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Summary. The purpose of this paper is twofold. First, we provide a short review and summa-
rize results on the robustness of controllability and stabilizability for finite dimensional control
problems. We discuss the computation of system radii which provide a measure of robustness.
Second, we consider systems which arise as finite difference and finite element approximations
to control systems defined by partial differential equations. In particular, we derive control-
lability criteria for approximations of the controlled heat equation which are easy to check
numerically. For a particular example we establish tight theoretical upper and lower bounds on
the controllability radii for the finite difference and finite element models and compare these
bounds with numerical results. Finally, we present numerical results on stabilizability radii
which suggests that conditioning of the LQR control problem may be measured by this radii.
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Introduction

The analysis of mathematical models used in control design and optimization often
requires several stages of approximation. Also, in the area of distributed parameter
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(DP) control, numerical approximation must be introduced at some point in the mod-
elling process. Finite element, Galerkin and finite difference schemes are typically
used to “discretize” continuum models, while in the frequency domain one might
construct rational approximations of non-rational transfer functions. For computing
purposes, state space models offer certain advantages in that there are numerous com-
putational algorithms well suited for the matrix-linear algebra problems that occur in
control design. Direct discretization of continuum models usually produce state space
models as do frequency domain approximations (followed by realization schemes)
and model reduction methods such as proper orthogonal decomposition (POD). It is
fair to say that all approaches have advantages and disadvantages and each approach
leads to its own characteristic set of problems. However, to achieve robustness in a
design based on approximate models one needs to take into account the robustness
of the approximate model with respect to system properties.

Given that there are several approaches to constructing finite dimensional state
space models, it is reasonable to ask if there is some “measure” that can be used
to select the “best” approach for a given system with a specific control design ob-
jective. In order to study this problem, it is clear that one must first decide what
criteria will be used to determine which state space model is “best” for the particu-
lar problem at hand. It is very important to remember that such criteria may change
it the system changes, if the control design objective changes or if the numerical
method used to solve the corresponding control problem changes. Since the finite
dimensional approximate/reduced order model will be used to design and optimize
the infinite dimensional system, it is important that the finite dimensional model in-
herits the essential control system properties and that the finite dimensional control
problem is numerically well-conditioned. For example, it has been observed [6; 7]
that numerical conditioning of the LQR problem can be negatively influenced when
non-uniform meshes are used to approximate a DP system governed by a partial
differential equation.

In this paper we investigate these ideas for distributed parameter systems. We
shall focus on a specific subset of these problems. Our goal is to illustrate how one
can use system measures to aid in the selection of model reduction and discretization
algorithms. In particular, we shall use the concept of “system radii” to measure the
“quality” of finite dimensional state space models constructed by direct discretization
of continuum models. The motivation for this choice lies in the observation that
numerical algorithms for control design can be (numerically) unstable if applied to
systems that are not controllable (observable, stabilizable, etc.). Moreover, numerical
ill-conditioning can result even if the system is controllable and observable but “near”
an uncontrollable or unobservable system. This idea is certainly not new and there
exist many examples of this type. Demmel [13] has developed a rather nice theory of
ill-conditioning and established that numerous problems in numerical linear algebra
(matrix inversion, eigenvalue calculations) and control design (pole-placement, robust
control) all become ill-conditioned if the state space models used in the calculations
are close to an ill-posed problem. Laub and his co-workers have established similar
results for the LQR problem [18; 29; 30]. Since one of the often noted “advantages” of
state space models is their usefulness for computational purposes, it is reasonable to
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use the condition number of the problem as one measure to help select a discretization
scheme. One can find a nice presentation of these ideas in the recent book [12] by
Datta.

Although there are several issues that need to be addressed in the overall approx-
imation process, we shall limit most of our discussion to the study of system radii
for systems that typically occur when partial differential equations are discretized by
finite element and finite difference schemes. These finite dimensional systems often
have nice symmetry properties that can be exploited in the computation of the system
radii. The basic problem of preserving system properties under approximation has
been addressed by other authors [4; 17; 32] and is crucial to any method. However,
we concentrate on the problem of selecting a “good” approximation from the class
of all schemes that preserve the appropriate system properties.

The paper is organized as follows. In Section 2.1 we review the basic definitions
of system (radii) measures for finite dimensional systems and present examples to
illustrate some relationships between these measures and typical control problems.
We also summarize a few known results concerning these measures and give some
new results on computing these measures. In Section 2.2 we discuss the problem of
approximating infinite dimensional systems and use finite element and finite differ-
ence approximations of the heat equation to illustrate the ideas. This simple example
is rich enough to provide some indication of the difficulties one encounters in de-
veloping theoretical and computational results for such problems. In Section 2.3 we
provide a case study and compare theoretical bounds to computed values. Finally, we
close with a short summary and a simple numerical example to illustrate the potential
use of system radii to estimate the numerical condition number of an LQR problem.

2.1 Measures of Robustness

As noted in [1] numerical algorithms which assume a specific system property such
as controllability or stabilizability can be expected to be numerically ill-conditioned
if the system model is nearly uncontrollable (or nearly unstabilizable). The following
simple example illustrates the type of difficulties that one can encounter.

Motivating Example. Consider the control system governed by the second order

system

d l'l(t) . 1 0 ml(t) 6

o) = o) [20) + [ w0
Observe that this system is controllable (and stabilizable) if and only if 6#0 and e£0.
It becomes uncontrollable if € = 0 and unstabilizable if and only if 6 = 0. Moreover,
the system becomes “nearly uncontrollable” as ¢ — 0 (and “nearly unstabilizable”
as 6§ — 0) in the sense that a perturbation of order € () in the input matrix col{, €)
may result in an uncontrollable (unstabilizable) system.

In order to demonstrate the effect of near unstabilizability on control design, we
consider the problem of minimizing the quadratic functional

“+o0 .
J(u) = / [ (8% + (a(t))? + u(2)dt.
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The optimal feedback gain is given by
k*(6,¢) = ki, k3] = —[8, d IT(6, )
where I1(8, €) is the solution to the Riccati equation
A*IT+ITA—IBr 'B*IT +Q =0,

and@Q) =Ilandr = 1.
It is straightforward to show that

242421+ 482 —¢
262

(5,¢) — 2
% 3
and hence
K (8, ¢) — 7[1 +\/1—(;—62 -‘1-52’0]
Note that as 6 — 0, || I1(8,€)|| — +o0 and ||k*|| — +oo. Here, || - || denotes any

suitable matrix or vector norm. Thus, as the system approaches an unstabilizable
system, the Riccati equation becomes ill-conditioned. As expected, the conditioning
of the Riccati equation is not affected by the loss of controllability. However, consider
the problem of finding a feedback operator &, (8, €) = [k}, k7] that places the closed-
loop poles at —2 and —4. In particular, if e # 0 then the unique solution to this

problem exists and is given by
—-15 3
ky=|—,=—|.
v { 26 ’26}

Observe that as § or e approach 0, the system becomes nearly uncontrollable and
Ipll — +oo.

The previous example illustrates the need for a device to measure nearness of a
system to uncontrollability, respectively unstabilizability. In order to make these ideas
precise we introduce the following notation. We identify the control system X’

i = Ax + Bu, ()

where A €¢ R™*™, B ¢ R™"™ m < n, with the matrix [4, B] € R7x(ntm) For
any A € C we introduce

H()\) = [A— X, B] e crx(ntm),

The Hautus - test (see [28]) for controllability is based on embedding [A4, B] in the
set of complex systems

I'={[A,B]: AcCT™" BeCmm},
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The distance between two systems X'y, 35 is defined by
6(Z1, o) = [[[A1 — A2, By — By,

where | - || denotes any suitable matrix norm on C"*("*™) Given X € I' and a
subset S C I the distance between X and S is defined by

d(>,8) =inf{6(X, X,) : ¥o € S}.

Let N. C I" be the set of all complex systems that are not controllable and N; C I’
be the set of all complex systems that are not stabilizable, i.e.

N, ={]A,B] € I' : [A, B] is not controllable} ,
Ny ={]A,B] € I' : [A, B] is not stabilizable } .

