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Summary. The purpose of this paper is twofold. First, we provide a short review and summa­
rize results on the robustness of controllability and stabilizability for finite dimensional control 
problems. We discuss the computation of system radii which provide a measure of robustness. 
Second, we consider systems which arise as finite difference and finite element approximations 
to control systems defined by partial differential equations. In particular, we derive control­
lability criteria for approximations of the controlled heat equation which are easy to check 
numerically. For a particular example we estabhsh tight theoretical upper and lower bounds on 
the controllability radii for the finite difference and finite element models and compare these 
bounds with numerical results. Finally, we present numerical results on stabilizability radii 
which suggests that conditioning of the LQR control problem may be measured by this radii. 

Key words: control system radii, numerical methods, robustness 

Introduction 

The analysis of mathematical models used in control design and optimization often 
requires several stages of approximation. Also, in the area of distributed parameter 
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(DP) control, numerical approximation must be introduced at some point in the mod­
elling process. Finite element, Galerkin and finite difference schemes are typically 
used to "discretize" continuum models, while in the frequency domain one might 
construct rational approximations of non-rational transfer functions. For computing 
purposes, state space models offer certain advantages in that there are numerous com­
putational algorithms well suited for the matrix-linear algebra problems that occur in 
control design. Direct discretization of continuum models usually produce state space 
models as do frequency domain approximations (followed by realization schemes) 
and model reduction methods such as proper orthogonal decomposition (POD). It is 
fair to say that all approaches have advantages and disadvantages and each approach 
leads to its own characteristic set of problems. However, to achieve robustness in a 
design based on approximate models one needs to take into account the robustness 
of the approximate model with respect to system properties. 

Given that there are several approaches to constructing finite dimensional state 
space models, it is reasonable to ask if there is some "measure" that can be used 
to select the "best" approach for a given system with a specific control design ob­
jective. In order to study this problem, it is clear that one must first decide what 
criteria will be used to determine which state space model is "best" for the particu­
lar problem at hand. It is very important to remember that such criteria may change 
it the system changes, if the control design objective changes or if the numerical 
method used to solve the corresponding control problem changes. Since the finite 
dimensional approximate/reduced order model will be used to design and optimize 
the infinite dimensional system, it is important that the finite dimensional model in­
herits the essential control system properties and that the finite dimensional control 
problem is numerically well-conditioned. For example, it has been observed [6; 7] 
that numerical conditioning of the LQR problem can be negatively influenced when 
non-uniform meshes are used to approximate a DP system governed by a partial 
differential equation. 

In this paper we investigate these ideas for distributed parameter systems. We 
shall focus on a specific subset of these problems. Our goal is to illustrate how one 
can use system measures to aid in the selection of model reduction and discretization 
algorithms. In particular, we shall use the concept of "system radii" to measure the 
"quality" of finite dimensional state space models constructed by direct discretization 
of continuum models. The motivation for this choice lies in the observation that 
numerical algorithms for control design can be (numerically) unstable if applied to 
systems that are not controllable (observable, stabilizable, etc.). Moreover, numerical 
ill-conditioning can result even if the system is controllable and observable but "near" 
an uncontrollable or unobservable system. This idea is certainly not new and there 
exist many examples of this type. Demmel [13] has developed a rather nice theory of 
ill-conditioning and established that numerous problems in numerical linear algebra 
(matrix inversion, eigenvalue calculations) and control design (pole-placement, robust 
control) all become ill-conditioned if the state space models used in the calculations 
are close to an ill-posed problem. Laub and his co-workers have established similar 
results for the LQR problem [18; 29; 30]. Since one of the often noted "advantages" of 
state space models is their usefulness for computational purposes, it is reasonable to 
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use the condition number of the problem as one measure to help select a discretization 
scheme. One can find a nice presentation of these ideas in the recent book [12] by 
Datta. 

Although there are several issues that need to be addressed in the overall approx­
imation process, we shall limit most of our discussion to the study of system radii 
for systems that typically occur when partial differential equations are discretized by 
finite element and finite difference schemes. These finite dimensional systems often 
have nice symmetry properties that can be exploited in the computation of the system 
radii. The basic problem of preserving system properties under approximation has 
been addressed by other authors [4; 17; 32] and is crucial to any method. However, 
we concentrate on the problem of selecting a "good" approximation from the class 
of all schemes that preserve the appropriate system properties. 

The paper is organized as follows. In Section 2.1 we review the basic definitions 
of system (radii) measures for finite dimensional systems and present examples to 
illustrate some relationships between these measures and typical control problems. 
We also summarize a few known results concerning these measures and give some 
new results on computing these measures. In Section 2.2 we discuss the problem of 
approximating infinite dimensional systems and use finite element and finite differ­
ence approximations of the heat equation to illustrate the ideas. This simple example 
is rich enough to provide some indication of the difficulties one encounters in de­
veloping theoretical and computational results for such problems. In Section 2.3 we 
provide a case study and compare theoretical bounds to computed values. Finally, we 
close with a short summary and a simple numerical example to illustrate the potential 
use of system radii to estimate the numerical condition number of an LQR problem. 

2.1 Measures of Robustness 

As noted in [1] numerical algorithms which assume a specific system property such 
as controllability or stabilizability can be expected to be numerically ill-conditioned 
if the system model is nearly uncontrollable (or nearly unstabilizable). The following 
simple example illustrates the type of difficulties that one can encounter. 
Motivating Example. Consider the control system governed by the second order 
system 

d_ \xi{t)] _ \i 0] rxi(t)i m 
dt [x2(t)\ - [O - i j [x2(t)\ ^ [e\ ''^''' 

Observe that this system is controllable (and stabilizable) if and only if ^^0 and e^O. 
It becomes uncontrollable if e = 0 and unstabilizable if and only if ^ = 0. Moreover, 
the system becomes "nearly uncontrollable" as e ^ 0 (and "nearly unstabilizable" 
as ^ ^ 0) in the sense that a perturbation of order e (6) in the input matrix col(^, e) 
may result in an uncontrollable (unstabilizable) system. 

In order to demonstrate the effect of near unstabilizability on control design, we 
consider the problem of minimizing the quadratic functional 

Z' + OO 

J{U) = / [{X,{t)f + {X2{t)f + U\t)]dt. 
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The optimal feedback gain is given by 

k*{6,e) = [kt,k*^] = -[6,e]n{6,e) 

where 77(^, e) is the solution to the Riccati equation 

A*77 + TIA - nBr-^B'^n + Q = 0, 

and Q = h and r = 1. 
It is straightforward to show that 

and hence 

n{6,e) 

k*i6,e) 

2+e^+2Vl+e2+g2 
2^2 

26 

26 

-1 + VT- 6^ 

6 
0]. 

Note that as ^ ^ 0, ||77(^, e)|| -^ +00 and ||A:*|| -^ +00. Here, || • || denotes any 
suitable matrix or vector norm. Thus, as the system approaches an unstabilizable 
system, the Riccati equation becomes ill-conditioned. As expected, the conditioning 
of the Riccati equation is not affected by the loss of controllability. However, consider 
the problem of finding a feedback operator kp{6, e) = [k^, k^] that places the closed-
loop poles at —2 and —4. In particular, if ^e ^ 0 then the unique solution to this 
problem exists and is given by 

fVnr, 

-15 3 
26 ' 2e 

Observe that as ^ or e approach 0, the system becomes nearly uncontrollable and 
\\kp\\ -^ + 0 0 . 

The previous example illustrates the need for a device to measure nearness of a 
system to uncontrollability, respectively unstabilizability. In order to make these ideas 
precise we introduce the following notation. We identify the control system U 

where A e M^^^, B e M^^"^ 
any A G C we introduce 

= Ax^ Bu, {E) 

,m<n, with the matrix [A, B] e R^x(^+"^). For 

H{X) = [A-XI,B] G C ^ X ( ^ + " ^ ) . 

The Hautus - test (see [28]) for controllability is based on embedding [A, B] in the 
set of complex systems 

r = {[A, B]:Ae C^^^, B e C^^"^}. 
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The distance between two systems i7i, E2 is defined by 

6{Ei,E2) = \\[Ai- A2,Bi- B2]l 

where || • || denotes any suitable matrix norm on (C^^^^+"^\ Given E ^ F and a 
subset 6' C r the distance between E and S is defined by 

d{E,S) =mi{ö{E,Eo;) : Eo, e S}. 

Let Â c C r be the set of all complex systems that are not controllable and Ns C F 
be the set of all complex systems that are not stabilizable, i.e. 

Nc = {[A,B] e F : [A, B] is not controllable} , 

Ns = {[A,B]eF : [A, B] is not stabiHzable} . 

Given E e F one defines the measure of controllability by 

j , = d{E,N,) (2.1) 

and the measure of stabilizability by 

jc = d{E,Ns). (2.2) 

These definitions may be found in [14; 29; 34]. There are several reasons that these 
measures are useful. First, they can provide an estimate of the condition number for 
control design algorithms (see [ 13] and the example on robust pole placement therein). 
Moreover, they provide numerical bounds on the errors that can be tolerated in the 
data defining the system matrices A and B. 

