Chapter 2

CONVENTIONAL CRYPTOGRAPHY

Exercises

Exercise 1 ~ Weak Keys of DES

We say that a DES key k is weak if DESg is an involution. Exhibit
four weak keys for DES.
Reminder: Let S be a finite set and let f be a bijection from S to S.
The function f is an involution if f(f(x)) =« for all z € S.

> Solution on page 34

Exercise 2 Semi-Weak Keys of DES

We say that a DES key k is semi-weak if it is not weak and if there
exists a key k' such that

DES;! = DESy,.
Exhibit four semi-weak keys for DES.

> Solution on page 34

Exercise 3~ Complementation Property of DES

Given a bitstring  we let T denote the bitwise complement, i.e., the
bitstring obtained by flipping all bits of .
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1 Prove that

DES#(Z) = DESk(x)
for any z and K.

2 Deduce a brute force attack against DES with average complexity of
254 DES encryptions.
Hint: Assume that the adversary who is looking for K is given a
plaintext block z and the two values corresponding to DESk (z) and
DESk (E).

> Solution on page 35

Exercise 4  3DES Exhaustive Search

1 What is the average complexity of an exhaustive search against the
two-key 3DES?

2 How can an adversary take advantage of the complementation prop-

erty DES#(T) = DESk (2)? What is the complexity now?

> Solution on page 36

Exercise 5  2DES and Two-Key 3DES

1 2DES encrypts a 64-bit message M in the following manner.
C = DESk, (DES g, (M)).

Here, K1 and K> are bitstrings of 56 bits each.

(a) Give the average complexity of a “naive” exhaustive key search?

(b) We perform now a meet-in-the-middle attack. Give an approxi-
mate of the time and memory complexities.

2 Two-Key 3DES encrypts a 64-bit message M in the following manner.
C = DESk, (DES}. (DESk, (M))). (2.1)
Here, K1 and Ko are strings of 56 bits each.

(a) What is the average complexity of a “naive” exhaustive search?

(b) We are given a box that encrypts a message M according to
(2.1). We may use the box to encrypt plaintexts of our choice.
Denoting 0 the all-zero message, we first build a table containing
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the standard DES decryption of the message 0 under all 2% keys.

Then we use a chosen-plaintext attack to build a second table
containing the 256 ciphertexts resulting from box encryptions of
the elements of the first table. Given these two tables, one can
find both K7 and K5 used by the encryption box. Explain how
one may proceed. The whole attack should take no more than
250 DES encryptions (or decryptions) and no more than 26! bytes
of memory.

> Solution on page 37

Exercise 6  xExhaustive Search on 3DES

We consider 3DES with three independent keys. Let P,C € {0,1}54 be

k1 ko k3

| | |

P —— DES DES™! DES —» C

Figure 2.1. 3DES with three independent keys

a plaintext/ciphertext pair, where C' = 3DES(P) for some unknown key
k = (k1, ko, k3) (see Figure 2.1). We want to recover k by an exhaustive
search.

1 What is the number of DES encryptions/decryptions of Algorithm 17

Algorithm 1 Exhaustive key search algorithm on 3DES

Input: a plaintext/ciphertext couple (P, C)
Output: key candidate(s) for k = (k1, ko, k3)
Processing:

1: for each possible key K = (K, K9, K3) do

2. if C = 3DESk(P) then

3: display K= (Kl,KQ,Kg)
4 end if

5: end for

2 Let C*: {0,1}5% — {0,1}%* denote a uniformly distributed random

permutation. What is the probability that C*(P) = C.
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3 Assuming that 3DESg roughly behaves like C* when K is a uniformly
distributed random key, estimate the number of wrong keys (i.e.,
different from k) displayed by Algorithm 1.

4 Assume that an adversary has t distinct plaintext/ciphertext pairs
denoted (F;,C;) for ¢ = 1,...,t, all encrypted under the same (still
unknown) key & (so that C; = 3DESg(F;)). Write an algorithm sim-
ilar to Algorithm 1 that reduces the number of wrong keys that are
displayed (but which does at least display k). What is the total
number of DES encryptions/decryptions of this algorithm?

5 Express the average number of wrong keys that are displayed by your
algorithm in function of ¢ (which is the number of available plain-
text/ciphertext couples). Evaluate the necessary number of couples
in order to be almost sure that only the good key k = (k1, ko, k3) is
displayed.

> Solution on page 37

Exercise 7 An Extension of DES to 128-bit Blocks
DES is a 64-bit plaintext block cipher which uses a 56 bit key.
1 What is the complexity of exhaustive search against DES?

We can increase the security against exhaustive search in a triple mode
by using two-key 3DES.

2 What is the complexity of exhaustive search against 3DES?

3 We now consider the CBC mode of operation. We want to mount
a “collision attack”. Show how a collision on encrypted blocks in
CBC mode can leak some information on the plaintexts. What is the
complexity of this attack when the block cipher used is DES? What
is the complexity if we replace DES by 3DES? How can we protect
ourselves against this attack?

We now try to transform DES into a block cipher with 128-bit plain-
text blocks, that we denote ExtDES. We use a 112-bit key which is
split into two DES keys K7 and K5. For this, we define the encryption
of a 128-bit block z as follows:

= we split = into two 64-bit halves xj, and xzp such that x = 2 ||zp

» we let u;, = DESk, (x1,) and up = DESk, (zR)
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® we split up|lug into four 32-bit quarters wy,ug, us, uq such that
uy, = uy||ug and up = usllug

= we let vy, = DES}é(mHu[l) and v = DESI_é(’LL:;HUQ)

= we split vp|vg into four 32-bit quarters vy, va,vs,vq such that
vy, = vi]jvg and v = vsljvg

» we let y;, = DESk, (vi||vs) and yr = DESk, (vs||vg)

» we define y = yL |lyr as the encryption ExtDES |k, (z) of z

4 Draw a diagram of ExtDES.

5 Explain how this special mode is retro-compatible with 3DES: if an
embedded system implements it, how can it simulate a 3DES device?
Same question with DES: how is this special mode retro-compatible

with DES?

6 Do you think that the new scheme is more secure than 3DES? Do
you think that it is more secure than DES?

7 Let z and 2’ be two plaintexts, and let y = ExtDESk, |k, (z) and y =
ExtDES | k,(z') be the corresponding known ciphertexts. Explain
how a smart choice of z and z’ allows us to detect that we have
ug = uy and vy = v} simultaneously (here «j and v} are the internal
intermediate values for computing y’).

8 Use the previous question to mount a chosen plaintext attack whose
goal is to find a (z, ') pair with vy = w} and v4 = v)j simultaneously.
What is the complexity of this attack?

9 Explain how to use this attack in order to reduce the security of
ExtDES to the security of DES against exhaustive search? What can
you say about the security of ExtDES now?

> Solution on page 40

Exercise 8  Attack Against the OFB Mode

Assume that someone sends encrypted messages by using DES in the
OFB mode of operation with a secret (but fixed) IV value.