Given X’ € I' one defines the measure of controllability by

T = d(Z.N;) @1
and the measure of stabilizability by

Yo = d(X, Ng). (2.2)

These definitions may be found in [14; 29; 34]. There are several reasons that these
measures are useful. First, they can provide an estimate of the condition number for
control design algorithms (see [13] and the example on robust pole placement therein).
Moreover, they provide numerical bounds on the errors that can be tolerated in the
data defining the system matrices A and B.

To obtain more explicit formulae for v, and v, the norm in C**(*+™) has to be
related to the norms in C™ and C"**™, We shall modify a concept which was used in
[21] to calculate the stability radius of a matrix. If we choose the Euclidean norm in
C™ and in C**™, and the spectral norm in C**("+7) then ~, and ~, are determined
by the singular values of H (). The singular values o1,...,0,, p = min(r, s) of
a matrix H € C"**° (see [19] for basic definitions) will be ordered in the standard
fashion o1 > --- > ¢,. We shall also use 0,,,;,(H) to denote the smallest singular
value o, of a matrix .

Definition 1. Let || - ||, || - ||m be norms on C™ and C™ respectively and let || - ||
(|| - |x,) denote the norm dual to || - ||, (|| - ||m). A matrix norm || - || pm on C**™ is

said to be strongly compatible with || - ||% and || - ||%, if the following two conditions
hold

(CD ||z AllE, < N Alln 2|1} for all A € CP™, o* e (C™)*.
(C2)For any pair of vectors t* € (C™)*, x* # 0, y* € (C™)* there exists H € C"*™
satisfying
y =a"H and |H|

s || sk EIES
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In the above definition (C™)* denotes the dual space of C™ which is (algebraically)
identified with C'*”. Easy modifications of the proofs in [21] establish that the
operator norms on C™*™ as well as the Holder norms are strongly compatible with
|| - |I% and || - ||%,- In particular, this implies that the spectral norm and the Frobenius
norm (see [19]) are strongly compatible with the Euclidean norms in C™ and C™,

Theorem 1. Choose any vector norms || - Nt in C* and C**™ and any
matrix norm in C™ "+™) strongly compatible with || - ||, and || - ||% ... If the system
[A, B] € I is controllable, then the measure of controllability is given by

s =min mj A-ALB
Y = min et |

2 e(Cn)”

2.3)

Proof. Let o denote the number on the righthand side of (2.3) and let [6 A, §By] € I
satisfy ||[6 A0, 6Bo]||n,ntm = v and [A + 6 Ao, B+ 8By] € N,. Hence, there exists
A e C,z* e (C)*, ||lz*|k =1 with

Using (C1) this implies

2" [A = AL B[l < 127117, 1118A40, 6 Bo

and a fortiori
a < Y.

On the other hand one can argue the existence of Ay € C, z§ € (C*)*, ||z§|lk =1
with
a = ||z5[A — Ao, B},

Hn—&—m‘

Condition (C2) applied to z* = x§, y* = z§[A — \oI, B] ensures the existence of
[6A,86B) e I with o

xz5[A — Ao, B] = x5[6A4, 6B (2.4)

I6A, 8B)llntm - 5|l = 12514 — Ao, Bl (2.5)

Hn+m'

The identity (2.4) shows that [A — §A, B — §B] € N,, and (2.5) implies that
Ye < a.

O

Corollary 1. Let the norms be chosen as in Theorem 1. If the system [A,B] € I' is
stabilizable, then the measure of stabilizability is given by

vy = min mln |z* [A — AL, B]||;
AEC  |z|Ik=
0<ReN E(Cn)*

(2.6)

n—+m '’
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Corollary 2. Choose the Euclidean norms in C* and C*™™ and the spectral norm
(or Frobenius norm) in C*(v+m),

i) If[A, B] € I is controllable, then

Ve = 1&11618 omin(H (A)). 2.7

ity If [A, B] € T is stabilizable, then

Yy = ng\lélo Tmin (H(N)). (2.8)

The characterizations (2.7) and (2.8) were first derived in [14] using a different argu-
ment.

Throughout the remaining part of this chapter we shall use the Euclidean norms
in €* and C"*™ and the Frobenius norm || - ||z in C**(**+™) 1In [15; 44; 45] an
alternative solution to (2.1) was given.

Theorem 2. If [A, B] € I' is controllable, then

Y. = min ||¢* [A(J — q¢™, B]|| . (2.9)

Although (2.9) is equivalent to an optimization problem given in [15], the approach
to establish (2.9) given in [44; 45] is entirely different. The minimal perturbation
[6Ao, 6By] is determined by using a state transformation that produces a certain
canonical form. In [44; 45] the identity (2.9) is established by showing its equivalence
with (2.7). For completeness we want to give a direct proof based on the above
motivation.

Proof of Theorem 2. Let [§A,6B] € I satisfy [A + §A, B + 6B] € N,. Then
there exists @ = [Q1,q] € C*, @, € C»"~ 1, ¢ € C", Q*Q = I such that in the
transformed system

Q1 (A+64)Q1 Q] (A+84)q
@A+ Q= ( YA+ 84) 01 *1(A+6A )

. _ T ( 53)
¢ (A+64)Q1 =0 and ¢"(B+éB)=0 (2.10)
hold. Fix ¢ € C™. The minimal norm perturbation 6 B, in (2.10) is given by
6By = —qq¢*B.

Since the columns of @) are orthogonal, the first equation in (2.10) implies the
existence of A € C with
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g (A+64) = \g*

which gives the minimal norm perturbation 6 A
§Ag = qq* N — qq* A.

Also ||6Ao]|7 = ||gl2]lg* ) — ¢* Al|2 minimizing ||g* X — ¢* A||3 with respect to A so
that the minimum is attained at Ay = ¢* Aq. Hence, the minimum norm perturbation
6Aq is given by

8A0 = qq" (" Aq) — 9" A = q(¢" Aq)q" — q¢" A = —qq" A(I — qq™).

Thus we obtain
(6 Ag,6By] = —qq"[A(I — qq"), B].
and therefore
11640, 6Bo]llr = la*[A(T — ag*), Bl»-

Minimizing with respect to g, yields the desired result. O

Remark. As a consequence of the above proof we note that if gy € C™ is optimal in
(2.9), then
[6A0,6Bo] = —qog5 [A(L — qoq5), B]

yields a minimal norm perturbation of | A, B] destroying controllability. It is shown in
[44, Theorem 4.3] that if Ag € Cis optimal in (2.7) and U = [uq, ..., u,] € C**7,
V = [v1,. .., Upsm) € CTX(24m) determine a singular value decomposition of
H()\p), then ¢o = u,, minimizes (2.9) and

[6A0,8Bg] = Yetnty, Ag = Uy, Aty. 2.1D

holds. Conversely if qo is a minimizer for (2.9) then Ay = ¢ Ago minimizes (2.7)
having qo as a left singular vector. In particular (2.11) reveals that for real systems
[A, B] € R™*(»#™) the closest uncontrollable (unstabilizable) system will in general
be complex.

In order to study the effect of real perturbations, real measures have been intro-
duced (see [1; 15; 45; 18]). In particular, let

N={Y=[AB]: AcR"™" BecR"™"}
denote the set of real systems. Then one defines the real measure of controllability by
we =d(X,N.N2)
and the real measure of stabilizability by

ws = d(Z, N, Q).
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In general it is clear that

Ye < we and v, <w,
Ye < Vs and w, < w;

hold and it can happen that there is a significant difference between the various
measures. It is tempting to assume that w. could be found by computing the quantity

we,1 = min Tmin(H(N)). (2.12)

In general, however, w, 1 yields just an upper bound for w.. This is a consequence of
the following theorem which was established in [45]:

Theorem 3. If [A, B] € 2 is comtrollable, then
We = min(wc7lywc,2)a
where w1 is given by (2.12) and w, 2 is defined by

Wep = min QT [A—QQ",Q"B]||,.. (2.13)
QCR™X
Q"Q=I,

Corollary 3. If [A, B] € 2 is controllable and n = 2, then
we = min(we 1, || Bl 7).

The proof of this result comes from the observation that QQ7 = I, holds for
n = 2. We illustrate the above discussion by means of the following example.

