Chapter 2

ON THE ARITHMETIC PRECISION FOR
IMPLEMENTING BACK-PROPAGATION
NETWORKS ON FPGA: A CASE STUDY

Medhat Moussa and Shawki Areibi and Kristian Nichols

University of Guelph

School of Engineering

Guelph, Ontario, NI1G 2W1, Canada

mmoussa@uoguelph.ca sareibi@uoguelph.ca knichols @uoguelph.ca

Abstract Artificial Neural Networks (ANNs) are inherently parallel architectures which
represent a natural fit for custom implementation on FPGAs. One important im-
plementation issue is to determine the numerical precision format that allows an
optimum tradeoff between precision and implementation areas. Standard single
or double precision floating-point representations minimize quantization errors
while requiring significant hardware resources. Less precise fixed-point repre-
sentation may require less hardware resources but add quantization errors that
may prevent learning from taking place, especially in regression problems. This
chapter examines this issue and reports on a recent experiment where we im-
plemented a Multi-layer perceptron (MLP) on an FPGA using both fixed and
floating point precision. Results show that the fixed-point MLP implementation
was over 12x greater in speed, over 13x smaller in area, and achieves far greater
processing density compared to the floating-point FPGA-based MLP.

Keywords: Reconfigurable Computing, Back-propagation Algorithm, FPGAs, Artificial

Neural Networks

2.1 Introduction

Artificial neural networks (ANNSs) have been used in many applications in
science and engineering. The most common architecture consists of multi-
layer perceptrons trained using the error back-propagation algorithm (MLP-
BP) [37]. One of the main problems in training a BP Network is the lack of
a clear methodology to determine the network topology before training starts.
Experimenting with various topologies is difficult due to the long time required

37

A. R. Omondi and J. C. Rajapakse (eds.), FPGA Implementations of Neural Networks, 37-61.

© 2006 Springer. Printed in the Netherlands.

38 Arithmetic precision for BP networks

for each training session especially with large networks. Network topology is
an important factor in the network’s ability to generalize after training is com-
pleted. A larger than needed network may over-fit the training data and result
in poor generalization on testing data, while a smaller than needed network
may not have the computational capacity to approximate the target function.
Furthermore, in applications where online training is required, training time
is often a critical parameter. Thus it is quite desirable to speed up training.
This allows for reasonable experimentation with various network topologies
and ability to use BP networks in online applications.

Since Neural Networks in general are inherently parallel architectures [55],
there have been several earlier attempts to build custom ASIC based boards
that include multiple parallel processing units such as the NI1000. However,
these boards suffered from several limitations such as the ability to run only
specific algorithms and limitations on the size of a network. Recently, much
work has focused on implementing artificial neural networks on reconfigurable
computing platforms. Reconfigurable computing is a means of increasing the
processing density (i.e greater performance per unit of silicon area) above and
beyond that provided by general-purpose computing platforms. Field Program-
mable Gate Arrays (FPGAs) are a medium that can be used for reconfigurable
computing and offer flexibility in design like software but with performance
speeds closer to Application Specific Integrated Circuits (ASICs).

However, there are certain design tradeoffs which must be dealt with in or-
der to implement Neural Networks on FPGAs. One major tradeoff is area vs.
precision. The problem is how to balance between the need for numeric preci-
sion, which is important for network accuracy and speed of convergence, and
the cost of more logic areas (i.e. FPGA resources) associated with increased
precision. Standard precisions floating-point would be the ideal numeric repre-
sentation to use because it offers the greatest amount of precision (i.e. minimal
quantization error) and matches the representation used in simulating Neural
Networks on general purpose microprocessors. However, due to the limited
resources available on an FPGA, standard floating-point may not be as feasible
compared to more area-efficient numeric representations, such as 16 or 32 bit
fixed-point.

This chapter explores this design trade-off by testing an implementation of
an MLP-BP network on an FPGA using both floating-point and fixed-point
representations. The network is trained to learn the XOR problem. The study’s
goal is to provide experimental data regarding what resources are required for
both formats using current FPGA design tools and technologies. This chap-
ter is organized as follows: In Section 2.2, background material on the area
vs precision range trade-off is presented as well as an overview of the back-
propagation algorithm and FPGA architectures. Section 2.3 provides details
about the architecture design used to implement a BP network on FPGA. In

Background 39

section 2.4 the XOR problem is presented. Finally validation of the proposed
implementations, and benchmarked results of floating-point and fixed-point
arithmetic functions implemented on a FPGA are discussed in Section 2.5.

2.2 Background

One way to help achieve the density advantage of reconfigurable comput-
ing over general-purpose computing is to make the most efficient use of the
hardware area available. In terms of an optimal range-precision vs area trade-
off, this can be achieved by determining the minimum allowable precision and
minimum allowable range, where their criterion is to minimize hardware area
usage without sacrificing quality of performance. These two concepts com-
bined can also be referred to as the minimum allowable range-precision.

2.2.1 Range-Precision vs. Area Trade-off

A reduction in precision usually introduces many errors into the system.
Determining the minimum allowable precision is actually a question of de-
termining the maximum amount of uncertainty (i.e. quantization error due to
limited precision) an application can withstand before performance begins to
degrade. It is often dependent upon the algorithm used and the application at
hand.

For MLP using the BP algorithm, Holt and Baker [41] showed using simu-
lations and theoretical analysis that 16-bit fixed-point (1 bit sign, 3 bit left and
12 bit right of the radix point) was the minimum allowable range-precision
for the back-propagation algorithm assuming that both input and output were
normalized between [0,1] and a sigmoid transfer function was used.

Ligon III et al. [45] have also shown the density advantage of fixed-point
over floating-point for older generation Xilinx 4020E FPGAs, by showing that
the space/time requirements for 32-bit fixed-point adders and multipliers were
less than that of their 32-bit floating-point equivalents.

Other efforts focused on developing a complete reconfigurable archi-
tecture for implementing MLP. Eldredge [3] successfully implemented the
back-propagation algorithm using a custom platform he built out of Xilinx
XC3090 FPGAs, called the Run-Time Reconfiguration Artificial Neural Net-
work (RRANN). He showed that the RRANN architecture could learn how
to approximate centroids of fuzzy sets. Heavily influenced by the Eldredge’s
RRANN architecture, Beuchat et al. [13] developed a FPGA platform, called
RENCO-a REconfigurable Network COmputer. As it’s name implies, RENCO
contains four Altera FLEX 10K130 FPGAs that can be reconfigured and mon-
itored over any LAN (i.e. Internet or other) via an on-board 10Base-T inter-
face. RENCO’s intended application was hand-written character recognition.
Ferrucci and Martin [14, 15] built a custom platform, called Adaptive Connec-

40 Arithmetic precision for BP networks

tionist Model Emulator (ACME) which consists of multiple Xilinx XC4010
FPGAs. They validated ACME by successfully carrying out a 3-input, 3-
hidden unit, 1-output network used to learn the 2-input XOR problem. Skr-
bek’s FPGA platform [26], called the ECX card, could also implement Radial
Basis Function (RBF) neural networks, and was validated using pattern recog-
nition applications such as parity problem, digit recognition, inside-outside
test, and sonar signal recognition.