1 Show how to perform a known plaintext attack in order to decrypt
transmitted messages.

2 Is it better with the CFB mode?
3 What about the CBC mode?

> Solution on page 42
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Exercise 9  xLinear Feedback Shift Registers

We consider the ring Zs[X] of polynomials with coefficients in Zo
with the usual addition and multiplication. In the whole exercise, we
consider an rreducible polynomial P(X) € Zy[X] of degree d. We define
the finite field K = Zo[X]/(P(X)) of the polynomials with a degree at
most (d — 1) with coefficients in Zo, with the usual addition and with
the multiplication between a(X),b(X) € Zo[X] defined by

a(X) * b(X) = a(X) x b(X) mod P(X).

We build a sequence so(X),s1(X),... in K defined by so(X) = 1 and
S141(X) = X % 84(X) for all t > 0. We have

5¢(X) = X" mod P(X) for all t > 0.

1 Compute the first eight elements of the sequence when P(X) = X3+
X + 1. What is the period of the sequence?

2 To each element q(X) = qo+- - -+qq-1 X% of K we assign an integer

q defined by
G=aq+q -2 +qu-1 20

How is it possible to implement the computation of s;4; from s; with
the usual instructions available in a microprocessor?

3 We define ¢ ; as being the coefficient of X7 in st(X) and the d x d
matrix M; with elements in Zs as

(Mi)ij = citt-1,5-1
for1<4,5<dandt>0.
m Show that there exists a relation My, = B x M; and compute

the matrix B.

m Show that for a given 0 < j < d—1, there exists an order-d linear
recurrence relation for the sequence ¢;q4; for all ¢ > 0, i.e., from
Ct,j» Ct41,45- -+ > Ct4d—1,; ONe can linearly compute ciqq;.

» How is it possible to build an electronic circuit which computes
the sequence defined in the first question with 1-bit registers and
1-bit adders?

4 What are the possible values of the period of the sequence s;(X) for
7 > 07 When is it maximal?

> Solution on page 42
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Exercise 10  xAttacks on Cascade Ciphers

In this exercise, we consider a block cipher of block length n and of
key length £. The encryption function of the block cipher is denoted E. If
P € {0,1}" denotes a plaintext and k € {0, 1}¢ is an encryption key, then
Ex(P) = C € {0,1}" is the ciphertext obtained by encrypting P under
the key k. We denote D the corresponding decryption function, such that
D (Ex(P)) = P for any plaintext P € {0,1}" and any key k € {0,1}¢. A
cascade cipher is the concatenation of I, > 1 identical block ciphers with
independent keys, denoted kq,...,kr. In this configuration, the output
of block cipher i is the input of block cipher ¢ + 1. The plaintext is the
input of the first block cipher and the ciphertext is the output of the
last block cipher. For simplicity, we denote Ej, and Dy, by E; and D;
respectively (see Figure 2.2).

1 What is the complexity (in terms of number of encryptions) of the
exhaustive key search of Algorithm 2 on the block cipher? What
is the complexity of a similar exhaustive key search on a cascade
of L block ciphers? Give the name of an attack which reduces this
complexity for the specific case where L = 2. Recall its complexity.

Algorithm 2 Exhaustive key search algorithm
Input: a plaintext/ciphertext pair (P, C) such that C' = Ex(P)
Output: key candidate(s) for k
Processing:
1. for each possible key K do
2. if C = Eg(P) then

3: display K
4.  end if
5: end for

We now wonder how many (wrong) keys are displayed by Algorithm 2.

2 Let C* : {0,1}" — {0,1}" denote a uniformly distributed random
permutation. Let z and y be some fixed elements of {0,1}". What
is the probability that C*(z) = y? Let K € {0,1}¢ be a random

Figure 2.2. A cascade of L block ciphers
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variable. Assuming that Ex roughly behaves like C*, compute an
estimation of the amount of wrong keys displayed by Algorithm 2.
How many wrong keys are displayed for a similar algorithm on a
cascade of L ciphers?

Assume that the adversary knows ¢ plaintext/ciphertext pairs, all cor-
responding to the same key k.

3 Write an optimized algorithm, similar to Algorithm 2, which exploits
these t pairs to reduce the number of wrong guesses. Estimate the
number of wrong keys that are displayed.

4 If you replace the block cipher by a cascade of L block ciphers in
your algorithm, what would be an estimation of the number of wrong
keys which are displayed? Using your approximation, how should ¢
be selected in order to be almost sure to have only one good key
candidate after an exhaustive search on 3DES (with 3 independent
keys)?

> Solution on page 44

Exercise 11  Attacks on Encryption Modes |

In this exercise, we consider a block cipher of block length n and of
key length ¢. The encryption function of the block cipher is denoted
E. If P € {0,1}" denotes a plaintext, and k € {0,1}* is an encryption
key, then Ex(P) = C € {0,1}" is the ciphertext obtained by encrypt-
ing P under the key k. We denote by D the corresponding decryption
function, such that Dg(E(P)) = P for any plaintext P € {0,1}" and
any key k& € {0,1}¢. Instead of using a simple cascade of block ciphers,
we consider so called multiple modes of operation. The four modes of
operation we will consider are ECB, CBC, OFB, and CFB (represented
on Figure 2.3). Just as cascade of block ciphers consists in concatenat-
ing block ciphers, multiple modes of operation consist in concatenating
modes of operations. For example, the notation CBC|CFB refers to the
mode where the output of the CBC mode is the input of the CFB mode
(see Figure 2.4).

Note that two independent keys are used here, one in the CBC mode,
the other in the CFB mode. In this exercise, we assume that n > ¢ (i.e.,
that the block length is larger than the key length) and that all the IV ’s
are known to the adversary. For simplicity, we denote E, and Dy, by E;
and D; respectively.
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Figure 2.3. Basic modes of operation

25
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Figure 2.4. The CBC|CFB mode of operation

1 Draw the scheme corresponding to the inversion of the CBC|CFB
mode represented in Figure 2.4.

Consider the ECB|ECB|CBC™! mode of operation represented on Fig-
ure 2.5. We are going to mount a chosen plaintext attack against it. The
plaintext P we choose, is the concatenation of three n-bit blocks such
that P = (A, A, B) (where A, B € {0,1}" denote arbitrary blocks of n

bits). The three blocks of the corresponding ciphertexts are denoted Cf,
CQ, and 03.

2 Using the notations of Figure 2.5, find a relation between A”, k3,
IV, and C;. Similarly, find a relation between A”, IV, Cy, and Cs.
Deduce a relation between ks, IV, C}, and Cj.

3 Deduce an attack which recovers k3. Once k3 is found, how do you
recover ki and ko7 What is the complexity of the whole attack?

We now consider the OFB|CBC|ECB mode (see Figure 2.6). This
time, we are going to mount a chosen-ciphertext attack. The ciphertext
C we choose, is the concatenation of four n-bit blocks such that C' =
(A, A, B, B) (where A, B denote arbitrary blocks of n bits). The four
blocks of the corresponding plaintext are denoted P to Pj.

4 Find a relation between kq, k3, IV, IVo, P, Po and A. Similarly,
find a relation between k1, k3, IVy, P35, Py, A, and B.

5 Deduce a (smart) attack that recovers k; and k3. Once this is done,
how can kg be recovered? Compute the complexity of the attack.

