
Chapter 2 

BASIC PRINCIPLES OF THE OBJECT-
ORIENTED PARADIGM 

1. ABSTRACTION 

One of the most appreciated advantages of object-oriented versus other 
modem programming paradigms is the direct support for each of the most 
important and used principles of abstraction. The Dictionary of the Object 
Technology defines abstraction as: "Any model that includes the most 
important, essential, or distinguishing aspects of something while suppressing 
or ignoring less important, immaterial, or diversionary details. The result of 
removing distinctions so as to emphasize commonalities." Abstraction is an 
effective way to manage complexity, as it allows for concentrating on relevant 
characteristics of a problem. Abstraction is a very relative notion; it is domain 
and perspective dependent. The same characteristics can be relevant in a 
particular context and irrelevant in another one. 

The abstraction principles used in the object-oriented approach are: 
Classification/instantiation, aggregation/decomposition, generalization/ 
specialization and grouping/individualization. By providing support for the 
abstraction principles, the object-oriented paradigm makes it possible to use 
conceptual modeling as an efficient tool during the phases of analysis and 
design. Conceptual modeling can be defined as the process of organizing our 
knowledge of an application domain into hierarchical rankings or orderings of 
abstraction, in order to better understand the problem in study [Tai96]. 

Classification is considered to be the most important abstraction principle. 
It consists of depicting from the problem domain things that have similarities 



14 SOFTWARE ENGINEERING TECHNIQUES 

and grouping them into categories or classes. Things that fall into a 
class/category have in common properties that do not change over time. 
Instantiation is the reverse operation of classification. It consists of creating 
individual instances that will fulfill the descriptions of their categories or 
classes. The majority of object-oriented languages provide capabihties for 
creating instances of classes/categories. 

Figure 2-1 shows an example of classification and instantiation. Concept 
Tractor represents a set of properties that are typical for a tractor, regardless 
of their brand, horsepower, etc. Therefore, concept Tractor represents a 
classification. Bob's Tractor is a particular tractor that has some particular 
properties, the most important being that it is Bob's property. Therefore, 
concept Bob's Tractor represents an instantiation. 

Classification and Instantiation 

Tractor 

/ \ 

John's Tractor Bob's Tractor 

Figure 2-1, Examples of classification and instantiation. 

The second abstraction principle is aggregation. Aggregation refers to the 
principle that considers things in terms of part-whole hierarchies. Concepts in 
a problem domain can be treated as aggregates (i.e., composed of other 
concepts/parts). A part itself can be considered as composed of other parts of 
smaller granularity. Decomposition is the reverse operation of aggregation', it 
consists of identifying parts of an aggregation. Object-oriented languages 
provide support for aggregation/decomposition by allowing objects to have 
attributes that are objects themselves. Thus, complex structures can be 



BASIC PRINCIPLES OF THE OBJECT-ORIENTED PARADIGM 15 

obtained by using the principle of aggregation. Note that some authors use the 
term composition instead of aggregation, 

Figure 2-2 shows an example of aggregation and decomposition. Concept 
Tractor can be considered as an aggregation/composition of other concepts 
such as Chassis, Body, and Engine. Concept Body can be considered as one of 
the parts composing a more complex concept such as Tractor. 

Aggregation and Decomposition 

Tractor 

^ 1 \ 
Chasis Body Engine 

/ \ 

Wheels Doors Hood 

Figure 2-2. Example of aggregation and decomposition. 

The third abstraction principle is generalization. Generalization refers to 
the principle that considers construction of concepts by generalizing 
similarities existing in other concepts in the problem domain. Based on one or 
more given classes, generalization provides the description of more general 
classes that capture the common similarities of given classes. Specialization is 
the reverse operation of generalization. A concept A is a specialization of 
another concept B if A is similar to B and A provides some additional 
properties not defined in B. 



16 SOFTWARE ENGINEERING TECHNIQUES 

Object-oriented languages provide support for generalization/ 
specialization as they allow for creating subclasses of exiting classes and/or 
creating more general classes (superclasses) of existing classes. Creating a 
subclass of an existing class corresponds to specialization and creating a 
superclass of an existing class corresponds to generalization. It is important to 
note that concept A is a generalization of concept B if and only if B is a 
specialization of concept A [Ped89]. Figure 2-3 shows an example of 
generalization and specialization, 

Generalization and Specialization 

Vehicle 

/ \ 

Truck Tractor 

/ \ 
6 Cylinder 8 Cylinder 

Figure 2-3. Example of generalization and specialization. 