To obtain more explicit formulae for jc and 75 the norm in C^^ ^̂ +"̂ ^ has to be 
related to the norms in C^ and C^+"^. We shall modify a concept which was used in 
[21] to calculate the stability radius of a matrix. If we choose the Euclidean norm in 
C^ and in C^+"^, and the spectral norm in C^^i^-^'^^) ̂  ĵ̂ ĵ̂  ^^ ĵ̂ ĵ ̂ ^ ^^Q determined 
by the singular values of H{X). The singular values cri , . . . , cr̂ , p = min(r, s) of 
a matrix H G C^^^ (see [19] for basic definitions) will be ordered in the standard 
fashion ci > - - - > ap. We shall also use amin{H) to denote the smallest singular 
value ap of a matrix H. 

Definition 1. Let \\ • ||-̂ , || • ||^ be norms on C^ and C^ respectively and let \\ • ||^ 
(11 • ll^j denote the norm dual to \\ • \\n (\\ • \\m)- A matrix norm \\ • \\n,m on C^^'^ is 
said to be strongly compatible with \\ • ||^ and \\ • ||^ if the following two conditions 
hold 

(CI) llxMIl;, < P |U,^ | |x* | |* /ora / /A G C - x - x* G (C^)*. 
(C2)For any pair of vectors x"" G (C^)*,x* ^ 0,7/* G {C^Y there exists H G C^^"^ 

satisfying 
y*=x*H and | |ff| |„,„||x*||; = ||y*||;;,. 
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In the above definition (C^)* denotes the dual space of C^ which is (algebraically) 
identified with C^^^. Easy modifications of the proofs in [21] establish that the 
operator norms on C^^"^ as well as the Holder norms are strongly compatible with 
II • II* and II • 11^. In particular, this implies that the spectral norm and the Frobenius 
norm (see [19]) are strongly compatible with the Euclidean norms in C^ and C"^. 

Theorem 1. Choose any vector norms \\ • ||^, || • ||n+m i^ ^ ^ <^^d C^+"^ and any 
matrix norm in C^x(^+"^) strongly compatible with || • ||* and \\ • | |*+^. If the system 
[A, B] ^ r is controllable, then the measure of controllability is given by 

Proof. Let a denote the number on the righthand side of (2.3) and let [^AQ, 63^] G F 
satisfy || [6AQ^ 6BQ] ||n,n+m = 7c and [A + 6AQ^ B + 6BQ] G NC. Hence, there exists 
A G C , X * G (C^)*, ||x*||* = l w i t h 

X* [A + M o -\I,B^ 6Bo] = 0. 

Using (CI) this implies 

\\x*[A-\I,B]r„^^ < \\x*rJ[SAo,SBo]\\n,n+.^ 

and a fortiori 

On the other hand one can argue the existence of AQ G C , XQ G (C^)*, ||xo||* = 1 
with 

a = | | x S [ A - A o J , B ] | i : + ^ . 

Condition (C2) applied to x* = XQ, y* = XQ[A — AQ/ , B] ensures the existence of 
[6Ä, SB] G r with 

x^^[A-XoI,B]=x^^[6Ä,6B] (2.4) 

II [M, SB] \U^ -11x511: = \K[A - Ao/, B] ||;+^. (2.5) 

The identity (2.4) shows that [A - 6Ä,B - 6B] G Nc, and (2.5) implies that 

7c < c^' 

D 

Corollary 1. Let the norms be chosen as in Theorem 1. If the system [A, B] e F is 
stabilizable, then the measure of stabilizability is given by 

^^= "f^^ N T ^ . l l 2 ^ * [ ^ - A / , ß ] | i : + ^ . (2.6) 
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Corollary 2. Choose the Euclidean norms in C^ and C^+"^ and the spectral norm 
(or Frobenius norm) in (C^x(^+"^). 

i) If[A,B] G r is controllable, then 

-fc = mincrmin(i^(A)). (2.7) 

ii) If[A,B] G r is stabilizable, then 

-fs = min amin{H{X)). (2.8) 
ReX>0 

The characterizations (2.7) and (2.8) were first derived in [14] using a different argu­
ment. 

Throughout the remaining part of this chapter we shall use the Euclidean norms 
in C^ and C^+"^ and the Frobenius norm || • | |F in C^x(^+"^). In [15; 44; 45] an 
alternative solution to (2.1) was given. 

Theorem 2.If[A,B] G F is controllable, then 

7c = min | | ^ * [ A ( / - ^ ^ * , 5 ] | | . (2.9) 
lkll=i 

Although (2.9) is equivalent to an optimization problem given in [15], the approach 
to establish (2.9) given in [44; 45] is entirely different. The minimal perturbation 
[SAO^SBQ] is determined by using a state transformation that produces a certain 
canonical form. In [44; 45] the identity (2.9) is established by showing its equivalence 
with (2.7). For completeness we want to give a direct proof based on the above 
motivation. 

Proof of Theorem 2. Let [6A, SB] e F satisfy [A ^6A,B ^ SB] e N^. Then 
there exists Q = [Qi,q] e C^, Qi G C ^ ' ^ - \ q G C^, Q*Q = I such that in the 
transformed system 

y iA + ^A)<^-[^q^j^ + SA)Q, q*{A + SA)q 

q*{A + 6A)Qi=0 and q* {B + 6B)=Q (2.10) 

hold. Fix (/ e C". The minimal norm perturbation 6B, in (2.10) is given by 

6B^ = -qq*B. 

Since the columns of Qi are orthogonal, the first equation in (2.10) implies the 
existence of A e C with 
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which gives the minimal norm perturbation 6Ao 

6AQ = qq*\ - qq*A. 

Also | | M O | | F = lkl|2||^*A - q*A\\2 minimizing \\q*X - q*A\\2 with respect to A so 
that the minimum is attained at AQ = q'^Aq. Hence, the minimum norm perturbation 
6Ao is given by 

6Ao = qq^q'^Aq) - qq^'A = q{q''Aq)q'' - qq^'A = -qq""A{I - qq""). 

Thus we obtain 

and therefore 
\\[8A^,6B^]\\p = \\q*[A{I - qq*),B]h. 

Minimizing with respect to q, yields the desired result. D 

Remark. As a consequence of the above proof we note that if q^ G C^ is optimal in 
(2.9), then 

yields a minimal norm perturbation of [A, B] destroying controllability. It is shown in 
[44, Theorem 4.3] that if AQ G C is optimal in (2.7) and /7 = [^i,..., Un] e C^>< ,̂ 
V = [vi,..., Vn-^m] ^ C^^+"^^^^^+"^^ determine a singular value decomposition of 
H{Xo), then qo = Un minimizes (2.9) and 

[ M o , 6Bo] = JcUnVn^ AQ = U^Au^. (2.11) 

holds. Conversely if qo is a minimizer for (2.9) then AQ = qo^qo minimizes (2.7) 
having qo as a left singular vector. In particular (2.11) reveals that for real systems 
[A, B] G ]R^x (̂ +" )̂ the closest uncontrollable (unstabilizable) system will in general 
be complex. 

In order to study the effect of real perturbations, real measures have been intro­
duced (see [1; 15; 45; 18]). In particular, let 

Ü = {E=[A,B]:Ae W""", B G R^^""} 

denote the set of real systems. Then one defines the real measure of controllability by 

üüc = d{E, Nc n i?) 

and the real measure of stabilizability by 

iOs =d{E,Ns ni7) . 
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In general it is clear that 

7c < ujc and 7^ < uOs 

7c < 7s and ujc < ^s 

hold and it can happen that there is a significant difference between the various 
measures. It is tempting to assume that cOc could be found by computing the quantity 

cjc,i = inmamin{H{X)). (2.12) 
AGM 

In general, however, Wc,i yields just an upper bound for Wc. This is a consequence of 
the following theorem which was established in [45]: 

Theorem 3.If[A,B] G Ü is controllable, then 

cjc = min(cJc,i,^c,2), 

where ÜÜC,I is given by (2.12) and ÜÜC,2 is defined by 

^c,2= min \\Q^[A-QQ^,Q^B]\\^. (2.13) 

Corollary 3.If[A,B] G i? is controllable and n = 2, then 

ujc = min(^c,i, | |5| |F). 

The proof of this result comes from the observation that QQ^ = I2 holds for 
n = 2. We illustrate the above discussion by means of the following example. 

Example 1. Let s < 2 and define 

It follows that üüc,i = 1, hence ujc = s and [6A, SB] = [0 , -5] is a real minimal 
norm perturbation destroying controllability. A short calculation shows that 7c = 

s\/^ — fg, the minimum in (2.7) being attained at AQ = ± ü / l — fg. Observe that 
although ÜÜC = Cue,2, it does not necessarily follow that the corresponding minimal 
norm perturbation destroying controllability [6 A, SB] = [QQ^A{I—QQ^), QQ^B] 
has rank 2. This should be kept in mind in interpreting the corresponding results in 
[18]. For a more detailed discussion of coc we refer to [18; 45]. We complement 
these results by a characterization of the equality cOc = 7c which is adapted from an 
analogous result concerning the calculation of stability radii in [33]. (In the next two 
results we use the spectral norm in (C^x(^+"^),) 
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Theorem 4. Let [A^B] G Q be controllable and define 

^ = {A*GC:(7^in(i/(A*))=7e}. 