> Solution on page 45
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Figure 2.5. Attacking the ECB|[ECB|CBC ™! mode of operation
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Figure 2.6. Attacking the OFB|CBC|ECB mode of operation
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Exercise 12 Attacks on Encryption Modes Il

We use the notations of the previous exercise. Here, we consider the
CBC|CBC}|CBC™! mode (represented on Figure 2.7 for two plaintext
blocks). For this attack, we mount a chosen-ciphertext attack. More-
over, the adversary will have the ability to choose the value of IVy (the
values of IV and IV3 are only known and fixed). The attack we will

consider is described in Algorithm 3. We denote C') = (C’fi),C’éi)) the

ith chosen ciphertext and P = (Pl(i), PQ(i)) the corresponding plaintext.

Similarly, IVS) denote the ith chosen value for IVs.

Py Py

|

IV, ?
E; E:
Do Do

]

1V )
Ds Dg

|

IVg—s@ -—-——>E\f
Cy Cq

Figure 2.7, Attacking the CBC|CBC ™Y CBC™! mode of operation

1 Give an approximation of the complexity of Algorithm 3.

2 Show that if PV = P9, then P{Y = P{?)
Hint: Use the fact that we set C’éz) to IVS) in Algorithm 3.

3 Find a relation between IVg), Ing ), Ks, 1V, Cfi), and C%j ) equiva-
lent to the condition Pl(z) = Pl(] ),

4 Deduce an attack that recovers the value of K3. Once K3 is found,
how can K7 and K5 be recovered? What is the overall complexity of
the attack?
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Algorithm 3 Looking for collisions in CBC|CBC~!|CBC™!

Output: P®, PU) C® and CY, such that P = p¥
Processing:
1: 2 1
2: repeat
3:  Choose C{i) and IVgi) at random
i P 1V
5. Obtain and store Pl(i) and PQ(i)
6
7
8

te—1+1 .
: until Pl(l) = PI(J) for some j < i
. Display P®, PU) ¢® and CU)

> Solution on page 47

Exercise 13 %A Variant of A5/1 |

In stream ciphers, the prevailing encryption is a bitwise XOR opera-
tion between the m-bit plaintext and the m-bit keystream which is the
output of a so-called keystream generator fed by the £-bit secret key,
where m is much larger than £. An ideal assumption for good stream
ciphers is that any £-bit window of the m-bit keystream is eventually
modified when the ¢-bit key is modified. This exercise aims at doing
a small test of the above assumption, taking as an example the A5/1
keystream generator. A5/1 consists of three Linear Feedback Shift Reg-
isters (LFSRs) denoted by R;, Ro, and Rs, with respective length of 19,
22, and 23 bits. The total content of all three LFSRs is 194-22+23 = 64
bits. Hereafter we call the 64-bit initial content (also called initial state)
of the three LFSRs as the key of A5/1. We denote by R;[n| the content
of the nth cell of R;, for i = 1,2,3, where n starts at 0. Kach LFSR has
one clocking tap: R;[8], R2[10], and R3[10]. At each clock cycle, one
keystream bit is generated according to the following procedures (see
Figure 2.8):

m The three LFSRs make a clocking vote according to the majority of
the current three clocking taps.

s Each R; compares the voting result with its own clocking tap. If they
are equal, R; is shifted:

— a feedback bit is computed by XORing the content of the fixed
subset of cells of R;, i.e., the feedback for Ry, Ry, and Rs is
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Ri[18] & Ry [17] & R1[16] & R1[13], Ry[21] & R[20], and Rs[22] &
Rs3[21] ® R3[20] & R3[7] respectively;

— the content of all cells in R; (except the leftmost) are shifted to
the left by one position simultaneously;

— R;[0] is updated by the precomputed feedback;

= Output the bit R;[18] @ Ry[21] & R3[22].

1
|

18 13 b i)
]
'

HEEENEEEEEEEEEEEN m
I — » !
obprak 21 10 1]

[T TTTITTTTITTTITTITT] %

L_Lf'a ; m
STTT T T T I T T T LI T I T I TTT]
| ¢

' e —
majority control shifl direction

Figure 2.8. A5/1 keystream generator

1 Show that when R; is loaded with a special initial state, then, re-
gardless of its movement in the future, its state never changes. Is it
possible to extend your solution to Re and R3?

2 Use the previous answer to disprove the aforementioned assumption
in the following special case of A5/1: show that the all-zero 64-bit
keystream can be generated by different 64-bit keys.

3 Compute a tight lower bound on the number of different keys that
generate such a keystream.

Let us now consider a variant of A5/1, by replacing the majority function
with the minority function for the clocking vote, where the minority
function of three binary bits a, b, ¢ is defined by

a ifa=b=c

minority(a,b,c) =
v ) {a ObDc otherwise.

4 Similarly to Question 2, show that several keys will produce the all-
zero 64-bit keystream for this variant.
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5 Recompute Question 3 under the constraint that initially two clocking
taps out of three are both one.

6 Check whether the assumption is true or false now for this variant of
A5/1.

7 Compare the lower bounds obtained in questions 3 and 5, and briefly
discuss the security strength of A5/1 and its variant.

> Solution on page 49

Exercise 14 %A Variant of A5/1

We consider the A5/1 keystream generator described in Exercise 13
and shown on Figure 2.8. We assume that the three initial values of the
LFSRs are chosen independently and uniformly at random.

1 For ¢ = 1,2,3, what is the probability that R; is shifted at the first
clock? What is the probability that it is not shifted?

2 What is the probability that exactly two LFSRs are shifted at the
first clock?

3 What is the probability mass function for the movement of three
LFSRs at the first clock?

4 What is the conditional probability mass function of the first clocking
given the initial clocking?

We define the minority function between three binary bits a, b, ¢ by

a fa=b=c

minority(a, b, ¢) =
v ) {a D bPc otherwise.

We consider a variant of A5/1 where we replace the majority function
with the minority function for the clocking vote.

5 Recompute the previous questions for this variant of A5/1.

6 What conclusion can you draw about the security strength of using
majority and minority function for the clocking vote?

> Solution on page 51
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Exercise 15  xMemoryless Exhaustive Search

A cryptanalyst would like to break a keyed cryptographic system.
Assume he has access to an oracle which, for each queried key, answers
whether it is the correct one or not. We use the following notations.

= The total number of possible keys is denoted N. The list of all
possible keys is denoted {k1,ka,...,kn}.

m The random variable corresponding to the key known by the oracle
is denoted K, i.e., the correct key known by the oracle is k; (i €
{1,...,N}) with probability Pr[K = k;]. Unless specified, K is not
assumed to be uniformly distributed.

» The random variable corresponding to the key chosen by the crypt-
analyst is denoted K, i.e., the probability that the cryptanalyst sends
k; (i€ {1,...,N}) to the oracle is Pr[K = k;].

The cryptanalyst iteratively queries the oracle with randomly selected
keys, in an independent way, until he finds the right one. Note that,
as the queries are independent, the complexity could in principle be
infinite (we say that the algorithm is memoryless). The strategy of the
cryptanalyst is to select a distribution for his queries.

1 Compute the expected complexity E[C] (in terms of oracle queries)
in general, and when the key distribution is uniform (i.e., when K is
uniformly distributed). How do you improve the attack?

