feller (1966).

Definition 11 If X;,..., X, are random variables on ({2, X, P), then they
are symmetric (or symmetrically dependent) if for each permutation i,. .., 14,
of (1,2,...,n), the vectors (X;,,...,X;,) and (Xy,...,X,) have the same
joint distribution. A sequence {X,,,n > 1} is symmetric if {Xj,,1 <k <n}is
symmetric for each n > 1.

We want to consider some functions of X = {X,,,n > 1}. Now X : 2 —
R* = x° R;, where R; = R is an infinite vector. If B>® = ®%°,B; is the
(usual) product o-algebra, then

Yo=0(Xp,n>1)=X"1YBX) =0¢ ([j O’(Xl,...,Xn)> .

n=1

Let g : 2 — R be Xy-measurable. Then by Proposition 1.2.3 there is a Borel
function h : R — R (i.e., h is B°-measurable) such that ¢ = ho X =
h(Xy,Xs,...). Thus if {X,,,n > 1} is a symmetric sequence, then each Y-
measurable g is symmetric !, so that

!Tn detail, this means if g : R® — R, then ¢(Xi,...,Xpn, Xpni1,...) =
9(Xsys-- X, Xnt1,...) for each permutation (¢1,...,4,) of (1,2,...,n), each
n> 1.
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g = h(Xl,XQ,. ) = h(le . .,Xi“,X

Tnt1 " )

for each finite permutation. Let A € Xy. Then A is a symmetric event if x 4
is a symmetric function in the above sense. The following result is true:

Theorem 12 (Hewitt-Savage Zero-One Law). If X3, X2, ... are indepen-
dent with a common distribution, then every symmetric set in

YXo=0(Xp,n>1)
has probability zero or one.

Proof Recall that if p : Xy x Xy — R defined by p(A,B) = P(AAB)
with A as symmetric difference, then (37, p) is a (semi) metric space on which
the operations U, N, and A are continuous. Also, | J,—, o(X1,...,X,) C Xy
is a dense subspace, in this metric.

Hence if A € Xy, there exists A, € o(X3,...,X,,) such that p(A, A,) — 0,
and by the definition of ¢(X71, ..., X,) there is a Borel set B,, C R" such that
A, =[(X1,...,X,) € By]. Since

7:(Xil,...,Xi“,Xn+1...) andX:(Xl,...,Xn,Xn+1...)

have the same (finite dimensional) distributions, because the X,, are identi-
cally distributed, and we have for any B € B®, P(X ¢ B) = P(X € B). In
particular, if the permutation is such that An = (Xon, Xon—1,---, Xnt1) €
B,], then 4, and A,, are independent and p(A, /Nln) — 0 as n — oo again.

Indeed, let 7 be the 1-1 measurable permutation mapping 74, = A, and
7A = A since A is symmetric. So

Hence also A, N A, — AN A = A, by the continuity of N in the p-metric. But
P(A, N A,) = P(A,)P(4,),

by independence.
Letting n — oo, and noting that the metric function is also continuous in
the resulting topology, it follows that A,, — A in p = P(A,) — P(A). Hence

lim P(A,NA,) =P(ANA)= lim P(A4,)  P(A,) = P(A)%

n—aod

Thus P(A4) = P(A)? so that P(A4) =0 or 1, as asserted.

Remarks (1) 1t is not difficult to verify that if S, = 7 _; X, Xj as in the
theorem, then for any Borel set B, the event [S,, € B i.0.] is not necessarily a
tail event but is a symmetric one. Thus this is covered by the above theorem,
but not by the Kolmogorov zero-one law.
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(2) Note 10, as well as part (ii) of Theorem 9, indicate how several weaken-
ings of the independence condition can be formulated. A number of different
extensions of Borel-Cantelli lemmas have appeared in the literature, and they
are useful for special problems. The point here is that the concept of inde-
pendence, as given in Definitions 1 and 2, leads to some very striking results,
which then motivate the introduction of different types of dependences for a
sustained study. In this chapter we present only the basic results founded on
the independence hypothesis; later on we discuss how some natural extensions
suggest themselves.

2.2 Convergence Concepts, Series, and Inequalities

There are four convergence concepts often used in probability theory. They
are pointwise a.e., in mean, in probability, and in distribution. Some of these
have already appeared in Chapter 1. We state them again and give some inter-
relations here. It turns out that for sums of independent (integrable) random
variables, these are all equivalent, but this is a relatively deep result. A partial
solution is given in Problem 16. Several inequalities are needed for the proof
of the general case. We start with the basic Kolmogorov inequality and a few
of its variants. As consequences, some important “strong limit laws” will be
established. Applications are given in Section 2.4.

Definition 1 Let {X,X,,,n > 1} be a family of random variables on a
probability space (§2, X, P).

(a) Xn, — X pointwise a.e. if there is a set N € X, P(N) = 0 and
Xp(w) = X(w), as n — oo, for each w € 2 — N.

(b) The sequence is said to converge to X in probability if for each £ > 0,
we have lim,,_,o, P[|X,, — X| > ¢] = 0, symbolically written as X, I x (or
as plim, X,, = X).

(¢) The sequence is said to converge in distribution to X, olten written
X, 2 X if Fx, (x) — F.(z) at all points x € R for which z is a continu-
ity point of Fx, where Fx, , Fx are distribution functions of X,, and X (cf.
Definition 2.2).

(d) Finally, if {X,X,,,n > 1} have p-moments, 0 < p < oo, then the

sequence is said to tend to X in pth order mean, written X, it X, if
E(|X, — X|?P) —» 0. If p =1, we simply say that X,, — X in mean.

The first two as well as the last convergences have already appeared, and
these are defined and profitably employed in general analysis on arbitrary
measure spaces. However, on finite measure spaces there are some additional
relations which are of particular interest in our study. The third concept, on
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the other hand, is somewhat special to probability theory since distribution
functions are image probability measures on R. This plays a pivotal role in
probability theory, and so we study the concept in greater detail.

Some amplification of the conditions for “in distribution” is in order. If
X =a ae., then Fx(z) =0 for x < a, = 1 for z > a. Thus we are asking that

for X, > a, Fx, () — Fy(x) for z < a and for > a but not at © = a, the
discontinuity point of Fx. Why? The restriction on the set is that it should
be only a “continuity set” for the limit function Fix. This condition is arrived
at after noting the “natural-looking” conditions proved themselves useless.
For instance, if X,, = a, a.e., and a, — a as numbers, then Fx, (z) —
Fx(z) for all z € R — {a}, but Fx, (a) /~ Fx(a), since {Fx, (a),n > 1}
is an oscillating sequence if there are infinitely many n on both sides of a.
Similarly, if {X,, = a,,n > 1} diverges, it is possible that {Fx (x),n > 1}
may converge for each z € R to a function taking values in the open interval
(0,1). Other unwanted exclusions may appear. Thus the stipulated condition
is weak enough to ignore such uninteresting behavior. But it is not too weak,
since we do want the convergence on a suitable dense set of R. (Note that
the set of discontinuity points of a monotone function is at most countable,
so that the continuity set of Fx is R — { that countable set }.) Actually,
the condition comes from the so-called simple convergence on Cgo(IR), the
space of continuous functions with compact supports, which translates to the
condition we gave for the distribution functions on R according to a theorem
in abstract analysis. For this reason N. Bourbaki actually calls it the vague
convergence, and others call it the weak-star convergence. We shall use the
terminology introduced in the definition and the later work shows how these
last two terms can also be justifiably used.
The first three convergences are related as follows:

Proposition 2 Let X,, and X be random variables on (2, X, P). Then
X, — X ae = X, L x = X, DX, If, moreover, X = a a.e., where

a € R, then X, Dx= Xn £ X also. In general these implications are not
reversible. (Here, as usual, the limits are taken as n — 00.)

Proof The first implication is a standard result for any finite measure. In
fact, if X,, — X a.e., then there isaset N € ¥, P(N) =0, and on 2 — N,
Xn(w) = X (w). Thus lim sup,, X,,(w) = X(w), w € 2—N, and foreach ¢ > 0,

{w s limsup | X,, — X|(w) > 5} c () Ufw: [Xn(w) — X(w)| >} C N.
n E>1n>k

Hence the set has measure zero. Since P is a finite measure, this implies
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P | lim !k{w HXn(w) ~ X(w)| > ¢} | = lim P gk[\xn —X|> ¢

< P(N)=0. (1)
Consequently,
PIX, - X|>e) <P | |JIX; - X|>¢]| w0asn—o0. (2
jzn

Thus X,, L e , and the first assertion is proved.
For the next implication, let Fx, Fx, be the distribution functions of X
and X,,, and let a,b be continuity points of Fxy with a < b. Then

X <a] =[X <a,Xpn <bU[X <a,X, >}
C X, <bhU[X <a, X, >1],
so that computing probabilities of these sets gives
Fx(a) < Fx, (b)+ PIX <a,X, > 1] (3)
Also, since X, il X, with e = b — ¢ > 0, one has from the inclusion

X < a,Xn>b] C[|Xn— X|>b—d,

lim P[X < a,X, > b =0. (1)
n
Thus (3) becomes
Fx(a) < liminf Fx, (b). (5)

Next, by an identical computation, but with ¢,d (¢ < d) in place of a,b and
X, X in place of X, X, in (3), one gets

Fx (¢) < Fx(d)+ P[X, <e¢, X > d. (6)
The last term tends to zero as n — o0, as in (4). Consequently (6) becomes

limsup F'x, (¢) < Fx(d). (7

From (5) and (7) we get for a < b <c¢ < d,

Fx(a) < liminf Fx, (b) < limsup Fx,, (b)
n

n

< limsup Fx, (¢) < Fx(d). (8)

n
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Letting a T b = ¢ and d | ¢, where b = ¢ is a continuity point of Fy, (8) gives
lim, Fx,(b) = Fx(b), so that X, L X, since such points of continuity of F'x
are everywhere dense in R.

If now X = « a.e., then for each ¢ > 0,

P([[Xn —al 2 &) = P(IXn 2 a+&]) + P(IX, S —e))
=1—-Fx, (a+e)+ Fx, (a¢—¢e) — 0asn— oo,

since
0,z <«
(o)~ Py = {550
and « + ¢ are points of continuity of Fx for each ¢ > 0. Thus X L &. This
completes the proof except for the last comment, which is illustrated by the
following simple pair of standard counter-examples.

Let X,,, X be defined on (£2, Y, P) as two-valued random variables such
that P([X, = a]) = 3 = P([X, = b]),a < b, for all n. Next let P([X =
b)) = 3 = P([X = a]). Then for each n, w € £2, for which X, (w) = a (or
b), we set X{(w) = b (or a), respectively. Thus {w : |X,, — X|(w) > ¢} = 2
if 0 < e < b—a, and X,, /& X in probability. But Fx, = Fx, so that
X, B x trivially. This shows that the last implication cannot be reversed in
general. Next, consider the first one. Let 2 = [0, 1], 37 = Borel o-algebra of {2,
and P = Lebesgue measure. For each n > 1, express n in a binary expansion,
n=2"+k 0<%k <2",r>0.Define f, = xa,, where 4, = [k/2", (k+1)/2"].
It is clear that f,, is measurable, and for 0 <e < 1,

1 2
Pllfn—0/>¢] < o < — 0.

But f.(w) /4 0 for any w € 2. This establishes all assertions. (If we are
allowed to change probability spaces, keeping the same image measures of the
random variables, these problems become less significant. Cf. Problem 5 (b).)

In spite of the last part, we shall be able to prove the equivalence to a
subclass of random variables, namely, if the X,, form a sequence of partial
sums of independent random variables. For this result we need to develop
probability theory much further, and thus it is postponed until Chapter 4.
(For a partial result, see Problem 16.) Here we proceed with the implications
that do not refer to “convergence in distribution.”

The following result is of interest in many calculations.

Proposition 3 (F. Riesz). Let {X,X,,,n > 1} be random variables on

(02, X, P) such that X, L X. Then there exists a subsequence { X, k > 1}
with X,, — X a.e. as k — oc.
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Proof Since for each € > 0, P[|X,, — X| > ¢] — 0, let n; be chosen such
that n > n; = P[|X, — X| > 1] < % ,and if ny < no < ... < ng are selected,
let ngy1 > ng be chosen such that

P|X, — X| >1/2F] < 1/2"*Y n > npyy. (9)

If Ay = [|Xn, — X| > 1/287Y, By, = U, >, 4n, then for w € B, |X,, —
X|(w) < 1/2771 for all r > k. Hence if B = lim,, B,, = (owy Ups,, Ak, then
for w € B¢, X, (w) — X(w) as r — oco. But we also have B C B, for all n,
so that

P(B)<P(B,) <> P(A) <> 27 k=27 5 0asn— .
k>n k>n

Thus {X,,.,r > 1} is the desired subsequence, completing the proof.

Remark We have not used the finiteness of P in the above proof, and the
result holds on nonfinite measure spaces as well. (Also there can be infinitely
many such a.e. convergent subsequences.) But the next result is strictly for
(finite or) probability measures only.

Recall that a sequence {X,,n > 1} on (2, X, P) converges P-uniformly to
X if for each € > 0, there is a set A. € X such that P(A.) < zand on 2— A,
X,, — X uniformly. We then have

Theorem 4 (Egorov). Let {X,X,,n > 1} be a sequence of random
variables on (£2, X, P). Then X,, — X a.e. iff the sequence converges to X
P-uniformly.

Proof One direction is simple. In fact, if X, — X P-uniformly, then for
e = 1/ng there is an A,, € X with P(4,,) < 1/np and X,(w) — X(w)
uniformly on 2 — A,,. If A =~ Ay, then P(A) =0, and if w € 2 — A,
then X,(w) — X(w), i.e., the sequence converges a.e. The other direction is
non-trivial.

Thus let X,, — X a.e. Then there is an N € X, P(N) =0, and X, (w) —
X(w) foreach we 2 — N. If k> 1, m > 1 are integers and we deline

1
Apm={we 2-N:|X,(w) - X(w)| < - for all n > k},

then the facts that X,, — X on 2 — N and Ay, C Ags1,, imply that
2 — N = U;2; Agm for all m > 1. Consequently for each ¢ > 0, and each
m > 1, we can find a large enough ko = ko(e, m) such that Ay, ,, has large
measure, i.e., P(2 — Ay, m) <e/2™. If Ac =, _; AS then

ko(e,m),m

P(A) < 3 P4y emym) < D 5 =
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On the other hand, n > ko(e, m) = | X, (w) — X(w)| < 1/m for w € Ay m.
Thus

1
n > ko(e,m) = sup | Xp(w) — X{w)| < sup [ Xpw)— X(w)| < —
wEAE WEAky ,m m

for every m > 1, so that X,, — X uniformly on A¢. This completes the proof.
Also, the following is a simple consequence of Markov’s inequality.

Remark Let {X,X,,n > 1} C LP(£2, X, P) such that X, £ X, p>0.
Then X, £ x.

Proof Given € > 0, we have

Pl X, —X|>¢] = P[| X, — X|P > &7

1
< —pE(|Xn — X|P) — 0 as n — oo,
5

by the pth mean convergence hypothesis. Note that there is generally no re-
lation between mean convergence and pointwise a.e., since for the latter the
random variables need not be in any £P, p > 0.

We now specialize the convergence theory if the sequences are partial sums
of independent random variables, and present important consequences. Some
further, less sharp, assertions in the general case are possible. Some of these
are included as problems at the end of the chapter.

At the root of the pointwise convergence theory, there is usually a “max-
imal inequality,” for a set of random variables. Here is a generalized version
of CebySev’s inequality. The latter was proved for only one r.v. We thus start
with the fundamental result:

Theorem 5 (Kolmogorov’s Inequality). Let X1, Xs,... be a sequence
of independent random variables on (2, X, P) with means uy = E(X}y) and
variances O'}% =VarXg. If S, = ZZ=1 Xy and € > 0, then

- 1 2
P[llglzagn Sk = B(Sk)| > ] < 5 > ot (10)

Proof If n =1, then (10) is Cebysev’s inequality, but the present result is
deeper than the former. The proof shows how the result may be generalized
to certain nonindependent cases, particularly to martingale sequences, to be
studied in the next chapter.