Example 1. Let ¢ < 2 and define

() ()

It follows that w. 1 = 1, hence w, = € and [6 A, §B] = [0, —B] is a real minimal
norm perturbation destroying controllability. A short calculation shows that v, =
ev/ % — i—é, the minimum in (2.7) being attained at A\g = +¢4/1 — ‘i—é Observe that

although w, = we 2, it does not necessarily follow that the corresponding minimal
norm perturbation destroying controllability [ A, 6 B] = [QQT A(I-QQT), QQT B]
has rank 2. This should be kept in mind in interpreting the corresponding results in
[18]. For a more detailed discussion of w,. we refer to [18; 45]. We complement
these results by a characterization of the equality w. = 7. which is adapted from an
analogous result concerning the calculation of stability radii in [33]. (In the next two
results we use the spectral norm in C™* (+m)
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Theorem 4. Let [A, B] € 2 be controllable and define
Ao ={N" € C: omin(H(AY)) = ¢}
Then ~y. = w, holds if and only if there exist \g € Ay and a singular value decompo-
sition of H(Ao),
H(\) = zn:(fiuiv;‘, u €C o, eC™ i =1,...,n (2.14)
i=1

satisfving
ulu, = vlv,. (2.15)

Proof. First we show the necessity of (2.15). It suffices todiscuss AgNR = &. Assume
that . = w, holds and that the minimum in (2.7) is attained for some Ay € C\ R.
Hence, there is a minimal norm (with respect to the spectral norm) real perturbation
E € R (m+m) of [A, B satisfying

[Ell2 = ve = 0% = ominH (Ao)-
Thus, using (2.11) E admits the representation
E=—0c,u,v;. (2.16)
It follows that
ur([A, Bl + E) = u, H(Xo) +ur E + Aouy, [1,0] = Aou, [1,0].

Multiplying on the right by 7, and taking complex conjugates (note that E &
R*(n+m) we arrive at

ul ([A, B] + E)v, = M ul[I,0]v,. (2.17)
Similarly, starting with ([A4, B] 4+ E)w, it follows that
uT(|A, B] + E)vn, = Aot [I,0v, (2.18)
Comparing (2.17) and (2.18) we obtain
ul[I,0]v, = 0. (2.19)

Although the remaining part of the proof is identical to the one in [33] we present
it here for the sake of completeness. The decomposition (2.14) together with (2.19)

imply
ug [A, Blv, = anugun,

while

[4, B] — X\o[1,0] = Zalul v,
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the complex conjugate of (2.14), combined with (2.19) yields
ul[A, Blv, = opvlv,.

This completes the necessity part of the proof. Sufficiency of (2.15) may be shown
in exactly the same way as in [33]. O

A consequence of Theorem 4 is the following easily checked sufficient condition
for . = w, to hold. We present it for the sake of completeness and refer to [33] for
the proof.

Proposition 1. Let [A, B] € {2 be controllable and Ay be as defined in Theorem 4.
If for some \g € Ao 0y, = 01 holds inthe SVD (2.14) of H (o), then the real and
complex controllability measures coincide, i.e. w, = 7.

It is apparent from Corollary 2, Theorem 2 and Theorem 3 that computing these
measures is a difficult numerical problem and various algorithms have been developed
for this purpose. Most of them rely on Corollary 2 (see [4; 44; 18]). For an alterna-
tive approach based on Theorems 2 and 3 see [45]. In order to reduce the required
computational effort in minimizing (2.7) it is certainly advantageous to have a priori
information on the location of the minimizing frequency \*.

Theorem 5. Assume thar [A, B] € I is controllable.

(i) If A = A*, then
Ye = 10N Omin (H (A)).

(ii) If A = — A*, then
Ve = 1nin Omin (H (IA)).

(iii) If [A, B] € 2 and A = AT then

Yo = we = min Tmin (H (X)).

Proof. (i) The square of oy [H(A)] is equal to the minimum eigenvalue of
H(MNHM\*. It XA = a+ i, then

HO)H(\)" = [A— A, B] {A* XI}

B*
=I|\®> — 2Re(\)A + A® + BB*
= {a®] — 2aA + A+ BB*} + 3°1
={(al — A)? + BB*} + p*I.
The Hermitian matrix G(a) = {(al — A)%? + BB*} has real eigenvalues \1(a),

Az(@), ..., A\p(«) and the spectral theorem [31, p. 312] implies that the eigenvalues
of
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H\H*(\) = G(a) + 521
are givenby \;(a)+32,i = 1,2, ..., n. Therefore, foreach A = a+i/3, the minimum
eigenvalue of H(A)H*(\) occurs at 5 = 0 and hence
Ve = mel(lcl Omin[H (A)] = min opin [H(N)]

AER

which completes the proof of (i).

The proof of (ii) follows from (i) by observing that A = —A* if and only if
[iA] = [iA]*.
If [A, B] € 2 and A = AT then part (i) implies that

Ye = &HEI]E Umin[H()‘)} = Umin[H(j‘)]

for some real A. Since H () is real, the singular vectors of H()) are real and hence
the minimum norm rank reducing perturbation is real (see [19, p. 19 ]). Therefore,
Ye = We, part (iii) is established and this completes the proof. O

We note that Theorem 5 could be deduced exploiting (2.11). However, the proof
presented above also establishes the following result.

Theorem 6. Assume that [A, B] € I is stabilizable.
(i) If A= A*, then
Vs = m>113 Omin (H ().

(i) If A = —A*, then
Vs = Hlellg Omin (H (iN)).

(ii)If [A, B] € 2 and A = AT, then
Vs = ws = min Tmin (H(A)).
Corollary 4. If [A, B] € 02 is stabilizable, A = AT and 27 Az < 0 for all x € R",

then
Ws = Ys = omin(H(0)) = omin([4, B]).

Proof. It follows from Theorem 6 that

Ws = Vg = )\1211%11* Umin[H(A)]

so we need only show that A* = 0 provides such a minimum. Since (\] — A)?+ BBT

is positive semi-definite and o2, [H())] is the minimum eigenvalue 6 () of

HM\HT(A\) = (A-XI)?+BBT,
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it follows that

&(\) = min [z1(A — A%z + 2T BB 2|

[lz]l=1
> Hnﬁin [xTAQx + aJTBBTx] + Hnﬁin N2|z||? — QAxTAx}.
x||=1 z||=1

The last term in this inequality is non-negative so that

&(A) > ”%iill[xT(A2 + BBT)2] = 6(0)

and this completes the proof. O

We conclude this section with an example demonstrating that symmetry of A
is sufficient for v, = minyer omin(H(A)) to hold, but the symmetry of A is not
necessary.

Example 2. Let e < % and
10 1
A(€1> and B(O)’

Fan(H ) = 1= A2+ (1) = [P1 = AP 4 (1 = <)),

min

It follows that

Therefore, omin (H (X)) attains its minimum at A = 1 which implies v, = w, = «.
Note that in this case we also have v, = ;.

2.2 Infinite Dimensional Systems and Approximations

In this section we consider the control system
2(t) = Az(t) + Bu(t), z(0) ==z (2.20)

with output
y(t) = Cz(t). (2.21)

We assume A generates a Cp-semigroup S(t) on the Hilbert space Z, B : U — Z,
C : Z — Y are bounded linear operators and U, Y are Hilbert spaces. Solutions of
(2.20) will be mild solutions defined by

z2(t) = S(t)zo + /0 S(t — s)Bu(s)ds. (2.22)

For ¢ > 0 the reachable set at time £ is given by
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R(t) = {/Ot S(t — s)Bu(s)ds|u € Lo(0,t; U)} .

System (2.20) is said to be exactly controllable in time ¢, if R(t) = Z and exactly
controllable if UssoR(t) = Z. Also (2.20) is called approximately controllable in
time ¢, if R({) = Z and approximately controllable if U;~.qR(f) = Z. For analytic
semigroups it is known (see [16]) that U;~¢R(#) = Z if and only if there is a finite

time £ such that R(£) = Z. This is also true for semigroups generated by finite delay
differential equations (see [2; 41]).