Since the size of an FPGA-based MLP-BP is proportional to the multi-
plier used, it is clear that given an FPGA’s finite resources, a 32-bit signed
(2’s complement) fixed-point representation will allow larger [54] ANNs to
be implemented than could be accommodated when using a 32-bit IEEE (a
32-bit floating point multiplier can be implemented on a Xilinx Virtex-II or
Spartan-3 FPGA using four of the dedicated multiplier blocks and CLB re-
sources) floating-point. However, while 32 fixed-point representation allows
high processor density implementation, the quantization error of 32 floating-
point representation is negligible. Validating an architecure on an FPGA using
32-bit floating point arithmetic might be easier than fixed point arithmetic since
a software version of the architecture can be run on a Personal Computer with
32-bit floating point arithmetic. As such its use is justifiable if the relative loss
in processing density is negligible in comparison.

FPGA architectures and related development tools have become increas-
ingly sophisticated in more recent years, including improvements in the
space/time optimization of arithmetic circuit designs. As such, the objective
of this study is to determine the feasibility of floating-point arithmetic in im-
plementing MLP-BP using today’s FPGA design tools and technologies. Both
floating-point and fixed-point precision are considered for implementation and
are classified as amplitude-based digital numeric representations. Other nu-
meric representations, such as digital frequency-based [42] and analog were
not considered because they promote the use of low precision, which is often
found to be inadequate for minimum allowable range-precision.

2.2.2 Overview of Back-propagation Algorithm

It is helpful before proceeding to discuss architecture design to give a brief
review of MLP and the error Back-propagation algorithm. The general struc-
ture of a Multi-layer perceptron (MLP) neural network is shown in Figure 2.1,
where layers are numbered O to M, and neurons are numbered 1 to N.

A MLP using the back-propagation algorithm has five steps of execution:
(1) Initialization

The following parameters must be initialized before training starts: (i)

(s)

wy,; (n) is defined as the synaptic weight that corresponds to the connection

from neuron unit j in the (s — 1)th layer, to k in the s layer. This weight

Background 41

Layer O Layer 1 Layer (M-1) Layer M

Input Layer Hidden Layer{(s} Output Layer

Figure 2.1. Generic structure of a feedforward ANN

is updated during the n'" iteration, where n = 0 for initialization. (ii) 7 is
defined as the learning rate and is a constant scaling factor used to control
the step size in error correction during each iteration of the back-propagation

algorithm. (iii) 0,5;5) is defined as the bias of a neuron, which is similar to
synaptic weight in that it corresponds to a connection to neuron unit %k in
the st layer. Statistically, biases can be thought of as noise, which better
randomizes initial conditions, and increases the chances of convergence.

(2) Presentation of Training Examples
Available training data are presented to the network either individually or
as a group (a.k.a. epoch).

(3) Forward Computation

During the forward computation, data from neurons of a lower layer (i.e.
(s — 1) layer), are propagated forward to neurons in the upper layer (i.e. s*”
layer) via a feed-forward connection network. The computation performed by
each neuron (in the hidden layer) is as follows:

Ns_1
7Y =3 w460 @.1)
7=1

where j < kands=1,..., M

H ,E,S) = weighted sum of the k" neuron in the s layer

w,gj.) = synaptic weight sd defined above

O(s—l)

. = neuron output of the 5 neuron in the (s — 1)*" layer

42 Arithmetic precision for BP networks

‘91(:) = bias of the k*" neuron in the s** layer.
On the other hand for the output layer neurons the computation is as follows:

of) = f(H) 22)
where k=1,...,Nands=1,...,M
0,(:) = neuron output of the & neuron in the s* layer

f(H ,gs)) = activation function computed on the weighted sum H ,E:S)

Note that a unipolar sigmoid function is often used as the nonlinear activation
function, such as the following logsig function:

1

f(:l:)logsig = HTP(—ZE)

(2.3)

(4) Backward Computation

In this step, the weights and biases are updated. The learning algorithm’s
goal is to minimize the error between the expected (or teacher) value and the
actual output value that was determined in the Forward Computation. The
following steps are performed:

1 Starting with the output layer, and moving back towards the input layer,
calculate the local gradients, as follows:

(s) =
() _ tk — oy, s=M 2.4
o { Z;Ve-{—l 5+15(5+1) s=1,....M -1 o

where
5,(:) = error term for the k" neuron in the s layer; the difference
between the teaching signal ¢;, and the neuron output ol(f)
5](-S+1) = local gradient for the j*" neuron in the (s + 1) layer.

0 =Wy s=1,... M (2.5)

where f'(H ,is)) is the derivative of the activation function.

2 Calculate the weight (and bias) changes for all the weights as follows:

Suly = o =

2.6
=i N (2.6)

where Aw,(g‘;) is the change in synaptic weight (or bias) corresponding to

the gradient of error for connection from neuron unit j in the (s — 1)
layer, to neuron k in the s** layer.

Architecture design and implementation 43

3 Update all the weights (and biases) as follows:
wi;(n+1) = Awg) (n) + wl) (n) 2.7)

where k=1,...,Ngandj=1,..., Ng_1

wj;(n+1) = updated synaptic weight (or bias) to be used in the (n-+ 1)th

iteration of the Forward Computation

Aw,g‘;)(n) = change in synaptic weight (or bias) calculated in the n‘*

iter?tion of the Backward Computation, where n = the current iteration
(s

Wy (n) = synaptic weight (or bias) to be used in the n'” iteration of the

Forward and Backward Computations, where n. = the current iteration.

(5) Iteration

Reiterate the Forward and Backward Computations for each training exam-
ple in the epoch. The trainer can continue to train the MLP using one or more
epochs until some stopping criteria is met. Once training is complete, the MLP
only needs to carry out the Forward Computation when used in applications.

2.2.3 Field Programmable Gate Arrays

FPGAs are a form of programmable logic, which offer flexibility in design
like software, but with performance speeds closer to Application Specific Inte-
grated Circuits (ASICs). With the ability to be reconfigured an endless number
of times after having been manufactured, FPGAs have traditionally been used
as a prototyping tool for hardware designers. However, as growing die capaci-
ties of FPGAs have increased over the years, so has their use in reconfigurable
computing applications too.

The fundamental architecture of Xilinx FPGAs consists of a two-
dimensional array of programmable logic blocks, referred to as Configurable
Logic Blocks (CLBs). Figure 2.2 shows the architecture of a CLB from the
Xilinx Virtex-E family of FPGAs, which contains four logic cells (LCs) and
is organized in two similar slices. Each LC includes a 4-input look-up ta-
ble (LUT), dedicated fast carry-lookahead logic for arithmetic functions, and
a storage element (i.e. a flip-flop). A CLB from the Xilinx Virtex-II family
of FPGAs, on the other hand, contains eight 4-input LUTs, and is over twice
the amount of logic as a Virtex-E CLB. As we will see, the discrepancies in
CLB architecture from one family to another is an important factor to take into
consideration when comparing the spatial requirements (in terms of CLBs) for
circuit designs which have been implemented on different Xilinx FPGAs.