Then 7c = oOc holds if and only if there exist AQ G AQ and a singular value decompo­
sition ofH{Xo), 

n 

H{Xo) = ^ ( 7 , ^ , < , u^ e C^, v^ e C^+"^, z = 1 , . . . ,n (2.14) 

satisfying 
U^Un = V^Vn^ (2.15) 

Proof. First we show the necessity of (2.15). It suffices to discuss ylo HR = 0 . Assume 
that 7c = ujc holds and that the minimum in (2.7) is attained for some AQ G C \ R. 
Hence, there is a minimal norm (with respect to the spectral norm) real perturbation 
E G R^x(^+"^) of [A, B] satisfying 

l l ^ l b = 7c = CTn = am[nH{Xo). 

Thus, using (2.11) ^ admits the representation 

E = -dnUnvl. (2.16) 

It follows that 

<( [A, B]^E)= KH{Xo) + KE + Ao< [/, 0] = Ao< [/, 0]. 

Multiplying on the right by Vn and taking complex conjugates (note that E G 
^nx(n+m) we arrive at 

ul{[A,B]^E)vr^ = Xoul[I,0]vn. (2.17) 

Similarly, starting with {[A, B] + E)vn it follows that 

ul{[A,B]^E)v^ = Xoul[I,0]vn. (2.18) 

Comparing (2.17) and (2.18) we obtain 

^^[7,0].;, = 0. (2.19) 

Although the remaining part of the proof is identical to the one in [33] we present 
it here for the sake of completeness. The decomposition (2.14) together with (2.19) 
imply 

while 

[ A 5 ] - Ä o [ / , 0 ] = ^ ( 7 , ^ , U i 1 
i=l 
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the complex conjugate of (2.14), combined with (2.19) yields 

This completes the necessity part of the proof. Sufficiency of (2.15) may be shown 
in exactly the same way as in [33]. D 

A consequence of Theorem 4 is the following easily checked sufficient condition 
for 7c = ujc to hold. We present it for the sake of completeness and refer to [33] for 
the proof. 

Proposition 1. Let [A, B] ^ Q be controllable and A^ be as defined in Theorem 4. 
If for some AQ G TIQ CT̂  = cFn-i holds in the SVD (2.14) ofH{Xo), then the real and 
complex controllability measures coincide, i.e. uOc = 7c. 

It is apparent from Corollary 2, Theorem 2 and Theorem 3 that computing these 
measures is a difficult numerical problem and various algorithms have been developed 
for this purpose. Most of them rely on Corollary 2 (see [4; 44; 18]). For an alterna­
tive approach based on Theorems 2 and 3 see [45]. In order to reduce the required 
computational effort in minimizing (2.7) it is certainly advantageous to have a priori 
information on the location of the minimizing frequency A*. 

Theorem 5. Assume that [A, B] ^ F is controllable, 

(i) IfA = A*, then 

(ii) If A = -A*, then 

7c = mmamin{H{X)). 

7c = mmam[n{H{iX)). 
AGM 

(Hi) If [A, B] e Ü and A = A^, then 

jc = ^c = mmamin{H{X)). 
AGM 

Proof. (i) The square of (Jmin[H{X)] is equal to the minimum eigenvalue of 
H{X)H{Xy. If X = a^iß, then 

H{X)H{Xy = [A-XI,B] A* -XI 
B* 

= I\Xf - 2Re(A)A + A^ + BB* 

= {a'^I - 2aA + A^ + 55*} + ß'^I 

= {{aI-Af^BB''}^ß^I. 

The Hermitian matrix G{a) = {{al — A)'^ -\- BB""} has real eigenvalues Ai(ce), 
A2(ce), . . . , Xn{oi) and the spectral theorem [31, p. 312] implies that the eigenvalues 
of 
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are given by Â  (a) +/5^, i = 1, 2 , . . . , n. Therefore, for each X = a-\-iß, the minimum 
eigenvalue of H{X)H'^{X) occurs at /5 = 0 and hence 

7c = mincrmin[i^(A)] = mincrmin[i^(A)] 
A G C AGM 

which completes the proof of (i). 

The proof of (ii) follows from (i) by observing that A = —A* if and only if 
[zA] = M]*. 

If [A, B]eÜSindA = A^, then part (i) implies that 

7c = mincrmin[i^(A)] = (Jm[n[H{X)] 
AGM 

for some real A. Since H{X) is real, the singular vectors of H{X) are real and hence 
the minimum norm rank reducing perturbation is real (see [19, p. 19 ]). Therefore, 
7c = Cue, part (iii) is established and this completes the proof. D 

We note that Theorem 5 could be deduced exploiting (2.11). However, the proof 
presented above also establishes the following result. 

Theorem 6. Assume that [A,B] ^ F is stabilizable. 

(i) IfA = A*, then 

(ii) If A = -A*, then 

js =mmamin{H{X)). 
A^O 

75 =mmamin{H{iX)). 
AGM 

(iii)If [A, B] e Ü and A = A^, then 

js=^s= mmamin{H{X)). 
A^O 

Corollary 4. / / [A, B] e Ü is stabilizable, A = A^ and x^Ax < Ofor all x G W, 
then 

Proof. It follows from Theorem 6 that 

uJs=ls= min amin[H{X)] 
AGR+ 

SO we need only show that A* = 0 provides such a minimum. Since {XI — A)'^-\- BB^ 
is positive semi-definite and a'^^^[H{X)] is the minimum eigenvalue a{X) of 

H{X)H^{X) = {A- Xlf + BB^ 
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it follows that 

(7(A) = min [x^{A - Xlfx + x^BB^x] 
\\x\\ = l 

> min Ix^Ä^x + x^BB^x] + min [A^lblP - 2Xx^Ax]. 
Ikll=i lkll=i 

The last term in this inequality is non-negative so that 

(7(A) > min [x^{Ä^ + BB^)x] = (7(0) 
\\x\\ = l 

and this completes the proof. D 

We conclude this section with an example demonstrating that symmetry of A 
is sufficient for 7c = minAGRcrmin(^(A)) to hold, but the symmetry of A is not 
necessary. 

Example 2. Let £ < ^ and 

. . , ; « a„. B . J 

It follows that 

Therefore, crmin(^(A)) attains its minimum at A = 1 which implies 7c = ^c = £• 
Note that in this case we also have jc = Is-

2.2 Infinite Dimensional Systems and Approximations 

In this section we consider the control system 

i(t) = Az{t) + Bu{t), z{0) = zo (2.20) 

with output 
y{t)=Cz{t). (2.21) 

We assume A generates a Co-semigroup S{t) on the Hilbert space Z, B : U ^ Z, 
C : Z ^ Y diXQ bounded linear operators and U, Y are Hilbert spaces. Solutions of 
(2.20) will be mild solutions defined by 

z(t) = S{t)zo + / S{t- s)Bu{s)ds. (2.22) 
Jo 

For t > 0 the reachable set at time t is given by 
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7^(t) = i / S{t- s)Bu{s)ds\u G ^2(0, t; U) 

System (2.20) is said to be exactly controllable in time t, if 7^(t) = Z and exactly 
controllable if U t > o ^ ( 0 = ^- ^ 1 ^ ^ (2.20) is called approximately controllable in 
time t, if 7^(t) = Z and approximately controllable if U t > o ^ ( 0 = ^- ^^^ analytic 
semigroups it is known (see [16]) that U t > o ^ ( 0 = ^ if and only if there is a finite 
time i such that 7^(t) = Z. This is also true for semigroups generated by finite delay 
differential equations (see [2; 41]). 

System (2.20) is said to be (exponentially) stabilizable if there is a bounded linear 
operator T : Z ^U such that the closed-loop operator Ac = A^ BT generates a 
Co-semigroup S(t) satisfying 

| | 5 ( i ) | | < M e - ' 5 * 

for some M > 0 and /5 > 0. There are analogous definitions of observability and 
detectability and various other types of controllability (i.e. null controllability). A 
good summary of these definitions and topics may be found in [11]. However, we 
shall concentrate primarily on controllability questions and make some comments 
about stabilizability. It will be clear that dual results will exist for observability and 
detectability. 

The first problem one faces when trying to define system measures for infinite 
dimensional systems is that in general most of the system properties are not generic. 
Consider the following simple example. 

Example 3. Let U = Z = £2 and define A = I and B : £2 ^ ^2 by i3(t^i, 1̂ 2, ^ 3 , • • •) 
= (^1, ^2 /2 , us/S,..., Ui/i,...). The operators A and B are bounded and the sys­
tem {A, B) is approximately controllable. Define the perturbed systems A^ = A 
a n d i 3 ^ ( ^ i , ^ 2 , . . . ) = K , ^ 2 / 2 , . . . , ^ 7 V - i / ( i V - l ) , 0 , ^ A , + i / ( A r + l ) , . . . ) . Ob­
serve that 11^^ - ^11 = 0 and \\B^ - B\\ < l/N and yet the system {A^,B^) 
is not controllable for all Â  > 1. If we choose for U the Banach space £2^ = 
{{^i)\ X l ^ i ^~^l<f^P < ^ ^ } ' then {A^ B) as defined above is exactly controllable and 
stabilizable and yet (v4^, B^) is neither controllable nor stabilizable for all Â  > 1. 