System (2.20) is said to be (exponentially) stabilizable if there is a bounded linear
operator F : Z — U such that the closed-loop operator A, = A + BF generates a
Cy-semigroup S(t) satisfying

IS < Me=?

for some M > 0 and 8 > 0. There are analogous definitions of observability and
detectability and various other types of controllability (i.e. null controllability). A
good summary of these definitions and topics may be found in [11]. However, we
shall concentrate primarily on controllability questions and make some comments
about stabilizability. It will be clear that dual results will exist for observability and
detectability.

The first problem one faces when trying to define system measures for infinite
dimensional systems is that in general most of the system properties are not generic.
Consider the following simple example.

Example 3. LetU = Z = {yand define A = T and B : £9 — £o by B(u1,us,us, ... )
= (uy,u2/2,u3/3,...,u;/%,...). The operators A and B are bounded and the sys-
tem (A, B) is approximately controllable. Define the perturbed systems AN = A
and BN (uq,ug, ... ) = (u1,u2/2,...,un_1/(N —1),0,un_1/(N +1),...). Ob-
serve that || AY — A|| = 0 and ||BY — B|| < 1/N and yet the system (A", BY)
is not controllable for all N > 1. If we choose for U the Banach space {5 L
{(&)] 32721 i7%&|* < oo}, then (A, B) as defined above is exactly controllable and
stabilizable and yet (AN, BN) is neither controllable nor stabilizable for all N > 1.

Example 4. Let Z = 5 and define A and AV by A = —T and ANz = AN (z1, 2o,

o) = (=m1,—Toy ..., —TN_1,2ZN, —TN41,- .- ). Observe that [|et]| = e~
and |AVz — Az| = 3|xn| — 0. Moreover, || AY| = 2 so that AV is a nu-
merically stable and consistent approximation of A. If /¥ denotes the unit vector
eV = (0,0,...,1,0,0,...) € o, then AVe™N = 2eN. AN has an unstable eigen-

value A =2 forall N > 1.

These examples indicate that there are no such things as stability, controllability or
stabilizability measures for general infinite dimensional systems. For a more detailed
discussion see also [37]. In order to define a reasonable measure it is essential to
limit the set of allowable perturbations to a specific (structured) set. Initial results on
structured perturbations that preserve stability have been established in [40]. In [8] it
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was shown that, for certain delay systems, approximate controllability is preserved
under small perturbations of the system coefficients (including the delay).

From a design point of view it is worthwhile to think of finite dimensional ap-
proximating systems as “structured” perturbations of infinite dimensional systems. In
particular, one can use finite element and finite difference schemes to construct very
special (perturbed) approximating control systems for distributed parameter models
governed by partial and functional differential equations. Therefore, one question
of interest is that of determining those numerical schemes that preserve the various
system properties and then finding among such schemes the ones that maximize the
measures of the finite dimensional models.

This problem was considered for approximations of control systems with delays
in [8]. For single-input systems it was possible to give sufficient conditions for an
approximation scheme to preserve controllability. Moreover, it was shown in [8] that
several of the standard numerical schemes for delay equations satisfy these condi-
tions and hence preserve controllability under approximation. The situation becomes
much more complex when the system is governed by parabolic and hyperbolic partial
differential equations.

Two specific numerical schemes for approximating differential operators are the
finite difference and finite element methods. Both approaches have certain advantages
and limitations. In many cases (not always) these schemes lead to system matrices with
a very special structure. For example, it is typical that such schemes produce matrices
that are symmetric and sparse (banded, block tridiagonal, etc.). When such methods
are used to approximate control systems governed by partial differential equations
it is possible to use this structure in the design and analysis of the control problem.
Moreover, since there are often several methods for approximating a particular control
problem it is important to identify those schemes that produce models that are robust.
More precisely, we are interested in determining the schemes that have good system
measures "y, Vs, etc. We shall consider this problem for a one dimensional heat
equation. We focus on the standard finite (central) difference and (piecewise linear)
finite element schemes.

Consider the system governed by the heat equation

Vet 7) = Yoo, 0) + b(@u(t), 0<z <1, t>0, (2.23)

with Dirichlet boundary conditions y(¢,0) = y(¢,1) = 0. Here we assume that
b(-) € L2(0,1). Let A be the operator defined on L2(0,1) by

D(A) = {¢ € La(0,1)]¢ € H*(0,1), $(0) = ¢(1) =0}, (2.24)
and for ¢ € D(A)
d2
The operator A generates a Cop-semigroup S(t) on Lo(0, 1) given by

[S®)8]() =D e b, dr)dr (), (2.26)

k=1
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where \, = k?n2, ér(x) = /2 sin(krz) and (-,-) denotes the standard inner
product on L5(0,1). We define B: R — L2(0,1) by

[Bu](z) = b(z)u, (2.27)
and consider the equation (2.23) as a control problem in L2(0, 1) governed by
Z(t) = Az(t) + Bu(t). (2.28)

We denote by X = (A, B) the system operators defined by (2.24) - (2.25) and
(2.27). Recall that (2.28) is approximately controllable in Lo(0, 1) if and only if

(¢, b) £0 forall k=1,2,.... (2.29)

We note that many of the results below can be extended to problems in more than one
space variable and to some general parabolic systems. However, this introduces so
many technical details that many of the basic ideas get lost. Also, it will become clear
that even this “simple” one dimensional heat equation leads to difficult problems. We
refer the reader to [25] for a discussion of controllability for more general problems.

The system (2.28) will be approximated by using finite difference and finite el-
ement schemes for (2.23). Divide the interval (0,1) into NV + 1 equal subintervals
[, Tiy1] where x; = NLH, i =0,1,...,N + 1. Assuming that b(:) € H'(0,1),
then applying the central difference approximation of j—; leads to the N dimensional
system

N(t) = ANZN(t) + BNu(t), (2.30)
where
-2 1 0

1-21 0
AN = (N +1)? = (N 4 1)24%, (2.31)

0 1 -2 1

1 -2
BY = col (b(z1),b(z2), ..., b(zN)), (2.32)

and 2V (¢) is identified with the vector

2N (t) = col (y(t, x1),y(t, x2), ..., y(t, SL‘N)) (2.33)
The system X5 = (AN, BY) is called the finite difference model.

We turn now to the finite element scheme. For each i = 1,2,... N let hfv(x)
denote the hat function

(N+1)(x—mzi—1) 221 <z <y,
hiv(m) =¢ —(N+1)(z—z441) 2 <z <y, (2.34)
0, elsewhere.
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If y(t, ) is approximated by

N

yN(tx) =Y 2N (R (x), (2.35)
i=1

then a standard Galerkin procedure leads to the finite element approximation

ENN@) = FY 2N (t) + GRu(t). (2.36)
Moreover
41 0 1
141 0
1 ST
N (RN pNY = =
Ep = [l k)] 6N 1) L (2.37)
0 1 41
L 1 4_
FY = —[(hY, B)')] = (N + DAY, (238)
and
GH = col ((b,hd"), (b, h), ..., (b, hA)). (2.39)
Let

Ap =[BE]7'FE, B =[ER]T'GE,
and define the finite element model & = (AX, BY) by
AN = ARZN (1) + BN u(t). (2.40)

It is obvious for this simple case that both schemes preserve stabilizability under
approximation uniformly in NV (i.e. have property (POES) as defined in [4]). In fact, it
is shown in [3] that the same is true for finite element schemes applied to more general
parabolic problems in several space dimensions. Their approach can also be extended
to certain (but not all) finite difference schemes for such systems. It is not obvious that
these schemes preserve controllability (even for the particular model considered here)
and in fact this problem is not yet resolved. Therefore, it is worthwhile to have some
conditions on the system that can be used to determine the controllability properties
of the models X5 and Y.

First consider the finite difference model X5 . The tridiagonal matrix AN has
eigenvalues (see [42])

kT

. k=1,2,...,N 241
2(N+1)7 k 3 3 3 3 ( )

AD k= —4(N +1)*sin®

and associated eigenvectors

2D = col (sin(kay), sin(2kay), . . ., sin(Nkay)), (2.42)
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where ay = 7/(N +1). Consequently, it follows (see the identity 1.351 in [20]) that

psin(Nkx/(N 4-1)) 1
2sin(kr/(N +1)) 2

(N +1).