2.3 Architecture design and implementation

There has been a rich history of attempts at implementing ASIC-based ap-
proaches for neural networks - traditionally referred to as neuroprocessors [29]

44 Arithmetic precision for BP networks

cour cout
B B
G BY G =Y
G 7 carry & 5P 63— 7| Carry & 5P
G2 D apva 62— D a-va
oan Control o poan Control o
BY »Q RC BY >—4 RC
XB XB
FA > PX F4 > X
F3 -y carry & 5P F3 1yt | Carry & 5P
F2>1 Control D Q@ XQ F2> Control D abxa
F1 >— CE F1 >— CE
BX %Q RC BX %Q RC
SLICE 1 SLICE 2
¢IN ¢N

Figure 2.2. Virtex-E Configurable Logic Block

or neurochips. FPGA-based implementations, on the other hand, are still a
fairly new approach which has only been in effect since the early 1990s. The
type of neural network used in a FPGA-based implementation, and/or the algo-
rithm used for on-chip learning is a classification feature which often depends
on its intended application. On-chip learning [11] occurs when the learning
algorithm is implemented in hardware, or in this case, on the FPGA. Offline
learning occurs when learning occurs on a general-purpose computing plat-
form before the learned system is implemented in hardware.

2.3.1 Non-RTR Implementation

The digital ANN architecture implemented in this chapter is an example of a
non-RTR (Run-Time Reconfiguration) reconfigurable computing application,
where all stages of the algorithm reside together on the FPGA at once. A finite
state machine was used to ensure proper sequential execution of each step of
the back-propagation algorithm as described in Section 2.2.2, which consists
of the following two states:

1 Forward state (F) - used to emulate the forward pass associated with the
back-propagation algorithm. Only the ANN’s input signals, synapses,
and neurons should be active in this state, in order to calculate the ANN’s
output. All forward pass operations (i.e. Forward Computations as de-
scribed by Equations 2.1, 2.2, and 2.3) should be completed by the time
the Forward State (F) ends.

2 Backward state (B) - used to emulate the backward pass associated with
the back-propagation algorithm. All the circuitry associated with help-
ing the ANN learn (i.e. essentially all the circuitry not active in Forward
State) should be active here. All backward pass operations (i.e. Back-

Architecture design and implementation 45

ward Computations as described by Equations 2.4, 2.5, and 2.6) should
be completed by the time the Backward state ends.

It should be noted that both states of the finite state machine continually alter-
nate, and synaptic weights are updated (as described in Equation 2.7) during
the transition from Backward State to Forward State.

As far as the ANN’s components (eg. neurons, synapses) were concerned,
the finite state machine is generally a means of synchronizing when various
sets of components should be active. The duration of each state depends on
the number of clock cycles required to complete calculations in each state,
the length of the system’s clock period, and the propagation delay associated
with each state(Note that propagation delay is platform dependent, and can
only be determined after the digital VLSI design has been synthesized on a
targeted FPGA. The propagation delay is then determined through a timing
analysis/simulation using the platform’s EDA tools). The architecture of the
active ANN components associated with each state dictates the propagation
delay for that state.

Each of the ANN components implemented in hardware, such as the
synapse and neuron, housed a chip select input signal in their architecture
which is driven by the finite state machine. This chip select feature ensured
that only those components that were associated with a particular state were
enabled or active throughout that state’s duration. With regards to initialization
of the circuit, a reset input signal was used which would fulfill two important
requirements when activated:

m Ensure the finite state machine initially starts in “Forward State”.
= [nitialize the synaptic weights of the ANN, to some default value.

Finally, the BP algorithm calculations, Equations 2.1-2.7, are realized using
a series of arithmetic components, including addition, subtraction, multiplica-
tion, and division. Standardized high-description language (HDL) libraries for
digital hardware implementation can be used in synthesizing all the arithmetic
calculations involved with the back-propagation algorithm, in analogous fash-
ion of how typical math general programming language (GPL) libraries are
used in software implementations of ANNs. The architecture described here
is generic enough to support arithmetic HDL libraries of different amplitude-
based precision, whether it be floating-point or fixed-point.

2.3.2 Arithmetic Library

The architecture was developed using VHDL. Unfortunately, there is cur-
rently no explicit support for fixed- and floating-point arithmetic in VHDL
(according to the IEEE Design Automation Standards Committee [43], an ex-
tension of IEEE Std 1076.3 has been proposed to include support for fixed-

46 Arithmetic precision for BP networks

and floating-point numbers in VHDL, and is to be addressed in a future re-
view of the standard). As a result, two separate arithmetic VHDL libraries
were custom designed for use with the FPGA-based ANN. One of the libraries
supports the IEEE-754 standard for single-precision (i.e. 32-bit) floating-point
arithmetic, and is referred to as uog_fp_arith, which is an abbreviation for
University of Guelph Floating-Point Arithmetic. The other library supports 16-
bit fixed-point arithmetic, and is referred to as uog_fixed_arith, which is an
abbreviation for University of Guelph Fixed-Point Arithmetic. These two rep-
resentations were chosen based on previous results from the literature [41] that
showed that 16 bit fixed point representation is the minimum needed to allow
the BP algorithm to converge and the fact that 32 bit floating point precision is
the standard floating point representation. We could have used a custom float-
ing point representation (maybe with less precision) but it is very likely that any
future VHDL floating point implementation will follow this standard represen-
tation. As such we specifically wanted to test the tradeoff with this standard
presentation. This is also important for applications in Hardware/Software co-
design using languages like SystemC and HandleC.

Fixed-point representation is signed 2’s complement binary representation,
which is made rational with a virtual decimal point. The virtual radix point
location used in uog_fixed_arithis SII[.FFFFFFFFFFFF, where

S =sign bit
I = integer bit, as implied by location of binary point
F' = fraction bit, as implied by location of binary point

The range for a 16-bit fixed-point representation of this configuration is [-8.0,
8.0), with a quantization error of 2.44140625E-4. Description of the various
arithmetic VHDL design alternatives considered for use in the uog_fp_arith
and uog_fixed_arith libraries are summarized in Table 2.1. All HDL de-
signs with the word std in their name signify that one of the IEEE stan-
dardized VHDL arithmetic libraries was used to create them. For example,
uog_stdmultiplier was easily created using the following VHDL syntax:
z2 <= T *Yy;

where x and y are the input signals, and z the output signal of the circuit.
Such a high level of abstract design is often associated with behavioral VHDL
designs, where ease of design comes at the sacrifice of letting the FPGA’s syn-
thesis tools dictate the fine-grain architecture of the circuit.