Example 4. Let Z = £2 and define A and A^ by ^ = —/ and A^x = A^{xi^X2^ 
. . . ) = (—xi ,—X2, . . . ,—XA^_I ,2XA^ ,—XA^+1 , . . . ) . Observe that II e"̂ ^ II = e~^ 
and \\A^x - Ax\\ = 3\XN\ -^ 0. Moreover, | | ^ ^ | | = 2 so that A^ is a nu­
merically stable and consistent approximation of A. If e^ denotes the unit vector 
e ^ = ( 0 , 0 , . . . , 1 , 0 ,0 , . . . ) G £2. then ^ ^ e ^ = 2 e ^ . A^ has an unstable eigen­
value A = 2 for all AT > L 

These examples indicate that there are no such things as stability, controllability or 
stabilizability measures for general infinite dimensional systems. For a more detailed 
discussion see also [37]. In order to define a reasonable measure it is essential to 
limit the set of allowable perturbations to a specific (structured) set. Initial results on 
structured perturbations that preserve stability have been established in [40]. In [8] it 
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was shown that, for certain delay systems, approximate controllability is preserved 
under small perturbations of the system coefficients (including the delay). 

From a design point of view it is worthwhile to think of finite dimensional ap­
proximating systems as "structured" perturbations of infinite dimensional systems. In 
particular, one can use finite element and finite difference schemes to construct very 
special (perturbed) approximating control systems for distributed parameter models 
governed by partial and functional differential equations. Therefore, one question 
of interest is that of determining those numerical schemes that preserve the various 
system properties and then finding among such schemes the ones that maximize the 
measures of the finite dimensional models. 

This problem was considered for approximations of control systems with delays 
in [8]. For single-input systems it was possible to give sufficient conditions for an 
approximation scheme to preserve controllability. Moreover, it was shown in [8] that 
several of the standard numerical schemes for delay equations satisfy these condi­
tions and hence preserve controllability under approximation. The situation becomes 
much more complex when the system is governed by parabolic and hyperbolic partial 
differential equations. 

Two specific numerical schemes for approximating differential operators are the 
finite difference and finite element methods. Both approaches have certain advantages 
and limitations. In many cases (not always) these schemes lead to system matrices with 
a very special structure. For example, it is typical that such schemes produce matrices 
that are symmetric and sparse (banded, block tridiagonal, etc.). When such methods 
are used to approximate control systems governed by partial differential equations 
it is possible to use this structure in the design and analysis of the control problem. 
Moreover, since there are often several methods for approximating a particular control 
problem it is important to identify those schemes that produce models that are robust. 
More precisely, we are interested in determining the schemes that have good system 
measures 7c, 7s, etc. We shall consider this problem for a one dimensional heat 
equation. We focus on the standard finite (central) difference and (piecewise linear) 
finite element schemes. 

Consider the system governed by the heat equation 

yt{t,x) = ya:x{t,x) + b{x)u{t), 0 < x < 1, t > 0, (2.23) 

with Dirichlet boundary conditions y{t,0) = y{t,l) = 0. Here we assume that 
b{') G ̂ 2(0,1). Let A be the operator defined on ^2(0,1) by 

V{A) = {(/) G L2(0,1)|(/) G H\0,1), m = (/)(!) = 0}, (2.24) 

and for (ß e V{A) 

Acß = ^cß. (2.25) 

The operator A generates a Co-semigroup S{t) on ^2(0,1) given by 

00 

[5(t)0](x) = ^e-^''*(0,0fc>0fc(x), (2.26) 
k=l 
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where Xk = /C^TT ,̂ (ßkix) = ^/2 sm{k7Tx) and (•, •) denotes the standard inner 
product on ^2(0,1). We define B:R^ ^2(0,1) by 

[Bu]{x) = h{x)u, (2.27) 

and consider the equation (2.23) as a control problem in ^2(0,1) governed by 

z{t) =Az{t)^Bu{t). (2.28) 

We denote by U^ = {A, B) the system operators defined by (2.24) - (2.25) and 
(2.27). Recall that (2.28) is approximately controllable in ^2(0,1) if and only if 

, 6 ) ^ 0 for all A: = 1,2,.. . . (2.29) 

We note that many of the results below can be extended to problems in more than one 
space variable and to some general parabolic systems. However, this introduces so 
many technical details that many of the basic ideas get lost. Also, it will become clear 
that even this "simple" one dimensional heat equation leads to difficult problems. We 
refer the reader to [25] for a discussion of controllability for more general problems. 

The system (2.28) will be approximated by using finite difference and finite el­
ement schemes for (2.23). Divide the interval (0,1) into Â  + 1 equal subintervals 
[xi^Xij^i] where Xi = ]Y+T' ^ ^ 0 , 1 , . . . , Â  + 1. Assuming that h{-) G i^^(0,1), 

,2 
then applying the central difference approximation of -^ leads to the Â  dimensional 
system 

i^( t ) = A ^ z ^ ( t ) + 5 ^ ^ t ) , (2.30) 

where 

AN (iV + l)2 

2 
1 

) 

1 0 
- 2 1 

1 

0 

- 2 1 
1 - 2 

(iv + ir^^, 

TDN 
C01(6(X1) ,6 (X2) , . . . , 6 (X7V)) , 

and z^^ (t) is identified with the vector 

z^{t) = col {y{t, xi),y{t, X2),. . . , y{t, XN))• 

The system E^ = (A^, B^) is called the finite difference model. 

(2.31) 

(2.32) 

(2.33) 

We turn now to the finite element scheme. For each i 
denote the hat function 

1,2,. , N let /if (x) 

{N + l){x - Xi-i) Xi-i < X < Xi, 
hf {x) = { -{N + l){x - Xi^i) Xi < X < Xi^i^ 

0, elsewhere. 
(2.34) 
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If 7/(t, x) is approximated by 

Â  

y^{t,x) = ^zf{t)hf{x), 

41 

(2.35) 
i=l 

then a standard Galerkin procedure leads to the finite element approximation 

Moreover 

and 

Let 

E^z^{t) = F^z^{t)^G^u{t). 

- \ih^ h^)] - ^ 
-K/^. ' ^ • ) J - 6 ( i v + i) 

"4 1 0 
14 1 0 

0 1 4 1 
1 4_ 

F^ = -[{h^,hf)] = {N^l)Ä^, 

Gf =COl((6,/lf),(6,/l^), . . . ,(6,/lj^)). 

^E — [^E\ ^E 5 ^E = [E^r'G^E. 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

and define the finite element model E^ = (A^, B^) by 

i^ ( t ) = A f z ^ ( t ) + 5 f ^ t ) . (2.40) 

It is obvious for this simple case that both schemes preserve stabilizability under 
approximation uniformly in Â  (i.e. have property (POES) as defined in [4]). In fact, it 
is shown in [3] that the same is true for finite element schemes applied to more general 
parabolic problems in several space dimensions. Their approach can also be extended 
to certain (but not all) finite difference schemes for such systems. It is not obvious that 
these schemes preserve controllability (even for the particular model considered here) 
and in fact this problem is not yet resolved. Therefore, it is worthwhile to have some 
conditions on the system that can be used to determine the controllability properties 
of the models E^ and E^. 

First consider the finite difference model E^. The tridiagonal matrix A^ has 
eigenvalues (see [42]) 

kn 
X^ = -4(N + if sin^ — - — - . 

D,k V J 2{N^1)' 
1,2,. ,iV, (2.41) 

and associated eigenvectors 

7^ col {sm{kaN), sm{2kaN),..., sm{NkaN)), (2.42) 
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where a^ = 7T/{N -\-l). Consequently, it follows (see the identity 1.351 in [20]) that 

||z^,fe|| - 2 ^ s i n [jka^)- 2 - ( - 1 ) 2sin(A:7r/(iV+l)) - 2 ^ ^ + ^̂ -

(2.43) 
i = i 

In view of (2.41) - (2.43), it is clear that 

<Z> N 
(7V + 1) 

sin aN sin 2aN 
sin 2aN sin AaN 

sin NaN 
sin 2NaN 

(2.44) 

[sinA/"ceTV sm2NaN • • • sinA/'̂ ce^vJ 

is the orthogonal transformation that diagonalizes A^, i.e. [^^]^ = [^^]~^ and 

[$n''A%<P^ = A% =dmg{Xl„X%^„...,Xl^) (2.45) 

Observe that <?^ is also symmetric so that [^^]^ = ^^ = [(?^]-i. Let 4>^ denote 
the fc-th column of <? , 

*f (AT+l) 
col (sin(/i:ce7v), sin(2/i:ce7v),..., sii].{NkaN)). (2.46) 

Lemma 1. The finite difference model E^ = (A^, 5 ^ ) /̂  controllable if and only 

if 
{<P^,BS)^0 for all k = l,2,...,N. (2.47) 

Proof. Let ̂ k b^, B^), /c = 1,2,. . . , Â  and note that 

<?^B^=col(^f,^^...,a). 