Let A = {w : maxi<g<yp [Su(w) — E(Sk)| > }. We express A as a disjoint
union of n events; such a decomposition appears in our subject on several
occasions. It became one of the standard tools. [It is often called a process of
disjunctification of a compound event such as A.] Thus let
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Ay =A{w: |S1(w) — E(S1)| = ¢}
and for 1 < k <n,
Ap =A{w: |Si(w) — B(S)| <&, 1 <i<k—1,|Sw) — E(S;) > ¢}

In words, Ay is the set of w such that |Si(w) — E(Sk)| exceeds ¢ for the first
time. It is clear that the A are disjoint, Ay € ¥, and A = |J7_; As. Let
Y; = X; — p; and S, = S r_, Yy, so that E(gn) =0, VarS, = VarS,. Now
consider

S2ap = [ [S?+(52-S}HdP
Ak Ak

= S2dP+2 | S5:(YVig1+...4+Y,)dP
A A

+/ (Yier + ... +Y,)?dP, since S, = Sp+ > Vj,
Ap i=k+1

> g? dP—|—2/(XAkgk)(YkH—&-...—i—Yn)dP (11)
Ak 2

— 2P(Ay) + 2B (XAkSk) E < zn: Yi>

i=k+1
(since x4, S, and Y;,i >k + 1, are independent)
= 2P(Ag)  [sinceE(Y;) =0].
Adding on 1 < k < n, we get
Var(S,) = Var(S,) = / S2dP > P(4;) = £2P(A).
£ k=1

Since VarS, = >, VarX;, by independence of the X;, this gives (10), and
completes the proof.

Remark The only place in the above proof where we use the independence
hypothesis is to go from (11) to the next line to conclude that

E(xay Sk (Vg1 + .-+ Ya)) = 0.

Any other hypothesis that guarantees the nonnegativity of this term gives the
corresponding maximal inequality. There are several classes of nonindependent
random variables including (positive sub-) £2-martingale sequences giving
such a result. This will be seen in the next chapter.
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All the strong convergence theorems that follow in this section are due to
Kolmogorov.

Theorem 6 Let X1, Xo,... be a sequence of independent random variables
on (2, X, P) with means yy, o, . . ., and variances 03,03, .... Let
T
Z ( Xk — )
k=1

and 02 = 3> 02. Suppose that 02 < oo and > ., ju, converges. Then

Yore 1 Xk converges a.e. and m the mean of order 2 to an r.v. X. Moreover,
B(X) =32 w, VarX =02, and for any € > 0,

2
P {supsn| > } <% (12)

n>1

Proof 1t should be shown that lim, S,, exists a.e. If this is proved, since
> pe | My converges, we get

n T
hrILnZ X, = nlgi;o Sn + nlglgo ,; wr = X exists a.e.

But the sequence {5, (w),n > 1} of scalars converges iff it satisfies the Cauchy
criterion, i.e., iff inf,, supy, | Sm4x(w) —Sm(w)| = 0 a.e. Thus let € > 0 be given,
and by Theorem 5,

m-+k

1 , 1 ,
P{ max+k5n5m>€}<€—gzai<€—gzar (13)

m<n<m : :
i=m i>m

Hence letting £ — oo in (13) and noting that the events

{ max Sn5m|>€}

m<n<m-+tk

form an increasing sequence, we get

1
P Eili |Sman — Sm| > 5} < = Z o (14)
= k>m
It follows that
P {1nfsup|5m+n — S| > 5} < = Z ot (15)
m npn>1 >m

Letting £ /* oo, since Y-, 07 < 0o, the right side of (15) goes to zero, so
that limsup,, ,,, [Sn — S| < 00 a.e. But [Sy,| <[5, — S| + S, s0
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limsup|S,| < limsup[|S, — S| + [Sml]
n>m

n>m

< |Sm| + limsup S, — Syl
n>m
< |Sm| + sup |Sp — S| < oo ae.
n>m
Thus limsup,, S,, liminf,, S,, must be finite a.e. Also

{limsupSn — liminf S,, > 28} cC {sup |Sn — S| > E} ,m > 1.
n n

n>m

Hence by (14)

. - 1 o »
P {hmnsup Sp — hmnlnf Sp > 26} < = Z op — 0 (16)

k=m

as m — co for each € > 0. It follows that limsup,, §, = liminf, S, a.e., and
the limit exists as asserted.

If we let m =0 in (14) and X = 0, then (14) implies (12). It remains to
establish mean convergence. In fact, consider for m < n, with X, =X, — U,

E((8,—5,)%) = E(Xpp1+.. +X,)?%) = Z 0% — 0as m,n — co. (17)
k=m+1

Thus S, — S in £%(P), and hence also in £!(P), since ||f||; < [|f]]2 for
any f € L2 It follows that F(S?) = lim, F(52) = lim, > ,_, 07 = 0%, and
E(S) =lim, E(S,) = 0. But X = S+ Y0, fi, so that E(X) = >0° | fn.
This completes the proof.

Remarks (1) If we are given that lim,, Y, X exists in £ and Y 07 | pin
converges, then S, = > 1, (Xy — px) — S in £? also, so that >, _, 07 =
E(S2) — E(S?) = 02. Thus }_,_, 0% < co. Hence by the theorem ) ;- X}
also exists a.e.

(2) If the hypothesis of independence is simply dropped in the above the-
orem, the result is certainly false. In fact let X,, = X/n, where E(X) = 0,

0 < VarX =o¢? < o0, so that > p-; ur = 0 and
Sot=t Y <
k n2 .
k>1 n>1
But >0° X, = X > 7 | 1/n, diverges a.e., on the set where | X| > 0, a.e.

A partial converse of the above theorem is as follows.

Theorem 7 Lei {X,,n > 1} be a uniformly bounded sequence of in-
dependent random wvariables on (£2,3, P) with means zero and variances
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{o2,n > 1}. If Y07 X,, converges on a set of positive measure, then
S (02 < oo, and hence the series actually converges a.e. on the whole
space {2.

Proof Let Xo =0 and S, = >, X;. If A is the set of positive measure
on which S,, — S a.e., then by Theorem 4 (of Egorov), there is a measurable
subset A C A of arbitrarily small measure such that if By = 4 — A cC A,
we have P(By) > 0 and S, — S on By uniformly. Since S is an r.v., we can
find a set B C By of positive measure (arbitrarily close to that of By), and a
positive number d such that |S,| < d < oo on B. Thusif A = (_,|/S.| < dl,
then A€ X, A D B, and P(A) > P(B) > 0.

Let A, = MNi—ollSkl < d], so that 4, | A If C,, = A, — Apyq, and
Co = U2, Cy, which is a disjoint union, let a, = fAn S2dP. Clearly a, <
d?P(A,) < d?, so that {a,,n >} is a bounded sequence. Consider

Gp, — Gp—1 —/ S2dP — S2 .dP
An—1

/ Spn—1+Xn ) dP

u 1

/ S2dp — / S2 dP (sinced, = A, 1 —Cp1)
n 1 77 1

I,

X2dP+2/

,n_lxndpf/ S2dPp. (18)
Ap—1 Chn—1

However,
/ X2dP = F(xa,_ X2)=0.P(A,—1) by independence of x4, , and X,
n—1
and
| XuSumadP = BX)E(xa, S0r) =0,
n 1

since E(X,,) = 0. Thus by noting that P(A,_1) > P(A,), (18) becomes, with
these simplifications and the hypothesis that [X,| < ¢ < o0 a.e.,

(p — Gp—1 2 O.ZP(A’VL) - / (|Sn—1| + |Xn‘)2dp

m—1

> 02P(A,) — (¢ +d)?P(Cphi)

(since |Sp| < |Sp—1| + X <d+c),

> 02P(A) — (c+ d)*P(Cp_1).
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Summing over n =1,2,...,m, we get (ap = 0)
m m
on > P S 02— (et PP Coco).
n=1 n=1
Hence recalling that a,, < d?, one has
d® > P(A Za (c+d)*, m=>1. (19)

Since P(A) > 0, (19) implies that >>° | 02 < co. This yields the last state-
ment and, in view of Theorem 6, completes the proof.

As an immediate consequence, we have

Corollary 8 If{X,,n > 1} is a uniformly bounded sequence of indepen-
dent random variables on (2, X, P) with E(X,) = 0,n > 1, then >.° X,
converges with probability O or 1.

We are now in a position to establish a very general result on this topic.

Theorem 9 (Three Series Theorem). Let {X,,,n > 1} be a sequence of
independent random variables on (£2, X, P). Then Y .- | X, converges a.e. iff
the following three series converge. For some (and then every) 0 < ¢ < 0o,

(i) 325, P(|Xa| > €,

(i) Y2, B(XS),

(i) Yo, 02(X9),

where X¢ is the truncation of X, at ¢, so that Xt = X, if | X,,| < ¢, and
= 0 otherwise.

Proof Sufficiency is immediate. In fact, suppose the three series converge.
By (1), and the first Borel-Cantelli lemma, P[limsup,, | X,,| > ¢] = 0, so that
for large enough n, X,, = X¢ a.e. Next, the convergence of (ii) and (iii) imply,
by Theorem 6, " | X¢ converges a.e. Since X,, = X¢ for large n, Y ~_; X,
itself converges a.e. Note that ¢ > 0 is arbitrarily fixed.

Conversely, suppose Z;ﬁl X; converges a.e. Then lim,, X,, = 0 a.e. Hence
if A, .= [X, # X:] =][|X,| > ¢ for any fixed ¢ > 0, then the A4, . are inde-
pendent and P[limsup,, A, ] = 0. Thus by the second Borel-Cantelli lemma
(cf. Theorem 1.9iii), 2 | P(A, ) < oo, which proves (i). Also, > °  X¢
converges a.e., since for large enough n, X¢ and X,, are equal a.e. But now
the X¢ are uniformly bounded. We would like to reduce the result to The-
orem 7. However, E(X¢) is not necessarily zero. Thus we need a new idea
for this reduction. One considers a sequence of independent random variables
sz which are also independent of, but with the same distributions as, the
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X¢-sequence. Now, the given probability space may not support two such se-
quences. In that case, we enlarge it by adjunction as explained after Corollary
8 in the last section. The details are as follows.

Let (2,2,P) = (2,%,P) ® (2,%,P), and let X}, X?; be defined on (2
by the equations

XM w) = XE(w1), X2 (w) = XE(wa), where w = (w1,ws) € £2. (20)

It is trivial to verify that {X!,n > 1}, {X2 n > 1} are two mutually inde-
pendent sequences of random variables on (fZ, X, ]5), Xi| <e i=1,2, and
have the same distributions. Thus if Z, = X! — X2 n > 1, then E(Z,) = 0,
VarZ, = VarX}! + VarX?2 = 202(X¢), and {Z,,n > 1} is a uniformly
bounded (by 2¢) independent sequence to which Theorem 7 applies. Hence,
by that result, Y7 VarZ, < oo, so that Y -, 02(Xg) < oo, which is (iii).

Next, if Y,, = X,CL — E(X¢), then E(Y,,) =0, VarY, = VaTXC, so that
o2 0%(Y,) < oco. Hence by Theorem 6, "7 | 'Y, converges a.e. Thus we
have Y7 B(XS) = >0 X¢ — > Y, and both the series on the right
converge a.e. Thus the left <1de Whlch is a series of constants, simply con-
verges and (ii) holds. Observe that if the result is true for one 0 < ¢ < o0,
then by this part the three series must converge for every 0 < ¢ < oo. This
completes the proof.

Remarks (1) If any one of the three series of the above theorem diverges,
then )" ., X, diverges a.e. This means the set [>_ 7 ; X, converges| has prob-
ability zero, so that the zero-one criterion obtains. The proof of this statement
is a simple consequence of the preceding results (since the convergence is de-
termined by >, ., Xy for large n), but not of Theorem 1.12.

(2) Observe that the convergence statements on series in all these theorems
relate to unconditional convergence. It is not absolute convergence, as simple
examples show. For instance, if a,, > 0, ZZO=1 an, = 00, but

o0

E a? <
n y

n=1

then the independent random variables X,, = *+a,, with equal probability on
(£2, X, P) satisfy the hypothesis of Corollary 8 and so >~ | X, converges a.e.
But it is clear that " >°  |X,,| =3"7° | |a,| = oo a.e. The point is that X,, €
L%(£2, %, P) and the series Y ~- | X, converges unconditionally in L?(P), but
not absolutely there if the space is infinite dimensional. In fact, it is a general
result of the Banach space theory that the above two convergences are unequal
in general.

(3) One can present easy sufficient conditions for absolute convergence
of a series of random variables on (2, X, P). Indeed, > -, X,, converges
absolutely a.e. if > ° | E(]X,|) < oo. This is true since B>~ |X,|) =
Sl L E(JX,]) < oo by the Lebesgue dominated convergence theorem, and
since Y = Y | |X,,| is a (positive) r.v. with finite expectation, P[Y > A] <
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EY)/A — 0as A — oo, so that 0 <Y < 0o a.e. Here X,, need not be in-
dependent. But the integrability condition is very stringent. Such results are
“nonprobabilistic” in nature, and are not of interest in our subject.

A natural question now is to know the properties of the limit r.v. X =
Zzozl X, in Theorem 9 when the series converges. For example: if each X, has
a countable range, which is a simple case, what can one say about the distri-
bution of X? What can one say about Y = >"° | 4, X,,, where Y~ | a2 < oo,
E(X,) =0, E(X2) =1, and X,, are independent?

Not much is known about these queries. Some special cases are studied,
and a sample result is discussed in the problems section. For a deeper analysis
of special types of random series, one may refer to Kahane (1985). We now
turn to the next important aspect of averages of independent random vari-
ables, which has opened up interesting avenues for probability theory.

2.3 Laws of Large Numbers

Very early in Section 1.1 we indicated that probability is a “long-term aver-
age.” This means that the averages of “successes” in a sequence of independent
trials “converge” to a number. As the preceding section shows, there are three
frequently used types of convergences, namely, the pointwise a.e., the stochas-
tic (or “in probability”) convergence, and the distributional convergence, each
one being strictly weaker than the preceding one. The example following the

proof of Proposition 2.2 shows that X,, Z X does not imply that the X, (w)
need to approach X (w) for any w € {2. So in general it is better to consider
the a.e. and “in probability” types for statements relating to outcomes of w.
Results asserting a.e. convergence always imply the “in probability” state-
ments, so that the former are called strong laws and the latter, weak laws. If
the random variables take only two values {0, 1}, say, then the desired conver-
gence in probability of the averages was first rigorously established by James
Bernoulli in about the year 1713, and the a.e. convergence result for the same
sequence was obtained by E. Borel only in 1909.

Attempts to prove the same statements for general random variables, with
range space R, and the success thus achieved constitute a general story of the
subject at hand. In fact, P. L. CebySev seems to have devised his inequality
for extending the Bernoulli theorem, and established the following result in
1882.

Proposition 1 (Cebyéev). Let X1,X5,... be a sequence of independent
random variables on (£2, X, P) with means ju1, itz, . . . and variances os,03,. ..,
such that if S, = Y X;, one has 02(S,)/n? — 0 as n — oco. Then the
sequence obeys the weak law of large numbers (WLLN), which means, given
e >0, we have
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lim P

n—oo

g

> 6} =0. (1)
Proof By Cebygev’s inequality (1) follows at once.

Note that if all the X,, have the same distribution, then they have equal
moments, Le., 07 = 05 = ... = 02, so that 0%(S,) = Y., 0 = no?, and
02(5,)/n? = 0%/n — 0 is automatically satisfied. The result has been im-
proved in 1928 by A. Khintchine, by assuming just one moment. For the
proof, he used a truncation argument, originally introduced in 1913 by A. A.
Markov. Here we present this proof as it became a powerful tool. Later we see
that the result can be proved, using the characteristic function technique, in
a very elementary manner, and even with a slightly weaker hypothesis than
the existence of the first moment [i.e., only with the existence of a derivative
at the origin for its Fourier transform; that does not imply E(X) exists].

Theorem 2 (Khintchine) Let X1, Xa,... be independent random vari-
ables on (£2, X, P) with a common distribution [i.e., P[X, < ] = F(x),z € R,
for n > 1] and with one moment finite. Then the sequence obeys the WLLN.