On the other hand, an engineer can explicitly define the fine-grain architec-
ture of a circuit by means of structural VHDL and schematic-based designs, as
was done for uog_ripple_carry_adder, uog_c_1_adder (please refer to Fig-
ure 2.4 for detailed implementation) and uog-_sch_adder respectively. How-

Architecture design and implementation 47

Table 2.1. Summary of alternative designs considered for use in custom arithmetic VHDL
libraries

HDL Design [Description

uog_fp_add” IEEE 32-bit single precision floating-point pipelined parallel adder
uog-ripple_carry_adder | 16-bit fixed-point (bit-serial) ripple-carry adder

uog-_c_1l_addr 16-bit fixed-point (parallel) carry lookahead adder

uog-std_adder

16-bit fixed-point parallel adder created using standard
VHDL arithmetic libraries

uog_core_adder

16-bit fixed-point parallel adder created using Xilinx LogiCORE
Adder Subtracter v5.0

uog_sch_adder

16-bit fixed-point parallel adder created using Xilinx
ADD16 schematic-based design

uog-pipe_adder

16-bit fixed-point pipelined parallel adder created using Xilinx
LogiCORE Adder Subtractor v5.0

uog_fp_sub”

IEEE 32-bit single precision floating-point pipelined parallel
subtracter

uog_par_subtracter

16-bit fixed-point carry lookahead (parallel) subtracter, based
on uog-std_adder VHDL entity

uog_std_subtracter

16-bit fixed-point parallel subtracter created with standard
VHDL arithmetic libraries

uog_core_subtracter

16-bit fixed-point parallel subtracter created using Xilinx
LogiCORE Adder Subtracter v5.0

uog_fp mult™

IEEE 32-bit single precision floating-point pipelined parallel
multiplier

uog_boothmultiplier

16-bit fixed-point shift-add multiplier based on Booth’s
algorithm (with carry lookahead adder)

uog_std_multiplier

16-bit fixed-point parallel multiplier created using standard
VHDL arithmetic libraries

uog_core_bs_mult

16-bit fixed-point bit-serial (non-pipelined) multiplier created using
Xilinx
LogicCORE Multiplier v4.0

uog_pipe_serial mult

16-bit fixed-point bit-serial (pipelined) multiplier created using
Xilinx LogiCORE Multiplier v4.0

uog_core_par multiplier

16-bit fixed-point parallel (non-pipelined) multiplier created using
Xilinx LogiCORE Multiplier v4.0

uog_pipe_par mult

16-bit fixed-point parallel (pipelined) multiplier created using
Xilinx LogiCORE Multiplier v4.0

active_func_sigmoid

Logsig (i.e. sigmoid) function with IEEE 32-bit single precision
floating-point

uog_logsig _rom

16-bit fixed-point parallel logsig (i.e. sigmoid) function created
using Xilinx LogiCORE Single Port Block Memory v4.0

* Based on VHDL source code dontated by Steven Derrien (sderrien@irisa.fr) from Institut de Recherche en
Informatique et systemes aleatoires (IRISA) in France. In turn, Steven Derrien had originally created this through
the adaptation of VHDL source code found at http:/flex.ee.uec.ac.jp/ yamaoka/vhdl/index.html.

48 Arithmetic precision for BP networks

ever, having complete control over the architecture’s fine-grain design comes
at the cost of additional design overhead for the engineer.

Many of the candidate arithmetic HDL designs described in Table 2.1 were
created by the Xilinx CORE Generator System. This EDA tool helps an
engineer parameterize ready-made Xilinx intellectual property (ip) designs
(i.e. LogiCOREs), which are optimized for Xilinx FPGAs. For example,
uog_core_adder was created using the Xilinx proprietary LogiCORE for an
adder design.

Approximation of the logsig function in both floating-point and fixed-point
precision, were implemented in hardware using separate lookup-table archi-
tectures. In particular, active _func_sigmoid was a modular HDL design,
which encapsulated all the floating-point arithmetic units necessary to carry
out calculation of logsig function. According to Equation 2.3, this would
require the use of a multiplier, adder, divider, and exponential function. As
a result, active_func_sigmoid was realized in VHDL using uvog_fp mult,
uog-_fp_add, a custom floating-point divider called uog_fp_div, and a table-
driven floating-point exponential function created by Bui er al [44]. While this
is not the most efficient implementation of the logsig, it allows implementing
other transfer functions with min efforts (like Tan Hyperbolic) since it shares
the basic functions with the Sigmoid. It is very common in training BP net-
works to test different transfer functions.

The uog_logsig_rom HDL design utilized a Xilinx LogiCORE to imple-
ment single port block memory. A lookup-table of 8192 entries was created
with this memory, which was used to approximate the logsig function in fixed-
point precision.

In order to maximize the processing density of the digital VLSI ANN de-
sign proposed in Section 2.3.1, only the most area-optimized arithmetic HDL
designs offered in Table 2.1 should become part of the uog_fp_arith and
uog_fixed_arith VHDL libraries. However, the space-area requirements of
any VHDL design will vary from one FPGA architecture to the next. There-
fore, all the HDL arithmetic designs found in Table 2.1 have to be implemented
on the same FPGA as was targeted for implementation of the digital VLSI
ANN design, in order to determine the most area-efficient arithmetic candi-
dates.

24 Experiments using logical-XOR problem

The logical-XOR problem is a classic toy problem used to benchmark the
learning ability of an ANN. It is a simple example of a non-linearly separable
problem.

The minimum ANN fopology (a topology includes the number of neurons,
number of layers, and the layer interconnections (i.e. synapses)) required to

Experiments using logical-XOR problem 49

Table 2.2. Truth table for logical-XOR function

Inputs Output
Zo Tl y

0 0 0

0 1 1

1 0 1

1 1 0

solve a non-linearly separable problem consisting of at least one hidden layer.
An overview of the ANNs topology used in this particular application, which
consists of only one hidden layer, is shown in Figure 2.3.

Bias1 (b1)

Bias3 (b3)

%,

S S S
Input Hidden Output
Layer Layer Layer

Figure 2.3. Topology of ANN used to solve logical-XOR problem

For each ANN implementation, a set of thirty training sessions were per-
formed individually. Each training session lasted for a length of 5000 epoch,
and used a learning rate of 0.3. Each of the training sessions in the set used
slightly different initial conditions, in which all weights and biases were ran-
domly generated with a mean of 0, and a standard deviation of £0.3. Once
generated, every BP implementation was tested using the same set of thirty
training sessions. This way, the logical-XOR problem discussed acts as a com-
mon testing platform, used to benchmark the performance of all BP implemen-
tations.

Xilinx Foundation ISE 4.1i EDA tools were used to synthesize, and map
(i.e. place and route) two variations of the FPGA-based ANN designs — one

50 Arithmetic precision for BP networks

using uog_fp_arith library, and one using uog_fixed_arith library. All
experiments and simulations were carried out on a PC workstation running
Windows NT (SP6) operating system, with 1 GB of memory and Intel PIII
733MHz CPU.