N
.o N
Hzg,k \2 = ZSIH2(.7]€04N) =5 (-1
j=1

(2.43)
In view of (2.41) - (2.43), it is clear that

sinay sin2ay ... sin Nay

~ 9 sin2ay sinday ...sin2Nay

sin Nogy sin2Nagy ... sin N2ay
is the orthogonal transformation that diagonalizes AY, i.e. [@V]T = [®#V]~! and
[@N]T AN = AR = diag(AD 1, AD 2. - AD.N)- (2.45)

Observe that @YV is also symmetric so that [§V]T = &V = [@VN] 1. Let ¢ denote
the k-th column of @,

oy = (Ni— 3 col (sin(kay), sin(2kay), ... ,sin(Nkay)). (2.46)

Lemma 1. The finite difference model X5 = (AN BYN) is controllable if and only
! (¢, BNY#0 forall k=1,2,...,N. (2.47)
Proof. Let&y, = (¢, BN), k =1,2,..., N and note that
PNBY = col(¢], &, ..., &N).
The system X3 is controllable if and only if the controllability matrix
Ky = By, AYBY,... [A)" By
has maximal rank N. However,

&Y LAS - BN !
& 0 1 )‘g,z ()‘g,z)I\F1

rank}Cg = rank
SN )‘g,N ()‘ﬁN)N_1

Since the eigenvalues of A% are all distinct, the Vandermonde matrix is non-singular.
Hence, IC%/ has rank NV if and only if (2.47) holds. O
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Ifb(-) € HY(0,1), let g(z) = b(x + 3) for —1 <z < 1. In the cases where g is
odd or even, (2.29) does not hold. If g{x) = g(—z), then

BY = col (b(z1),...,b(ze), b(ze), ..., b(z1)), ifN=2¢
and
B =col (b(x1),....b(xe), b(zes1), b(ze), ..., b(x1)), i N=20+1.
If g(z) = —g(—x), then
BY =col (b(z1),...,b(ze), —b(ze), ..., —b(z1)), if N=2¢
and
BY = col (b(z1),...,b(ze),0,—b(ze), ..., —b(z1)), N =20+1.

Proposition 2. If g(z) is odd or even, then X1 and XX are not controllable for all
N >1.

Proof. Asnoted above, X is not controllable since (2.29) fails. Let £ ,iv = <¢{€V ,BN).
If N = 2/, then a direct calculation yields

2 ¢ ikm
N _ ) VR o
6 = e s

If N =2/ + 1, then it follows just as above that

7 & ik k
& =\ 5T ;b(mi)(l = (~1)) sin 2(2—:1) + b(zer) sin 7”

Above, the minus sign is valid if g is even, the plus sign if ¢ is odd. Hence we
conclude that the even (odd) numbered coordinates of £V vanish if g is symmetric
(skew symmetric). a

A close look at the above proof yields a clear relationship between (2.29) and
(2.47) in the special cases above where (2.29) fails because of the special form of
g(+). This form is also present in B and it is precisely this form that causes (2.47)
to fail. As we shall see below, the same structure is preserved by the finite element
scheme. In particular, let

EN =6(N +1)EY, FY =(N+1)7'FY,
1

A~N _ EN _1FN _ AN
[ E] E 6(N+1)2 E>
. N 1

Ap = (N+1)7°A7.
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Clearly, YN = (AN, BN) is controllable if and only if YN = (AN, BN) is control-
lable.

Observe that the “stiffness™ matrix (N +1)2F} is the system matrix for the finite
difference equation, i.e.

Fy = A3,
and that the “mass™ matrix £ can be written as
EY = FY 161V = AN + 61", (2.48)
where IV is the N x N identity matrix.

Lemma 2, Let flg and zzlg be as given above. Then A € C is an eigenvalue of Zlg

with eigenvector z5 if and only if 6X/(1— ) is an eigenvalue offlg with eigenvector

N
AN

The proof of Lemma 2 follows immediately from (2.48). Moreover, as a conse-
quence of Lemma 2 and (2.48) it follows that & defined by (2.44) diagonalizes Ag
and AY. We use these observations to establish the following result.

Proposition 3. The finite element model X = (AN, BY) is controllable if and only
if
(6N, GEVA0 forall k=1,2,...,N. (2.49)

Proof. The system £¥ is controllable if and only if X% is controllable, i.e. if and
only if ~ o N N
Ki =By, ApBy..... [AR]" ' BE]

has rank N. However, EX FY = FY EY so that
rank K& :rank[[Eg]_ng, [Eg]—l([Eg}—lﬁg)Gg,
SN BN BNy N1
S ERITHIERITUR) T GE]
— rank[@VGY, AVSVGR ... (AN TN GR),

where AV is a non-singular diagonal matrix. Hence, N = rank Kg if and only if
(2.49) holds and this completes the proof. O

Proposition 4. If g(z) is odd or even, then X and XX are not controllable for all
N>1

As seen above there is a nice relationship between the system matrices for X
and Eg . Moreover, one has the following
Proposition 5. Assume that there exists a non-singular transformation TN such that

(1) Ay = TVAR(TV) ™!
(2) G =TNBY.
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Then, Eg is controllable if and only if Eg is controllable.
Proof. Since scalar factors do not affect the controllability, it suffices to consider the

rank [[EN | FY — AV, [EY]TIGR] = rank[FY — AEY, G
6>\ 6A

— rank | AN — — T

— N GN} = rank {TNAg(TN)‘l — 1N TVBX

The conclusion follows from the Hautus test and Lemma 2. O

Example 5. Let b(z) = z,0 < x < 1. It follows from (2.29) that YH js controllable
and (¢3’, By ) can be calculated. In particular, BYY = s2col(1,2,..., N) and

N .
2 i
N _ /N pNy _ | L
& ={(¢p,Bp) = N+1;N+lsmkza1\z.

Applying the identity 1.352 (i) in [20] to the expression

2 1 [sin[(NV+ Dkay] N +1cos[2ZHkay]
N+1IN+1 4sin? ko‘“’ 2 smko‘TN ’

and performing a few elementary manipulations it follows that

1 km
N: —1k+1 :12.N 2.
& =1 SN+ D) AN 1) k=12..., (2:50)
Since
0 < [EN] < IEN_1] <+ < I&]], (2.51)

it follows that the finite difference model X' is controllable for all N > 1. If the
finite element scheme is applied, then

1
Gh = ——=col(1,2,...,N 2.52
E (N+1)QCO(7 9 ’ )v ( )

and Gg = TNBN where TV = (N + 1)I'NV. Therefore, it follows from Proposition
2.8 that the finite element scheme X% is also controllable for all N > 1.

Remark. It is important to note that checking for controllability of finite dimensional
systems is in general a subtle numerical task [36; 30]. In contrast, verification of (2.49)
is numerically accurate and straightforward. In the next section we shall concentrate
on the robustness of the system measures for this example.
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2.3 System Measures and Case Studies

In this section we consider the system measures v, and -y, for each of the two schemes
applied to Example 5. Also, we use the simple model problem defined in Example 5
to present a comparison of the condition number for the Riccati equation that comes
from an LQR problem and the stabilizability radii.

Approximations for the Heat equation
In particular, we consider the problem governed by

ye(t, x) = Yoz (t, ) +2u(t), 0<z <1, t>0 (2.53)
with Dirichlet boundary conditions y(t,0) = y(¢, 1) = 0. The finite difference system

XN = (A%, BY) and the finite element system Y& = (AX, BY) are defined as
above, where for this problem

1
BY = 1(1,2,....N 2.54
D N+]_ co ( P ) ) ( 5)

and )
BY = [EX'GY = [Eg}—lmcolu,z...,zv). (2.55)

Lety N (7N ) and vR - (vY4) denote the controllability (stabilizability) measures
of XX and X%, respectively. From the previous section we know that 25 and X%
are controllable. Moreover, since AN = [AN]T and A} = [A¥]T we have from
Theorem 5 that

e = whe = minopin MY — AN, BY), (2.56)
AeR
and
Yoo = wie = minomn MY — A, BY]. 2.57)
Corollary 4 implies that
s =whs = Omin[AY, BY], (2.58)

and
VNs = wlg = omin[AY, BY]. (2.59)

These formulas can be used to compute the various measures. Moreover, it is pos-
sible to obtain explicit upper and lower bounds on the controllability measures. The
following theorems provide such bounds. The proofs are given in the appendix.