The system i7j3 is controllable if and only if the controllability matrix 

'DJ 

has maximal rank N. However, 

rank /C^ = rank 

i. 

e 

1 \^ 

1 \ ^ 

1 '^D,Ar 

/ \Ar \ A r - l 

(\N \N-1 

( A ^ , ^ ) ^ - \ 

Since the eigenvalues of A^ are all distinct, the Vandermonde matrix is non-singular. 
Hence, /C^ has rank N if and only if (2.47) holds. D 

file:///Ar-l
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lfb{') G H^{0,1), \etg{x) = b{x + ^) for —^ < x < ^. In the cases where ^ is 
odd or even, (2.29) does not hold. If g{x) = g{—x), then 

B^ = col (6(xi) , . . . , b{xe),b{xe),..., 6(xi)), if iV = 2^ 

and 

B^ = col (6(xi) , . . . , b{xe), 6(x^+i), 6(x^), . . . , 6(xi)), if iV = 2^ + 1. 

If^(x) = -^ ( -x ) , then 

B^ = col (6(xi) , . . . , b{x^), -b{x^),..., -6(xi) ) , if iV = 2^ 

and 

BS = col (6(xi) , . . . , b{xi), 0, -6 (x^) , . . . , -b{xi)), if iV = 2^ + 1. 

Proposition 2, If g{x) is odd or even, then E^ and E^ are not controllable for all 
N>1. 

Proof. As noted above, i : ^ is not controllable since (2.29) fails. Let ̂ f = {(ß^^B^). 
If N = 2£, then a direct calculation yields 

i 

?f = V]^E^(^')(lT(-l)'^)sin '̂ " 
21 + 1 

1=1 

If Â  = 2^ + 1, then it follows just as above that 

I 

2(^+1) 
4 " = / ^ E ^(a^^)(l T (-1)'^) sin ^ ^ + 6(x,+0 sin 1^ . 

Above, the minus sign is valid if g is even, the plus sign if g is odd. Hence we 
conclude that the even (odd) numbered coordinates of (f ̂  vanish if g is symmetric 
(skew symmetric). D 

A close look at the above proof yields a clear relationship between (2.29) and 
(2.47) in the special cases above where (2.29) fails because of the special form of 
g{-). This form is also present in B^ and it is precisely this form that causes (2.47) 
to fail. As we shall see below, the same structure is preserved by the finite element 
scheme. In particular, let 

1 
6(Ar + i ) 2 ^ ^ ' 

AN _ r p iV i -1 fpN _ '- AN 

1 
M = \m]-^G% = —^ -B^ and 

E y E\ E 6 ( ^ + 1) E 
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Clearly, Z'f = ( i f , 5 f ) is controllable if and only if E^ = (Af, 5 f ) is control­
lable. 

Observe that the "stiffness" matrix {N + l)^F^ is the system matrix for the finite 
difference equation, i.e. 

^ E — ^Di 

and that the "mass" matrix E^ can be written as 

E^ = PN ̂  6 / ^ = ^D + 6 /^ , (2.48) 

where I^ is the Â  x Â  identity matrix. 

Lemma 2. Let A^ and A^ be as given above. Then X ^ Cis an eigenvalue of A^ 
with eigenvector z^ if and only if6X/{l — A) is an eigenvalue ofA^ with eigenvector 

.N 
A Z ^ 

The proof of Lemma 2 follows immediately from (2.48). Moreover, as a conse­
quence of Lemma 2 and (2.48) it follows that ^^ defined by (2.44) diagonalizes A^ 
and A^. We use these observations to establish the following result. 

Proposition 3. The finite element model E^ = (Af, B^) is controllable if and only 

if 
(0f,G^)^O for all k = l,2,...,N. (2.49) 

Proof. The system S^ is controllable if and only if S^ is controllable, i.e. if and 
only if 

K;f=[ß^,ifßf,...,[ifr-ißf] 
has rank N. However, E§F^ = F^E§ so that 

r ank£^ = rank[[^^]-iGf, [E^]-\[E^]-'F^)G^, 

...,[E^]-H[E^]-'F^f-'G^] 

= rank[<?^Gf, Ä'^'P^'G^, ..., ( i ^ ) ^ - i < ? ^ G ^ ] , 

where A^ is a non-singular diagonal matrix. Hence, N = rank JC^ if and only if 
(2.49) holds and this completes the proof. D 

Proposition 4. If g{x) is odd or even, then E^ and E^ are not controllable for all 
N>1. 

As seen above there is a nice relationship between the system matrices for E^ 
and E^. Moreover, one has the following 

Proposition 5. Assume that there exists a non-singular transformation T^ such that 

(1)Ä^ = T^Ä^{T^)-^ 
(2) G^ = T^B^. 
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Then, E^ is controllable if and only if U^ is controllable. 

Proof. Since scalar factors do not affect the controllability, it suffices to consider the 

rank A 
6A 

1 - A 1 ,^E rank ^ 7 V ^ ^ ( ^ 7 V ) - l 6A •N rriN -DN 

r\r'B D 

The conclusion follows from the Hautus test and Lemma 2. 

Example 5. Let b{x) = x, 0 < x < L It follows from (2.29) that U^ is controllable 
and ((/)^, B^) can be calculated. In particular, B^ = -^^^col(l , 2 , . . . , A )̂ and 

f̂,s^> 
Â  

TE AT + l ^ 1 ^ AT + l 
sinkiaN. 

Applying the identity L352 (i) in [20] to the expression 

~2 1 

AT + l AT + l 

sin[(Ar + l)kaN] N + 1 cos[^^kaN] 

4 s i n 2 ^ sm 
kajs 

and performing a few elementary manipulations it follows that 

k7T 

e^ = (-1) fe+l 1 
cot 2(Ar + l ) 2(Ar + l ) ' 

A: = 1 ,2 , . . . , AT. 

Since 
Â̂  A l̂ o<m<\e^-i\<---<\e^\, 

(2.50) 

(2.51) 

it follows that the finite difference model S^ is controllable for all AT > 1. If the 
finite element scheme is applied, then 

1 
G N 

(AT + l) 
— col( l ,2 , . . . ,Ar) , (2.52) 

and G^ = T^̂  B^^ where T^̂  ={N^l)r\ Therefore, it follows from Proposition 
2.8 that the finite element scheme U^ is also controllable for all Â  > L 

Remark. It is important to note that checking for controllability of finite dimensional 
systems is in general a subtle numerical task [36; 30]. In contrast, verification of (2.49) 
is numerically accurate and straightforward. In the next section we shall concentrate 
on the robustness of the system measures for this example. 
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2.3 System Measures and Case Studies 

In this section we consider the system measures 7c and 75 for each of the two schemes 
applied to Example 5. Also, we use the simple model problem defined in Example 5 
to present a comparison of the condition number for the Riccati equation that comes 
from an LQR problem and the stabilizability radii. 

Approximations for the Heat equation 

In particular, we consider the problem governed by 

yt{t,x) = y^^{t,x)^xu{t), 0 < x < 1, t > 0 (2.53) 

with Dirichlet boundary conditions 7/(t,0) = y{t, 1) = 0. The finite difference system 
^D = (^D^^D) and the finite element system E^ = {A^,B^) are defined as 
above, where for this problem 

B^ = ^^co\{l,2,...,N) (2.54) 

and 

B^E = [E^r'G^E = [ ^ ^ ] " ' (]^rTl)^ ^°1 (1' 2' • • •' N)- (2.55) 

Let 7]3(̂  ilos) a^^ 7^c ^TES) denote the controllability (stabilizability) measures 
of E^ and E^, respectively. From the previous section we know that E^ and E^ 
are controllable. Moreover, since A^ = [^^]"^ and A^ = [^^]"^ we have from 
Theorem 5 that 

and 

iDC = ^DC = min a^m [Xr' - ^ B , ^i3 ], (2.56) 

7EC = ^EC = min a^^ [AJ^ - Af, B^] . (2.57) 
AGR-

Corollary 4 implies that 

7DS=^DS = <^min[Ag,ß^], (2.58) 

and 
7^s = ^ ^ s = <^mi„[Af,ß^]. (2.59) 

These formulas can be used to compute the various measures. Moreover, it is pos­
sible to obtain explicit upper and lower bounds on the controllability measures. The 
following theorems provide such bounds. The proofs are given in the appendix. 

Theorem 7. Let 7^^^ = oo^^j denote the controllability measure of the finite differ­
ence approximation of (2.53). IfN>8, then 

6^-^^D<{l^c?<5^, (2.60) 



where 

and 

and 
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*2 = I«"I' = 2(STT)~*'2(STT)' <"" 

^ _ 1 ^ 2 ( 3 i ^ 2 ( A ^ ^ ^ ) 
^D ßo 24Ar2(Ar2-i) 

ßo = 726. 