2 If the a priori distribution of the keys is not uniform (but known by
the adversary), what is the best memoryless algorithm for finding the
key with the oracle? Prove that its complexity relates to the Rényi
entropy of coeflicient % defined by

2
H .

N
(K) = (Z VPr[K = m)
=1

1
2

Reminder: Lagrange multipliers can be used to find the extremum
of a function
f: R” — R

($17m27"'7$n) [ — f(ﬂfl,lEQ,...,.’L’n),
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subject to the k < n constraints

gl(mlax%'“vmn) = 07
gg(ﬂ?l,:ﬂg,...,l' ) = 0
oo ’ (2.2)
gk(xlam%'“awn) = Oa
where f,qg1,..., g, are functions with continuous first partial deriva-

tives. Consider the function ¢ : R® — R defined by

k
q’(lEl,SEQ,. .. 7mn) - f(mlvaa s 7$n) + Z/\igi(mlax%- .. 73:71)‘

1=1

The A;’s are the Lagrange multipliers. If a point a = (ay,...,a,) €
R™ is an extremum of f under the conditions (2.2), it must satisfy

gi(a) = ga(a) = --- = gx(a) = 0,
o oo oo (23)
533—1(3) = 8—532(61) == 8—%(3) =0.

Therefore, in order to find an extremum of f under the conditions
given by (2.2), one should solve (2.3) with respect to the variables
a/l)a2)“'aa'na>\1)"'a)‘k"

> Solution on page 53
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Solutions

Solution 1 ~ Weak Keys of DES

If the subkeys k1 to kg are equal, then the reversed and original key
schedules are identical. In that case, DES clearly is an involution. The
sixteen subkeys will be equal when the registers C' and D are all-zero
or all-one bit vectors, as the rotation of such bitstrings has no effect on
them. Therefore, the four weak keys of DES can easily be computed
by applying PC17! to the four possible combinations of these C' and D
values. We have represented the weak keys of DES on Table 2.1, where
{b}" denotes a sequence of n bits all equal to b. The existence of weak
keys is known at least since the publication of [14].

Table 2.1. Weak keys of DES

c D k
{0y*® {0y*® PCL1({0}**]1{0}*)
{0} {1y PC17H({0}%1{1}%)
{1} {oy*® PC171({1}2%]{0}*%)
{1y {1} PCITH({1}**[{1}*%)

Solution 2 Semi-Weak Keys of DES

First, note that it is possible to generate a DES decryption schedule
on-the-fly. After kg is generated, the values of C' and D are equal
to the original ones, since they both have been submitted to a 28-bit
rotation. Thus, provided that one exchanges the left rotations with
right rotations and the amount of the first rotation to 0 (instead of 1),
the same algorithm used to generate k1 up to kig can also generate the
subkeys kig down to ki.

A pair of semi-weak keys occurs when the subkeys k; through kg
of the first key are respectively equal to the subkeys kig through k] of
the second one. This requires that the following system of equations is
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verified.
ROLrl (C) - ROLT1_|_...+7-16 (C/)
ROL; 4+, (C) = ROL; 1. 45 (Cl)

ROL,, 4. 4rs(C) = ROL,, (C")

Of course, a similar system should also hold between D and D’. Re-
placing the 7;’s by their values, it is easy to see that the systems imply
that C = ROLg;41(C") and D = ROLg;11(D’) for any integer . From
this, we deduce the possible shapes of subkeys registers. They are rep-
resented on Table 2.2, where {b}" denotes a sequence of n bits all equal
to b and where {b1ba}" denotes a sequence of 2n bits having the follow-
ing shape: b1bobiby - --bibo. The final semi-weak keys are obtained by
applying PC17! on (C, D) and on (C’, D'). The existence of semi-weak
keys is known at least since the publication of [14].

Table 2.2. Semi-weak key pairs of DES

C D c’ D’
{01}14 {01}14 {10}14 {10}14
{01}14 {10}14 {10}14 {01}14
{01}14 {0}28 {10}14 {0}28
{01}14 {1}28 {10}14 {1}28
{0}28 {01}14 {0}28 {10}14
{1}28 {01}14 {1}28 {10}14

Solution 3 Complementation Property of DES

1 First note that Tdy = £ & y and that TH Y = z ® y. The initial and
final permutations (IP and IP~!) do not have any influence on our
computations, so we will not consider them. We can write one round

of DES as
(Cr,CR) « (Pr, P, ® F(Pg, K))

where P; and Pp denote the left and right half of the plaintext,
respectively, where Cf, and Cg denote the left and right half of the
ciphertext and where K denotes the key. From the definition of the
key schedule algorithm, we see that if we take the bitwise complement
of the key, then each subkey will turn into its bitwise complement as
well. Furthermore, from DES F-function definition, we can see that
if we complement its input and the subkey, then the input of the
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S-boxes and thus the output will remain the same. We can thus
write

(CL,Cr) — (Pr, P, ® F(Pp,K)) = (Pg, P, ® F(Pg,K))

If we extend this to the whole Feistel scheme, then we can conclude

that DES(T) = DES(x).

Algorithm 4 describes a brute force attack that exploits the comple-
mentation property of DES. Note that in this algorithm, € corre-

sponds to DESy(z) = DES(Z). Therefore, if the condition of line 6 is
true, we almost surely have K = k. In the loop, the only heavy com-
putation is the computation of DESy(z), and we expect to perform
254 such computations.

Algorithm 4 Brute force attack using the complementation property

Input: a plaintext = and two ciphertexts DESg () and DESk(T)
Output: the key candidate for K
Processing:

1:

3
4
5
6:
7
8
9:

for all non-tested key k£ do
¢ «— DESk(z)
if ¢ = DESk(z) then
output k£ and stop.
end if
if €= DESk(Z) then
output k and stop.
end if
end for

The complementation property of DES is known at least since the pub-
lication of [14].

Solution 4  3DES Exhaustive Search

1

As the total length of the key is 112 bits, the average complexity of
an exhaustive search against two-key 3DES is % . oH2 — oIl
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2 It is easy to see that the complementation property of DES can be
extended to 3DES:

3DESg; x; (P) = DESg; (DESE! (DESK; (P)))
= DESg; (DESZ! (DESk, (P)))
~ DESg (DEs;g (DESK, (P)))
— 3DESk,.m, (P).

Using an algorithm very similar to Algorithm 4 (where we just replace
DESk by 3DESk, k,), we can reduce the complexity by a factor 2.

The average complexity becomes

2110

Solution 5 2DES and Two-Key 3DES

1 (a)

A naive exhaustive search has a worst-case complexity of 2112 DES
evaluations and an average complexity of 2! DES evaluations.

A meet-in-the-middle attack has a memory complexity of 256 64-
bit blocks and a computational complexity of approximately 2-256
DES evaluations.

A naive exhaustive search for a two-key 3DES has a worst-case
complexity of 3- 2112 DES evaluations and an average complexity
of 3211 DES evaluations.

The attack is given in Algorithm 5. It focuses on the case where
the result after the first encryption stage is the all-zero vector,
denoted by 0. Note that in the algorithm,

Ck, = DESk, (DESL(0)),

and thus,
Bg, = DESy.(0) = Pk,.