Proof We use the preceding result in the proof for the truncated functions
and then complete the argument with a detailed analysis. Let € > 0,6 > 0 be
given. Define

Up = XeX(xel<ns, Vi = XeX[1 X0 >n6)s (2)

so that X3 = Up + Vi. Let F be the common distribution function of the
Xp. Since E(|Xg|) < oo, we have M = E(|X|) = [p|z|dF(z) < oo, by
the fundamental (image) law of probability. If u = E(Xy) = [p ©dF(x) and
1, = E(U}7), then

ty, = E(XpX[1x,|<nd)) = / zdF(x)
[lz|<ns]

and by the dominated convergence theorem, we have

/[rcsm] zdF(x) = /RX[Ikalgna]xdF(x) - /RxdF(x) =u 3)

Thus there is Ny such that n > Ny = |u, — p| < £/2. Note that p], depends
only on n, and hence not on &, because of the common distribution of the Xj.
Similarly

Varl = B(UR)? — (1)° < /

o] <ns

22dF(z) < n(S/R |z|dF(x) = ndM.

By hypothesis U7, UZ, ... are independent (bounded) random variables with
means j, and variances bounded by ndéM. Let T} = UP + ... + U, and
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W2 = VI + ...+ V7. Then by the preceding proposition, or rather the

Cebygev’s inequality,

mn I 2
P {Tn Wi | < 6} < dn?5M s M-,

n -2 n2e2

(4)

On the other hand, adding and subtracting nu and using the triangle inequal-

ity gives

o | T2 —np

— | — .

n n

n /
" — nul,

Thus if n > N7, we have, with the choice of Ny after (2), on the set

mo__
Ti—mpl s
n
the following:
T —mpn| e _¢
n - 2 2
Hence for n > N; this yields
T — T —nu! 46 M
P M >e| <P nin'un ZE < 0 ,by(4).
n n 2 g2
But by definition S, =T + W2, n > 1, so that
we Sp —nu 26} _ _‘Tff—n,u—&—Wff‘ 26}
n n
Tn —
Swe HM zf} UWn £ 0.
n 2
Thus .
P {S“_”“ ze} <P HM > f} + PW™ £ 0.
n n 2
However,
PV # 0] = P[|V;?| > 0] = P[|Xg| > nd]
1 1
S nédP < — | X4|dP
10 J{1 X, > ns] 18 Ji1x,]5ne]
1
= — |x|dP.
10 J{jz|>ns]

(7)

Choose Ny such that n > Ny = f[lfc|>n5] \z|dF(x) < 62, which is possible
since M = E(|Xy|) < oo. Thus for n > Ny, PV £ 0] < §2/(né) = §/n by

(7). Consequently,
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s
hE

PIWy 0] < P( e £ 01) <SPV A0 <4 ()

k=1 k

Il
-

If N = max(Ny, Na) and n > N, then (5) and (8) give for (6)

4M
2

> e

np
n

P {Sn - } _ 45M
e <—

+5={ +1}5. (9)

Letting n — oo and then § — 0 in (9), we get the desired conclusion.

It is important to notice that the independence hypothesis is used only
in (4) in the above proof in deducing that the variance of 7" = the sum of
variances of U]}. But this will follow if the U]} are uncorrelated for each n.

In other words, we used only that

E(URUM™) = / / zydFx, x, (€, y)
[lz|>n] J(ly| <ms]

=/ xdek.(l‘)/ ydFx,;(y) = Hnhon-
[l >n] lly|<mo)

Now this holds if X;, X; are independent when ¢ # j. Thus the above proof
actually yields the following stronger result, stated for reference.

Corollary 3 Let X5, Xo,... be a pairwise independent sequence of ran-
dom variables on (£2, X, P) with a common distribution having one moment
finite. Then the sequence obeys the WLLN.

In our development of the subject, the next result serves as a link be-
tween the preceding considerations and the “strong laws.” It was obtained
by A. Rajchman in the early 1930’s. The hypothesis is weaker than pairwise
independence, but demands the existence of a uniform bound on variances,
and then yields a stronger conclusion. The proof uses a different technique, of
interest in the subject.

Theorem 4 Let {X,,n > 1} be a sequence of uncorrelated ran-
dom wariables on (£2,X,P) such that 0%(X,) < M < oo, n > 1. Then
[Sn — E(Sn)]/n — 0 in L?-mean, as well as a.e. [The pointwise convergence
statement is the definition of the strong law of large numbers (SLLN) of a
sequence.|

Proof The first statement is immediate, since

Sp — E(S,)]° 1 <&, nM
B[22 ) =53 o2 (X)) < —5 =0
<{ n }> n? k—10( V= n? ’
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by the uncorrelatedness hypothesis of the X,, and the uniform boundedness
of 02(Xy). This, of course, implies by Proposition 1 that the WLLN holds for
the sequence. The point is that the a.e. convergence also holds.

Consider now, by Cebysev’s inequality, for any ¢ > 0,

VarS,: M
2 n
P[|Sy2 — B(Sp2)| > ne] < — 5= < ——,
so that
;P[\Snsz(Snzﬂ > n2e] ;n—Q < 00. (10)

Hence by the first Borel-Cantelli lemma, letting Y, = X, — E(X}) and
S =51V (so that the Y}, are orthogonal), one has P([|S,2| > nZ%],i.0.) =
0, which means S,,2 /n? — 0 a.e. This is just an illustration of Proposition 2.3.

With the boundedness hypothesis we show that the result holds for the
full sequence S, /n and not merely for a subsequence, noted above.

For each n > 1, consider n? < k < (n + 1)? and Sk/k Then

|‘§k‘ |‘§k7‘§n2‘+|‘§n2‘ ‘§n2| |‘§k7§n2‘
=< < +  ma _ 11
ko~ k - n? n2<kg(§+1)2 n2 (11)
and let T, = max,><p<(nt1)2 \Sk — n-\ Since as k — oo the first term on

the right — 0 a.e., (shown above) it suffices to establish 7},/n® — 0 a.e. To
use the orthogonality property of the Y}, consider 7}2. We have

(nt1)? (nt1)? [k 2
2 _ 2 o & & 12 _ ,
T”_n2<liga(lff+1 S = Sl < Z 85— e = 3 _ 2. Y
k=n?2 k=n?2 i=n241
and so for n > 2, since 02(Y;) = 0%(X;) < M,
n+1
—n2 =n2+1
(n+1)2 k (nJrl)2
<> Y M= D> (k- +1))M
k=n2 3=n2+1 k=n?2
= M(2n% +n) < 3n°M < (2n)°M (12)
This crude estimate is sufficient to show, as before, that
P[|T,,| > n?c] < P[T? > n's? < B(T?)/n%? < 4M/n?s?, (13)

by Markov’s inequality and (12). Thus Y _, P[|T,| > n?%¢] < oo and the
Borel-Cantelli lemma again yields P[|T,,/n?| > ¢,i.0.] = 0. Hence T, /n* — 0
a.e. and by (11) S;/k — 0 a.e., proving the result.
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We now strengthen the probabilistic hypothesis from uncorrelatedness to
mutual independence and weaken the moment condition. The resulting state-
ment is significantly harder to establish. It will be obtained in two stages,
and both are of independent interest. They have been proved in 1928 by A.
Kolmogorov, and are sharp. We begin with an elementary but powerful result
from clagsical summability theory.

Proposition 5 (Kronecker’s Lemma). Let ay,as,... be a sequence of
numbers such that )", - (a,/n) converges. Then

1 n
—g ar, — 0 as n — o0.
n

k=1

Proof Let sg = 0, s, = > p_,(ax/k), and R,, = >h_iax. Then s, — s
by hypothesis. Also, ap = k(s — sr—1), so that

n+1 n+1 n

Rpy1 = Z ks, — Z ksp_1=— Z sp+ (n 4 1)spy1.
k=1 k=1 k

—1
Hence

1 n 1

n
—R =s — — ' s—1-s=0asn—x
n+1 el et n+1n§:8}”_>

k=1

because s, — s = for any € > 0, there is no[= n,(c)] such that n > ng =
|sr, — 8| < ¢, and hence

lznjskfs < |81+ ...+ Sy n |(Sngs1 — 8) + ... (8, —5)] +n0‘3‘
nk:l n n n
< [s14+ ...+ Syl n (n—no)€+n0|s| e (14)
n n

as n — oo. [This is called (c,1)-convergence or Cesdiro summability of s.|
Since € > 0 is arbitrary, the result follows.

Theorem 6 (First form of SLLN). If X1, Xo, ... is a sequence of indepen-
dent random variables on (£2, X, P) with means zero and variances o203,
satisfying > oo (02 /n?) < oo, then the sequence obeys the SLLN, i.e.,

X1+X2+---+Xn
—
I

0

a.c. asn — 0Q.

Proof Let Yy, = X,,/n. Then the Y,,,n > 1, are independent with means
zero, and Y07 | 02(Y,,) = 3707 (02 /n?) < co. Thus by Theorem 2.6, 3~ | Y,
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converges a.e. Hence >~ (X, /n) converges a.e. By Kronecker’s lemma,
(1/n)>"7_, Xx — 0 a.e., proving the theorem.

This result is very general in that there are sequences of independent

random variables {X,,,n > 1} with means zero and finite variances 0%, 03, . ..

satisfying Y~ (02 /n?) = oo for which the SLLN does not hold. Here is a

simple example. Let X7, X5, ... be independent two-valued random variables,
defined as 1
P([X, =n])=P([X,=-n]) = 7

Hence F(X,) = 0,0%(X,,) = n?, so that } -~ ,[0%(X,,)/n?] = +oo. If the
sequence obeys the SLLN, then (>";_, X;)/n — 0 a.e. This implies

n—1

X, 1 n—1 1
L X, — . X 0 a.e.
n nkz_:l k n nflkz_:1 L

hence P[|X,| > n,i.0.] = 0. By independence, this and the second Borel-
Cantelli lemma yield > 7, P[|X,| > n] < oo. However, by definition
P[|X,| > n] = 1, and this contradicts the preceding statement. Thus
(1/n)> % 1 Xr # 0 a.e., and SLLN is not obeyed.

On the other hand, the above theorem is still true if we make minor relax-
ations on the means. For instance, if {X,,n > 1} is independent with means
{ttn,n > 1} and variances {o2;,n > 1} such that (i) >.°; 02 < oo and (ii) if
either p,, — O or just (1/n) Y ;_; jtx — Oasn — oo, then (1/n) Y p_; Xi — 0
a.e. Indeed, if Y,, = X, — p1,, then {Y,,,n > 1} satisfies the conditions of the
above result. Thus (1/n)> ¢, Yo = (1/n) >0, Xp—(1/n) > 1_, ur — O ace.
If yi — g, then (1/n) Y 7_, px — p by (14). Here p = 0. The same holds if we
only demanded (1/n) Y ;_; ptx — 0. In either case, then, (1/n)Y 1_; Xz — 0
a.e. However, it should be remarked that there exist independent symmetric
two-valued X, n > 1, with > . ,[0*(X,)/n?*] = oo obeying the SLLN. Ex-
amples can be given to this effect, if we have more information on the growth
of the partial sums {S,,n > 1}, through, for instance, the laws of the iterated
logarithm. An important result on the latter subject will be established in
Chapter 5.

The following is the celebrated SLLN of Kolmogorov.

Theorem 7 (Main SLLN). Let {X,,n > 1} be independent random vari-
ables on (£2, X, P) with a common distribution and S, = > ;_i Xi. Then
Sp/n — og, a constant, a.e. iff E(|X1]) < +oo, in which case oy = E(X1).
On the other hand, if E(|X1]) = +oo, then limsup,, (|S,|/n) = +oo a.e.

Proof To prove the sufficiency of the first part, suppose E(|X1|) < 0o. We
use the truncation method of Theorem 2. For simplicity, let E(X;) = 0, since
otherwise we consider the sequence Yy = X — E(X1). For each n, define
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Un = XnX1X,l<n]) Vo = XaX[|X,]>n]-

Thus X,, = U, + V,, and {U,,n > 1}, {Vj,,n > 1} are independent se-
quences. First we claim that limsup,, |V,,| = 0 a.e., implying (1/n) > p_; Vi —
0 a.e. That is to say, P([V,, # 0],i.0.) = 0. By independence, and the Borel-
Cantelli lemma, this is equivalent to showing > > | P[|V,,| > 0] < oo.

Let us verify the convergence of this series:

hE

> PV, #£0] =) PX,|>n]

3
Il
-

o

P[|X;| > n] (since the X; have the same distribution)

3
—

Plk < |X1| <k +1]

)
[~]¢

3
Il
-
i

n

M

Nannt1 ( where ap pr1 = Pk < | X1 < k4 1])

3
—

_ Z/ ndP < / X1|dP = B(X1]) < 0o (15)
n<|X1|<n+1] 2

n=1 [

Next consider the bounded sequence {U,,n > 1} of independent random
variables. If j, = E(U,), then

fin = / X1dP — / X1dP = E(X1) =0
[1X,]<n] o

by the dominated convergence theorem. Hence (1/n) Y ;_; pr — 0. Thus by
the remark preceding the statement of the theorem, if Y.~ [0%(Uy)/n?] < oo,
then (1/n) Y7 U, — 0 a.e., and the result follows.

We verify the desired convergence by a computation similar to that used
in (15). Thus

o*(U,) = E(Uy) — i, < E(U)
= / X2dP ( by the common distribution of the X,,)
[ X1]<n]
n—1

<N (k+1)2Plk < | Xy < k+ 1],
k=0
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Hence
e8] 2 oo n—1 A 1 9
Z d S Z + ————agk+1 | using the notation of (15)]
n=1 n=1 k=0
-3 f: =
= Ok—1k 2
k=1 n=~k
- 1 1 [® dx 2
< - si — < = — < -
,2:: ak 1,k <1nce7;€n2k+/k+l(x_1)2k]
>0
=2 ka1, < 2E(|X1]) +2 < oo [ by(15)].
k=1
Thus
— =— — — 0 ae.
n M M r e
k=1 k=1 k=1
as n — 00.

Conversely, suppose that S, /n — g, a constant, a.e. We observe that

X S -1 1
n_Pn T Sp—1—0a.e.,
n n n n—1

so that limsup,, (] X,,|/n) = 0 a.e. Again by the Borel-Cantelli lemma, this is
equivalent to saying that >~ | P[|X,| > n] < co. But

> PlX,| > n] Z |X1| > n]
n=1

>0
= Z Nannt1 | as shown for (15)]

n=1

>
Z (n+1)Pln < |X1] <n+1]

Y Pl < [Xi| <n+1]

> E(X41]) —2. (16)

Hence E(]X1]) < oo. Then by the sufficiency (1/n)S, — E(X1) a.e., so that
op = E(X4), as asserted.

For the last part, suppose that E(|X1|) = +oo, so that E(|X1|/a) = +o0
for any « > 0. Then the computation for (16) implies
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o0
Z [|[Xn| > an] = 400,

since the X,, have the same distribution. Consequently, by the second Borel-
Cantelli lemma, we have

P([| X,| > an],i.0.) = 1. (17)
But |S, — Sn—1| = |Xn| > an implies either |S,| > an/2 or |S,—1| > an/2.

Thus (17) and this give
P (|18l > %} i0.) = 1. (18)

Hence for each o > 0 we can find an 4, € ¥, P(A,) = 0, such that

lim sup — > on 2 — A,.
n 2

n

Letting o run through the rationals and setting A = U ¢ rationals 4o: We
get P(A) = 0, and on 2 — A, limsup,(|S,|/n) > k for every & > 0. Hence
limsup,,{(|S,|/n) = 400 a.e. This completes the proof of the theorem.

The above result contains slightly more information. In fact, we have the
following:

Corollary 8 Let {X,,,n > 1} be as in the theorem with E(|X1]) < oo.
Then |Sy|/n — |E(X1)| in LY(P)-mean (in addition to the a.c. convergence).

Proof Since the X, are i.i.d., so are the | X, |,n > 1, and they are clearly
independent. Moreover, by i.i.d. Pl[—z < X, < z] = P[—z < X1 < z]. Indeed

PlIX,| < ] :/QXHXWM]CZP

= /R X[IAl<z]AF (M) ( since X, has F' as its d.f. for all n > 1)

= P[|X1| < z] (by the image law).