These circuit designs were tested and validated in simulation only, using
ModelTech’s ModelSim SE v5.5. Functional simulations were conducted to
test the syntactical and semantical correctness of HDL designs, under ideal
FPGA conditions (i.e. where no propagation delay exists). Timing simulations
were carried out to validate the HDL design under non-ideal FPGA conditions,
where propagation delays associated with the implementation as targeted on a
particular FPGA are taken into consideration.

Specific to VHDL designs, timing simulations are realized using an IEEE
standard called VITAL (VHDL Initiative Toward ASIC Libraries). VITAL li-
braries contain information used for modeling accurate timing of a particular
FPGA at the gate level, as determined a priori by the respective FPGA man-
ufacturer. These VITAL libraries are then used by HDL simulators, such as
ModelSim SE, to validate designs during timing simulations.

A software implementation of a back-propagation algorithm was created
using MS Visual C++ v6.0 IDE. The software simulator was set up to solve the
logical-XOR problems using the topology shown in Figure 2.3. The purpose
for creating this software simulator was to generate expected results for testing
and validating FPGA-based BP. To speed up development and testing, two
other software utilities were created to automate numeric format conversions—
one for converting real decimal to/from IEEE-754 single precision floating-
point hexadecimal format, and one for converting real decimal to/from 16-bit
fixed-point binary format.

2.5 Results and discussion

We implemented the previous HDL designs on Xilinx FPGAs. The resulting
space-time requirements for each arithmetic HDL design are summarized in
Table 2.3. In order to maximize the neuron density of the FPGA-based MLP,
the area of the various arithmetic HDL designs that a neuron is comprised of
should be minimized. As a result, the focus here is to determine the most
area-optimized arithmetic HDL designs for use in the implementations.

2.5.1 Comparison of Digital Arithmetic Hardware

Comparison of the different adder results, shown in Table 2.3, reveals that
the three carry lookahead adders (i.e. uog_std_adder, uog_core_adder, and
uog-_sch_adder) require the least amount of area and are the fastest among all
non-pipelined adders. Note that the sophistication of today’s EDA tools have

Results and discussion 51

allowed the VHDL-based designs for carry lookahead adders to achieve the
same fine-grain efficiency of their equivalent schematic-based designs.

Since a carry lookahead adder is essentially a ripple-carry adder with addi-
tional logic as seen in Figure 2.4, it isn’t immediately clear why a carry looka-
head adder is shown here to use less area compared to a ripple-carry adder

Carry Lookahead

Figure 2.4. Carry Lookahead Adder

when implemented on a Xilinx Virtex-E FPGA. The carry lookahead design
can be obtained [35] by a transformation of the ripple carry design in which
the carry logic over fixed groups of bits of the adder is reduced to two-level
logic. The carry lookahead adder would consist of (for example a 4-bit carry
lookahead adder) four partial full adders (PFA) each consisting of two EXOR
gates and an AND gate. The ripple carry logic (AND gate and OR gate for
each bit) will be substituted with the Carry lookahead logic. Since the Virtex-
IT FPGA has built in (fast arithmetic functions) of look-ahead carry chains,
the number of CLBS utilized by the carry lookahead adder will be equivalent
or smaller than that of the ripple adder (i.e the extra logic used by the Carry
Lookahead is free! since it is custom built within the FPGA). In addition, the
Virtex-E CLBs dedicated fast lookahead logic enhances the performance of the

52 Arithmetic precision for BP networks

adder. As a result, it’s best to use HDL adder designs which take advantage of
the Virtex-E’s fast carry lookahead logic.

The Virtex-E’s fast carry-lookahead logic is again utilized to pro-
duce the best area-optimized subtracters (i.e. uog_std_subtracter and
uog_core_subtracter), as well as, the best area-optimized multiplier (i.e.
uog_booth_multiplier).

Only the most area-optimized arithmetic HDL designs discussed here were
used in the construction of custom arithmetic HDL libraries, as listed in Ta-
ble 2.4. In the case where there was more than one choice of best area-
optimized arithmetic HDL design to choose from, behavioral VHDL designs
were preferred because they promote high-level abstract designs and porta-
bility. For example, such was the case in selecting a fixed-point adder and
subtracter for the uog_fixed_ arith library.

Table 2.4 also reveals how much more area-optimized the individual fixed-
point arithmetic HDL designs in uog_fixed_arith were compared to the
floating-point arithmetic HDL designs in uwog_fp_arith. Since a floating-
point adder is essentially a fixed-point adder plus additional logic, not to men-
tion the fact that floating-point uses more precision than fixed-point arithmetic,
it’s no surprise to find that the 16-bit fixed-point adder is much smaller than the
32-bit floating-point adder. Similar in nature is the case for subtracter and mul-
tiplier comparisons shown in Table 2.4.

The comparison of area-optimized logsig arithmetic HDL designs reveals
that the 32-bit floating-point version is over 250 times bigger than the 16-bit
fixed-point version. Aside from the difference in amount of precision used, the
significant size difference between logsig implementations is due to the fact
that floating-point implementation encapsulates a table-lookup architecture in
addition to other area-expensive arithmetic units, while the fixed-point version
only encapsulates a table-lookup via memory.

Uog_fp_arith and uog_fixed_arith have been clearly defined with only
the best area-optimized components, as shown in Table 2.4. This will help
to ensure that 32-bit floating-point and 16-bit fixed-point FPGA-based MLP
implementations achieve a processing density advantage over the software-
based MLP simulations. As was shown here, the larger area requirements of
floating-point precision in FPGA-based ANNs makes it not nearly as feasible
as fixed-point precision.

2.5.2 Comparison of ANN Implementations

Table 2.5 summarizes logical-XOR benchmark results for each of the fol-
lowing implementations with identical topology:

m 32-bit floating-point FPGA-based MLP, which utilizes uog_fp_arith
library.

Results and discussion

53

Table 2.3. Space/Time Req’ts of alternative designs considered for use in custom arithmetic

VHDL libraries
HDL Design Area Max. Pipe- Clock Min. Total
(CLB)s Clock lining cycles Time per calc.
Rate Used? per calc. | (ns)
(MHz)
uog_fp_add 174 19.783 1-stage 2 101.096 (for
first calc.)
uog_ripple_carry_adder 12 67.600 | No 16 236.688
uog-c_1_addr 12 34.134 | No 1 29.296
uog-std_adder 4.5 66.387 No 1 15.063
uog-_core_adder 4.5 65.863 No 1 15.183
uog-sch_adder 4.5 72.119 | No 1 13.866
uog-pipe_adder 96 58.624 15-stage 16 272.928
uog_fp_sub 174 19.783 1-stage 2 101.096
uog_par_subtracter 8.5 54.704 No 1 18.280
uog_std_subtracter 4.5 56.281 No 1 17.768
uog_core_subtracter 4.5 60.983 No 1 16.398
uog_fpmult 183.5 18.069 1-stage 2 110.686 (for
first calc.)
uog-booth multiplier 28 50.992 | No 34 668.474
uog_std multiplier 72 32.831 No 1 30.459
uog-_core_bs_mult 34 72.254 | No 20 276.800
uog-pipe_serial mult 39 66.397 7-stage 21 316.281 (for
first calc.)
uog_core_par multiplier | 80 33.913 No 1 29.487
uog_pipe_par mult 87.5 73.970 7-stage 2 27.038 (for first
calc.)
active_func_sigmoid” 3013 1.980 No 56 29282.634
uog-logsig_rom 12 31.594 | No 1 31.652

