Chapter 2

BASIC PRINCIPLES OF THE OBJECT-
ORIENTED PARADIGM

1. ABSTRACTION

One of the most appreciated advantages of object-oriented versus other
modern programming paradigms is the direct support for each of the most
important and used principles of abstraction. The Dictionary of the Object
Technology defines abstraction as: “Any model that includes the most
important, essential, or distinguishing aspects of something while suppressing
or ignoring less important, immaterial, or diversionary details. The result of
removing distinctions so as to emphasize commonalities.” Abstraction is an
effective way to manage complexity, as it allows for concentrating on relevant
characteristics of a problem. Abstraction is a very relative notion; it is domain
and perspective dependent. The same characteristics can be relevant in a
particular context and irrelevant in another one.

The abstraction principles used in the object-oriented approach are:
Classification/instantiation, aggregation/decomposition, generalization/
specialization and grouping/individualization. By providing support for the
abstraction principles, the object-oriented paradigm makes it possible to use
conceptual modeling as an efficient tool during the phases of analysis and
design. Conceptual modeling can be defined as the process of organizing our
knowledge of an application domain into hierarchical rankings or orderings of
abstraction, in order to better understand the problem in study [Tai96].

Classification is considered to be the most important abstraction principle.
It consists of depicting from the problem domain things that have similarities

14 SOFTWARE ENGINEERING TECHNIQUES

and grouping them into categories or classes. Things that fall into a
class/category have in common properties that do not change over time.
Instantiation is the reverse operation of classification. It consists of creating
individual instances that will fulfill the descriptions of their categories or
classes. The majority of object-oriented languages provide capabilities for
creating instances of classes/categories.

Figure 2-1 shows an example of classification and instantiation. Concept
Tractor represents a set of properties that are typical for a tractor, regardless
of their brand, horsepower, etc. Therefore, concept Tractor represents a
classification. Bob’s Tractor is a particular tractor that has some particular
properties, the most important being that it is Bob’s property. Therefore,
concept Bob’s Tractor represents an instantiation.

Classification and Instantiation

Tractor

John's Tractor Bob's Tractor

Figure 2-1. Examples of classification and instantiation.

The second abstraction principle is aggregation. Aggregation refers to the
principle that considers things in terms of part-whole hierarchies. Concepts in
a problem domain can be treated as aggregates (i.e., composed of other
concepts/parts). A part itself can be considered as composed of other parts of
smaller granularity. Decomposition is the reverse operation of aggregation; it
consists of identifying parts of an aggregation. Object-oriented languages
provide support for aggregation/decomposition by allowing objects to have
attributes that are objects themselves. Thus, complex structures can be

BASIC PRINCIPLES OF THE OBJECT-ORIENTED PARADIGM 15

obtained by using the principle of aggregation. Note that some authors use the
term composition instead of aggregation.

Figure 2-2 shows an example of aggregation and decomposition. Concept
Tractor can be considered as an aggregation/composition of other concepts
such as Chassis, Body, and Engine. Concept Body can be considered as one of
the parts composing a more complex concept such as Tractor.

Aggregation and Decomposition

Tractor
Chasis Body Engine
Wheels Doors Hood

Figure 2-2. Example of aggregation and decomposition.

The third abstraction principle is generalization. Generalization refers to
the principle that considers construction of concepts by generalizing
similarities existing in other concepts in the problem domain. Based on one or
more given classes, generalization provides the description of more general
classes that capture the common similarities of given classes. Specialization is
the reverse operation of generalization. A concept A is a specialization of
another concept B if A is similar to B and A provides some additional
properties not defined in B.

16 SOFTWARE ENGINEERING TECHNIQUES

Object-oriented languages provide support for generalization/
specialization as they allow for creating subclasses of exiting classes and/or
creating more general classes (superclasses) of existing classes. Creating a
subclass of an existing class corresponds to specialization and creating a
superclass of an existing class corresponds to generalization. It is important to
note that concept A is a generalization of concept B if and only if B is a
specialization of concept A [Ped89]. Figure 2-3 shows an example of
generalization and specialization.

Generalization and Specialization

Vehicle

7\

Truck Tractor

7\

6 Cylinder 8 Cylinder
Figure 2-3. Example of generalization and specialization.

Concept Truck is a specialization of concept Vehicle. This is because
Truck has all the properties of concept Vehicle and some additional ones that
make it a special Vehicle. In reverse, concept Vehicle is a generalization of
concept Truck, as all trucks are vehicles.