(2.62) 

> 
Theorem 8. Let U^ = {A^, 5 ^ ) denote the finite element approximation of (2.53). 
VIEC ~ ̂ EC ^^ ^^^ controllability measure for E^, then for N 

6^-4<{l^c?<S^, (2.63) 

where 

and 

and 

cA^ _ ^ ß^N 

[ 3 - 2 s i n 2(]vTT)] 

^ _ 1 ^2(31^ 2 ( A ^ ^ ^ ) 

^E ßE 24Ar2(Ar2-i) 
(2.65) 

/5£; = 550. 

Corollary 5. Ifj^c ^^^ ^EC ^^^ ^^ above, then 

^ lim -f^c = J i m j^c = 0-

The proof of Corollary 5 is an easy consequence of Theorems 7 and 8. Note that 
the asymptotic rates of 6^ and 6^ are the same. However, for "small" values of N, 
there are considerable differences. Moreover, the rate at which 6^ (and 6^) converges 
to zero decreases significantly for Â  > 10. If one had no theoretical estimates (such 
as (2.61) and (2.64)) then numerically calculated values for Â  < 10 might lead one to 
believe that the decay of controllability occurs so rapidly that the high order models 
would be numerically uncontrollable on most digital computers. 

In Tables 2.1, 2.2 we compare computed values of (JDC)'^ ^^^ (IEC)'^ with 
the theoretical upper and lower bounds given in Theorem 7 and Theorem 8. In our 
computations we used Algorithm II in [44]. The eigenvalues of A^ (A^) served as 
initial guesses for the location of the minimum in (2.7). The proofs of Theorems 7 and 
8 show that in the particular example one can choose as initial guess the eigenvalue 
with largest modulus which significantly reduces the computational effort. We also 
report the observation supported by numerous examples [35] that the minimum in 
(2.7) is usually attained close to an eigenvalue of A^ (A^). 

The most important point to make is that the finite element model is roughly one 
order of magnitude more robust than the corresponding finite difference model. Both 
systems provide order 0{h'^), h = 1 /{N -\-1) approximation of the generator A and 
for fixed N, U^ and U^ are of the same dimension. 
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Condition Number and Stabilizability Radius 

Here we discuss the relationship between the condition number for the algebraic 
Riccati equation and the stabilizability radius 75. We compute the actual condition 
number Kjuc as defined on page 533 (Theorem 13 A.2) in Datta's book [12] and 
compare this to the inverse of 75. To illustrate the point we return to the first example 
given as the motivating problem. In particular, we consider the 

d_ rxi(t)i _ \i 0] rxi(t)i \6] 
dt [x2{t)\ ~ [0 - i j [x2{t)\ ^ [e\ ""^^'^ 

with e = 1. In this case the system becomes unstabilizable as 6 approaches zero. In 
Table 2.5 below we see that the Riccati equation condition number KRJC increases 
as 6 approaches zero. In addition, ratio Kmc^js approaches a constant value 1.0797 
which shows that the inverse of the stabilizability radius 75 provides a good estimate 
of the conditioning number KRJC. Therefore, it might also be possible to use system 
radii to help construct "well-conditioned" approximating control systems. This topic 
needs further study. 

2.4 Concluding Remarks 

In this paper we discussed a measure of controllability (stabilizability) quantifying 
the distance of a controllable (stabilizable) system to the set of uncontrollable (un­
stabilizable) systems. This measure was applied to finite dimensional systems which 
arise by approximating an infinite dimensional system. This process leads to sev­
eral important questions that are often not fully addressed. In particular one should 
consider the following issues: 

1. If the original distributed parameter system is controllable (stabilizable) are the 
finite dimensional approximation also controllable (stabilizable)? For the heat 
equation this leads to a very specific problem: 
(PI) Find sufficient conditions for b G H^{0,1) which ensure that {(fk, ^)L2 ^ 0, 

k = 1,2,... , implies that ((/)f, B^) ^ 0 for all A: = 1 , . . . , AT (where 
(/)f, B^ are defined in (2.46) and (2.32)). 

2. If the finite dimensional approximate model is controllable (stabilizable) how 
robust is the model with respect to the measure jc (7s)? 

3. How does jc (is) vary as the approximation scheme is refined? 

It is not unexpected that the controllability margin in the example discussed in this 
paper deteriorates as the approximation is refined. On the one hand the finite dimen­
sional systems converge to the distributed parameter system for which (approximate) 
controllability is not robust with respect to bounded perturbations [37; 10]. On the 
other hand, the dimension of the finite dimensional approximating systems grows as 
the discretization is refined making it more likely that small perturbations will de­
stroy controllability [1]. In addition, the measures considered here do not take into 
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account the typical structure of the finite dimensional approximating systems. In gen­
eral therefore, it will not be possible to interpret the closest uncontrollable system as 
an approximation of a perturbed distributed parameter system. 

The problem of preserving stabilizability under approximation has been consid­
ered by serval authors [8; 24; 27]. This problem can be rather complex or quite 
simple depending on the particular distributed parameter system and the choice of 
approximating scheme. "Standard finite element" schemes applied to hyperbolic sys­
tems often preserve stabilizability while spline based schemes for delay equations are 
much more difficult to analyze [24], [27]. The problem of preserving controllability 
is much more complex and only a few results exist for this problem (see [8], [26]). 

In addition to the system dynamics (E) we consider an output equation 

y{t) = Cx{t) 

and discuss the observability of the pair [A, C]. By duality one can define observability 
measures 70, uoo analogous to 7c, ooc. It is known that none of these measures is 
invariant under an arbitrary change of basis. The effect of similarity transformations 
in the state space has been discussed in [38] and [39]. In particular, it was shown that 
for a generic controllable system, 7c (7s) may attain any value in (0, 00) by choosing 
an appropriate basis. Furthermore, in [18] the authors suggest a sequence of similarity 
transformations based on the successive solution of a Riccati equation which tends 
to increase significantly the margin of stabilizability (controllability). 

Let the output operator for the heat equation be C = X, the identity operator on 
^2(0,1). If one uses the finite element scheme then the approximate output matrix is 
given by the mass matrix 

It is straightforward to use the ideas above to calculate detectability and observability 
measures for this problem. Also, if one balances the system (see [35]) one has another 
realization of the form 

Ä^=TA^T-\ B% = TB^, C^=TC^. 

Observe that this system is a single input / multiple output system. In Table 2.3 we 
see that the stabilizability and detectability measures for the finite element model 
and the balanced model are bounded away from zero. Also, for the balanced system 
7^^ = 7^^. However, as illustrated by Table 2.4, balancing increases the controlla­
bility measure and decreases the observability measure. This was observed in [35] for 
finite element approximations of various parabolic, hyperbolic and mixed distributed 
parameter systems. In closing we list some open problems that if solved in a satisfac­
tory way could be useful in constructing approximate models for control design and in 
estimating condition numbers of numerical algorithms used in control. In particular, 
since in general 70 ^ 7c and (even balancing) state transformations that increase 7c 
can decrease 70, we pose the following problems: 

(P2) Given that [A, B] is controllable and [A, C] is observable, find a non-singular 
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Jeo(T)=min{7e(T),7o(T)} 

over the set of non-singular matrices T e M"^", where 

%{T)=%{TAT-\TB) and %{T) = jo{TAT-\CT-'). 

(P3) Find T* maximizing Jco{T) subject to the additional constraint that T is "well 
conditioned", i.e. that Jco{T) is maximized over a set of the form 

K{6) = {Te M'^''"" : ö-min(T) > 6} for some ^ > 0. 

These problems could also be stated for the stabilizability and detectability mea­
sures. 

Appendix 

In this section we present the proofs for Theorems 7 and 8. It is easy to see that the 
minimization problem defined by (2.9) is equivalent to the problem 

7e' = mm (z*AA^z - \z*Azf + \\z*Bf). 
\\z\\ = l 

Since 
z * A A ^ z - | z * A z p > 0 for 11^11=1, 

with equality holding if and only if z* is a left eigenvector of A, we deduce the 
following upper bound for 7^ 

7c < \\z*B\\l (2.66) 

where z* is any normalized left eigenvector of A. (2.66) together with (2.50), (2.51) 
gives the upper bound for [j^c]'^ as presented in (2.61). 