Concept Truck is a specialization of concept Vehicle, This is because 
Truck has all the properties of concept Vehicle and some additional ones that 
make it a special Vehicle, In reverse, concept Vehicle is a generalization of 
concept Truck, as all trucks are vehicles. 

The fourth abstraction and perhaps the least obvious, is grouping [Tai96]. 
In conceptual modeling, often a group of concepts needs to be considered as a 
whole, not because they have similarities but because it is important that they 
be together for different reasons. Object-oriented languages provide a 
mechanism for grouping concepts together such as sets, bags, lists, and 



BASIC PRINCIPLES OF THE OBJECT-ORIENTED PARADIGM 17 

dictionaries. Individualization is the reverse operation of grouping. It consists 
of identifying an individual concept selected among other concepts in a group. 
Individualization is not as well established as a form of abstraction [Tai96]. 
Figure 2-4 shows an example of grouping and individualization. 

Grouping and Individualization 

Tractors 

/ \ 
Red Tractors G^cn Tractors 

My Tractor Tom's Tractor 

Figure 2-4, Example of grouping and individualization. 

All tractors used in a farm can be grouped in one category regardless of 
their brand, color, horsepower, and year of production, and be represented by 
one concept such as Tractors, In case we need to use one of them with a 
certain horsepower, then we need to browse the set of tractors and find that 
particular individual that satisfies our needs. In this case, we have 
individualized one element of the set based on some particular criterion. 
When we say Tom's Tractor, we have used the ownership as criterion for 
individualizing one of the tractors, the one that belongs to Tom. 

2. ENCAPSULATION 

The Dictionary of the Object Technology defines encapsulation as: "The 
physical location of features (properties, behaviors) into a single black box 
abstraction that hides their implementation behind a public interface." 



18 SOFTWARE ENGINEERING TECHNIQUES 

Often, encapsulation is referred to as "information hiding." An object 
"hides" the implementation of its behavior behind its interface or its "public 
face." Other objects can use its behavior without having detailed knowledge 
of its implementation. Objects know only the kind of operations they can 
request other objects to perform. This allows software designers to abstract 
from irrelevant details and concentrate on what objects will perform. 

An important advantage of encapsulation is the elimination of direct 
dependencies on a particular implementation of an object's behavior. The 
object is known from its interface and clients can use the object's behavior by 
only having knowledge of its interface. The particular implementation of an 
object's interface is not important. Therefore, the implementation of the 
object's behavior can change any time without affecting the object's use. 
Encapsulation helps manage complexity by identifying a coherent part of this 
complexity and assigning it to individual objects. 

The fact that an object hides the implementation of its behavior by 
exposing only its "public face" could be beneficial to other objects that need 
its behavior. The "interested" objects could consider more than one option 
while looking for a specific functionality that satisfies their needs. They need 
only to "examine" the interfaces of candidate objects. Objects with similar 
behavior could serve as substitutes to each other. 

3. MODULARITY 

The Dictionary of the Object Technology defines modularity as: "The 
logical and physical decomposition of things (e.g., responsibilities and 
software) into small, simple groupings (e.g., requirements and classes, 
respectively), which increase the achievements of software-engineering 
goals." 

Modularity is another way of managing complexity by dividing large and 
complex systems into smaller and manageable pieces. A software designing 
method is modular if it allows designers produce software systems by using 
independent elements connected by a coherent, simple structure. [Mey88] 
defines a software construction method to be modular if it satisfies the five 
criteria: 

Modular Decomposabiiity; a software construction method satisfies 
Modular Decomposabiiity if it helps in the task of decomposing a software 
problem into a small number of less complex sub-problems, connected by a 
simple structure, and independent enough to allow further work to proceed 
separately on each of them. 



BASIC PRINCIPLES OF THE OBJECT-ORIENTED PARADIGM 19 

Modular Composability; a software construction method satisfies 
Modular Composability if it favors the production of software elements which 
may then be freely combined with each other to produce new systems, 
possible in an environment quite different from the one in which they were 
initially developed. 

Modular Understandability; a software construction method satisfies 
Modular Understandability if it helps produce software in which each module 
can be understood without having to examine other interrelated modules. 

Modular Continuity; a software construction method satisfies Modular 
Continuity if a small change in the requirements of will impact just one or a 
small number of modules. 

Modular Protection; a software construction method satisfies Modular 
Protection if the effect of an exception occurring at runtime will impact only 
the corresponding module or a few neighboring modules. 

The concept of Modularity and the principles for developing modular 
software in the object-oriented approach are encapsulated in the concept of 
class. Classes are the building blocks in the object-oriented paradigm. 



http://www.springer.com/978-0-387-28170-4