The fourth abstraction and perhaps the least obvious, is grouping [Tai96].
In conceptual modeling, often a group of concepts needs to be considered as a
whole, not because they have similarities but because it is important that they
be together for different reasons. Object-oriented languages provide a
mechanism for grouping concepts together such as sets, bags, lists, and

BASIC PRINCIPLES OF THE OBJECT-ORIENTED PARADIGM 17

dictionaries. Individualization is the reverse operation of grouping. It consists
of identifying an individual concept selected among other concepts in a group.
Individualization is not as well established as a form of abstraction [Tai96].
Figure 2-4 shows an example of grouping and individualization.

Grouping and Individualization

Tractors
Red Tractors Green Tractors
My Tractor Tom's Tractor

Figure 2-4. Example of grouping and individualization.

All tractors used in a farm can be grouped in one category regardless of
their brand, color, horsepower, and year of production, and be represented by
one concept such as Tractors. In case we need to use one of them with a
certain horsepower, then we need to browse the set of tractors and find that
particular individual that satisfies our needs. In this case, we have
individualized one element of the set based on some particular criterion.
When we say Tom's Tractor, we have used the ownership as criterion for
individualizing one of the tractors, the one that belongs to Tom.

2. ENCAPSULATION

The Dictionary of the Object Technology defines encapsulation as: “The
physical location of features (properties, behaviors) into a single black box
abstraction that hides their implementation behind a public interface.”

18 SOFTWARE ENGINEERING TECHNIQUES

Often, encapsulation is referred to as “information hiding.” An object
“hides” the implementation of its behavior behind its interface or its “public
face.” Other objects can use its behavior without having detailed knowledge
of its implementation. Objects know only the kind of operations they can
request other objects to perform. This allows software designers to abstract
from irrelevant details and concentrate on what objects will perform.

An important advantage of encapsulation is the elimination of direct
dependencies on a particular implementation of an object’s behavior. The
object is known from its interface and clients can use the object’s behavior by
only having knowledge of its interface. The particular implementation of an
object’s interface is not important. Therefore, the implementation of the
object’s behavior can change any time without affecting the object’s use.
Encapsulation helps manage complexity by identifying a coherent part of this
complexity and assigning it to individual objects.

The fact that an object hides the implementation of its behavior by
exposing only its “public face” could be beneficial to other objects that need
its behavior. The “interested” objects could consider more than one option
while looking for a specific functionality that satisfies their needs. They need
only to “examine” the interfaces of candidate objects. Objects with similar
behavior could serve as substitutes to each other.

3. MODULARITY

The Dictionary of the Object Technology defines modularity as: “The
logical and physical decomposition of things (e.g., responsibilities and
software) into small, simple groupings (e.g., requirements and classes,
respectively), which increase the achievements of software-engineering
goals.”

Modularity is another way of managing complexity by dividing large and
complex systems into smaller and manageable pieces. A software designing
method is modular if it allows designers produce software systems by using
independent elements connected by a coherent, simple structure. [Mey88]
defines a software construction method to be modular if it satisfies the five
criteria:

Modular Decomposability; a software construction method satisfies
Modular Decomposability if it helps in the task of decomposing a software
problem into a small number of less complex sub-problems, connected by a
simple structure, and independent enough to allow further work to proceed
separately on each of them.

BASIC PRINCIPLES OF THE OBJECT-ORIENTED PARADIGM 19

Modular Composability; a software construction method satisfies
Modular Composability if it favors the production of software elements which
may then be freely combined with each other to produce new systems,
possible in an environment quite different from the one in which they were
initially developed.

Modular Understandability, a software construction method satisfies
Modular Understandability if it helps produce software in which each module
can be understood without having to examine other interrelated modules.

Modular Continuity; a software construction method satisfies Modular
Continuity if a small change in the requirements of will impact just one or a
small number of modules.

Modular Protection; a software construction method satisfies Modular
Protection if the effect of an exception occurring at runtime will impact only
the corresponding module or a few neighboring modules.

The concept of Modularity and the principles for developing modular
software in the object-oriented approach are encapsulated in the concept of
class. Classes are the building blocks in the object-oriented paradigm.

2 Springer
http://www.springer.com/978-0-387-28170-4

Software Engineering Techniques Applied to
Agricultural Systems

An Object-Oriented and UML Approach
Papajorgji, P.J.: Pardalos, P.

2006, XM, 248 p. 177 illus., Hardcowver

ISEM: 978-0-387-28170-4