Consequently, the two keys k1, ks found in line 10 in the algorithm
(such that By, = Py,) are indeed a candidate solution pair. The
number of DES encryptions in Algorithm 5 is 2°6 . 5 < 269 Both
tables store 2°0 entries of 56 + 64 = 120 < 27 bits each. The
memory requirements is thus 2 - 256 . 27 . 273 = 261 hytes,

Solution 6  xExhaustive Search on 3DES

1 The algorithm successively tries each possible key. It does not stop
until the last possible key is tried. Therefore, the number of iterations
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Algorithm 5 Attacking two-key 3DES

Input: a box 3DESg, k,(-) encrypting 64-bit plaintexts according to

(2.1), under the keys K and Ky

Output: K7 and Ks
Processing:

—
@

11:

. for all k € {0,1}°% do

P, «— DES;'(0)

store (Pg, k) in a table T} (sorted according to Py)

Cy «— 3DESk, i, (Px)

By « DES;1(Cy)

store (By, k) in a table Ty (sorted according to By)
end for
sort the table T} according to the P.’s values
sort the table T, according to the By’s values
Store the keys ki,ky € {0,1}%¢ such that By, = P, in another
table T'. This table contains candidate solution pairs K; = k1 and
Ky = ks.
If there are more than one candidate in T', test each key pair on a
small number of plaintext/ciphertext pairs until only one remains.
Display this solution.

is exactly equal to the number of possible keys times the number of
DES encryptions for each (which is 3). Therefore, the number of DES
encryptions/decryptions of the algorithm is 3 - 2356 = 3. 2168,

The random permutation C* is uniformly distributed among all pos-
sible permutations, and there are (264)! of them. Consequently, if
c: {0,1}% — {0,1}5* is a given permutation, we have Pr[C* = ¢] =
(7,14—)! (see Exercise 1 in Chapter 1). Now, we are given two (fixed)

values P,C € {0,1}%. We have

PriC*(P)=C] = > lcwpj—c Pr[C* =]

1
- (2641 Z Lee(py=c»

where the last sum simply is the number of permutations mapping
P on C, which is the number of permutations of a set of cardinality
261 _ 1. Finally,

64 .
Pr[C*(P) = C] = % — 961,
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3

4

We assume that Prg[3DESk(P) = C] = Prc-[C*(P) = C] = 27%.
Multiplying this probability by the number of tried keys, we obtain
the number of keys that are displayed:

N = 9649168 _ 9104
All the displayed keys (except one) are wrong keys!
We consider Algorithm 6. The algorithm clearly displays k as we do

Algorithm 6 Exhaustive key search algorithm on 3DES, using ¢ plain-
text/ciphertext pairs

Input: ¢ plaintext/ciphertext pairs (£, C;), for ¢ = 1,...,t, all en-

crypted under the same key k

Output: key candidate(s) for k = (ky, ko, k3)
Processing:

1:
2:
3:
4:
5:

for each possible key K = (K1, K3, K3) do

if C; =3DESK(P;) fori=1,...,t then
display K = (K1, Ko, K3)
end if
end for

have C; = 3DES(F;) for all ¢ = 1,...,¢. It reduces the number of
wrong keys that are displayed because it is clearly more difficult to
find a wrong key k satisfying C; = 3DES;(F;) for i = 1,...,t (with
t > 1) than to find a wrong key such that C' = 3DES;(P) (for only
one pair). The total number of encryption/decryption steps that
have to be performed is simply ¢ times the number found in the first
question (we assume that we always perform ¢ times 3DES in the if
statement of the algorithm). Therefore, this algorithm needs 3-2168.¢
encryptions/decryptions.

Still assuming that Prg[3DESk(P) = C] = Pre«[C*(P) = C] = 2784,
the mean value N of wrong keys displayed by Algorithm 6 is

¢
N = number of tried keys x HI;{r[3DESK(Pi) = (]
i=1

_ 168 —64\t
= 2l68 (964t

Table 2.3 gives the approximate number N of wrong keys that are
displayed, in terms of the number ¢ of available plaintext/ciphertext
pairs. According to this table, only 3 pairs are necessary to make
almost sure that only the good key will be displayed.
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Table 2.3. Average value N of wrong keys that are displayed by Algorithm 6, in
terms of the number t of plaintext/ciphertext pairs

t 1 2 3
N 9104 940 9—24

Solution 7 An Extension of DES to 128-bit Blocks

1 The exhaustive search complexity is 2°6 in the worst case. It is 255
in average and can be reduced by a factor of 2 by using the comple-
mentation property (see Exercise 3 in this chapter).

2 A key for 3DES consists of two keys for DES, so the key length is 112.
The exhaustive search complexity is thus 2'12 in the worst case for
3DES. Tt is 2! in average and can be further reduced by a factor of 2
by using the complementation property (see Exercise 4 in Chapter 2).

3 In CBC mode of operation, the ith ciphertext block y; is

where z; is the ith plaintext block. If it happens that y; = y; (which
is a collision), we deduce that y;_1 @ x; = y;—1 ® z; which leads to

Yi—1 D yj—1 = 2; D 5.

Hence, we can thus deduce some plaintext information from the value
yi—1 @ yj—1. The complexity corresponds to the expected number of
blocks after which we can expect a collision (see Exercise 1, Chap-
ter 3). According to the Birthday Paradox, we know that we need a
number of blocks within the order of magnitude of the square root of
the cardinality of the output domain, i.e., V264 = 232 We note that
the complexity of this attack is not increased by using 3DES instead
of DES as the block size remains the same. In order to thwart this
attack, we thus need to enlarge the block size.

4 See Figure 2.9.

5 With z;, = xp, we obtain yr, = yr = 3DESk, k,(zr). So a circuit
which computes this new scheme can be used to compute 3DES.

Similarly, with K1 = K5, we obtain compatibility with DES.

6 The previous question leads to the intuition that this new scheme is
at least as strong as DES and 3DES. It seems more secure than DES
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Uq

yL YR

Figure 2.9. A 128 bit extention of DES

as the key size is increased and at least as secure as 3DES as the key
size is the same. The advantage of this scheme is that it is protected
against the collision attack in CBC mode.

7 If we choose = and 2’ such that x, =z, then
w=ujandvy=v, & yL=yp.

8 We take an arbitrary (fixed) 64-bit string . For many 64-bit strings
B we encrypt @ = «|3. With non-negligible probability, we will get
a collision on the y;’s after a number of encryption within the order
of magnitude of 232, We will thus get z = || and 2’ = «||3 such
that ug = ) and vy = v}. The complexity is within the order of
magnitude of 232,

9 After the previous attack, the equation ug = uj can be written as the
equality between the 32 rightmost bits of DESk, (8) and DESk, (3').
The equation vy = vjj can be written as the equality between the 32
rightmost bits of DES;& (yr,) and DES;& (y7,). We can thus perform an
exhaustive search in order to recover Kj, by testing both equalities.
This attack requires 2°¢ operations. Note that with high probabil-
ity, only the right key is raised. Once K is found, 2°¢ additional
operations are required in order to recover K».

We now see that this new scheme can be broken within about 2°¢ op-

erations. Consequently, it is not more secure than DES and definitely
less secure than 3DES.
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Solution 8  Attack Against the OFB Mode

1 The OFB mode is nothing but a one-time pad with a sequence gen-
erated from the IV and the secret key. If they are both fixed, the
sequence is always the same as it is independent from the plaintext.
Therefore, from a known plaintext attack with only one known mes-
sage, we can recover the key stream and decrypt any new ciphertext
(of the same length or shorter).