By the SLLN, S,,/n — E(Xy) a.e., so that |S,|/n — |E(X1)] a.e. Given € > 0,
choose zg > 0 such that

E(IXnlX[x.[>20)) = EUX1IX[x11520]) < &
If S, =31 XeX[|xy| <o) a0d S} = Sy —S),, then {S] /n,n > 1} is uniformly
bounded, so that it is uniformly integrable. But

—E(S,]) < B(IX1|x)x,|5200) < €
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uniformly in n. Thus {(1/n)S”,n > 1} is also uniformly integrable. Conse-
quently {(1/n)|S,|,n > 1} is a uniformly integrable set. Hence the result
follows by Vitali’s theorem and the limits must agree, as asserted.

Remark See also Problem 10 for similar (but restricted to finite measure
or probability spaces) convergence statements of real analysis, without men-
tion of independence.

These results and their methods of proofs have been extended in various
directions. The idea of investigating the averages (both the WLLN and SLLN)
has served an important role in creating the modern ergodic theory. Here the
random variables X,, are derived from one fixed function X; : {2 — R in terms
of a measurable mapping 7 : 2 — 2 [T~1(X) C X] which preserves measure,
meaning P = PoT ! or P(A) = P(T 1(A)), A € X. Then

Xpiiw)=(X1 0T (w),we 2,n>1,

where T2 = ToT and T" = ToT™ 1, n > 1.Since X1 : 2 = Rand T : 2 —
are both measurable, so that (X; o T)~}B) =T X" Y(B)) cT~H(X) C %,
where B is the Borel g-algebra of R, X5 is an r.v., and similarly X, is an r.v.
For such a sequence, which is no longer independent, the prototypes of the
laws of large numbers have been proved. These are called ergodic theorems.
The correspondents of weak laws are called mean ergodic theorems and those
of the strong laws are termed individual ergodic theorems. This theory has
branched out into a separate discipline, leaning more toward measure theoretic
functional analysis than probability, but still retaining important connections
with the latter. For a brief account, see Section 3 of Chapter 7.

Another result suggested by the above theorem is to investigate the growth
of sums of independent random variables. How fast does .S, cross some pre-
scribed bound? The laws of the iterated logarithm are of this type, for which
more tools are needed. We consider some of them in Chapters 5 and later. We
now turn to some applications.

2.4 Applications to Empiric Distributions, Densities,
Queueing, and Random Walk

(A) Empiric Distributions

One of the important and popular applications of the SLLN is to show that
the empiric distribution converges a.e. and uniformly to the distribution of
the random variable. To make this statement precise, consider a sequence
of random variables X1, Xo,... on (£2, X, P) such that P[X,, < z] = F(x),
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xz € R,n > 1; i.e., they are identically distributed. If we observe “the seg-
ment” Xi,...,X,, then the empiric distribution is defined as the “natural”
proportion for each outcome w € 2 :

F(z,w) = l{ number of X;(w) < z}. (1)
n

Equivalently, let us define

Yi(w) = X(x,<a) (@), = 1, s
Then X
Fn(:r,~):ﬁ(f1+u.+yn). (2)

We have the following important result, obtained in about 1933.

Theorem 1 (Glivenko-Cantelli). Let X1, X5, ... be independent and
identically distributed (i.i.d.) random variables on (£2, X, P). Let T be their
common distribution function, and if the first n-random variables are “ob-
served” (termed o random sample of size n), let F,, be the empiric distribution
determined by (1) [or (2)] for this segment. Then

P|lim sup |Fu(z,-)—F(z)|=0 =1. (3)

N=00 oo r<o0

Proof Since the X; are identically distributed with a common distribution,
the same is clearly true of the Y; given by (2). Indeed,

PlY; =1 = P[X; <z] = F(x) =1 P[Y; =0] = 1 — P[X; > 1

for all ¢ > 1. Hence by the (special case of) SLLN, we get

Fl(z) = % Y _¥i - E() = Fla) a. )

We need to prove the stronger assertion on a.e. uniform convergence in x
for (4), which is (3). This is more involved and is presented in three steps.

1. Let 0 < k£ < r be integers and zj,, be a real number such that
Flan,) < kfr < Flog, +0), k=1,2,...,n, (5)

and set

Zo,r = =00, Ty = +00
for definiteness [and use F(—o0) = lim,_._ o Fi(z) = 0, F(+00) =lim,_. 4 F(z) =
1]. Also define

Ek,r = {w : nh—I}go Fn($k,r7w) = F(-rk,r)}y
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and
Hy, = {w s lim Fr(zg, +0,w) = Fag,y + 0)} )
n—x

Then by (4), P(Exyr) =1= P(Hg,),1 <k <r. Let

E. = h Ek,r n h H]mn.
k=1 k=1

2. We have P(E,) = 1 and if E = N,=, E-, then P(E) = 1. In fact, if
A, Be X, P(A)=1= P(B), then clearly

1=P(AUB) = P(A)+ P(B) — P(ANB) =2 — P(AN B).

Hence P(A N B) = 1. By induction, with A = B, ., B = Hp .,k =1,...,7,
it follows that P(E,) = 1,r > 1. Since E = ()2, B,, = lim,_.o By, where
B, =_, E., it also follows that P(E) = lim,, P(B,) = 1.
Let us express E in a different form. First note that E, is given by
E, ={w: lim max [ |F,(z;,,w)— F(z;,)|,
n—o0 1<k<r
1<5<r
|Fo(zgr +0,w) — F(zg,, + 0)]] = 0}.

If we let
S = {w : lim sup |F,(z,w) — F(z)| = 0} ,

n—o IER

then S € Y, because if

S={w: lim sup |Fn(ryw)—F(r) =03,
00 o<y <oo

ri—rational

clearly S C S, and by the density of rationals in R, § C S also follows. Since
S e X sois § € 3. We need to establish the following result.

3. EC S, sothat 1 = P(E) < P(S) < 1. For, if we let © € (Tpr, Thrir)s
then by the monotonicity of F,, and F', we get

Fo(zr, +0)(w) < Fp(@)(w) < Fo(@rt1,r) (W) a.0.(w),
Flzp, +0) < F(z) < F(Try1,r)- (6)
Let k,r be chosen in (5) such that k < and x, satisfies

E+1 k1
0< F(mk+1,r) — F(fl'k,r + 0) < ” — ; = ; (7)
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This is clearly possible since F(xp11.,) < (k+1)/r and F(zg, +0) > k/r.
Hence (6) may be written

Fo(z) — F(z) < Fa(zky1,r) — F(@gy +0)

1
< Fn(karl,v”) - F(xk-&-l,r) + - a.e.,
and in a similar way

Fo(z) — F(z) > Fp(zgr +0) — F(zk11.r)
1
> F(zpyr+0)— Flog, +0) — - a.e.

Combining these two sets of inequalities we get for a.a. (w)

sup {|Fn(z) — F(z)[}(w)

—ocLw<{oo
W ST,
1<k<r

<max {|Fn(Tiy1,r) — Flzrr1,0)|(w),

0<j<r—1

o<k<r—1
1
oz +0) — F(zji1,r +0)[(w)} + -

Since 7 > 1 is arbitrary, the left-side inequality holds if the right-side inequal-
ity does, for almost all w. Hence w € E = w € § = 8. Thus E C S, and the
theorem is proved.

Remark: The empiric distribution has found substantial use in the statis-
tical method known as the “Bootstrap”. In the theory of statistics, bootstrap-
ping is a method for estimating the sampling distribution of an estimator by
“resampling” with replacement from the original sample.

In the proof of the theorem, one notes that the detailed analysis was needed
above in extending the a.e. convergence of (4) for each z to uniform conver-
gence in x over R. This extension does not involve any real probabilistic ideas.
It is essentially classical analysis. If we denote by C the class of all intervals
(—o0,x), and denote by

n(A) (@) = /A F(dz, w)

and similarly

u(a) = [ Plao),
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then u,(A4) is a sample “probability” of A [i.e., p,(-}{w) is a probability for
each w € 2, and pu,(A4)(-) is a measurable function for each Borel set Al;
and p is an ordinary probability (that is, determined by the common image
measure). Then (3) says the following:

Pl lim sup |p,(A4) — u(4)|=0] = 1. (8)
=00 AeC
This form admits an extension if X1, Xo, ... are random vectors. But here

the correspondent for C must be chosen carefully, as the result will not be true
for all collections because of the special sets demanded in Definition 2.1 (see
the counterexample following it). For instance, the result will be true if C is
the (corresponding) family of all half-spaces of R". But the following is much
more general and is due to R. Ranga Rao, Ann. Math. Statist. 33 (1962),
659-680.

Theorem 2 Let X1,X5,... be a sequence of independent random vectors
on (2,3, P} with values in R™, and for each Borel set A C R™, we have
w(A)y = P[X,, € A], n > 1, so that they have the common tmage measure i
(or distribution). Let u,(A) be the empiric distribution based on the sample
(or initial segment) of size n (i.e. on, X1,...,X,) so that

1
pn(A) = ﬁ{ number of X € A,1 <k <n}.

If C is the class of measurable convex sets from R™ whose boundaries have
zero measure relative to the nonatomic part of i, then

P | lim sup |p,(4) — u(A) =0 =1. (9)
N0 AeC

We shall not present a proof of this result, since it needs several other
auxiliary facts related to convergence in distribution, which have not been es-
tablished thus far. However, this result, just as the preceding one, also starts
its analysis from the basic SLLN for its probabilistic part.

(B) Density Estimation

Another application of this idea is to estimate the probability density by a
method that is essentially due to Parzen (1962).

Suppose that P[X < x] = Fx(x) is absolutely continuous relative to the
Lebesgue measure on R, with density f(u) = (dFx/dz)(u), and one wants
to find an “empiric density” of f(-) in the manner of the Glivenko-Cantelli
theorem. One might then consider the “empirical density”

Fo(z+h) — Fy(x)

fn(z, h) = A
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and find conditions for f,,(z,h) — f(z) a.e. as n — oo and h — 0. In contrast
to the last problem, we have two limiting processes here which need additional
work. Thus we replace h by h, so that as n — oo, hy, — 0. Since F,(z) itself
is an w-function, we still need extra conditions. Writing fn("c) for fr(z, hy),
this quotient is of the form

Fol@)() = (/R K (mh t) Fa(dt,) — n/lmn Zn:lK (Th—)jf()> . (o)

n
J

for a suitable nonnegative function K(-), called a kernel. The approximations
employed in Fourier integrals [cf. Bochner (1955)], Chapter I) give us some
clues. Examples of kernels K(¢) are (i) e, (ii) e 'xp>0) (iil) X[o,1), and (iv)
1/(1 + t%). In this way we arrive at the following result of Parzen. [Actually
he assumed a little more on K, namely, that K, the Fourier transform of K,
is also absolutely integrable, so that the examples (ii) and (iii) are not admit-
ted. These are included in the following result. However, the ideas of proof
are essentially his.]

Theorem 3 Let X1, Xo, ... be independent identically distributed random
variables on (£2, 3, P) whose common distribution admits a uniformly con-
tinuous density f relative to the Lebesque measure on the line. Suppose that
K :R — R" is a bounded continuous function, except for a finite set of dis-
continuities, satisfying the conditions: (i) [p K(t)dt =1 and (ii) [tK(t)| — 0
as |t| — oo. Define the “empiric density” f, : R x 2 — R by

BRI z—X;
fn(m)nhnjzlf{( - ) rcR (11)

where h,, is a sequence of numbers such that nh? — oo, but h,, — 0 asn — oo.
Then

Pllim s Ifule) - @) =0 1. (12)

=00 —oo<e<oo

Proof The argument here is somewhat different from the previous one,
and it will be presented again in steps for convenience. As usual, let E be the
expectation operator.

1. Consider
(@) = E(fu(x)) — ﬁ i:lE (K (m hnXJ')) .

We assert that g,(z) — f(z) uniformly in € R as n — oo. For using the
i.i.d. hypothesis,
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r) = %g [ (5 s (13)

onle) = [ (57Y) sy

it suffices to show that v,(z) — f(z) uniformly. Then since g, is a (C,1)-
average like vy, it follows that g,(z) — f(z) in the same sense. Since f is
assumed to be uniformly continuous and integrable (and a probability den-
sity), it is easily seen that f is also bounded. Thus consider

If

val) — f(2) = /]R im%)mw — 1) - f(a)ldt (14)

But, given ¢ > 0, there is a . > 0 such that |f(z —t) — f(x)] < e for |[¢t| <0
by the uniform continuity of f. Thus

onla) — ()] < /[Mi (i) mas e — ) = stola

. /[/t/za] K <%> %%dt
(

1
+ sup |uK(u —/ (t)dt
|u\26/hn| ( 15 Jo 7

+ f(x) / K(u)du
[lu[>8/ k)

<e + = sup [|[uK(u)|+ ]Vf/ K(u)du, (15)
8 |u|>6/hn [[ul>6/hn]

since f is bounded. Letting n — oo, so that h, — 0, by (i) and (ii) both the

second and third terms go to zero. Since the right side is independent of z, it
follows that v,(x) — f(z) uniformly in z, as n — co.

2. We use now a result from Fourier transform theory. It is the following.
Let K (u) = = [p €K (x)dx; then one has the inversion, in the sense that for
almost every z € R (i.e., except for a set of Lebesgue measure zero)
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lim iﬁ )aa (1 — %) e K (u)du = K (). (16)

Results of this type for distribution functions, called “inversion formulas,”
will be established in Chapter 4. If K is assumed integrable, then the above
integral can be replaced by (1/27) [p e~ K (u)du = K(z) ae. so (16) is
the (C,1)-summability result for integrals, an exact analog for series that we
noted in the preceding step.

Let ¢n(u) = (1/n) Y, €™%. Then e Xi = cosuX; + isinuX; is a
bounded complex random variable and, for different j, these are identically
distributed. Thus applying the SLLN to the real and imaginary parts, we get

lim ¢ (u) = E(¢1(u)) = E(e"*) a.e.[P]. (17)

If w € £2 is arbitrarily fixed, then ¢, (u) can be regarded as

Pn(w){w) = /Rei“”Fn(dm,w), (18)

where F), is the empiric distribution of the X,,. Now using the “inversion
formula” (16) for K, we can express f, as follows:

lim == ’ (1 - %) K (hpu)e "% ¢, (u)(w)du

— 0
a —a

1 e A ,
= = lim py (1 - 7) e~ =Xl [ (hu)du

with t; =z — X;(w) and @ = hpa,

1 ¢ t
= — K{ 2L
nhy Z * (hn>
j=1
[ by the inversion formula, a.e. (Lebesgue measure)]
= fa(x)(w) [ by(12)]. (19)

We need this formula to get uniform convergence of f(x) to f(x).

3. The preceding work can be used in our proof in the following manner.
By Markov’s inequality

FE |sup ox)— flz
Pl lim sup |fo(x) — f(z)| > ¢ Snlgléo [ PreR [/n(#) I )Ha (20)

n—oo CEER £
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where the limit can be brought outside of the P-measure by Fatou’s lemma.
(Note that the sup inside the square brackets is bounded by hypothesis and
is a measurable function, by the same argument as in step 2 of the proof of
Theorem 1. The existence of limit in (20) will be proved.) We now show that
the right side of (20) is zero, so that (12) results. But if || - ||,, is the uniform
(or supremum) norm over R, then

17 () = F O S M[fn () = gn()lfa +119n() = F (| (21)

and x — gp(z) = E(f,(x)) is a constant function (independent of w). By
step 1, the last term goes to zero as n — 00, and hence its expectation will
go to zero by the dominated convergence since the terms are bounded. Thus
it suffices to show that the expectation of the first term also tends to zero
uniformly in z. Consider

1520~ on = sup ‘% / (1 - _') )

X e (g (u) — Bgn(u))]du|

where we used (19) and the fact that g,(x) = E(f.(x)), which is again ob-
tained from (19) with E{(¢,(u)). With the same computation, first using the
Fubini theorem and then the dominated convergence theorem to interchange
integrals on [—a, a] X §2, we can pass to the limit as a — oo through a sequence
under the expectation. Thus

lu

1) = uClb < Jim 5 [ (1 2) R 0u0) ~ B ()l
(22)

But by (17), |¢n(u) — E(¢n(u))| = |¢n(u) — E(e™*1)| — 0 ae., and since
these quantities are bounded, this is also true boundedly. Thus by letting
n — oo in both sides of (22) and noting that the limits on a and n are on
independent sets, it follows that the right side of (22) is zero a.e. By the
uniform boundedness of the left-side norms in (22), we can take expectations,
and the result is zero.