*Target platform used here was Xilinx Virtex-II FPGA (xc2v8000-5bf957)
Please note the following:

1 All fixed-point HDL designs use signed 2’s complement arithmetic

2 Unless otherwise mentioned, all arithmetic functions were synthesized and implemented (i.e. place

and route) under the following setup:

Target Platform: Xilinx Virtex-E FPGA (xcv2000e—6bg560)
Development Tool: Xilinx Foundation ISE 4.1i (SP2)
Synthesis Tool: FPGA Express VHDL

Optimization Goal: Area (Low Effort)

determined
Timing

Clock Rate is
and Route Static

3 Max.
Place

usig
of HDL design.

Mazx.Output RequiredTimeBeforeClk)] =1}

the Xilinx Timing Analyzer

on Post-

Mazx.ClockRate =
min{(Min.Combinational PathDelay) =1, [(Min.Input ArrivalTimeBeforeClk) +

54 Arithmetic precision for BP networks

Table 2.4. Area comparison of uog_fp_arith vs. uog_fixed_arith

Arithmetic uog_fixed_arith uog_fp_arith Area Optimization
Function HDL Design HDL Design (CLB/CLB)

Adder uog_std_adder uog_fp_add 38.66x smaller
Subtracter uog_std_subtracter uog_fp_sub 38.66x smaller
Multiplier uog-booth multiplier | uog_fpmult 6.55x smaller
Logsig Function | uog-logsig rom activ_func_sigmoid | 251.08x smaller

= 16-bit fixed-point FPGA-based MLP, which utilizes uog_fixed arith
library.

m software-based MLP simulations using C++.

Due to the relative difference in size of arithmetic components used, the fixed-
point FPGA-based MLP is over 13 times smaller than the floating-point FPGA-
based MLP. It can only be assumed that the area requirements for the software-
based MLP implemented on an Intel PIII CPU (i.e. general-purpose computing
platform) is infinitely big in comparison to the FPGA-based MLPs.

Of concern was the fact that timing simulations via ModelSim SE v5.5 re-
quired two weeks for floating-point and six days for fixed-point runs just to
complete one training session in each. In general, any VLSI design which is
not area-optimized may impede the design and test productivity.

The fact that all three MLP-BP implementations converged at all is enough
to validate the successful design of each. Note that a MLP is not always guar-
anteed to converge since it may get trapped in local minima.

What'’s interesting about the convergence percentages given in Table 2.5 is
that they 're the same for the software-based and 32-bit FPGA-based MLPs, but
not for the 16-bit FPGA-based MLPs. The software-based MLP and FPGA-
based MLP that used uog_fp_arith achieved the same convergence percent-
ages because they both use 32-bit floating-point calculations, and will follow
identical paths of gradient descent when given the same initial MLP parame-
ters. Due to the quantization errors found in 16-bit fixed-point calculations,
its respective FPGA-based MLP will follow down a slightly different path of
gradient descent when exposed to the same initial MLP parameters as the other
two implementations.

In the context of MLP applications, reconfigurable computing looks to in-
crease the neuron density above and beyond that of general-purpose comput-
ing. Due to the fact that three neurons exist in the MLP topology used to
solve the logical-XOR problem, and based on the benchmarked speeds of back-
propagation iteration for each particular MLP implementation, the processing
density can be calculated for each. For MLP applications, processing density is
realized as the number of weight updates per unit of space-time. As shown in

Conclusions

55

Table 2.5. Summary of logical-XOR ANN benchmarks on various platforms

ok

ksksk

XOR ANN Precision Total % of Con- | Max.
Architecture Area vergence Clock
(CLBs, in thirty Rate
[SlicesD)* trials™” (MHz)

Xilinx Virtex-E 16-bit 1239 100% 10

xcv2000e FPGA | fixed-pt [2478]

Xilinx Virtex-IT 32-bit 8334.75 73.3% 1.25

xc2v8000 FPGA | floating-pt [33339]

Intel Pentium 32-bit NA 73.3% 733

11 CPU floating-pt
Total Clock | Backprop | Weight Processing
Cycles per | Iteration Updates Density
Backprop Period per Sec (per Slice)
Iteration (us) (WUPS)

Xilinx Virtex-E 478 47.8 62762 25.33

xcv2000e FPGA

Xilinx Virtex-IT | 464 580 5172 0.1551

xc2v8000 FPGA

Intel Pentium N/A 2045.15*** | 1466.89 NA

11 CPU

Note Virtex-II CLB is over twice the size of Virtex-E CLB. Virtex-II CLB consists of 4 slices,
whereas Virtex-E CLB consists of 2 slices.

Convergence is defined here as less than 10% error in the ANN’s output, after it has been trained.

This is an average based on time taken to complete 200,000,000 iterations of the backpropagation
algorithm for the software-based ANN. Microsoft Platform SDK multimedia timers were used,
which had a resolution of 1ms.

Table 2.5, the relative processing density of the 16-bit fixed-point implemen-
tation is significantly higher than that of the 32-bit floating-point one. This
reveals how a combination of minimum allowable range-precision and greater
degree of area-optimization results in a direct impact on the processing density
in implementation.

In addition to infinitely large area requirements, the software-based MLP
was shown to be over 40x slower in comparison to the 16-bit fixed-point
FPGA-based implementation. Therefore, it can only be assumed that the rela-
tive processing density of the software-based MLP is infinitely small in com-
parison to the other two implementations.

2.6

In general, we have shown that the choice of range-precision and arithmetic
hardware architecture used in reconfigurable computing applications has a di-
rect impact on the processing density achieved. A minimal allowable range-

Conclusions

56 Arithmetic precision for BP networks

precision of 16-bit fixed-point continues to provide the most optimal range-
precision vs. area trade-off for MLP-BP implemented on today’s FPGAs.

The classic logical-XOR problem was used as a common benchmark for
comparing the performance of a software-based MLP, and two FPGA-based
MLPs — one with 16-bit fixed-point precision, and the other with 32-bit
floating-point precision. Despite the limited range-precision, the MLP with
area-optimized fixed-point arithmetic managed to maintain the same quality
of performance (i.e. in terms of the MLPs ability to learn) as demonstrated
with floating-point arithmetic. Results showed that the fixed-point MLP-BP
implementation was over 12x greater in speed, over 13x smaller in area, and
achieved far greater processing density compared to the floating-point FPGA-
based MLP-BP. Also, the processing density achieved by the FPGA-based
MLP-BP with 16-bit fixed-point precision compared to the software-based
MLP-BP best demonstrates the processing density advantage of reconfigurable
computing over general-purpose computing for this particular application. As
a result, floating-point precision is not as feasible as fixed-point in this type of
application.