2 The CFB mode is stronger against this issue, except for the first
block. The first encrypted block is equal to the first plaintext block
XORed with a value generated from IV and from the key only. The
next values in the sequence depend on the plaintext. Similarly, note
that if two plaintexts are equal on their first n blocks, the knowledge
of one of the plaintexts allows to recover the (n + 1)th block of the
other plaintext.

3 The CBC mode is not vulnerable to this kind of attack.

Solution 9  xLinear Feedback Shift Registers

1 The first eight elements of the sequence are given in Table 2.4, from
which it is clear that the period is equal to 7.

Table 2.4. The first values of the simple LFSR sequence

7 Si(X) i Sl(X)

0 1 4 X2+ X
1 X 5 X?4+X+1
2 X? 6 X241
3 X+1 7 1

2 We use a LSL (Logical Shift Left) instruction which shifts an integer
one bit to the left. Furthermore, we suppose that we can test the
bit in position d (the leftmost one being in the carry flag after a
shift). If it is equal to 1, then one subtracts P(X) in order to get
the remainder. Note that subtracting P(X) simply corresponds to
XORing P(X) as we work modulo 2 here.

3 Welet P(X) =Py+Pi X+ +Py 1 X+ X9 Let Q(X) = Qo+
. -+Qd~1Xd”1 be a polynomial of K. It can be represented by a row
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vector Q@ = (Qo,...,Qq_1) € Z§. Consequently, the multiplication
by X in K can be represented by a matrix multiplication. Indeed, if
we denote by R(X) = Ry + -+ + Rg_1 X% ! = X % Q(X), we have

R(X)=Qu1-Po+(Qo®Qu1-P)X 4 +(Qu2®Qq_1-Py_1)X%}
or equivalently
R=(Q4-1 Po,Qo®Quq-1-P1,...,Qu4—2® Qa1 - Py_1).

From the previous equation, it is clear that the multiplication by X
can be represented by

0 1 0O 0
0O 0 1 0
R=QxB where B= : : : .. :
6o o 0 .- 1
PR P P o Py

By definition of the sequence, we thus have 5,44+ = 5;4+—1 x B for all
¢ > 1 and t > 0. Noting that the ith row of M; corresponds to 3;4¢—1
and that the ith of My corresponds to 3;.¢, we deduce that

Mt_|_1 = Mt x B.

Noting that My is the identity matrix, we can see that M; = B! for
all t > 0. Consequently M; and B commute, so that M1 = B x M,.
The linear recurrence is now given by

crdy = (Mip1)a+1
= (B x Mi)a,;j1
= Pocj®P 10 ®FPi1 a5
If we take the irreducible polynomial of degree 3 of the first question
as an example, we obtain
Ce43,§ = C1,j P Cri1

which can be computed by the circuit shown on Figure 2.10.

4 The natural subgroup K* of the field K is of cardinality (2¢-—-1). The
set {X* mod P(X) , t > 0} being a subgroup of K*, its order must
divide (2% — 1). Thus, the period of the sequence must be a divisor
of (2% — 1). The period is maximal if X is a primitive element of K,
i.e., a generator of K*.
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il

[ ]
I I B

Figure 2.10. A circuit implementing the recurrence formula of the LFSR

Solution 10 xAttacks on Cascade Ciphers

1 The time complexity is 2¢. A cascade of L block ciphers can be viewed
as a block cipher of key length L - £ (as the L keys are independent),
so that the time complexity would be 2%¢.

When I = 2 the meet-in-the-middle attack reduces the time com-
plexity from 22¢ down to 2 - 2¢ = 21 In that case, the storage
complexity is 2¢.

2 As in Solution 6, we can prove that Pr[C*(z) = y] = 27". As-
suming that Ex roughly behaves like a random permutation when
K is randomly chosen among all possible wrong keys, we estimate
Pr[Ex(P) = C] =~ 27". Thus, the number of wrong keys displayed
by the algorithm is approximately 2¢.27" that is (9(22_”). For a
cascade cipher, a total of O(24~") wrong keys are displayed.

3 Algorithm 7 exploits the ¢ pairs at disposal. Considering that Eg

Algorithm 7 Exhaustive key search algorithm with ¢ plain-
text/ciphertext pairs

Input: t plaintext/ciphertext pairs (P;, C;), such that C; = Ex(B;), with

i=1,...,1
Output: key candidate(s) for k&
Processing:

1: for each possible key K do
2. if C;=Eg(F) foralli=1,...,t then

3; display K
4  endif
5. end for

roughly behaves like a random permutation when K is chosen among
all possible wrong keys, we obtain

t
PrlEx(P) =C; foralli=1,..., ]~ [[PrEx(P) =Ci]~27".
§=1
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Table 2.5. Exhaustive key search on 3DES

t 1 2 3 4
Approx. number of wrong keys 2.10% 10'2 6-1078 3.107%

The number of wrong keys displayed by Algorithm 7 is thus O(2¢).

4 The number of wrong keys in this case is O(2%*~). For 3DES,
L =3, £ =56, and n = 64. The number of wrong keys displayed
are given in Table 2.5 for different values of t. With 3 pairs, the
adversary makes almost sure that only the good key is displayed.

More details about cascade ciphers and their security can be found
in [29].

Solution 11 Attacks on Encryption Modes |
1 The inverse of the CBC|CFB mode is represented on Figure 2.11.
Cl CQ C'n,

e T ey N A

E, Eo | | Es

l .4 L.

D, Dy | oo D,
Ve ’——>6\? -—-—>E\? D
Py Py P,

Figure 2.11. 'The inverse of the CBC|CFB mode

2 Tt can easily be checked that D3(A”) @IV = C) and that IVe C =
A" @ Cs, so that

Ds(IV@CL @ Cy) =Cr 1V . (2.4)

3 Algorithm 8 recovers k3 with a time complexity of O(2%). As n > ¢,
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Algorithm 8 Recovering k3 in ECB|ECB|CBC™! mode

Input: the initial vector IV and two ciphertext blocks C; and Cs
Output: key candidate(s) for ks
Processing:

1. for each possible key K3 do

2. if Equation (2.4) holds then

3: display K3
4  endif
5. end for

it does not yield any wrong key (with high probability). Once k3 is
found, the adversary can peel the third layer off, and do a meet-in-the-
middle attack on the last two layers. Note that we typically need both
plaintext blocks A and B in order to eliminate wrong key candidates
during the meet-in-the-middle. The complexity of this part of the
attack is O(2%) in time and O(2) in storage. The complexity of the
whole attack is O(2¢) in time, O(2¢) in storage, and we need 3 chosen
plaintext blocks.

4 Tt can easily be checked that
Vo Ey (IV1) G El(El (IVl)) oPeP= D3(A) (2.5)

and that

E1(E1(E1(IV1))) ® Ex(E1(E1(E1(IV1)))) @ Ps ® By
— Ds(A) ® Ds(B). (2.6)

5 Algorithm 9 uses a technique similar to a meet-in-the-middle attack
in order to recover k; and k3. The time complexity is O(2¢) and
the storage complexity is O(2Y). As n > £ and as two equations
have to hold before a key pair can be displayed, the algorithm does
not yield any wrong key pair (with high probability). Once k; and
ks are found, the adversary can peel off the first and third layers
and perform a simple exhaustive search on ky in O(2¢). The overall
complexity of the attack is O(2¢) in time, O(2°) in storage, using four
chosen ciphertext blocks.