Thus E(||fn(-) — f()]|u) — 0 as n — oo, and the right side of (20) is zero.
This completes the proof.

Remark  Evidently, instead of (17), even WLLN is sufficient for (22).
Also, using the CBS-inequality in (22) and taking expectations, one finds
that Var(¢,) < M;j/n and this yields the same conclusion without even using
WLLN. (However, this last step is simply the proof of the WLLN, as given by
Cebysev.) It is clear that considerable analysis is needed in these results, after
employing the probabilistic theorems in key places. Many of the applications
use such procedures.
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(C) Queueing

We next present a typical application to queueing theory. Such a result was
originally considered by A. Kolmogorov in 1936 and is equivalent to a one-
server queueing model. It admits extensions and raises many other problerms.
The formulation using the current terminology appears to be due to D. V.
Lindley.

A general queueing system consists of three elements: (i) customers, (ii)
service, and (iii) a queue. These are generic terms; they can refer to people at a
service counter, or planes or ships arriving at a port facility, etc. The arrival of
customers is assumed to be random, and the same is true of the service times
as well as waiting times in a queue. Let a; be the interarrival time between
the kth and the (k + 1)th customer, by the service time, and Wy the waiting
time of the kth customer. When customer one arrives, we assume that there
is no waiting, since there is nobody ahead of this person. Thus it is reasonable
to assume ag = Wy = 0. Now by, + W, is the length of time that the (k+ 1)th
customer has to wait in the queue before the turn comes at the service counter.
We assuine that the interarrival times ay are independent nonnegative random
variables with a common distribution, and similarly, the b, are nonnegative
i.i.d. and independent of the ay. As noted before, we can assume that the
basic probability space is rich enough to support such independent sequences,
as otherwise we can enlarge it by adjunction to accomplish this. The waiting
times are also positive randomn variables. If a;, 1 > by + Wy, then the (k+ 1)th
customer obviously does not need to wait on arrival, but if ax41 < by + Wi
then the person has to wait by + Wi — ar41 units of time. Thus

Wiae1 = max(Wy + by — a.41,0), k> 0. (23)

If we let Xy = br_1 — ag, then the Xy are i.i.d. random variables, and (23)
becomes Wy = 0 and W1 = max(Wi + X 11,0), k& > 0. Note that whenever
Wi = 0 for some k, the server is free and the situation is like the one at
the beginning, so that we have a recurrent pattern. This recurrence is a key
ingredient of the solution of the problem of finding the limiting behavior of
the Wy-sequence. It is called the single server queueing problem.

Counsider Sy =0, S, = Y p_; Xi. Then the sequence {S,,n > 0} is also
said to perform a random walk on R, and if S € A for some k > 0 and Borel
set A, one says that the walk S,, visits A at step k. In the queueing situation,
we have the following statement about the process {W,,n > 0}.

Theorem 4 Let X, = by 1 —ag, k > 1, and {Sp,n > 0} be as above.
Then for each n > 0, the quantities W, and M, = max{S;,0 < j < n} are
identically distributed random wvariables. Moreover, if F,(xz) = P[W, < zl,
then
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exists for each x, but F(x) = 0 is possible. If E(X1) exists, then F(z) = 0,
z € R, whenever E(X1) > 0, and F(-) defines an honest distribution function
when E(X1) <0, ie., F(+x) =L

The last statement says that if E(b;) > E(ax), k > 1, so that the expected
service time is not smaller than that of the interarrival time, then the line of
customers is certain to grow longer without bound (i.e., with probability 1).

Proof For the first part of the proof we follow Feller (1966), even though
it can also be proved by using the method of convolutions and the fact that
Wi and X471 are independent. The argument to be given is probabilistic and
has independent interest.

Since Wy = 0 = Sy, we may express W, in an alternative form as W,
max{(S, — Sk) : 0 < k < n}. In fact, this is trivial for n = 0; suppose it i
verified for n = m. Then consider the case n = m + 1. Writing S, 41 — Si =
Sn — Sk + Xn+1, we have with Vv for “max”

o

max (Sm41 — Sk) = < max (Sp, — Sk) +Xm+1> V0

0<k<m+1 0<k<m+1
Hence the statement is true for all m > 0. On the other hand, X,...,X,, are

ii.d. random variables. Thus the joint distribution of X7, X5,..., X, is the
same as that of X1, X}5,..., X, ,where X = X,,, X, = X,,_1,..., X, = X1.
But the joint distribution of S§, 57, ..., S, where S, = Y77, X (S; = 0),
and that of Sg,S1,...,5, must also be the same. This in turn means, on
substituting the unprimed variables, that Sp, S1,...,S, and S§, S| = S, —
Sp-1, 855 =5, —Sn_2,...,5, =S, — Sy are identically distributed. Putting
these two facts together, we get maxg<p<p S;, and maxo<k<n(S, — Sk) =
W, are identically distributed. But the S, Si,...,S), and Sy, S1,. .., S, were

noted to have the same distribution, so that maxo<p<y S}, L maXo<k<p Sk OF

M, and W, have the same distribution. This is the first assertion in which we

only used the i.i.d. property of the X, but not the fact that X,, = b,,_1 — an.
The above analysis implies

F,(z)=PW, <zx]=P[M, <z]=P Ll}l&x Sk < x} .

But

{ max S, < x} l { lim max S; < x} ,
0<k<n n—o0 0<k<n

so that

F(z) = lim Fp(z)=P| lim max Sy <z| =P |sup S, <z|, (25)
n—oo n—oo 0<k<n k>0
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exists, and 0 < F(z) < 1,z € R. Clearly F(z) = 0 for z < 0. On the
other hand, if E(|X1|} = oo, then by Theorem 2.7, limsup,, |S,| = +00 a.e.
which implies (since Sy = 0) that either limsup, S, = 400 a.e., so that
sup,, S, = -+00 a.e., or this can happen with probability zero. Since F(x) =0
for x < 0, we only need to consider x > 0. Thus if sup,, S, = +o00 a.e., then
1 — F(z) = Plsupy~o Sk > x] = 1, so that F(z) = 0,2 € R. If sup,, S, < o0
a.e., then lim,_.o, F(z) = 1 and F is a distribution function. Note that, since
Sup,,>o Sn is a symmetric function of the random variables X,,, which are i.i.d.,
we can deduce that sup,, Sn, = oo has probability zero or one by Theorem 1.12
so that (25) can be obtained in this way also.

Suppose that E(|X1|) < oo. Then we consider the cases (i) E(X;) > 0,
(ii) £(X;) <0, and (iii) £(X;) = 0 separately for calculating the probability
of A,, where

A, = {sup S, < 4 .

n>0

Case (i): p = E(X1) > 0: By the SLLN, S,/n — E(X;) a.e., so that for
sufficiently large n, S,, > E(X1)- § a.e. Thus

Ay = m[sn <z C {w:Sn(w) > g/‘annw}c

n>0

for any = € RT, and hence P(4,) =0, or F(z) = 0,2 € R", in this case.

Case (ii): p = E(X;) < 0: Again by the SLLN, S,,/n — E(X;) a.e., and
given £ > 0, and 6 > 0, one can choose N.s such that n > N_.s implies

P|(Sp/n) — E(X1)| <en> Nl 216 (26)

This may be expressed in the following manner. Let £ > 0 be small enough so
that E(X1) +e < 0. Then for 0 < § < 3, choose N5 such that with (26),

P[S, < 0,n > Ngs| > P[Sn <n(u+e),n > Nes|
> Pln{p—e) < S, <{p+e)n,n> Ngl
>1-—4 (27)

For this Ngs, consider the finite set S1,Ss,...,Sn.,—1. Since these are real
random variables, we can find an z5 € R" such that z > x5 implies

P[Sl<[L',...,SNE{,._1<ZL']>175. (28)
If now

Nes—1

Ap= () [Sa<al, Be= () [Sk<al, Az=)[S <al,

n>Nes k=1 n=1
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then A, = A, N B,, for z > 0. Hence we have

F(z) = P(Ay) = P(A, N By)

= P(A,) + P(B,) — P(4, UB,)

>92(1-68)—1=1-—25 [by (27) and (28) ].

Since 0 < § < % is arbitrary, we conclude that lim, .., F(z) = 1, and hence
F gives an honest distribution in this case.

Case (iii): E(X;) = 0: Now S, = >0 X;, n > 1, is a symmetrically
dependent sequence of random variables and Sy = 0. Thus sup,~q S, > 0
a.e., and since we can assume that X; # 0 a.e., all the S,, do not vanish
identically a.e. Consider the r.v. Y = limsup,, S,,. Then Y[=Y(S,,n > 1)] is
symumetrically dependent on the S, and is measurable for the tail o-algebra.
Hence, by Theorem 1.12 it is a constant = kg a.e. It will be seen later (cf.
Theorem 8 below) that, since S, /n — 0, a.e. by the SLLN, §,, takes both
positive and negative values infinitely often. Thus kg > 0. But then

0 <Y = limsup S,
n>1

= limsup(X; + ...+ X,,) = X1 + limsup(Xs + ... + X,,)

n>1 n>2

ZX+V. (29)

Since Y = kg a.e. and X} is a real nonzero r.v., (29) can hold only if kg = +o0.

Now [lim sup,,»q Sn = +00| C [sup,,>¢ Sn = 0], and so we are back in the
situation treated in case (i), i.e., F(z) = 0,z € R. This completes the proof
of the theorem.

The preceding result raises several related questions, some of which are
the following. When E(X;) < 0, we saw that the waiting times W, — W in
distribution where W is a (proper) r. v. Thus, in this case, if Q,, is the number
of customers in the queue when the service of the nth customer is completed,
then @,, is an r.v. But then what is the distribution of @,,, and does @, B Q7
Since @, is no more than k iff the completion of the nth customer service time
is no more than the interarrival times of the last k& customers, we get

PlQ, <kl =PW, +b, <apy1+ ...+ anirl (30)
The random variables on the right are all independent, and thus this may
be calculated explicitly in principle. Moreover, it can be shown, since W, B,

W and the b, and a, are identically distributed, that @, B, @ from this
expressior.
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Other questions, such as the distribution of the times that W, = 0, sug-
gest themselves. Many of these results use some properties of convolutions
of the image measures (i.e., distribution functions) on R, and we shall omit
consideration of these specializations here.

All of the above discussions concerned a single-server queueing problem.
But what about the analogous problem with many servers? This is more
involved. The study of these problems has branched out into a separate dis-
cipline because of its great usefulness in real applications. Here we consider
only one other aspect of the above result.

(D) Fluctuation Phenomena

In Theorem 4 we saw that the behavior of the waiting time sequence is gov-
erned by S, = >")'_, X}, the sequence of partial sums of i.i.d. random vari-
ables. In Section 2 we considered the convergence of sums of general inde-
pendent random variables, but the surprising behavior of i.i.d. sums was not
analyzed more thoroughly. Such a sequence is called a random walk. Here we
include an introduction to the subject that will elaborate on the proof of The-
orem 4 and complete it. The results are due to Chung and Fuchs. We refer to
Chung (1974). For a detailed analysis of the subject, and its relation to the
group structure of the range space, see Spitzer (1964).

Thus if X,,,n > 1, are iid., and {S, = Y7, X,n > 1} is a random
walk sequence, let Y = limsup,, X,,. We showed in the proof of Theorem 4
[Case (iii)] that Y = X7 +Y and Y is a “permutation invariant” r.v. Then
this equation implies Y = kg a.e. (= doo possibly), by the Hewitt-Savage
zero-one law. If X; = 0 a.e., then by the i.i.d. condition, all X,, = 0 a.e., so
that S, =0 for all n (and Y = 0 a.e.). If X1 # 0 a.e., then kg = —00 or +00
only. If kg = —o0, then clearly —occ < liminf,, S, < limsup,, S, = —oo, so
that lim, . S, = —00 a.e.; or if kg = 400, then liminf, S, can be +o0, in
which case S, — +oo a.e., or liminf, 5, = —oo < limsup,, S, = +c0. Since
limsup,,(S,) = —liminf,,(—5,), no other possibilities can occur. In the case
—oo = liminf, S, < limsup, S, = +co a.e. (the interesting case), we can
look into the behavior of {S,,n > 1} and analyze its fluctuations.

A state x € R is called a recurrent point of the range of the sequence if for
each € > 0, P[|S, — x| < g,i.0] = 1, i.e,, the random walk visits « infinitely
often with probability one. Let R be the set of all recurrent points of R. A
point y € R is termed a possible value of the sequence if for each £ > 0, there
is a k such that P[|S; — y| < ¢] > 0. We remark that by Cases (i) and (ii)
of the proof of Theorem 4, if E(X;) > 0 or < 0, then lim, ., S, = +00 or
= —oo respectively. Thus fluctuations show up only in the case E(X;) =0
when the expectation exists. However, E(]X1]) < oo will not be assumed for
the present discussion.

Theorem 5 For the random walk {S,,n > 1}, the set R of recurrent
values (or points) has the following description: Fither R =10 or RC R is a
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closed subgroup. In the case R # 0, R = {0} ¢f X1 = 0 a.e., and if X1 # 0
a.e., we have either R =R or else R={nd :n=0,+1,42,...}, the infinite
cyclic group generated by a number d > 0.

Proof Suppose R # 0. If ,, € R and z,, — x € R, then given ¢ > 0, there
is m. such that n > n. = |z, — 21| < . Thus letting S, (w) = x,, we get
|Sh(w) — x| < g, n > n.(w), for almost all w, and hence if I = (z — e,z + ¢),
then P[S,, € I,i.0.] = 1. Since € > 0 is arbitrary, € R, and so R is closed.

To prove the group property, let z € R and y € R be a possible value of
the random walk. We claim that x — y € R. Indeed for each € > 0, choose m
such that P[|S,, — y| < ] > 0. Since x is recurrent, P[|S, — z| < &,i.0.] = 1.
Or equivalently P|[|S, — z| < e, finitely many » only | = 0. Let us consider,
since [|Sy, — z| < ¢ for finitely many n] = [|S, — x| > ¢ for all but finitely
many nj,

P[|S,, — x| < ¢, finitely often ]

> P[|Sm*y| <57‘Sm+n*5m7(m7y)‘ 2257 alanko}, kO > 17

m-+n
= P[|Sm —y| <P Z Xk — (x —y)| < 2e, finitely often |,
k=m-+1
(by the independence of S, and Sy,1, — Sp)- (31)

By hypothesis P||S,, — y| < €] > 0, and this shows that the second factor of
(31) is zero. But by the i.i.d. hypothesis, S,, and S,,~, — S, have the same
distribution. Hence P[|S, — (z —y)| < 2¢, finitely many n] =0, and z—y € R.
Since y = x is a possible value, 0 € R always, and x — (z —y) = y € R.
Similarly 0 — y € R and so R is a group. As is well known, the only closed
subgroups of R are those of the form stated in the theorem,” and R = {0} if
X1 = 0 a.e. In the case that X; # 0 a.e., there is a possible value y € R of
the random walk, and y € R by the above analysis. Thus R = {0} iff X; =0
a.e. It is of interest also to note that unless the values of the r.v. X7 are of
the form nd,n = 0,4+1,+2,..., R = R itself. This completes the proof.