Theorem 7. Let ﬂygc = Wgc denote the controllability measure of the finite differ-
ence approximation of (2.53). If N > 8, then

65 — € < (vpe)® < 61, (2.60)
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where ) N
SN —|eN2 = g2 261
p =N = s Y sy (261)
" 1 w2 (3n 20D 4
eN:_.’IT( n == ) (2.62)
P73p 24N2(N2-1) '
and

Bp = 726.

Theorem 8. Let XX = (AN, BY) denote the finite element approximation of (2.53).
Ij“ygc = wgc is the controllability measure for Eg, then for N > 8

5 — e < (vEe)? <6, (2.63)

where 9

oN = ————— "D, (2.64)

[3 — 2sin m}2

and ) 2(31 2(N+1) 4

oL BT 4w (2.65)

E " Bg  24NZ(N2—-1) |
and

Br = 550.

Corollary 5. If vB - and v& are as above, then

N1—1>I-|r-loo ’ch - ]\;Enoo ’ch =0

The proof of Corollary 5 is an easy consequence of Theorems 7 and 8. Note that
the asymptotic rates of ¥ and 6% are the same. However, for “small” values of N,
there are considerable differences. Moreover, the rate at which §¥ (and 6% ) converges
to zero decreases significantly for N > 10. If one had no theoretical estimates (such
as (2.61) and (2.64)) then numerically calculated values for N < 10 might lead one to
believe that the decay of controllability occurs so rapidly that the high order models
would be numerically uncontrollable on most digital computers.

In Tables 2.1, 2.2 we compare computed values of (v5-)? and (v5-)? with
the theoretical upper and lower bounds given in Theorem 7 and Theorem 8. In our
computations we used Algorithm II in [44]. The eigenvalues of AN (AX) served as
initial guesses for the location of the minimum in (2.7). The proofs of Theorems 7 and
8 show that in the particular example one can choose as initial guess the eigenvalue
with largest modulus which significantly reduces the computational effort. We also
report the observation supported by numerous examples [35] that the minimum in
(2.7) is usually attained close to an eigenvalue of AN (AN).

The most important point to make is that the finite element model is roughly one
order of magnitude more robust than the corresponding finite difference model. Both
systems provide order O(h?), h = 1/(N + 1) approximation of the generator .4 and
for fixed N, XN and X are of the same dimension.
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Condition Number and Stabilizability Radius

Here we discuss the relationship between the condition number for the algebraic
Riccati equation and the stabilizability radius ;. We compute the actual condition
number Ko as defined on page 533 (Theorem 13.4.2) in Datta’s book [12] and
compare this to the inverse of ;. To illustrate the point we return to the first example
given as the motivating problem. In particular, we consider the

d xl(t) - 1 0 l'l(t) 1

# o] ~ o] (23] L] o
with e = 1. In this case the system becomes unstabilizable as é approaches zero. In
Table 2.5 below we see that the Riccati equation condition number K py¢c increases
as 6 approaches zero. In addition, ratio K g;*v, approaches a constant value 1.0797
which shows that the inverse of the stabilizability radius v, provides a good estimate
of the conditioning number K r;c. Therefore, it might also be possible to use system
radii to help construct “well-conditioned” approximating control systems. This topic
needs further study.

2.4 Concluding Remarks

In this paper we discussed a measure of controllability (stabilizability) quantifying
the distance of a controllable (stabilizable) system to the set of uncontrollable (un-
stabilizable) systems. This measure was applied to finite dimensional systems which
arise by approximating an infinite dimensional system. This process leads to sev-
eral important questions that are often not fully addressed. In particular one should
consider the following issues:

1. If the original distributed parameter system is controllable (stabilizable) are the
finite dimensional approximation also controllable (stabilizable)? For the heat
equation this leads to a very specific problem:

(P1) Find sufficient conditions for b € H*(0, 1) which ensure that (g, b) 12 # 0,
k = 1,2,..., implies that {(¢Y,BN) # 0 forall K = 1,...,N (where
{CV, Bg are defined in (2.46) and (2.32)).

2. 1If the finite dimensional approximate model is controllable (stabilizable) how
robust is the model with respect to the measure v, (7v5)?

3. How does 7. (7s) vary as the approximation scheme is refined?

Itis not unexpected that the controllability margin in the example discussed in this
paper deteriorates as the approximation is refined. On the one hand the finite dimen-
sional systems converge to the distributed parameter system for which (approximate)
controllability is not robust with respect to bounded perturbations [37; 10]. On the
other hand, the dimension of the finite dimensional approximating systems grows as
the discretization is refined making it more likely that small perturbations will de-
stroy controllability [1]. In addition, the measures considered here do not take into
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account the typical structure of the finite dimensional approximating systems. In gen-
eral therefore, it will not be possible to interpret the closest uncontrollable system as
an approximation of a perturbed distributed parameter system.

The problem of preserving stabilizability under approximation has been consid-
ered by serval authors [8; 24; 27]. This problem can be rather complex or quite
simple depending on the particular distributed parameter system and the choice of
approximating scheme. “Standard finite element” schemes applied to hyperbolic sys-
tems often preserve stabilizability while spline based schemes for delay equations are
much more difficult to analyze [24], [27]. The problem of preserving controllability
is much more complex and only a few results exist for this problem (see [8], [26]).

In addition to the system dynamics (1) we consider an output equation

y(t) = Cx(t)

and discuss the observability of the pair [A4, C]. By duality one can define observability
measures y,, W, analogous to 7., w.. It is known that none of these measures is
invariant under an arbitrary change of basis. The effect of similarity transformations
in the state space has been discussed in [38] and [39]. In particular, it was shown that
for a generic controllable system, -y, (-ys) may attain any value in (0, o) by choosing
an appropriate basis. Furthermore, in [ 18] the authors suggest a sequence of similarity
transformations based on the successive solution of a Riccati equation which tends
to increase significantly the margin of stabilizability (controllability).

Let the output operator for the heat equation be C = Z, the identity operator on
L5(0, 1). If one uses the finite element scheme then the approximate output matrix is
given by the mass matrix

cy = EY.

It is straightforward to use the ideas above to calculate detectability and observability
measures for this problem. Also, if one balances the system (see [35]) one has another
realization of the form

AN =71ANT-Y BN =TBY, C¥=1C¥.

Observe that this system is a single input / multiple output system. In Table 2.3 we
see that the stabilizability and detectability measures for the finite element model
and the balanced model are bounded away from zero. Also, for the balanced system
R, = 7Y . However, as illustrated by Table 2.4, balancing increases the controlla-
bility measure and decreases the observability measure. This was observed in [35] for
finite element approximations of various parabolic, hyperbolic and mixed distributed
parameter systems. In closing we list some open problems that if solved in a satisfac-
tory way could be useful in constructing approximate models for control design and in
estimating condition numbers of numerical algorithms used in control. In particular,
since in general v, # 7. and (even balancing) state transformations that increase
can decrease y,, we pose the following problems:

(P2) Given that [A, B] is controllable and [A, C] is observable, find a non-singular
T* € R™ " that maximizes
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Jeo (T) = min{’yc (T) Yo (T)}
over the set of non-singular matrices 7' € R™*"™, where
Fe(T) = 3 (TAT Y, TB) and #,(T) = v,(TAT',CT™).

(P3) Find T* maximizing J,,(T") subject to the additional constraint that 7" is “well
conditioned”, i.e. that .J;,(7") is maximized over a set of the form

K(6) ={T e R™™ : gyin(T) > &} for some § > 0.

These problems could also be stated for the stabilizability and detectability mea-
sures.

Appendix

In this section we present the proofs for Theorems 7 and 8. It is easy to see that the
minimization problem defined by (2.9) is equivalent to the problem

1 = min (" ATz — Az + |27 B,
i
HE

Since
2AATL — 2% AZ)? >0 for |z =1,
with equality holding if and only if z* is a left eigenvector of A, we deduce the
following upper bound for ~2
e < 2Bl (2.66)

where z* is any normalized left eigenvector of A. (2.66) together with (2.50), (2.51)
gives the upper bound for [yN]? as presented in (2.61).