In order to get lower bounds for [y^c]'^ we intensively exploit the rich struc­
ture of Example 5. Since the measure of controllability is invariant under unitary 
transformations we may equivalently discuss the dependence of the eigenvalues of 

(A/^ - A^f + ^ ^ 5 ^ ( ^ ^ 5 ^ ) ^ (2.67) 

on the real parameter A, where A^ and ^^ have been defined in (2.44) and (2.45). 
However, any eigenvalue of (2.67) is contained in one of the Gershgorin discs (see 
[43]) 

P f = { / . G | | / . - ( ( A - A ^ , , ) ^ + K f n i < r f } 

J = l 

^ - 5 - = c o l ( e f , . . . , e i ^ ) . 
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Note that A affects only the centers of the Gershgorin discs but not their radii. 
Therefore, one of the Gershgorin discs is shifted as close as possible to the origin if 
we choose A = A^ ̂ ,̂ where ZQ is the index satisfying 

In view of (2.51) io = N for Example 2.28. 
In the following we first establish tight bounds on r^ and [<f]̂ ]̂  and show in a 

second step that V^ n V^ = 0, k = Â  — l , . . . , l . A s a consequence we infer 
that V^ contains exactly one eigenvalue of (2.67) [43, p. 71]. In order to enhance 
the accuracy of the estimates we scale the system by multiplying the last column of 
(2.67) by a^ > 0 and accordingly the last row by ^ . a^ will be appropriately 
chosen in the course of the proof. Consequently, the radii of the Gershgorin discs are 
given by 

N 1 1 NTT ^-^ 
'N-—_ ^TTT^^T cot TTZ^^-^ Yl c^^ • aN 2{N + 1) 2{N + 1) ^ 2{N + 1) ' 

1 k7T sr^ iTT 
T^ = TTTTT 7 T C O t • 'fe -7T y ^ cot • 

1) ^ ^ 2(Ar + l ) 2(Ar + l ) ^ 2(Ar + l ) 

1 o k7T a^ kn NTT 

• cot - — - — — + - — - — — cot - — - — — cot 2(Ar + l ) 2(Ar + l ) 2(Ar + l ) 2(Ar + l ) 2(Ar + l ) ' 

k = l , . . . , A r - l . 

(2.68) 

We will also make frequent use of the estimates 

c o t ^ ^ / , ^^ < g ( A r + l ) , A r > 2 , (2.69) 

c o t . . ; ; " , . . < ^ j ^ , k = l,...,N, (2.70) 

2 ]\f 4-1 — k 
cot ^ , J " , > , k = l,...,N. (2.71) 

2{N + 1) 

kiT 

2{N+1) 

kn 
2{N^1) - TT 

With regard to r^ we have the estimate 

^ - 1 A^ pN-l 

E ZTT ^ TTX ^ 

cot - 7 — — — < / cot - 7 — — — a x + cot 
2(Ar + l ) 

2 , . . .X A . A ^ - I T T , . TT 

:(Ar + l ) I n s m - — — - - I n s m — — — - + cot ; TT' ' V Â  + 1 2 2{N^1)J 2{N^1)' 

Since s inx > ^x for x G [0, §] , it follows from (2.69) that 
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This inequality combined with (2.70) gives 

1 

aN 

J _ 2(Ar + l) j ^ 
2N ^ 3 '^ 6N 

AT = 2 , 3 , . . . 

A similar argument shows that 

.j;_.<^,„?('' + ') 
A T - r " 3 3 ( A r - l ) ' 4 A r ( A r 2 - i ) 

Â  = 2, 3 , . . . , and using (2.69) - (2.71) again yields 

aN, 

(2.72) 

(2.73) 

^k ^ ;̂  y-^.'. 1 2 /AT + l - A : 

Ar + l7r2 

O^A^-
TT̂  (AT-Zc + l ) 

N{N^l)k 

(2.74) 

A: = l , . . . , A r - 2 . 

Next we estimate the gap between A^ ^ and A ^ ^ , z = 1,.. . ,A^ — 1. This is based 
on the identity 

|Az,,A, - A^,J - 4(7V + 1) sm ^^^^^ sm ^ ( ^ ^ i ) - (2.75) 

In particular, we have 

Â̂  | A ^ , A , - A - ^ _ i | = 4 ( A r + l ) ^ . s i n ; 
37r 

s m • 
2(Ar + l ) 2(Ar + l ) ' 

and estimating the sine as above we find that 

| A ^ , A , - A ^ , ^ _ i | > 2 7 , N>8. (2.76) 

The estimate (2.76) is rather tight. This is clear when it is compared to the exact limit 

l im IA Â  
D,N ~ ^D,N-1 

Employing the estimates 

. ^ 2A/2 

s m x >2A/2fl 

X G 

X G 

Sir' 

^'4J 
•37r 

and 

we obtain the bound 
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Â  |A^ > 64, N > (2.77) 

and making a simple linear estimate of sin x we finally have 

\^D,N - ^D,k\ > 4(iV - k){N - A: + 2), A: = 1 , . . . , iV - 2. (2.78) 

It is easily checked that 

[C^?<1, N> 

which is an upper bound for V^. In the following step we choose ajy as large as 
possible so that V^ H T>^_^ = 0 . This is possible since 

N-1 > 1. 

If we insert (2.73) and (2.76) into the above inequality, it is clear that we may choose 
ajy so that 

o^N < -^N{N'^ - 1) • 726. (2.79) 

A similar argument using (2.74) and (2.77) shows that V^ H V^r_o = 0- Hence it 
remains to show that V^ H Vj^ 

^N ' ' ^N-2 -
^ A: = 1 , . . . , AT - 3, AT > 8. Observe that in 

view of (2.78), (2.74) and (2.79) 

\^N ^N |2 , ^^N^2 N ^ . 

is a consequence of the inequality 

^ 2 / ^ ^ 7 , o^2 N - k ^ l 
i6{N -ky{N -k^2y 

Therefore it suffices to establish the estimate 

1 

ie->(« + l) + f 

16(Ar - kfiN -k^2)k- ^e-\N + 1) 

k 
^ N - k ^ l 

The estimate 

3 ' ' 6 

363(Ar- l ) , A: = l , . . . , A r - 3 , N>8. 
(2.80) 

N-k^l 
< 

N -3 
, A r - 3 

provides an upper bound for the right hand side of (2.80). Combined with | e ^ < .5 
and ^ < 2.5 one can show that (2.80) follows from the stronger inequality 

64(Ar - kf{N - A: + 2)A: - - + 726 • 2 AT + 726 • 2 > 0 
(2.81) 

A: = l , . . . , A r - 3 , N>S. 
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We now establish (2.81). Define for fixed N >8 

G{N,x) = {N- xf{N - X + 2)x, x e [0, N]. 

Since G{N, x) is nonnegative and possesses a unique maximum on [0, N] it is obvious 
that 

G{N, k) > min {G{N, 1), G{N, N-3)). 

Since G{N, 1) > G{N, N -3),N >Sit suffices to verify (2.81) for k = N - 3. 
This completes the proof of Theorem 7. 

The proof of Theorem 8 is very similar. Therefore we restrict ourselves to a brief 
sketch and leave the details to the reader. 

Let A^ j^, k = 1,... ,N denote the eigenvalues of A^ and 

Defining 

i ^ = d i a g ( A ^ , i , . . . , A ^ , ^ ) . (2.82) 

Arp I, — ^— , k — i , . . . , i V , 

' 6 + A ^ , ' 

(2.83) 

Lemma 2.5 implies that A^ ^ is an eigenvalue of A^. We collect them in 

i f =diag(Äf , i , . . . ,Äf ,^) , 

A^ = 6{N + 1)2 . i f = diag(Af 1 , . . . , Af , ^ ) . 

As a consequence of (2.48) we note 

^ ^ ^ f ^ ^ = i ^ + 6/^. (2.84) 

Applying the orthogonal transformation ^^ to U^, it follows that 

K d = min<T„i„([AJ - ^f, 0^[Sf ]-iGf ]). 
AG-tv 

Taking into account (2.84) and (2.52) we conclude 

B^ := ^^[E^]-'G^ = 6 ( i f + 61^)-'^^B^. (2.85) 

Consequently, analogous to (2.67) we consider 
( A / - ^ f ) 2 + B^[B^] r . 

Since the k-th coordinate of S ^ satisfies 

\(nN\ I _ 6|gfc| _ 6 / 1 ^^. kn 

1^^ M 6 _ 4 3 i ^ 2 _ | ^ 6_4sin2 5 ( | ^ V 2 ( ^ + l ) 2(iV + l ) ' 



2 Control System Radii and Robustness Under Approximation 55 

and since f{x) = (6 — 4sin^ x) ^ cot x is strictly decreasing on (0, | ) we obtain 
the estimate 

| ( ß ^ ) i v | < |(S'^)fe|, k = l,...,N-l. 

This establishes the upper bound for [w^fj]'^ given in Theorem 8 and also shows that 
the choice A = A^ ^ shifts the configuration of Gershgorin discs as far as possible to 
the left. Analogous to the finite difference approximation the centers of the Gershgorin 
discs S^ for the finite element scheme are given by 

Â  \2 \N\2 
{^E,N - ^E,k) + ( ^ )k 

and their radii by 
A ^ - l 

and 
A ^ - l 

< = \{B^h\ E \iB%\ - liB^'hl' + ä^iB^UB^M. 
i=l 

In view of the result for the finite difference approximation we set 

4 
aN jN{N^ - l)ß. (2.86) 

Therefore we get by (2.68) and (2.72) 

1 ^^2(Ar + l ) 

2N ^ 3 

TT 

6N 
(2.87) 

where we also used the simple estimate 

1 < 
6 + A ^ , 

< 3 . (2.88) 

Analogously, one may derive the bounds 

^ A ^ - l ^ 

18 

(^^^^,N-l) 

1 , 2(iV + l ) 

N -1 
In 

36/5 

(6 + Ag^ )̂(6 + Ag^^_i) 

and 

3 ( i V - l ) 

Ri" <9 
N -

N 

-/c + l 

k 

-k^l 

l-'-^ü 1 

A^ + l7 r2 

N+l-k 

(AT- l ) 
18/3 

(6 + A ^ „ ) ( 6 + A ^ , ) 
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We also need estimates of | A^ Â  ~ '^^ ̂  I • These will follow from 

(6 + Ag,^)(6 + Ag,,)-I^'IN - A^,,| = 36(iV + 1)\^ :,7\.^ \^ ,• (2.89) 

Therefore, (2.78) implies 

| A i i v - A i f c | > 3 6 - 4 - ; ; - , ; ; " ' - ^ •;•-', (2.90) .N x^ , ^ . . . (N-k)iN-k + 2) 
(6 + Ä^,^)(6 + Ä^ , ) ' 

for A: = 1,. . . , Â  — 2. Next we establish 

| ( 5 ^ ) A , P + < < 2 , N>S. 