It is clear from the above result that 0 plays a key role in the recurrence
phenomenon of the random walk. A characterization of this is available:

Theorem 6 Let {X,,,n > 1} be i.i.d. random variables on (£2, X, P) and
{8,,n > 0} be the corresponding random walk sequence. If for an ¢ > 0 we

2 Indeed,if R # 0, because it is a closed subgroup of R, let d = inf{z € R,z >
0}. Then d > 0 and there exist d, € R,d, | d. If d = 0, we can verify that
{kdn,k =0,£1,£2,...;n > 1} is dense in R and C R = R = R. If d > 0,then
{nd,n =0,=%1,...} C Rand is all of R. There are no other kinds of groups. Note
that if R # () every possible value is also a recurrent value of the random walk.
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have

Z [1S,] < &] < o0, (32)

then 0 is not a recurrent value of {Sn,n > 0}. If, on the other hand,for every
€ > 0 it is true that the series in (32) diverges, then 0 is recurrent. [It follows
from (36) below that if the sertes (32) diverges for one € > 0, then the same
is true for all £ > 0.]

Proof Tf the series in (32) converges, then the first Borel-Cantelli lemma
implies P[|S,| < ¢, finitely often | = 1 so that 0 € R. The second part is
harder, since the events {[|S,| < €],n > 1} are not independent. Here one
needs to show that P] .] = 1. We consider the complementary
event and verify that it has probability zero, after using the structure of the
S, sequence.

Consider for any fixed k > 1 the event A’fn defined as

AF = [1Sm| <&,|Sn] = &,n > m+ k. (33)

Then Af, is the event that the .S, will not visit (—e, &) after the (m+k—1)th
trial, but visits at the mth trial [flom the (m + 1)th to (m + k — 1)th trials,
it may or may not visit]. Hence A%, A% e Ak 4ok - - - are disjoint events for
m > 1 and fixed k > 1. Thus

S PAL)=k+ > P(AE) <k+ ZZP(A’M)
m=1 m=k+1 =1 j=1
k oo
=Y P U4k ) <2k (34)
=1 j=1

But for each k > 1,]|S,| < &] and [|S,, — S| < 2,1 > m+k] are independent,
and A O [|Spn| < ] N [|Sn — Sm| > 2e,n > m + k], k > 1, since |S,| >
(|8 —Sm|—|Sm|) > 26— = £, on the displayed set. Hence, with independence,
(34) becomes

Pl|Sm| < €]P[|Sn — Sml| > 2e,n > m + k]

Mz iMe

PlSp| <€,1S0 — Sm| > 2e,n>m+ k] < > P(A}) < 2k.
1 m=1

3
[

But
P[|Sy — Sm| > 2e,n>m+ k) = Pl Xpmp + ...+ Xp| > 25,0 > m + K]

= P[|S,| > 2¢,n > k] (by the i.id. condition).
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Hence

> PlSm| <e]- P|Sy| > 22,n > k] < 2k.
m=1

Since we may take the second factor on the left out of the summation, and
since the sum is divergent by hypothesis, we must have P[|S,,| > 2¢,n > k] =0
for each k. Hence taking the limit as k — oo, we get

P||S,| > 2¢, finitely often | = P U ﬂ [|Sn] > 2¢]| =0,
k>1n>k

or P[|S,| < &,i.0.] =1 for any € > 0. This means 0 € R and completes the
proof of the theorem.

Suppose, in the above, the X,, : 2 — R* are iid. random vectors
and S, = > | X;. If | X,| is interpreted as the maximum absolute value
of the k& components of X;, and S, visits (—¢,¢) means it visits the cube
(—e,6)* € R* (ie., |Sn| < &), then the preceding proof holds verbatim for
the k-dimensional random variables, and establishes the corresponding result
for the k-dimensional random walk. We state the result for reference as follows:

Theorem 7 Let {X,,n > 1} be ii.d. k-vector random wvariables on
(2,Z,P) and S, = Y71 X;, So = 0, where k > 1. Then 0 is a recurrent
value of the k-random walk {S,,n > 0} iff for any € > 0,

i P[|Sy] < €] = +cc. (35)
n=1

Moreover, the set of all recurrent values R forms a closed subgroup of the
additive group R®.

The proof of the last statement is the same as that for Theorem 5, which
has a more precise description of R in case k = 1.

If R = 0, then the random walk is called transient, and is termed recurrent,
(or persistent) il R # {).

We can now present a sufficient condition for the recurrence of a random
walk, and this completes the proof of case (iii) of Theorem 4.

Theorem 8 Let S, = X1 +...+ X, {Xpn,n > 1, 4.i.d.} be a (real)
P

random walk sequence on (2, X, P) such that S,/n — 0. Then the walk is
recurrent.

Remark As noted prior to Theorem 3.2, this condition holds for certain
symmetric random variables without the existence of the first moment. On the
other hand, if E(]X1]) < oo, then it is always true by the WLLN (or SLLN).
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We shall establish the result with the weaker hypothesis as stated. The proof
uses the linear order structure of the range of Sy,. Actually the result itself is
not valid in higher dimensions (> 3). It is true in 2-dimensions, but needs a
different method with characteristic functions (cf. Problem 21.)

Proof We first establish an auxiliary inequality, namely, for each £ > 0,

T r
Z P[|Sp| < ke] <2k Z P[|Sm| <g], r k> 1, integers. (36)
m=0 m=0
If this is granted, the result can be verified (using an argument essentially
due to Chung and Ornstein (1962)) as follows: We want to show that (32)
fails. Thus for any integer b > 0, let » = kb in (36). Then

kb kb kb

> Plisnl <22 3¢ 3. Plisml < kel > g 30 P [Isml < ]

m=0 m=0

because (m/b) < k. By hypothesis Sy, /m £ 0, so that P[|Sp|/m <e/b] = 1
as m — oo. By the (C, 1)-summability,

kb
lim L Z P {lsm < i} =1, foreachb>0.
k = m b

Hence (37) becomes on letting k — oo

oo
b 1 [Sml _ b
P > 2 P _2
mgo [Sml <l 25 im 75 Z { m b} 2

Since b > 0 is arbitrary, (32) fails for each ¢ > 0, and so {Sp,n > 1} is
recurrent.

It remains to establish (36). Consider, for each integer m, [me < S, <
(m + 1)e] and write it as a disjoint union:

me < 8, < (m+1)e] = LnJ Ime < S, < (m+ 1) N Ay, (38)
k=0

where Ag = [me < Sy < (m + 1)e] and for k > 1, Ay = [Sk € [me, (m +
1)e), 8; ¢ [me, (m + 1)e),0 < j < k —1]. Thus Ay, is the w-set for which Sy
enters the interval [me, (m + 1)e] for the first time. Then

ZT: P[S, € [me, (m + 1)g)]

n=0

= Z Z P[(S,, € [me, (m+ 1)e) N Ag] [ by (38)]

n=0 k=0



86 2 Independence and Strong Convergence

< ZT: ZH:P[Ak N [(Sn — Sk) € (—=,9)]]
n=0 k=0

[since onAy, me < Sy, Sk < (m+ 1)e = |S, — Si| < €]

72213 AR)P||Sn — Si| < €]

n=0 k=0

(since Ay is determined by Xi,..., X}

and hence is independent of S, — S, for n > k)

= Z Z P(A)P[|Sn—#| < €] (by the i.i.d. property)
n=0k=0

= ZP(An) Z PHSrfk| < E]
n=0 k=n

< Z P|[|S;| < &] (since the Ay, are disjoint). (39)
j=0
Summing for m = —k to k — 1, we get
r r
> Z PI[S,, € [me, (m+1)e ZPS € [ke,ke)] < 2k P[|S;] <.
n=0m=—k 7=0

This proves the inequality (36), and hence also the theorem.

It is now natural to investigate several other properties of recurrent random
walks, such as the distribution of the first entrance time 74 of the process into
a given Borel set A C R, finding conditions on X in order that E(T4) < oo
or = oo, and P[T4 < oo] = 1. Conversely, the recurrence and transience of a
random walk determines the structure of the range space R or R™ on a general
locally compact group G. However, these questions need for their consider-
ation certain analytic tools that we have not yet developed. In particular,
a detailed study of characteristic functions and distribution functions is an
essential first step, and this is undertaken in Chapter 4. It is then necessary
to study further properties of sums of independent but not necessarily iden-
tically distributed random variables, continuing the work of Section 2. Here
the most striking result, which we have not yet touched upon, is the law of
the iterated logarithm. This is a strong limit theorem, based on the existence
of two moments, but for its proof we also need the work on the central limit
problem. Thus the results of this chapter are those obtainable only by means
of the basic techniques. We need to continue expanding the subject. First a
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weakening of the concept of independence is needed. Then one proceeds to
a study of the central limit problem and the (distributional or) weak limit laws.

Exercises

1. (a) Let (2, X, P) be a probability space with {2 having at least three
points. If X : 2 — R is a random variable taking three or more distinct
values, verify that 1, X, X? are linearly independent (in the sense of linear
algebra) but will be stochastically independent only if X is two valued and
X? is a constant with probability 1, in which case 1, X, X? are not linearly
independent. Give an example satisfying the latter conditions. On the other
hand, if X,Y are stochastically independent and not both are constant, then
they are linearly independent, whenever X # 0 and Y # 0.

(b) Consider 2 = {1,2,3,4,5} with P({i}) = 1/5 for i = 1,2,3,4,5.
Is it possible to find events A, B of 2 so that A and B are independent?
The answer to this simple and interesting problem is no. A probability space
(2, X, P) is called a “dependent probability space” if there are no nontrivial
independent events in 2, (2, ¥, P) is called an independent space otherwise.
R. Shiflett and H. Schultz (1979) introduced this concept where they studied
both finite and countably infinite settings for 2. Show that if {2 is finite so
that 2 = {1,2,...,n} with P({¢i}) = 1/n for ¢ = 1,2,...,n then (2, X, P)
is a dependent probability space if and only if n is prime. Additional results
on finite dependent spaces with uniform probabilities can be found in the
article by Shiflett and Schultz and in the work of Eisenberg and Ghosh (1987).
Recently, W.F. Edwards (2004) investigated the case of the space (£2, ¥, P)
with 2 ={1,2,3,...} and the measure P not uniform as follows. Show that
if 2=1{1,2,3,...} with P({i}) = p; > pi+1 = P{i+1}) for all 4 and if

>
pi < Z]h‘%
k=1

then (£2, X, P) is an independent space. The hypothesis in this last statement
is sufficient but not necessary which can be seen by showing if 2 = {1,2,3,...}
withp; = (1—7)r' " tfor 0 <r <1,i=1,2,..., then (2, ¥, P) is an indepen-
dent space. These results give an idea of the interest that is associated with
the question, “Are there necessary and sufficient conditions for a probability
space (£2, X, P) to be dependent?”

(¢) One result without a restriction on the cardinality of 2 can be ob-
tained by showing that (£2, ¥, P) is an independent probability space if and
only if there exists a partition of 2 into four nontrivial events A, B, C and D
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for which P(A)P(B) = P(C)P(D). |A related idea was considered by Chen,
Rubin and Vitale (1997) who show that if the collection of pairwise indepen-
dent events are identical for two measures, then the measures coincide. These
are just some of the ideas associated with independent probability spaces.
This type of inquiry can be continued with a serious investigation.]

2. Let ¢ : Rt — RT be an increasing continuous convex or concave
function such that ¢(0) = 0, with ¢(—z) = ¢(z), and in the convex case
?(2z) < eplx), z>0,0<c<oo. Uf X;:w— R, =12, are two random
variables on (£2, ¥, P) such that E(¢(X;)) < oo, = 1,2, then verify that
E(¢(X1+ X2)) < oo and that the converse holds if X7, Xs are (stochastically)
independent. [Hint: For the converse, it suffices to consider | X3 > ng > 1.
Thus

E(6(| X1 + Xaf)) = E(¢(|Xa] — [Xaf) = E(6(|X1] —n)xa,))
= E(¢([X1] = n))P(An)

for an A, = [|X2| < n],n9 > n > 0. Note that the converse becomes trivial if
X, > 0 instead of the independence condition.]

3. The preceding problem can be strengthened if the hypothesis there
is strengthened. Thus let X;, X2 be independent and E(X;) = 0. If now
¢ : Rt — RT there is restricted to a continuous convex function and
E(¢p(X1 + Xo)) < o0, then E(¢(X2)) < E(p(X1 + Xo)). If E(Xs) = 0
is also assumed, then E(¢(X;)) < E(¢(X: + Xs)),i = 1,2. [Hint: Use
Jensen’s inequality, and the fundamental law of probability, (Theorem 1.4.1)
in ¢p(z) = ¢(E(X2 + 2)) < E(¢p(x + X2)) and integrate relative to dFx, (x),
then use Fubini’s theorem.]

4. (a) Let I = [0,1], B = Borel o-algebra of I, and P = Lebesgue mea-
sure on I. Let X4,..., X, be i.i.d. random variables on (2, ¥, P) with their
common distribution F(z) = P[X; < z] = 2,0 < 2z < 1 (and = 0 for
x < 0, =1 for & > 1). Define ¥} = min(Xy, ..., X,,), and if Y; is defined, let
Yii1 = min{X; >Y; : 1 <k <n}. Then (verify that) V1 < Yo < ... <Y,
are random variables, called order statistics from the d.f. F', and are not in-
dependent. If Fy, . v, is their joint distribution, show that

By, v, (x1,...,25) = {g; [odocarcca,crdin - dtn otherwise
From this deduce that, for0 <a <b<1,i=1,...,n,
Pla<y<b)— — /b y L )"y,
(i—Din—14) )/,

and that for 0 <a <b<c<1,1<i<j<n,
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Pla <Y, <b<Y¥; <

n!
G-I —i—1ln—j)!

/ / Yt (2 — )7 — y2)"  dyadyr.
0<a<y; <b<Ly2<c

[Note that for 0 <y < y2 < ... < yn < 1, for small enough £ > 0 such that
[yi, y; + €] are disjoint for 1 < i < n, we have

Ply; <Y; <y; +&;,1 <i<n]

- Z Ply; <X, <y;+¢;,1 <5 <nj,

all permutations
(i1,0s8n) OF (1,2,

where the X are i.i.d. for each permutation, and that there are n! permuta-
tions.]

(b) Let Zy,...,Z, beii.d, random variables on (£2, ¥, P) with their com-
mon distribution F on R continuous and strictly increasing. If X; = F(Z;),
1 < i < n, show that Xi,...,X, are random variables satisfying the hy-
pothesis of (a). Deduce from the above that if Z; is the ith-order statistic of
(Z1,...,2y,), then

Pz w i nig
[i<$]—m/0 y' (1 —y)" dy.

Similarly, obtain the corresponding formulas of (a) for the Z;-sequence.

5. (a) Following Corollary 1.8 we have discussed the adjunction procedure.
Let X1, X2, ..., be any sequence of random variables on (2, X, P). Let F;(z) =
P[X; < z],i = 1,2,.... Then using the same procedure, show that there is
another probability space (f?, X, 15) and a mutually independent sequence of
random variables Y7,Y5,... on it such that P[Y,, < 2] = F,(z),z € R,n > 1.
[Hint: Since Fy, is a d.f., let p,(A) = [, dF,(x), A C R Borel, X,, = identity
on R. Then (R, B, ui,,) is a probability space and X, is an r.v. with F), as its
d.f. Consider, with the Fubini-Jessen theorem, the product probability space
(2,5, P) = ®,51(Rp, By, 1), where R, =R, B,, = B. If & = (x1,72,...) €

2= RN, let Y;,(@) = nth coordinate of & [= z, = X, (@)]. Note that the Y7,
are independent random variables on (£2, X, P) and P[Y, < z] = p,[X, <
z] = Fo(z),z € Ryn > 1]

(b) (Skorokhod) With a somewhat different specialization, we can make,
the following assertion: Let Xi, X5 ... be a sequence of random variables on
(£2, X, P) which converge in distribution to an r.v. X. Then there is another
probability space (£2', X', P’} and random variables Y7,Y5,... on it such that
Y, — Y ae. and P[X, < 2] = P'[Y, < z],z € Rfor n > 1. Thus X,,,Y,
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have the same distributions and the (stronger) pointwise convergence is true
for the Yj,-sequence. (Compare this with Proposition 2.2.) [Sketch of proof:
Let F,(z) = P[X, <z],F(z) = P[X <z|,z € R,n > 1. If Y},, Y are inverses
to F,, F, then Y, (z) = inf{y € R: F,,(y) > x}; and similarly for Y. Clearly
Y,,, Y are Borel functions on (0,1) — R. Since Y,(x) < y iff F,(y) > =,
we have, on letting 2/ = (0,1), X’ = Borel o-algebra of 2/, with P’ as the
Lebesgue measure, P'[Y,, <y| = P'[z : z < F,(y)] = F.(y); and similarly for
P'[Y < y] = F(y). Since F,,(x) — F(x) at all continuity points of F', let = be a
continuity point of F. If the F}, are strictly increasing, then Y,, = F,, 1 and the
result is immediate. In the general case, follow the argument of Proposition
2.2, by showing that for a < b < ¢ < d,

Y(a) < liminf ¥, (b) < limsup Y, (b) < limsup Y, (¢) < Y(d),

and then setting b = ¢, a continuity point of F; let a T b and d | ¢, so that
Y, (¢) — Y (¢). Since the discontinuities of F are countable and form a set of
P’ measure zero, the assertion follows. Warning: In this setup the Y,, will not
be independent if Y is nonconstant (or X is nonconstant).]