In order to get lower bounds for [y5]? we intensively exploit the rich struc-
ture of Example 5. Since the measure of controllability is invariant under unitary
transformations we may equivalently discuss the dependence of the eigenvalues of

AN — AR)2 4+ oV BN (&Y BT (2.67)

on the real parameter A\, where Ag and &N have been defined in (2.44) and (2.43).
However, any eigenvalue of (2.67) is contained in one of the Gershgorin discs (see
[43D)

DN ={pe|lu— (A=A )2+ <}

N
r = lENeN), i=1,...,N,
j=1
i
PNBRy =col (£,...,EX).
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Note that A affects only the centers of the Gershgorin discs but not their radii.
Therefore, one of the Gershgorin discs is shifted as close as possible to the origin if
we choose A = )\g%, where 4 is the index satisfying

2 . N2
e le = Z_fmlnN[fi .

yerey

In view of (2.51) iy = N for Example 2.28.

In the following we first establish tight bounds on 77 and [¢X]? and show in a
second step that DX N DY = @, k = N —1,...,1. As a consequence we infer
that DY contains exactly one eigenvalue of (2.67) [43, p. 71]. In order to enhance
the accuracy of the estimates we scale the system by multiplying the last column of
(2.67) by ay > 0 and accordingly the last row by ﬁ apn will be appropriately
chosen in the course of the proof. Consequently, the radii of the Gershgorin discs are
given by

N-1

TN*L L cot N 27:(:0132177T
M an2(N+1) 2N +1) & 2N 1))

N-1

1 kw %
N
L = cot COt ————
FToN+1) 2N +1) ; 2(N +1)
— ! cot? i + anN cot hT cot N
2(N +1) 2AN+1) 2(N+1)  2(N+1)  2(N+1)
k=1,...,N—-1
(2.68)
We will also make frequent use of the estimates
cot —— <2(N+1) N >2 (2.69)
2(N+1) =3 ’ - ’
kw aN—-k+1
t < — k=1,...,N 2.70
CcO 2(N+].) = 2 ]f 3 3 3 3 ( )
km 2N+1-k
— =1,...,N. 2.71
COtQ(N—f—l)_TF k ’ k ’ ’ (7)
With regard to r{ we have the estimate
N-1 . _
Z cot _m < /N 1 cot _Tr dx + cot I —
P 2(N +1) 1 2(N +1) 2(N+1)
—1x s 7r
=—(N+1)(1 — —Insin —~ t ——.
(N + )(nsmN_*_12 n51112(N+1)>+co SN )

Since sinx > %x for x € [0, Z], it follows from (2.69) that



52 John A. Burns and Gunther H. Peichl

N—-1

i 2 2IN+1) 2
t — < (N+1)ln———+-(N+1).
;co 2(N+1)*7r( +1)ln +3( +1)
This inequality combined with (2.70) gives
1 1 2(N+1) s
Y — | —ln——L 4 — N=23,... . 2.72
TNOéN|:2Nn 3 +6N7 PA) ( )
A similar argument shows that
1 2(N+1) T 72
N« 1 2.73
NelS NI 3 T3WoD aN@vE— )™V 273)

N =2,3,..., and using (2.69) - (2.71) again yields

N—k+1[1 2(N=+1 1 2 [N+1—k\?
= /f+ 51“( 3+)+%} ( : k)
(2.74)

CNitin? k
2 (N —k+1)
— k=1,...,N -2
TN NN+ Dk e
Next we estimate the gap between )\ﬁi and )\ﬁN, ¢t =1,...,N — 1. This is based

on the identity

. (N+i9m . (N—di)7
N o= AN I =4(N+1)%. ( ) 2.
IAD.N — AD.l (N +1)7-sin AN T 1) sin SN T 1) (2.75)

In particular, we have

. T , T
|)\g7N - )\ﬁN_l\ =4(N +1)? - sin SN 1) sin SN 1)

and estimating the sine as above we find that
ADN —AD N1l =27, N =8 (2.76)
The estimate (2.76) is rather tight. This is clear when it is compared to the exact limit
Iéiinoo P‘g,N - Ag,N—l‘ = 3%,

Employing the estimates

24/2
sinx > —\/_33, T E [0, I} and
T 4
sinx22\/§(1—£>, ze {B—Wﬂ
T 4

we obtain the bound
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ABN —ADyol 264, N>38, 2.77)
and making a simple linear estimate of sin x we finally have
Sy AN > AN kYN —k+2), k=1,...,N 2. (2.78)
It is easily checked that
Ty NP <1, N =8,

which is an upper bound for D¥. In the following step we choose ay as large as
possible so that DY N DY _| = @. This is possible since

[EN_1)* + |)‘g7N - )‘g,N71|2 — TNy > P\g,N - )‘g7N71|2 —rNo > 1

If we insert (2.73) and (2.76) into the above inequality, it is clear that we may choose
ay so that

4
aNggﬁAKNZ—U-mﬁ (2.79)

A similar argument using (2.74) and (2.77) shows that DZJ\\/’ N D%_Q = . Hence it
remains to show that D% N D,iv =g, k=1,...,N —3, N > 8. Observe that in
view of (2.78), (2.74) and (2.79)

ABov = ADe* + 0T =1t =1

is a consequence of the inequality

N—k+1[1
16(N — B)2(N — k +2)% — T* s V) + 3
f%-naanﬁlgiizL

Therefore it suffices to establish the estimate

1
16(N — k)*(N k4t 2k — e (N 1) - %
(2.80)
— +363(N —1 k=1,...,N—-3, N2>8
> N _ k + 1 + ( )7 bl b b -
The estimate
k N -3
< ?
N-k+1— 4
provides an upper bound for the right hand side of (2.80). Combined with %e‘l <.b
and %” < 2.5 one can show that (2.80) follows from the stronger inequality

k=1,...,N—3

3
64N@%Nk+mk<—+n62>N+7%.2>m
2 (2.81)

k=1,...,N -3, N>8.
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We now establish (2.81). Define for fixed N > 8
G(N,z) = (N —2)*(N —2 +2)x, =z <][0,N].

Since G(N, x) is nonnegative and possesses a unique maximum on [0, V] itis obvious
that

G(N, k) > min (G(N, 1), G(N, N — 3)).
Since G(N,1) > G(N,N — 3), N > 8 it suffices to verify (2.81) for k = N — 3.
This completes the proof of Theorem 7.

The proof of Theorem 8 is very similar. Therefore we restrict ourselves to a brief
sketch and leave the details to the reader.

Let S\ﬁk, k=1,...,N denote the eigenvalues of AN and
A =diag(AY 1, .., AD n)- (2.82)
Defining
A
Ay, = —=%  k=1,...,N,
N T

Lemma 2.5 implies that j\g & 18 an eigenvalue of Ag . We collect them in

AN — diag(j\gl, ceey S‘g,N)’

AY = 6(N +1)? - AY = diag(A} 1,..., A} v). @83
As a consequence of (2.48) we note
PNENSN — AN + 61V, (2.84)
Applying the orthogonal transformation ¢ to 2]]5\[ , it follows that
wie] = in o (M = 43,0V (B GX)).
Taking into account (2.84) and (2.52) we conclude
BN .= oN[ENTTGE = 6(AY + 61V 1oV BY. (2.85)

Consequently, analogous to (2.67) we consider
(A — AF)? 4 BN[BNT.

Since the k-th coordinate of BY satisfies

. 6]&x| 6 1 kn
BY)i| = = cot ,
(B 6 — 4sin® gfgy 6 4dsin® gty | 20V +1) T 2(N +1)
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and since f(z) = (6 — 4sin®z) ™! cot x is strictly decreasing on (0, Z) we obtain
the estimate 3 .
(BMYn| < |(BM], k=1,...,N—1.