A detailed study of cryptanalysis of multiple modes of operation can be
found in [3, 4]. More recently, known-IV attacks against triple modes of
operation were proposed in [20].
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Algorithm 9 Recovering k; and k3 in OFB|CBC|ECB mode with a
meet-in-the-middle attack
Input: the initial vectors IV, and IVy, the plaintext blocks Py, Py, Ps,
and Py, the two ciphertext blocks A and B
Output: key candidate(s) for k; and k3
Processing:
1: for each possible key K3 do
2. insert (D3(A4),D3(A) & D3(B), K3) in a table (keyed with the first
entries)
end for
: for each possible key K7 do
if equations (2.5) and (2.6) hold then
display (K71, K3)
end if
end for

Solution 12 Attacks on Encryption Modes Il

Py Py
|
v, D
E: Ey
AP AP
Dz D2
v &
By
D3 D3
|
V3 =
c¥ cs = 1v

Figure 2.12. Collisions in CBC|CBC™!|CBC™! mode

1 The algorithm stops when a collision between two strings of n bits
occurs. Therefore, its time complexity is (9(2”/ 2.
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2 We use the notations of Figure 2.12. We assume that Pl(i) = Pl(j ) for
some i # j. As IVy is a constant, this implies that

AW = A9, (2.7)
We also have
B = E(0f) @ 1v) @ Dy(af))
= £y (Do(4) (as Cf = V)
so that Bgi) = Béj) because of (2.7). Thus, by using (2.7) again, we

obtain ‘ '
AP = 49, (2.8)

From (2.7) and from (2.8) we conclude that
Py = pY.
3 As IV is constant,
P = PO 5 A AW
eIV @ Es(1Vs @ c) = IVY @ Es(1Vs @ ¢, (2.9)

4 Algorithm 10 recovers K3 in 2% time complexity. Once K3 is found,
the adversary can peel the third layer off and mount a meet-in-the-
middle attack on the first two layers. The overall complexity of the

Algorithm 10 Recovering k3 CBC|CBC~CBC~! mode

Input: IV, IvY) 1v3, ¢ and ¢
Output: key candidate(s) for kg
Processing:

1: for each possible key K3 do

2. if Equation (2.9) holds then

3: display K3
4: end if
5. end for

attack is O(2%) in time, O(2¥) in storage, and needs O(2*/?) chosen
ciphertexts.

A detailed study of cryptanalysis of multiple modes of operation can be
found in [3, 4]. More recently known-IV attacks against triple modes of
operation were proposed in [20].
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Solution 13 %A Variant of A5/1 |

1 When R, is loaded with all zeros, no matter which subset of cells is
chosen to compute the feedback, the feedback is always zero, hence,
the next state of all zeros does not change. Of course, this also applies
to Ry and Rj.

2 When two LFSRs out of three are initialized by all zeros, we can view
A5/1 equivalently as consisting of the remaining single LFSR, which
outputs the leftmost bit at each clock pulse and is shifted if and only
if its clocking tap is zero. Note that the clocking tap of a non-zero
LFSR cannot always be zero. Thus, after a limited number of clock
pulses, the clocking tap of the equivalent LFSR would be equal to 1 so
that the LFSR will stop forever and output the same bit. So, as long
as the non-zero LFSR outputs zero before (and when) its clocking
tap turns to 1, A5/1 generates the all-zero keystream (including the
special case of three all-zero LFSRs initially).

3 We consider the following four different cases:

m For Ry = Ry = R3 = 0: There is only one (trivial) possibility.

m For Ry # 0 and Ry = Rg = 0: If R([8] = 1, Ry is never shifted.
In that case, it is sufficient to also have R;[18] = 0 to obtain
a keystream with only zeros. This leaves 21972 = 217 different
initialization states. We can also consider the case where R;[8] =
0 and R1[7] = 1, so that R; will be shifted exactly once. Here,
it is sufficient to have R;[18] = R;[17] = 0 to obtain a keystream
with only zeros. This leaves 21974 = 21 different initialization
states. Following the same reasoning, we deduce the following
lower bound on the number of possible initializations states in
this case:

219 — 2

3

217+215+213+211+29+27+25+23+2:

s For Ry # 0 and Ry = Rz = 0: We similarly obtain a lower bound

equal to
222 1
920 L 918 | . 4 90 _ —=.
m For R3 # 0 and Ry = Ry = 0: We similarly obtain a lower bound
equal to

9% _ 9
221+219+.”+21: - .
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Summing these values, we conclude that there are at least 222 such
initialization states.

When the initial clocking taps of the three LFSRs are all equal, none
of the three LFSRs will ever be shifted. Hence, provided that the
XOR of the three LFSRs output bits is zero at some time, we will
obtain the all-zero keystream:.

Alternatively, when one LFSR out of three is all-zero initially and the
initial clocking taps of the other two LFSRs are both one, then only
the all-zero LFSR is shifted (without changing its state however). It
is actually shifted forever, while the remaining two LFSRs would stop
forever. So, as long as the leftmost bits of two non-zero LFSRs are
equal and the clocking taps are both one, the variant A5/1 generates
the all-zero keystream.

We consider the following four different cases:

» Case where the three LFSRs all stop forever: we have 264=2-1 =
261 different initial states that satisfy two linear relations: one
clocking constraint and one output constraint.

» For Ry = 0: In this case, if Ro[10] = R3[10] = 1 and Ry[21] =
R3[22] we know that we obtain the all-zero keystream. There
are 222t23-3 — 242 (ifferent initial states that satisfy these con-
straints.

m For Ry = 0: Similarly, we find 219+23-3 = 239 different initial
states that produce the all-zero keystream.

w For Ry = 0: Similarly, we find 219223 = 238 different initial
states that produce the all-zero keystream.

Summing up these values, we obtain a lower bound between 252 and
263 on the number of possible initial states that produce the all-zero
keystream.

Obviously, the assumption does not hold for this variant of A5/1.

A keystream generator should avoid generating the same keystream
under several keys. These kind of keys are called “weak keys”. Al-
though we only computed lower bounds on the number of weak keys
for both A5/1 and its variant, the huge difference between the two
bounds (222 for the real A5/1 against 262 for its variant) suggests
that the variant is much weaker.
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Solution 14 %A Variant of A5/1 Il

1 Let T; denote the value of the clocking tap of R; just before it is
clocked, for 1 = 1,2,3. We denote by P?hifted the probability that R;
is shifted at the next clock, and P?’md the probability that it is not.
By symmetry, it is sufficient to compute this probability for R;. As
Ry is not shifted if and only if T} # T5 = T3, we have

1 1

fixed

Py = 23 § 1psry=m = 1
T1,12,T3

So that the probability that it is shifted is Pﬁhiftcd =1- P{i"ed = -i—.
By symmetry, we obtain the same probabilities for Ry and Rg, i.c.,

pshifted . ?I and Pfxed — i for i = 1,2,3.