(c) The following well-known construction shows that the preceding part
is an illustration of an important aspect of our subject. Let (§2, ) be a mea-
surable space and B; € X be a family of sets indexed by D C R such that
for ¢, € D,i < j = B; C B;. Then there exists a unique random variable
X : 2 — R such that {w : X(w) < ¢} C B; and {w : X(w) > i} C B
[Verify this by defining X(w) = inf{i € D : w € B;} and that X is measur-
able for X.] If P: X — R is a probability and D is countable, {B;,i € D}
is increasing P a.e. (i.e., for i < j, P(B; — B;) = 0), then the variable X
above satisfies {w : X(w) < i} = B;, a.e. and {w: X(w) > i} = Bf, i € D.
(See e.g., Royden (1968, 1988), 11.2.10.) Suppose that there is a collection
of such families {B',i € D = R,n > 1} C Y. Let X,, be the correspond-
ing random variable constructed for each n, and let F,(z) = P(B?) where
—00 < x < o0. Show that F,, = P o X!, determined by the collection, and
that for nq, ..., 7y, 2; € R,m > 1 one has

PBN---NBy™) = Foy oo (T1, 00, T)

T,

defines an m-dimensional (joint) distribution of (X,,,, ..., X,,,, ) so constructed.
[This construction of distributions will play a key role in establishing a general
family of random variables, or processes, later (cf., Theorem 3.4.10).

(d) Here is a concrete generation of independent families of random vari-
ables already employed by N. Wiener (cf. Paley and Wiener (1934), p. 143),
and emphasized by P. Lévy ((1953), Sec. 2.3). It also shows where the prob-
abilistic concept enters the construction. Let Y7,...,Y,, be functions on (0,1)
each represented by its decimal expansion

[eS)

Y, — Qp v

n — § 107 ’
v=1
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ap,,, taking values 0,1,...,9 each with probability 1—10, independent of one
another. (This is where probability enters!) Then each Y, is uniformly dis-
tributed and they are mutually independent. (Clearly binary or ternary etc.
expansions can be used in lieu of decimal expansion. Unfortunately, no recipe
exists for choosing a,, , here. A similar frustration was (reportedly) expressed
by A. Einstein regarding his inability to find a recipe for a particular Brownian
particle to be in a prescribed region, but only a probability of the event can be
given. [cf., Science, 30 (2005), pp. 865-890, special issue on Einstein’s legacy].)
If {F,,n > 1} is a sequence of distribution functions on R, let F,; ! be the gen-
eralized inverse of F, as defined (in part (b)) above. Let X,, = F,, 1(Y,,),n > 1.
Then {X,,n > 1} is a sequence (of mutually independent) random variables
with distributions F,,. [It is even possible to take a single uniformly distributed
random variable Y by reordering a,, into a single sequence {by,k > 1} so
that Y = Zzozl %, by excluding the terminating decimal expansions which
are countable and hence constitute a set of (Lebesgue) measure zero, and
then X,, = F,;1(Y),n > 1.] It should be observed that in the representation
of X, as a mapping of (¥7,...,Y,) [or of Y| by I,, which is one-to-one, there
are infinitely many representations, while a unique distribution obtains if it
is nondecreasing, such as F; 1. This fact is of interest in applications such as
those implied in part (b) above.
The following example is considered by Wiener (in the book cited above,

p- 146). Let Y7, Y be independent uniformly distributed random variables on
(0,1) and define R = (—log¥3)?, and 6 = 27V, and let X; = Rcosf, Xy =
Rsin§. Then the Jacobian is easily computed, and one has dy, dys = %e_(xf""‘g)
dx1dxs so that X1, X5 are independent normal random variables generated
by Y1,Ys. Extending this procedure establish the following n-dimensional

version. Let Y7,...,Y, be independent uniformly distributed random vari-
ables on (0,1), 8y = 27Y;+; and X; = Rsinf,_;...sinfssinf; Xy =
Rsinf,_1...sin6s cosby,...,X,,_1 = Rsinb,_1cosb,_o,and X,, = Rcosb,,_1

where R = (—2log Yl)%. The Jacobian is much more difficult, [use induc-
tion], but is nonvanishing, giving a one-to-one mapping. (With R = 1, the
transformation has Jacobian to be (—1)"(siny)"(sinf2)™...sinf,_; cosf,
so that it is 1-1 between the open unit n-ball and the open rectangle
0 < 6; <m,i=1,...n.) This shows that the &,, sequence (different from the
F,) can be somewhat involved, but the procedure is quite general as noted by
N. Wiener whose use in a construction of Brownian motion is now legendary,
and was emphasized by P. Lévy later. [In the last chapter we again consider
the Brownian motion construction with a more recent and (hopefully) simpler
method.]

6. (a) (Jessen-Wintner) If {X,,, n > 1} is a sequence of independent count-
ably valued random values on (2, X, P) such that S, = >",_; X — S a.e.,
then the distribution of S on R is either (i) absolutely continuous or singular
relative to the Lebesgue measure or (ii) P[S = j] > 0 for a countable set of
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points j € R, and no mixed types can occur. [Hints: Let G C R be the group
generated by the ranges of the X,,, so that GG is countable. Note that for any
Borel set B, the vector sum G+ B ={z+y: 2 € G,y € B} is again Borel.
If 2y = {w : Splw) — S(w)}, then let A = {w : S(w) € (G+ B) N 2},
and verify that A is a tail event, so that P(A) = 0 or 1 by Theorem 1.7.
Indeed, if g1 — g2 € G, then g, € G + B for some Borel set B iff go € G + B.
Now if S, =8 —(5—-8,) € G, then § — S, € G + B, and conversely. But
S — 8, € 2. Hence A =[5 — S, € G+ B]nN 2, so that A is a tail event,
and P(A) = 0 or 1. This implies either S is countably valued or else, since
P(2) =1, P[S € G+ B] = 0 for each countable B. In this case P[S € B] =0
for each countable B, so that S has a continuous distribution, with range non-
countable. Consequently, either the distribution of S is singular relative to the
Lebesgue measure, or it satisfies P[S € G + B] = 0 for all Borel B of zero
Lebesgue measure. Since G is countable, this again implies P[S € G+ B] =0,
so that P[S € B] = 0 for all Lebesgue null sets. This means the distribution
of S is absolutely continuous. To see what type is the distribution of S, we
have to exclude the other two cases, and no recipe is provided in this result.
In fact this is the last result of Jessen-Wintner’s long paper (1935).]

(b) To decide on the types above, we need to resort to other tricks, and
some will be noted here. Let {X,,,n > 1} be i.1.d. random variables with

P[Xl :+1] = % :P[Xl :71].

Let S, = >, X} /2F. Then S,, — S a.e. (by Theorem 2.6). Also |S| <1 a.e.
Prove that the S distribution is related to that of U — V', where U and V are
independent random variables on the Lebesgue unit interval [0,1], with the
uniform distribution F, i.e., F(z) =0ifx <0,=xif0 <2 <1, and F(z) =1
for z > 1, and hence has an absolutely continuous distribution. [Hints: Note
that if Fyy, Fy are the distributions of U, V| then Fyyy can be obtained by
the image law (cf. Theorem 1.4.1) as a convolution:

Fyiv(z)=PU+V <z] = / X[U+V<2dP
2

:/R/RX[x\1+)\2<x]FU(d)‘l)FV(d)Q)

(since Fyry = Fy - Fy by independence)

:/ Fy(dh) Fy(z — A1).
R
Thus Fyryv is continuous if at least one of Fyy, Fy is continuous. Next verify

that if x = 220:1 €k/2k, where g, = 0, 1 is the dyadic expansion of 0 < z < 1,
then (as in the construction of Problem 5 (d) above)

ple enle) =0} = 5 = pfe - eule) = 1}
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with 1 as the Lebesgue measure. Deduce that U has the same distribution
as the identity mapping I : (0,1) — (0,1) with Lebesgue measure.](Explicit
calculation with ch.f. is easier and will be noted in Exercise 4.11.)

(¢) By similar indirect arguments verify the following: (i) If {X,,,n > 1} is
as above, then S, = > 7_; Xz/3F — S a.e. and S has a singular distribution.
(ii) (P. Lévy) If Y,,,n = 1,2,..., are independent with values in a countable
set C' C R, and if there is a convergent set of numbers ¢, € C such that

> PV, € C—cy] < o0,
n=1

then S =37, V; exists a.e., and S takes only countably many values with
positive probability.

(d) The proofs of Theorems 2.6 and 2.7 used the Kronecker lemma and
the (¢, 1)-summability. Thus the Kolomogorov SLLN (Theorem 2.7) can be
considered as a probabilistic analog of the classical (¢, 1)-summability in the
sense that a sequence {X,,n > 1} of i.i.d. r.v.s on (£2, X, P) obeys the (¢, 1)-
pointwise a.e. iff E(X1) = u € R exists. Since classical analysis shows that
(¢, 1)-summability implies (¢, p)-summability for p > 1, one can expect a sim-
ilar result for i.i.d sequences. In fact the following precise version holds. Let
p, it € R, p > 1. Verify the following equivalences for i.i.d. r.v.s:

(i) {X,,n > 1} obeys the SLLN,

(i) B(X1) = g,

(iii) {X,,n > 1} obeys (¢, 1)-summability a.e. with limit y,

(iv) {X,,n > 1} obeys (¢, p)-summability a.e. with limit ,

1 = kE+p—1
e, lim —— "I x, = nae,
ie., lim (ner) ( ! ) k= a.e

k=0
n

(v} {X,,,n > 1} obeys Abel mean a.e. with value u,

xD
. . i
ie., Olgu)\l%l(l —-A) ;)\ X; =pae.
[Hints: The classical theories on summability imply that (i) = (iii) = (iv)
= (v) and Theorem 2.7 gives (i) < (ii). So it suffices to show (v) = (ii).
For ordinary sequences of reals, Abel convergence does not imply even (¢, 1)-
convergence. (Here the converse holds if the sequence is bounded in addition,
as shown by J.E. Littlewood.) But the i.i.d. hypothesis implies the converse
a.e. as follows. Using the method of Theorem 2.9, called symetrization, let
X: = X, — X, where X, and X are ii.d. (one may use enlargement of
the basic probability space as in the proof of 2.9, where X is denoted as Z,
there), and (v) can be expressed if 1 —A=1/m,m > 1 as
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e 1
: TNVS oy, g, —
A o 20— )X == =0,
=
or alternately
>0

. 1 ilog(1—1/m s : 1 . —j/m s
W}EHOOEZ& (1=1/m) X5 — lim —Ze il Xj=0ae.

m—oo M

i=1 j=1
Let o -
1 . 1 .
Y, = — Zeﬂ/ij, T = — Z e I/mXs.
m j=1 j=m+1

Then Y, + Z,, — 0 a.e. as m — o0, and Y,,,, Z,, are independent. Verify that
for each € > 0, P[|Z,,] > €] — 0 as m — oo. Then using Slutzky’s Theorem
and stochastic calculus (Problems 9(b) and 11(c) below) suitably conclude
that Y;, — 0. Next Y,, =Y}, — %an — 0 and finally that X2 /m — 0 also
as m — o0. [This needs some more work!] Then by the Borel-Cantelli lemma,
deduce that E(|X1|) < oo, as in the proof of Theorem 3.7. Hence SLLN holds.
Thus the equivalence follows. The above sketch is a paraphrase of T. L. Lai
(1974). Can we replace mutual independence here by pairwise independence,
as in Corollary 3.3 if we only ask for WLLN?|

7. This problem illustrates the strengths and limitations of our a.e. con-
vergence statements. Let (£2,3, P) be the Lebesgue unit interval, so that
2 =1(0,1) and P = Lebesgue measure on the completed Borel o-algebra X.
If w € 2, expand this in decimals: w = 0.z122 ... so that if X, (w) = x,, then
Xn: 2 —{0,1,...,9} is a r.v. Verify that {X,,n > 1} is an i.i.d. sequence
with the common distribution F, given by F(y) = (k-+1)/10,for k < y < k+1,
k=0,1,...,9=0ily < 0; =1 for y > 9. Let dx(-) be the Dirac delta func-
tion, and consider 0x(X,). Then P[0x(X,) = 1] = 1/10, P[6x(X,) = 0] =
9/10, and 63 (X, ),n > 1, areiid., foreach K =0,1,...,9. If k1, ko, ...,k are
a fixed r-tuple of integers such that 0 < k; < 9, define (cf. Problem 5 (d) also)

En,r = 5k1 (Xrn)5k2 (XrnJrl) cee 5k,~(Xrn+r71)~

Show that the £, ,,n > 1, are bounded uncorrelated random variables for
which we have (1/m)>." &,, — 1/10" a.e. as m — oo (apply Theorem

n=1
3.4), r = 1,2,.... This means for a.a. w € {2, the ordered set of numbers
(k1,...,k,) appears in the decimal expansion of w with the asymptotic rela-

tive frequency of 1/10". Every number w € {2 for which this holds is called a
normal number. It follows that > | &, , — 00 as m — oo for a.a.(w) (as in
the proof of Theorem 4.4); thus €, , = 1 infinitely often, which means that the
given set (k1, ..., k) in the same order occurs infinitely often in the expansion
of each normal number, and that almost all w € 2 are normal. [This fact was
established by E. Borel in 1909.] However, there is no known recipe to find
which numbers in (2 are normal. Since the transcendental (r —e) € (0, 1), it
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is not known whether = — e is normal; otherwise it would have settled the old
question of H. Weyl: Is it true or false that in the decimal expansion of the
irrational number 7, the integers 0,1, ...,9 occur somewhere in their natural
order? This question was raised in the 1920’s to counter the assertion of the
logicians of Hilbert’s school asserting that every statement is either “true” or
“false,” i.e., has only two truth values. As of now we do not know the definitive
answer to Weyl’s question, even though 7 has been expanded to over 10° dec-
imal places and the above sequence still did not appear! [See D. Shanks and J.
W. Wrench, Jr. (1962). Math. Computation 16, 76-89, for such an expansion
of m. On the other hand, it is known that 0.1234567891011121314151617...,
using all the natural numbers, is normal. Recently two Japanese computer
scientists seem to have shown that the answer is ‘yes’ after expanding 7 for
several billions of decimal places. See, e.g. J.M. Borwain (1998), Math. Intel-
ligencer, 20, 14-15.]

8. The WLLN of Theorem 3.2 does not hold if (even) the symmetric
moment does not exist. To see this, we present the classical St. Petersburg
game, called a “paradox,” since people applied the WLLN without satisfying
its hypothesis. Let X be an r.v. such that

1
PX =2"= o forn>1,

on (£2, X, P). Let {X,,,n > 1} be i.i.d. random variables with the distribution
of X. If S, = >;_; X, show that S,/n /> @, as n — oo, for any « € R,
either in probability or a.e. for any subsequence. (Use the last part of Theo-
rem 3.7.) The game interpretation is that a player tosses a fair coin until the
head shows up. If this happens on the nth toss, the player gets 2™ dollars. If
any fixed entrance fee per game is charged, the player ultimately wins and the
house is ruined. Thus the “fair” fee will have to be “infinite,” and this is the

paradox! Show however, by the truncation argument, that S, /(nlog, n) L2
as n — 00, where log, n is the logarithm of n to base 2. If the denominator is

replaced by h(n) so that (nlog,n)/h(n) — 0, then S, /h(n) £ 0 and a.e. In
fact show that for any sequence of random variables {Y,,,n > 1} there exists
an increasing sequence k, such that P[|Yy,| > k,,4.0.] =0, so that ¥}, /k, — 0
a.e. Thus nlogy n is the correct “normalization” for the St. Petersburg game.
(An interesting and elementary variation of the St. Petersburg game can be
found in D.K. Neal, & R.J. Swift, (1999) Missour: J. Math. Sciences, 11, No.
2, 93-102.)