One disadvantage of using 16-bit fixed-pt, is that its limited range poses
risk of saturation. Saturation adds error to a system, the extent of which is
application dependent. The logical-XOR example demonstrated in this chap-
ter still managed to achieve convergence, despite the saturation error caused
by 16-bit fixed-pt with range [-8.0,8.0). Another important lesson to learn
from this study is that the area savings of using 16-bit fixed-point rather than
floating-point precision in a FPGA-based ANN help minimize simulation du-
rations when validating HDL designs. The current performance rate of digital
HDL simulators, like ModelSim SE 5.5, is an ongoing concern. Not only does
the duration of timing simulations increase proportionally with the size of the
circuit being simulated, but the magnitude of duration is in the order of ’days’
and even "weeks’ for large VLSI HDL designs.

References

[1] Xin Yao. Evolutionary Artificial Neural Networks, In: Encylopedia of
Computer Science and Technology, A. Kent and J. G. Williams, Eds.,
Vol. 33, Marcel Dekker Inc., New York, NY 10016, pp. 137-170, 1995

[2] K. Balakrishnan and V. Honavar, Evolutionary Design of Neural Archi-
tectures — A Preliminary Taxonomy and Guide to Literature, Tech. Report
no. CS TR95-01, Artificial Intelligence Research Group, Iowa State Uni-
versity, pp. January, 1995.

[3] J. G. Eldredge, FPGA Density Enhancement of a Neural Network
Through Run-Time Reconfiguration, Department of Electrical and Com-
puter Engineering, Brigham Young University, pp. May, 1994.

References 57

[4]

(5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

(13]

[14]

J. G. Eldridge and B. L. Hutchings, Density Enhancement of a Neural
Network using FPGAs and Run-Time Reconfiguration, In: IEEE Work-
shop on FPGAs for Custom Computing Machines, pp. 180-188, 1994.

J. G. Eldridge and B. L. Hutchings, RRANN: A Hardware Implemen-
tation of the Backpropagation Algorithm Using Reconfigurable FPGAs,
In: Proceedings, IEEE International Conference on Neural Networks, Or-
lando, FL, 1994.

J. D. Hadley and B. L. Hutchings. Design Methodologies for Partially
Reconfigured Systems, In: Proceedings, IEEE Workshop on FPGAs for
Custom Computing Machines, pp. 78-84, 1995.

Hugo de Garis and Michael Korkin . The CAM-BRAIN MACHINE
(CBM) An FPGA Based Hardware Tool which Evolves a 1000 Neuron
Net Circuit Module in Seconds and Updates a 75 Million Neuron Arti-
ficial Brain for Real Time Robot Control, Neurocomputing journal, Vol.
42, Issue 1-4, 2002.

Amanda J. C. Sharkey, (Ed.). Combining Artificial Neural Nets — Ensem-
ble and Modular Multi-Net Systems, Perspectives in Neural Computing,
Springer-Verlag London Publishing, 1999.

Eric Ronco and Peter Gawthrop. Modular Neural Networks: a state of
the art, Tech. Report, no. CSC-95026, Center for System and Control,
University of Glasgow, Glasgow, UK, May 12, 1999.

Hugo de Garis and Felix Gers and Michael Korkin. CoDi-1Bit: A Sim-
plified Cellular Automata Based Neuron Model, Artificial Evolution Con-
ference (AE97), Nimes, France, 1997

Andres Perez-Uribe. Structure-Adaptable Digital Neural Networks,
Ph.D. Thesis, Logic Systems Laboratory, Computer Science Department,
Swiss Federal Institute of Technology-Lausanne, 1999.

H. F. Restrepo and R. Hoffman and A. Perez-Uribe and C. Teuscher and
E. Sanchez . A Networked FPGA-Based Hardware Implementation of
a Neural Network Application. In: Proceedings of the IEEE Symposium
on Field Programmable Custom Computing Machines (FCCM’00), pp.
337-338, 2000.

J.-L. Beuchat and J.-O. Haenni and E. Sanchez. Hardware Reconfig-
urable Neural Networks, 5th Reconfigurable Architectures Workshop
(RAW’98), Orlando, Florida, USA, pp. March 30, 1998.

Aaron Ferrucci. ACME: A Field-Programmable Gate Array Implementa-
tion of a Self-Adapting and Scalable Connectionist Network, University
of California, Santa Cruz, January, 1994.

58
[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

Arithmetic precision for BP networks

Marcelo H. Martin. A Reconfigurable Hardware Accelerator for Back-
Propagation Connectionist Classifiers, University of California, Santa
Cruz, 1994.

Tomas Nordstrom. Highly Parallel Computers for Artificial Neural Net-
works, Ph.D. Thesis,Division of Computer Science and Engineering,
Lulea University of Technology, Sweden, 1995.

T. Nordstrom and E. W. Davis and B. Svensson. Issues and Applica-
tions Driving Research in Non-Conforming Massively Parallel Proces-
sors, book. In: Proceedings of the New Frontiers, a Workshop of Future
Direction of Massively Parallel Processing, 1992

T. Nordstrom and B. Svensson. Using and Designing Massively Parallel
Computers for Artificial Neural Networks, Journal of Parallel and Dis-
tributed Computing, Vol. 14, 1992.

B. Svensson and T. Nordstrom and K. Nilsson and P.-A. Wiberg. Towards
Modular, Massively Parallel Neural Computers, In: Connectionism in a
Broad Perspective: Selected Papers from the Swedish Conference on Con-
nectionism - 1992, L. F. Niklasson and M. B. Boden, Eds., Ellis Harwood,
pp. 213-226, 1994.

Arne Linde and Tomas Nordstrom and Mikael Taveniku. Using FP-
GAs to implement a reconfigurable highly parallel computer. In: Field-
Programmable Gate Arrays: Architectures and Tools for Rapid Prototyp-
ing, Springer-Verlag, Berlin, 1992.

T. Nordstrom. On-line Localized Learning Systems Part 1 - Model De-
scription, Research Report, Division of Computer Science and Engineer-
ing, Lulea University of Technology, Sweden, 1995.

Tomas Nordstrom. On-line Localized Learning Systems Part II - Parallel
Computer Implementation, Research Report, no. TULEA 1995:02, Divi-
sion of Computer Science and Engineering, Lulea University of Technol-
ogy, Sweden, 1995.

Tomas Nordstrom. Sparse distributed memory simulation on REMAP3,
Research Report, no. TULEA 1991:16, Division of Computer Science
and Engineering, Lulea University of Technology, Sweden, 1991.