This establishes the upper bound for [w#]? given in Theorem 8 and also shows that
the choice A = )\g  shifts the configuration of Gershgorin discs as far as possible to
the left. Analogous to the finite difference approximation the centers of the Gershgorin
discs Eév for the finite element scheme are given by

(AEw —AER)° + (BME,

and their radii by

TR R
Ry =— > UBY)n[I(BM)
anN i3
and
N-1
Ry =BV D ABY)il = (BNl + anl(BY)e(BY) .
i=1

In view of the result for the finite difference approximation we set

4
ay = FN(NQ —1)g. (2.86)
Therefore we get by (2.68) and (2.72)

9 1 2(N+1
RN < — L2y (2.87)
where we also used the simple estimate

6
1< ——— <3 (2.88)
64+ Dk

Analogously, one may derive the bounds

18 1 2N +1) ™
RN | < - { In + }
N-1 (6+A8 y 1) LN -1 3 3(N —1)
36
+ AN 6 AN
(6+AD N6+ AD N_1)
and
N—k+1[1_2(N+1) =« 1 2 (N+1-k\’
N < =1 Z - =
R =97 {2“ 3 +6} N+17r2( K )
N—k+1 1
(6+AD N6+ AD4)
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We also need estimates of [\ y — AJf . |. These will follow from

MDov = Al

AN — ABsl = 36(N + 1) ——= LN (2.89)
(6 +AZ N6+ AT L)
Therefore, (2.78) implies
N k)N —k+2
|A£N~—A%klz36~4~( i 2) (2.90)

(6 + 5\g,N)(6 + S‘g,k)’
fork=1,..., N — 2. Next we establish

((BM)n|2+ RN <2, N>8.
In view of (2.87), (2.88) and the definition of BY one obtains

72 <1 ln2(N+1) 7r>

ANY 12, pN
|(B™ )| +RN<9(W +—

2N 3 6N
1 1
Yo T s
2(N+1) 4 N2
which using 2 Inz < e forz > 1, N > 8and 8 > 1 yields the desired bound. At
this point we want to choose 3 so that

INEn — AE4l? +(BY)E - RY > 2,

fork =1,..., N—4. Anargument similar to the one employed for the finite difference
approximation shows that this can be done if one can choose [ satisfying

(N — k)2(N — k + 2)k

362- 16 _ _
6+ A3 NE+AY )

2) - -
- (3(N + 1)t + g) (6+ AN 2 )(6+ XY 1)

CISHN 1) > SN = 46+ 3 1) (6 + A0

fork =1,..., N — 4. Itis easy to see that the right hand side is bounded above by
6(N —4) for N >8§,
and the left hand side is bounded below by

2

2.81

6~36~8(1+ >_1-(Nk)2(Nk+2)k

2

et m ™
-9 —(N+1 —1-12-(1
(3( Jr)+6> (+2 81

)~ 188(N — 1).
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Combining these two estimates and simplifying we find that it is sufficient to show
that

1628(N — k)2(N — k +2)k — 21N — 51 — 183N

i 2.91)
+183>0, for k=1,....N—4, N>8.

An argument similar to the one used for the finite difference approximation yields
that the left hand side of (2.91) achieves its minimum for & = N — 4. Therefore,
(2.91) is satisfied if we choose 3 such that

162896 - (N —4) — 21N — 51 — 188N — 183 >0, N > 8.

Since the left hand side is increasing in N (if 3 is not too big) we infer that an
appropriate choice of J is given by

8 = 4950.

Up to now we have shown that 5fvvﬁ5,iv =, k=1,..., N—4.Itis somewhat tedious
but straightforward (using the estimates derived so far) to show that E§ N &Y = @
fork =N — 3, N —2and N — 1. This completes the proof of Theorem 8.

Table 2.1. Robustness measure of controllability for y; = y,, + 2 - u(¢). Finite difference
approximation.

N lower bound upper bound ('ygc)z calculated
2 0.55470 x 107! 0.55556 x 1071 0.55470 x 107!
3 0.21428 x 107! 0.21447 x 107! 0.21434 x 107!
4 0.10551 x 107! 0.10557 x 1071 0.10554 x 107!
5 0.59801 x 1072 0.59831 x 1072 0.59821 x 1072
6 0.37195 x 1072 0.37211 x 1072 0.37207 x 1072
7 0.24720 x 1072 0.24729 x 1072 0.24727 x 1072
8 0.17261 x 1072 0.17273 x 1072 0.17272 x 1072
9 0.12535 x 1072 0.12543 x 1072 0.12542 x 1072
10 0.93912 x 1073 0.93965 x 1073 0.93962 x 1073
20 0.13367 x 1073 0.13371 x 1073 0.13371 x 1073
30 0.41474 x 10~* 0.41483 x 10~* 0.41483 x 10~*
40 0.17915 x 1074 0.17918 x 107* 0.17918 x 1074
50 0.93050 x 1075 0.93062 x 1075 0.93062 x 1075
60 0.54370 x 1075 0.54377 x 1075 0.54377 x 1075
70 0.34477 x 1075 0.34481 x 1073 0.34481 x 1075
80 0.23218 x 107° 0.23220 x 107° 0.23220 x 107°
90 0.16373 x 107° 0.16375 x 1075 0.16375 x 1075

100 0.11975 x 1075 0.11976 x 107> 0.11976 x 1075
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Table 2.2. Robustness measure of controllability for y; = Y. + = - u(t). Finite difference
approximation.

N lower bound upper bound (vDe) ? calculated
2 0.222136 x 10° 0.222222 x 10° 0.222137 x 10°
3 0.115457 x 10° 0.115472 x 10° 0.115459 x 10°
4 0.066981 x 10° 0.066986 x 10° 0.066983 x 10°
5 0.418736 x 107! 0.418755 x 107! 0.418745 x 1071
6 0.277254 x 1071 0.277263 x 107 ¢ 0.277259 x 107!
7 0.192182 x 107! 0.192187 x 107! 0.192186 x 107!
8 0.138272 x 107! 0.138275 x 107! 0.138274 x 107¢
9 0.102595 x 107! 0.102597 x 107¢ 0.102596 x 10!
10 0.078111 x 107! 0.078112 x 107! 0.078112 x 107¢
20 0.117693 x 1072 0.117698 x 10~2 0.117698 x 1072
30 0.369533 x 1072 0.369544 x 1073 0.369544 x 1072
40 0.160314 x 1073 0.160318 x 1073 0.160317 x 1073
50 0.834376 x 107* 0.834393 x 10~* 0.834393 x 1074
60 0.488086 x 10~* 0.488094 x 10™* 0.488094 x 104
70 0.309715 x 107* 0.309720 x 10~* 0.309720 x 107*
80 0.208664 x 1074 0.208667 x 107* 0.208667 x 1074
90 0.147195 x 1074 0.147196 x 10~* 0.147196 x 1074

100 0.107680 x 1074 0.107681 x 10~* 0.107681 x 10~*

Table 2.3. Stabilizability and detectability radii.

’YJJEYS ;/]EVS %]’Evd :Ygd
10.8333 10.6325 10.8036 10.6325
10.2512 9.9300 10.2001 9.9300
10.0631 9.6515 9.9708 9.6515
10.0499 9.6098 9.9373 9.6098
10.0509 9.5857 9.9180 9.5857
10.0590 9.5705 9.9060 9.5705
10.0711 - 9.8979 -

— = e
SNl N P

Table 2.4. Controllability and observability radii.

YBe HBe YBo 8o
047131  0.33469  0.16667  0.22899
0.25881  0.22885  0.07940  0.06555
011759  0.15311  0.03927  0.00663
0.08838  0.13509  0.03153  0.00196
0.06042  0.12229  0.02639  0.00060
14 005634 011264  0.02271  0.00020
16 0.04688 - 0.01994 -

oS 2
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Table 2.5. Stabilizability radii and Riccati condition number. Model Problem.

1 Vs 1/7s Kric Kric *vs
1e° 8.6603e¢~1 1.1547¢€° 2.2788¢° 1.9735
le ! 8.9425¢72 1.1183e™! 1.2716e™? 1.1371
le 2 8.9443¢73 1.1180e™2 1.2130e*? 1.0850
1e™? 8.9443¢~* 1.1180e™3 1.2072¢ ™3 1.0802
le~ 8.9443¢~° 1.1180e™* 1.2071et* 1.0797
le® 8.9433¢7° 1.1180e™° 1.2071e™® 1.0797
le~" 8.9433¢" 1.1180e*6 1.2071e* 1.0797
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