9. (Mann-Wald). A calculus of “in probability” will be presented here.
(Except for the sums, most of the other assertions do not hold on infinite
measure spaces!) Let {X,,,n > 1} and {Y,,,n > 1} be two sequences of random
variables on (£2, ), P). Then we have the following, in which no assumption
of independence appears:
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@ X, 2 X, v, 5v=Xx,+Y, 2 X4V, and X,.,, & XV

(b) If f : R* — R is a Borel function such that the set of disconti-
nuities of f is measurable and is of measure zero relative to the Stieltjes
measure determined by the d.f. Fxy of the limit vector (X,Y) of (a), then
F( X, Yo L (X,Y) under either of the conditions: (i) X, Lt X, Y, Ey
or (i) aX, + gY, £ aX + BY for all real o, 3. If f is continuous, then
strengthen this to the assertion that f(Xp,,Ys) il F(X,Y) if condition (i)
holds. [Hint: For (ii), use Problem 5(b) and the fact that (X,,Ys) A (X,7)
iff X, + 8Y, 2> aX + BY for all real a, 3]

10. Suppose that for a sequence {X,,n > 1,X} in LY(P) we have

X, L X. Show it is true that E(X]) < liminf, E(|X,]), and if, further,
the set is uniformly integrable, then E(X) = lim,, £(X,,). [Hint: Use Problem
5 (b) and the image probability Theorem 1.4.1. This strengthening of Vi-
tali’s convergence theorem (and Fatou’s lemma) is a nontrivial contribution
of Probability Theory to Real Analysis!|

11. (a) If X is an r.v. on (12, X, P), then p(X), called a median of the
distribution of X, is any number which satisfies the inequalities
1

PIX <p(X)]> 5, PIX > (X)) > 5.

Note that a median of X always exists [let u(X) = inf{a € R: P[X < o] > 1}
and verify that p(X) is a median and p(aX +b) = au(X) + b, for a,b € R].
If X, 2 ag, ag € R, show that (X)) — ag

(b) A sequence {X,,,n > 1} of random variables is bounded in probability
if for each € > 0 there is an ng[= ng(c)] and a constant My[= My(<)] > 0 such

that P[|X,| > M,] < ¢ for all n > ng. Show that il X, B X and Y, L)

are two sequences of random variables, then X,,Y,, Lt 0, X,, +Y, B x , as
n — oo and {X,,n > 1} is bounded in probability. If {X,,n > 1} has the

latter property and Y, Lt 0, then X, Y, L0asn — o
(¢) (Cramér-Slutsky) Let X, B X, Y, 2 a, where a € R and n — .

Then X,,Y, B, aX,and if a £ 0, X,,/Y, B, X/a, so that the distributions of

aX and X/a are F(x/a) and F(az) for a >0, 1 — F(z/a) and 1 — F(ax) for

a < 0. Here again the sequences {X,} and {Y,,} need not be independent.
(d) Let {X,,n > 1} and {Yy,,n > 1} be two sequences of random variables

on (£2, ¥, P) and oy, | 0, 5, | 0 be numbers, such that (X, —a)/a, 2 X and
(Y, —b)/Bn L Y, where a,b € R, b # 0. Show that (X, —a)/anYs L X/b.
All limits are taken as n — ooc.

12. (Kolmogorov). Using the method of proof of Theorem 2.7, show that
if {X,,,n > 1} is an independent sequence of bounded random variables on
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(2,3, P), common bound M and means zero, then for any d > 0 we have,
with Sn = 22:1 Xk,

2
_ (2M+d)

Pl < —_
Ll<nka§nsk| = d} = Var(Sy)

Deduce that if Var(S,) — oo, then for each d > 0, P[|S,,| < d] — 0asn — ooc.

13. (Ottaviani). Let {X,,n > 1} be independent random variables on
(2,%,P) and € > 0 be given. If S, = > Xp, P[|[Xp + ...+ X,,| < ¢] >
n > 0,1 <k <n, show that

1
P { max |Sg| > s} < ZP[S,) > 2.
1<k<n n 2

[Note that if A; = [|S1] > €], and for & > 1, Ax = [|Sk] > &,|5;] < ¢,1 <
§ <k —1], then [|S,] > /2] D Up(Ax N [| X1 + ... + Xp| < €/2]). The
decomposition of [maxy<y, [Si| > €] is analogous to that used for the proof of
Theorem 2.5.]

14. We present two extensions of Kolmogorov’s inequality for applications.
(a) Let X1, ..., X, be independent random variables on ({2, X, P) with means
zero and variances o3, ... ,0-. Then the following improved one-sided inequal-
ity [similar to that of Cebysev’s; this improvement in 1960 is due to A. W.
Marshall] holds: for £ > 0, and S = Zle X;, one has

> i1 1 En: 2
P{maxSkzs}<—5<— O
1<k<n 24> _jor & Pt
[Hint: Consider f:R" — R defined by f(z1,...2n) =[Sy (cxi +07)/(* +
S 02))?, and evaluate E(f(X,...,X,)) with the same decomposition as

in Theorem 2.5. If n = 1, this reduces to Problem 6 (a) of Chapter 1.]

(b) Let {X,,n > 1} be independent random variables on (2,3, P) as
above, with zero means and {o2,n > 1} as respective variances. If ¢ > 0,
S, = ZZ:I X, and a1 > as > ... — 0, show that with simple modifications
of the proof of Theorem 2.5,

1 1 <
P {sup a2 |Sp| > 5} < = Z(an — Qpt1) Zaz.
n>1
> k=1

n>1

[This inequality was noted by J. Héjek and A. Rényi.]
(¢) If in (b) we take ag = (ng+k—1)"2 for any fixed but arbitrary ng > 1,
deduce that
EN 11 &, o2
P — > <= | = °+ 2z
o S e (g E 3

nzno n>no+1
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Hence, if 3 . (02 /n?) < oo, conclude that the sequence {X,,,n > 1} obeys
the SLLN. (Thus we need not use Kronecker’s lemma.)

15. In some problems of classical analysis, the demonstration is facilitated
by a suitable application of certain probabilistic ideas and results. This was
long known in proving the Weierstrass approximation of a continuous function
by Bernstein polynomials. Several other results were noted by K. L. Chung for
analogous probabilistic proofs. The following is one such: an inversion formula
for Laplace transforms. Let X1(A),..., X, (A) be iid. random variables on
(£2, X, P), depending on a parameter A > 0, whose common d.f. F' is given
by F(z) = 0if 2 < 0; and = A f e™Mdt if > 0. If S,(A) = D7 1 Xi(N),
using the hints given for Problem 6(b) show that the d.f. of S,,()) is F},, where
Fo(z)=0forz <0,and = [\"/(n—1)]] [ t"~'e=*dt for z > 0. Deduce that
E(S,(\) = n/A, VarS,(\) = n/A%, so that S, (n/x) L ozasn— oo Using
the fundamental law of probability, verify that for any bounded continuous
mapping f : Rt — R or f Borel satisfying E(f(S,))? < ko < oo (cf,,
also Proposition 4.1.3 later) then E(f(S,)) — E(f(z)) = f(z), by uniform
integrability, (use Scheffé’s lemma, Proposition 1.4.6), where

B = ST [T
" C(n—1T Jy dxl
Hence prove, using Problem 6(b) hat for any continuous f € L2(RY) if f
is the Laplace transform of f [f(u) = [;¥ e “ f(t)dt,u > 0] one has the
inversion

. —n\"! 1 n [dv'f
f(t)nlﬂléo<7> RO <d)\” 1)( ) e

the limit existing uniformly on compact intervals of R™. [Actually f can be
in any LP(R1), 1 < p < oo, not just p = 2. The distribution of X; above is
called the exponential, and that of S, (), the gamma with parameters (n, A).
More d.f.s are discussed in Section 4.2 later.] The result above is the classical
Post-Widder formula.

16. Let {X,,n > 1} be independent random variables on ({2, X, P) and
Sy, = 22:1 Xi. Then S, — S a.e. iff S, L, 5. This result is due to P. Lévy.
(We shall prove later that S, LS can be replaced here by S, Bg , but more
tools are needed for it.) [ Hints: In view of Proposition 2.2, it suffices to prove

the converse. Now S, — S Lo= {S,,n > 1} is Cauchy in probability, so for
1 > & > 0, thereis an ng[= ng(e)] such that m,n > ng = P[|S,—Sn| > ¢] <e.
Thus P[|Sk — Sm| > €] > 1—¢ for all m < k < n. Hence by Problem 13 applied
to the set {X;,7 > m > no}, we get

1
P[ max |k — S| > 2] < ——P||Sy — S| > ] < ——.
m<k<n 1—¢ — &
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This implies upon first letting n — oo, and then letting m — oo, since the
0 < e < 1 is arbitrary, that {Sg,k > 1} is pointwise Cauchy and hence con-
verges a.e.

17.(P. Lévy Inequalities). Let X;,...,X,, be independent random vari-
ables on (§2, X, P) and S; = "7 _, Xj. If o(X) denotes a median (cf. Problem

1) of X, show that for each £ > 0 the following inequalities obtain:

(a) [maxlgjgn(Sj — p(S; — Sp)) > €] <2PI[S, > ¢l;

(b) Plmaxi<;<n |S; — p(S; — Sn)| > €] <2P[|S,] > ¢l.
[ Hints: Use the same decomposition for max as we did before. Thus, let
A; =[S; — Sn < u(S; — S,)], so that P(4;) > 1,1 <j<n, and

B; =[S5; — u(S; — Sp) > g, for the first time at j].

Then B; € 0(X1,...,X;),A; € 0(X;41,...,X,), and they are independent;
Uj=1 Bj = B = [max(S; — u(S; — Sr)) > €], a disjoint union. Thus P[S,, >
g] > Z;;l P(B; N A;) > $P(B), giving (a). Since u(—X) = —u(X), write
—X, for X;,1 <j <n,in (a) and add it to (a) to obtain (b). Hence if the X;
are also symmetric, so that u(X) = 0, (a) and (b) take the following simpler
form:

(a’) P[maxlgjgn S]' > 6] < QP[Sn > 6];

(b") Plmaxicjen 55| = ¢] < 2P([S,] = el

18. Let {X,;,n > 1} be independent random variables on ({2, X, P) with
zero means and variances {o2,n > 1} such that Y ;02 /b2 < oo for some
0 < by < bpser / 00. Then (1/b,) Y71 X — 0 ae. | Hint: Follow the
proof of Theorem 3.6 except that in using Kronecker’s lemma (Proposition
3.5) replace the sequence {n},>1 there by the {b,},>1-sequence here. The
same argument holds again.]

19. Let {X,,n > 1} be iid. and be symmetric, based on (£2, ¥, P). If
Sp = > p_1 Xy, show that for each £ > 0,

> P[Su| > nel < 00 = {Xn,n > 1} C LX(P @ZZP\X|>H,
n>1 n>1j=1

[Hints: By Problem 17b” and the i.i.d. hypothesis, we have, with Sy = 0 = X,

Pl[|Sp] > €] ZP{maX 1S5 >5} >P{max | X5 >25}
0<ji<n 0<j<n

—1-[] Pix; <22, (40)

1

n

M
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since [max;<y, |S;| > €] O [max;<p |X;| > 2¢]. Summing and using the hy-
pothesis with n for ¢, and a, = P[X; < 2n] in (40), we get

oo>z 1foz =

(1—ap)l+ay+...+a

|M8

) n—1 J

=Y P[IX1] = 20) Y [ PIX:| < 2n]
n=1 j=0 i=0
o0 n—1

= Pl X > 2n P |max | X;| < 2n
5 P12 203 P e X <

—i (1 =2P[5;| = j]) [ by (40)]. (41)
7=0

The convergence of the given series implies P[|S,| > ne] — 0 as n — oo,
and then by the (C,1)-summability the second term in (41) — 1. Hence
Yoo°  nP[|X1| > 2n] < oo. But this is the same as the last series (by i.i.d.).
Rewriting P[|X1| > 2n] as ) 5, P[k < |X1] < k+1] and changing the order
of summation one gets X; € L?(P), and by the i.i.d. hypothesis

{X,,n>1} C L*(P).

The converse here is similar, so that the last equivalence follows. It should
be remarked that actually all the implications are equivalences. The difficult
part (the first one) needs additional computations, and we have not yet devel-
oped the necessary tools for its proof. This (harder) implication is due to Hsu
and Robbins (1947), and we establish it later, in Chapter 4.] Show, however,
what has been given is valid if the symmetry assumption is dropped in the
hypothesis.

20. In the context of the preceding problem, we say [after Hsu and Rob-
bins (1947)] that a sequence {Y,,,n > 1} of random variables on ({2, X, P)
converges completely if for each € > 0, (*)3_>"_| P[|Y,,| > €] < co. Show that
complete convergence implies convergence a.e. Also, verify that (*) implies
that the a.e. limit of Y, is necessarily zero. Establish by simple examples
that the converse fails. [For example, consider the Lebesgue unit interval and
Y, = nX[0,1/n].] Show, however, that the converse implication does hold if
there is a probability space (£2/, X, P'), a sequence {Z,,n > 1} of indepen-
dent random variables on it such that P[Y,, < z] = P'[Z, < z],z € R,n > 1,
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and Z,, — 0 a.e. Compare this strengthening with Problem 5. [Hint: Note
that limsup,, Z, = 0 a.e., and apply the second Borel-Cantelli lemma.]

21. The following surprising behavior of the symmetric random walk se-
quence was discovered by G. Pdlya in 1921. Consider a symmetric random
walk of a particle in the space RF. If k= 1, the particle moves in unit steps
to the left or right, from the origin, with equal probability. If £ = 2, it moves
in unit steps in one of the four directions parallel to the natural coordinate
axes with equal probability, which is 1/4. In general, it moves in unit steps in
the 2k directions parallel to the natural coordinate axes each step with prob-
ability 1/2k. Show that the particle visits the origin infinitely often if £ = 1
or 2, and only finitely often for k = 3. (The last is also true if k > 3.) [Hints:
If e1, ..., e, are the unit vectors in R¥, so that e; = (0,...,1,0,...,0) with 1
in the ith place, and X, : 2 — R* are i.i.d., then

PlX, =e] = PlX, = —e;] = 1/2k,i=1,... k.

Let S, = Z?:l X;. Then if £ =1, the result follows from Theorem 4.7, and
if k = 2 or 3, we need to use Theorem 4.8 and verify the convergence or
divergence of (35) there. If p, = P[|S,,| = 0], so that the particle visits 0 at
step n with probability p,, then the particle can visit 0 only if the positive
and negative steps are equal. Thus p, = 0 for odd n and p2, > 0. However,
by a counting argument (“multinomial distribution "), we see that

S () o (EG) - ()

Jj= j=0

Using Stirling’s approximation, n! ~ +/2xnn"e™", one sees that p, ~ 1/n,
and so Zn21 Pon, = 00, as desired. If k = 3, one gets by a similar computation

) (2n)! LT
P = ) [i%1(n — i — 5)!]2 (2'3>

0<i,j<n
+j<n

3 n! RAYAANS
e N ) \n ) 2

Again simplification by Stirling’s formula shows that pa, ~ 1/n%2, so that
Y on>1DP2n < o0 (in fact, the series is approximately = 0.53), and Sy, is not
recurrent. By more sophisticated computations, Chung and Fuchs in their
work on random walk showed that the same is true if the X, are just i.i.d.,
with E(X1) = 0,0 < E(]X1|?) < o0, and no component of X; is degenerate.
This problem also shows an intimate relation between the structure of random
walks and the group theoretical properties of its range (or state space), and
deeper connections with convolution operators on these spaces or the group.
For a recent contribution on the subject, and several references to the related
literature on the problems, the reader is referred to Rao (2004a).]
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