2 Clearly, either 2 or 3 LFSRs are shifted at each clock. In other
words, when one LFSR is fixed, the two others are shifted. The
probability that exactly two LFSRs are shifted is thus equal to the
probability that exactly one is fixed. This probability is simply equal
to Plﬁxed + PQﬁXQd + Pg"md = % as the three events are disjoint.

3 We denote by ¢ € {0,1,2,3} the way the LFSRs are shifted at time .
More precisely, we denote by ¢! = 0 the case where all three LFSRs
are shifted, and by ¢! = i the case where R; is fixed (the two others
being necessarily shifted). From the previous questions, we immedi-
ately obtain

1
Pr[c® =] = 7 fori=01,23

4 If all LFSRs are shifted at time 0, we know that all three taps had
the same value. But as we assumed that the cells of the LFSRs were
drawn independently, this tells us nothing about ¢!, and thus

1
Prlc! = ¢|c® = 0] = Pr[ct = ] = 7 for all c € {0,1,2,3}.
When ¥ # 0, exactly two LFSRs are shifted. As the two new values
of the clocking taps are uniformly distributed and independent ran-

dom values, then we have no information whatsoever about the next
majority value and hence, neither about ¢'. Therefore,

Prlc! = ¢|® # 0] = Prle! = ¢ = %, for all ¢ € {0,1,2,3}.
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We conclude that, for all ¢, ¢’ € {0,1, 2,3},

Prle! = ¢|c® = ¢] = l,
4

which corresponds to a uniform distribution.

5 We consider the variant of A5/1. We first note that in this case,
either exactly one LFSR is clocked (when its clocking tap is different
from the two others) or no LFSR is clocked at all (when all three
clocking taps are equal). Using the notations of Question 1, we have

1 1 3
P]iixed — PI‘[TQ 7& TS] -} PI‘[Tl =T, = Tg] = 5 + Z = Z
Consequently, by symmetry,
p?xed = 3 and
. 1
P?}llfted = 1— P?XOd = Z fOI' aH 1= 1) 25 3.

The probability that all three LEFSRs stay still during next clock is
Prily =Ty =T3] = 211—, and the probability that exactly one LFSR is
shifted is Plshifted + P2shifted + Pghifted — %
We denote ¢! € {0,1,2,3} the way the LFSRs are shifted at time
t. This time, we denote by ¢ = 0 the case where all three LF-
SRs stay still at time ¢, and by ¢! = i the case where R; is clocked
(the remaining two LFSRs staying necessarily still). We verify that
Pr[® = 0] = 1 and that Pr[c® = i] = Pghified = 1 Therefore, the
distribution of ¢ is uniform.

Obviously, if no LFSR is shifted at time ¢, no LFSR will ever be
shifted. Therefore Pr[c! = 0]c® = 0] = 1 and Pr[c¢! # 0|c” = 0] = 0.
Moreover, if two taps have the same value at time ¢, the correspond-
ing LFSRs will never be clocked (as they will never be in a minority).
Therefore, letting ¢ # 0, Prc! ¢ {0,c}|c” = ¢] = 0 and, by indepen-
dence of the LFSRs cells,

1

Prlc! = ¢|c® = ¢ =Pr[c! = 0| = (] = 5
6 For the majority control, the conditional mass function is identical
to the mass function, which means the next clocking and the current
clocking are independent. We notice that this is definitely not the
case for the minority control. In terms of entropy, we can see that
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H(c®) = 2 (vesp. 2), and H(c") = 2 (resp. 2) under minority (resp.
majority) control. In other words, in the case of minority control,
if we try to recover the initial state of the LFSRs by guessing the
clocking sequence, then after guessing two bits for the first clocking,
we only need to guess 3/4 bit every clock afterwards on average. In
the case of majority control, the knowledge of the previous clocking
tells us nothing about the next one. We conclude that the majority
control (the actual one used in A5/1) is a better choice from the
security point of view.

Solution 15 xMemoryless Exhaustive Search

1 We first compute the expected complexity E[C] in the general case,
i.e., without making any assumption about the distribution of K.
As the queries are independent, the worst case complexity is infinite
(e.g., the case where the algorithm always tries the same wrong key).
We have by definition

E[C] = Ji:.o cPr[C = (. (2.10)

c=1

Using the Total Probability Theorem, we have
N
PriC =] =Y Pr[C =c| K = k] Pr[K = ki]. (2.11)
i=1

We can easily compute Pr[C = ¢ | K = k;] as it is the probability
that the cryptanalyst chooses the right key after (c—1) wrong guesses

response € {wrong key, right key}

random kecy guess K

K

Figure 2.13. Adversary modeling a memoryless exhaustive search
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(this is a geometrical distribution)
~ c—1 ~
PiC=c|K =k = (1 ~Pi[K = ki]) PrK =k, (2.12)

where K denotes the key chosen by the cryptanalyst. From (2.10),
(2.11), and (2.12) we deduce

400 N

EC] = Y ey (1 ~Pr[K = ki])c_l Pr[K = k;] Pr[K = ki]
c=1 4=1
N _ +o0 B o1
= Y PrR =k PrK = k] e (1 _Pi[K = ki]>
=1 c=1
=Pr[K=k;}~2 as shown below
L PrK = Ky
a ; Pr[K = ki

Note that we needed a classical result, namely that we have

+oo +00
d d 1 1
c—1 _ % cl o & —
ch dx (Zom> drl—z (1—-1x)?

c=1 c=

when z is a real value such that |z| < 1. In the particular case where
the key distribution is uniform, we have

Pr[K =k = % forall e {1,...,N},
so that

P N 1
| ]“N;Pr[kzki]'

~

This is minimal when all the Pr[K = k;] are equal, and in this case
E[C] = N.

As this algorithm is memoryless, the same wrong key can be queried
twice. In order to improve the algorithm, one can use a memory to
remember previous queries. This is called an exhaustive search. In
that situation, we would obtain an average complexity

N —1

B[C) = ——.
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2 We go back to the general case where K does not necessarily follow
the uniform distribution. The cryptanalyst wants to minimize

Blel= ; Pr[K = k;]

We set p; = Pr[K = k;] (which are considered to be a fixed values,
as they cannot be chosen by the cryptanalyst, but are only known
to him) and @Q; = Pr[K = k;] (which are N real variables). The
Q;’s can be chosen by the adversary, but still have to sum to 1 (as
they correspond to a probability distribution). Therefore, we must
compute

{Q1,-.,Qn}
N

s.t. ZQZ =1
i=1

N
min  E[C] = Z b
— Qi

In order to compute this, we use the theory of the Lagrange Multi-
pliers. Let & be defined by

N o N
Q(Q1,Q2,...,QN) = —p—z+/\<ZQi—1),

@
I
_

where A is the Lagrange multiplier. If (gi,...,qy) is an extremum,
it must satisfy

(2.13)

od
—(q1,.--,qn) =0 forall je{l,...,N},
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that is
N
Z%‘ =1
2.13) & (7
A=D1 forall je{1,...,N}
4
( N
Z g =1
=1

quqd‘/% for all d,j € {1,...,N}
d

so we obtain, for all d € {1,...,N},

__ v Dd
qq = S 7, (K] (2.14)

The best strategy for the cryptanalyst is therefore to draw the queries
according to the distribution defined by (2.14). In that case, the
average complexity is

N [H (K)
EC] = 3 piy/—=

Dbi

=

1
= Hy(K).
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