In view of (2.87), (2.88) and the definition of B^ one obtains 

\(B^) |2 \ PN . . ( ^' ( 1 . 2(iV + l ) ^ 
1(5 )A.| + ^ A ^ < 9 ^ 4 ^ ^ ( ^ 2 _ 1) ^ ^ 1 ^ ^ ^ + ^ 

1 ^ ^ 1 
^2(Ar + l) 4 Ar2 

which using M n x < e ~ ^ f o r x > 1,A^>8 and ß > 1 yields the desired bound. At 
this point we want to choose ß so that 

\^E,N - ^E,k\ + ( 5 )k-^k > 2, 

for A: = 1 , . . . , A/"—4. An argument similar to the one employed for the finite difference 
approximation shows that this can be done if one can choose ß satisfying 

-18/3(iV - 1) > ?(Ar - 4)(6 + Ä^,^)(6 + Ä^,,), 

for A: = 1 , . . . , Â  — 4. It is easy to see that the right hand side is bounded above by 

6(Ar - 4) for AT > 8, 

and the left hand side is bounded below by 

/ 2 \ ~^ 

6-36-8f l + ^ j •{N-kf{N-k + 2)k 

- 9 ( ^ ( i V + l ) + | ) - 1 2 . ( l + ^ ) - 1 8 / 3 ( 7 V - l ) . 
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Combining these two estimates and simplifying we find that it is sufficient to show 
that 

1628(Ar - kf{N -k^2)k- 21N - 51 - 18ßN 

+ 1 8 / 5 > 0 , for A: = l , . . . , A r - 4 , N>8. 
(2.91) 

An argument similar to the one used for the finite difference approximation yields 
that the left hand side of (2.91) achieves its minimum for A: = N — 4. Therefore, 
(2.91) is satisfied if we choose ß such that 

1628 • 96 • (AT - 4) - 21N - 51 - ISßN - 18/5 > 0, N > 8. 

Since the left hand side is increasing in Â  (if ß is not too big) we infer that an 
appropriate choice of ß is given by 

ß = 4950. 

Up to now we have shown that <f^n<f^ = 0,/i: = 1 , . . . , A^—4. It is somewhat tedious 
but straightforward (using the estimates derived so far) to show that 8^ H 8^ = 0 
for k = N — 3, N — 2 and Â  — 1. This completes the proof of Theorem 8. 

Table 2.1. Robustness measure of controllability for yt 
approximation. 

yxx + X • u{t). Finite difference 

N 

2 
3 
4 
5 
6 
7 
8 
9 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

lower bound 

0.55470 X 
0.21428 X 
0.10551 X 
0.59801 X 
0.37195 X 
0.24720 X 
0.17261 X 
0.12535 X 
0.93912 X 
0.13367 X 
0.41474 X 
0.17915 X 
0.93050 X 
0.54370 X 
0.34477 X 
0.23218 X 
0.16373 X 
0.11975 X 

10-^ 
10-^ 
10-^ 
10-2 

10-2 
10-2 
10-2 
10-2 
10-^ 
10-2 
10-^ 
10-^ 
10-^ 
10-^ 
10-^ 
10-^ 
10-^ 
10-^ 

upper bound 

0.55556 X 
0.21447 X 
0.10557 X 
0.59831 X 
0.37211 X 
0.24729 X 
0.17273 X 
0.12543 X 
0.93965 X 
0.13371 X 
0.41483 X 
0.17918 X 
0.93062 X 
0.54377 X 
0.34481 X 
0.23220 X 
0.16375 X 
0.11976 X 

10-^ 
10-^ 
10-^ 
10-2 
10-2 
10-2 
10-2 
10-2 
10-2 
10-2 
10-^ 
10-^ 
10-^ 
10-^ 
10-^ 
10-^ 
10-^ 
10-^ 

(IDC) calculated 

0.55470 
0.21434 
0.10554 
0.59821 
0.37207 
0.24727 
0.17272 
0.12542 
0.93962 
0.13371 
0.41483 
0.17918 
0.93062 
0.54377 
0.34481 
0.23220 
0.16375 
0.11976 

X 10-^ 
X 10-^ 
X 10-^ 
X 10-2 
X 10-2 
X 10-2 
X 10-2 
X 10-2 
X 10-2 
X 10-2 
X 10-^ 
X 10-^ 
X 10-^ 
X 10-^ 
X 10-^ 
X 10-^ 
X 10-^ 
X 10-^ 



58 John A. Burns and Günther H. Peichl 

Table 2.2. Robustness measure of controllability for yt = Uxx + x • u(t). Finite difference 
approximation. 

N 

2 

3 

4 

5 

6 

7 

8 

9 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

lower bound 

0.222136 X 10° 

0.115457 X 10° 

0.066981 X 10° 

0.418736 X 10-^ 

0.277254 X 10"^ 

0.192182 X 10-^ 

0.138272 X 10"^ 

0.102595 X 10"^ 

0.078111 X 10-^ 
0.117693 X 10-2 

0.369533 X 10"^ 

0.160314 X 10-^ 

0.834376 X 10"^ 

0.488086 X 10-^ 

0.309715 X 10-^ 

0.208664 X 10"^ 

0.147195 X 10"^ 

0.107680 X 10-^ 

upper bound 

0.222222 X 10° 

0.115472 X 10° 

0.066986 X 10° 

0.418755 X 10-^ 

0.277263 X 10"^ 

0.192187 X 10-^ 

0.138275 X 10-^ 

0.102597 X 10"^ 

0.078112 X 10-^ 

0.117698 X 10-2 

0.369544 X 10"^ 

0.160318 X 10-^ 

0.834393 X 10"^ 

0.488094 X 10"^ 

0.309720 X 10-^ 

0.208667 X 10-^ 

0.147196 X 10"^ 

0.107681 X 10-^ 

(T^C) calculated 

0.222137 X 10° 

0.115459 X 10° 

0.066983 X 10° 

0.418745 X 10"^ 

0.277259 X 10"^ 

0.192186 X 10-^ 

0.138274 X 10"^ 

0.102596 X 10"^ 

0.078112 X 10-^ 

0.117698 X 10-2 

0.369544 X 10"^ 

0.160317 X 10-^ 

0.834393 X 10"^ 

0.488094 X 10"^ 

0.309720 X 10-^ 

0.208667 X 10-^ 

0.147196 X 10"^ 

0.107681 X 10-^ 

Table 2.3. Stabilizability and detectability radii. 

N 

2 

4 

8 

10 

12 

14 

16 

iL 
10.8333 

10.2512 

10.0631 

10.0499 

10.0509 

10.0590 

10.0711 

iL 
10.6325 

9.9300 

9.6515 

9.6098 

9.5857 

9.5705 

-

7f. 
10.8036 

10.2001 

9.9708 

9.9373 

9.9180 

9.9060 

9.8979 

7f. 
10.6325 

9.9300 

9.6515 

9.6098 

9.5857 

9.5705 

-

Table 2.4. Controllability and observability radii. 

N 

2 

4 

8 

10 

12 

14 

16 

7fc 
0.47131 

0.25881 

0.11759 

0.08838 

0.06942 

0.05634 

0.04688 

7fc 
0.33469 

0.22885 

0.15311 

0.13509 

0.12229 

0.11264 

-

iL 
0.16667 

0.07940 

0.03927 

0.03153 

0.02639 

0.02271 

0.01994 

iL 
0.22899 

0.06555 

0.00663 

0.00196 

0.00060 

0.00020 

-
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Table 2.5. Stabilizability radii and Riccati condition number. Model Problem. 

6 

le° 
le-' 

le-2 

le-2 

le-^ 

le-^ 

le-^ 

7. 

8.6603e-^ 
8.9425e-2 

8.9443e-^ 

8.9443e-^ 

8.9443e-^ 

8.9433e-^ 

8.9433e-^ 

1/7. 

1.1547e° 

1.1183e+^ 

1.1180e+2 

1.1180e+^ 

1.1180e+^ 

1.1180e+^ 

1.1180e+^ 

KRIC 

2.2788e° 

1.2716e+^ 

1.2130e+2 

1.2072e+^ 

1.2071e+^ 

1.2071e+^ 

1.2071e+^ 

KRIC * 7s 

1.9735 

1.1371 

1.0850 

1.0802 

1.0797 

1.0797 

1.0797 
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