T. Nordstrom. Designing Parallel Computers for Self Organizing Maps,
In: Proceedings of the 4th Swedish Workshop on Computer System Archi-
tecture (DSA-92), Linkoping, Sweden, January 13-15, 1992.

B. Svensson and T. Nordstrom. Execution of neural network algorithms
on an array of bit-serial processors. In: Proceedings, 10th International
Conference on Pattern Recognition, Computer Architectures for Vision
and Pattern Recognition, Vol. 11, pp. 501-505, 1990.

References 59

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

M. Skrbek. Fast Neural Network Implementation. In: Neural Network
World, Elsevier, Vol. 9, no. No. 5, pp. 375-391, 1999.

Introducing the XC6200 FPGA Architecture: The First FPGA Archi-
tecture Optimized for Coprocessing in Embedded System Applications,
Xcell, Xilinx Inc., No. 18 : Third Quarter, pp. 22-23, 1995, url =
http://www.xilinx.com/apps/6200.htm.

Xilinx. XC6200 Field Programmable Gate Arrays, Data Sheet, Version
1.7, 1996.

Mikael Taveniku and Arne Linde. A reconfigurable SIMD computer for
artificial neural networks, Licentiate Thesis, Department of Computer
Engineering, Chalmers University of Technology, Goteborg, Sweden,
1995.

Gate Count Capacity Metrics for FPGAs, Application Note, no.
XAPP 059 - Version 1.1, Xilinx, Inc., Feb. 1, 1997, URL =
http://www.xilinx.com/xapp/xapp059.pdf.

FLEX 10K Embedded Programmable Logic Device Family,
Data Sheet, Version 4.1, Altera, Inc., March, 2001, URL =
http://www.altera.com/literature/ds/dsf10k.pdf

XC3000 Series Field Programmable Gate Arrays, Product De-
scription, Version 3.1, Xilinx, Inc., November 9, 1998, URL =
http://www.xilinx.com/partinfo/3000.pdf

XC4000XLA/XV Field Programmable Gate Arrays, Product Specifica-
tion, no. DSO015 - Version 1.3, Xilinx, Inc., October 18, 1999, URL =
http://www.xilinx.com/partinfo/ds015.pdf

Andres Perez-Uribe and Eduardo Sanchez. Speeding-Up Adaptive
Heuristic Critic Learning with FPGA-Based Unsupervised Clustering,
In: Proceedings of the IEEE International Conference on Evolutionary
Computation ICEC’97, pp. 685-689, 1997.

M. Morris Mano and Charles R. Kime. Logic And Computer Design Fun-
damentals, Prentice Hall Inc., New Jersey, USA, 2000.

Andre Dehon. The Density Advantage of Configurable Computing, IEEE
Computer, vol. 33, no. 5, pp. 41-49, 2000.

David E Rumelhart and James L. McClelland and PDP Research Group.
Parallel Distrubuted Processing: Explorations in the Microstructure of

Cognition, vol. Volume 1: Foundations, MIT Press, Cambridge, Massa-
chusetts, 1986.

Simon Haykin, Neural Networks: A Comprehensive Foundation,
Prentice-Hall, Englewood Cliffs, New Jersey, 1999.

60

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

(48]

[49]

[50]

[51]

Arithmetic precision for BP networks

Stephen D. Brown and Robert J. Francis and Jonathan Rose and Zvonko
G. Vranesic, Field-Programmable Gate Arrays, Kluwer Academic Pub-
lishers, USA, 1992

Virtex-E 1.8 V Field Programmable Gate Arrays, Perliminary Product
Specification, no. DS022-2 (v2.3), Xilinx, Inc., November 9, 2001, URL
= http://www.xilinx.com/partinfo/ds022-2.pdf

Jordan L Holt and Thomas E Baker. Backpropagation simulations using
limited precision calculations. In: Proceedings, International Joint Con-
ference on Neural Networks (IJCNN-91), vol. 2, Seattle, WA, USA, pp.
121 - 126, 1991.

Hikawa Hiroomi. Frequency-Based Multilayer Neural Network with On-
chip Learning and Enhanced Neuron Characterisitcs. IEEE Transactions
on Neural Networks, vol. 10, no. 3, pp. 545-553, May, 1999.

Peter J. Ashenden. VHDL Standards. IEEE Design & Test of Computers,
vol. 18, no. 6, pp. 122-123, September—October, 2001.

Hung Tien Bui and Bashar Khalaf and Sofigne Tahar. Table-Driven
Floating-Point Exponential Function, Technical Report, Concordia Uni-
versity, Department of Computer Engineering, October, 1998, URL =
http://www.ece.concordia.ca/ tahar/pub/FPE-TR98.ps

W.B. Ligon III and S. McMillan and G. Monn and K. Schoonover and
F. Stivers and K.D. Underwood. A Re-evaluation of the Practicality of
Floating Point Operations on FPGAs. In: Proceedings, IEEE Symposium
on FPGAs for Custom Computing Machines, pp. 206-215, 1998.

Pete Hardee. System C: a realistic SoC debug strategy, EETimes, 2001.

G.M. Amdahl. Validity of the single-processor approach to achieving
large scale computing capabilities, In: AFIPS Conference Proceedings,
vol. 30, AFIPS Press, Reston, Va., pp. 483-485, 1967.

Stephen Chappell and Chris Sullivan, Celoxica Ltd. Oxford UK. Handel-
C for co-processing & co-design of Field Programmable System on Chip
FPSoC, 2002, url = www.celoxica.com/technical-library/

Synopsys, Inc. Describing Synthesizable RTL in SystemC v1.1, Synop-
sys, Inc., January, 2002.

Martyn Edwards. Software Acceleration Using Coprocessors: Is it Worth
the Effort?, In: Proceedings, 5th International Workshop on Hard-
ware/Software Co-design Codes/CASHE’97, Braunschneig, Germany,
pp. 135-139, March 24-26, 1997.

Giovanni De Micheli and Rajesh K. Gupta. Hardware/Software Co-
design. Proceedings of the IEEE, vol. 85, no. 3, pp. 349-365, March,
1997.

References 61

[52] John Sanguinetti and David Pursley. High-Level Modeling and Hardware
Implementation with General- Purpose Languages and High-level Syn-
thesis, White Paper, Forte Design Systems, 2002.

[53] Don Davis. Architectural Synthesis: Unleasing the Power of FPGA
System-Level Design. Xcell Journal, Xilinx Inc., no. 44, vol. 2, pp. 30-34,
pp. Winter, 2002.

[54] Xilinx, XAPP467 Using Embedded Multipliers in Spartan-3 FPGAs, Xil-
inx Application Note, May 13, 2003, http://www.xilinx.com.

[55] Nestor Inc. Neural Network Chips, http://www.nestor.com.

2 Springer
http://www.springer.com/978-0-387-28485-9

FPGA Implementations of Meural Networks
Omondi, A.R.; Rajapakse, |.C. (Eds.)

20086, Xll, 360 p., Hardcover

ISBN: 278-0-387-28485-9

