
Chapter 2 

CONVENTIONAL CRYPTOGRAPHY 

Exercises 

Exercise 1 Weak Keys of  DES 

We say that a DES key k is weak if DESk is an involution. Exhibit 
four weak keys for DES. 
Reminder: Let S be a finite set and let f be a bijection from S to S. 
The function f is an involution if f (f (x)) = x for all x E S. 

D Solution on page 34 

Exercise 2 Semi-weak Keys of  DES 

We say that a DES key k is semi-weak if it is not weak and if there 
exists a key k' such that 

DES,' = DESp. 

Exhibit four semi-weak keys for DES. 

D Solution on page 34 

Exercise 3 Complementation Property of  DES 

Given a bitstring x we let F denote the bitwise complement, i.e., the 
bitstring obtained by flipping all bits of x. 



EXERCISE BOOK 

1 Prove that 
DESK(:) = DESK(x) 

for any x and K 

2 Deduce a brute force attack against DES with average complexity of 
254 DES encryptions. 
Hint: Assume that the adversary who is looking for K is given a 
plaintext block x and the two values corresponding to DESK(x) and 
DESK(:). 

D Solution on page 35 

Exercise 4 3DES Exhaustive Search 

1 What is the average complexity of an exhaustive search against the 
two-key 3DES? 

2 How can an adversary take advantage of the complementation prop- 
erty DESK(:) = DESK(x)? What is the complexity now? 

D Solution on page 36 

Exercise 5 2DES and Two-Key 3DES 

1 2DES encrypts a 64-bit message M in the following manner. 

Here, K1 and K2 are bitstrings of 56 bits each. 

(a) Give the average complexity of a "naive" exhaustive key search? 

(b) We perform now a meet-in-the-middle attack. Give an approxi- 
mate of the time and memory complexities. 

2 Two-Key 3DES encrypts a 64-bit message M in the following manner. 

Here, K1 and K2 are strings of 56 bits each. 

(a) What is the average complexity of a "naive" exhaustive search? 

(b) We are given a box that encrypts a message M according to 
(2.1). We may use the box to encrypt plaintexts of our choice. 
Denoting 0 the all-zero message, we first .build a table containing 



Conventional Cryptography 19 

the standard DES decryption of the message 0 under all 256 keys. 
Then we use a chosen-plaintext attack to build a second table 
containing the 256 ciphertexts resulting from box encryptions of 
the elements of the first table. Given these two tables, one can 
find both K1 and K2 used by the encryption box. Explain how 
one may proceed. The whole attack should take no more than 
260 DES encryptions (or decryptions) and no more than 261 bytes 
of memory. 

D Solution on page 37 

Exercise 6 *Exhaustive Search on 3DES 

We consider 3DES with three independent keys. Let P, C E (0, 1)64 be 

Figure 2.1. 3DES with three independent keys 

a plaintext/ciphertext pair, where C = 3DESk(P) for some unknown key 
k = (kl, k2, kg) (see Figure 2.1). We want to recover k by an exhaustive 
search. 

1 What is the number of DES encryptions/decryptions of Algorithm l ?  

Algori thm 1 Exhaustive key search algorithm on 3DES 
Input :  a plaintext/ciphertext couple (P, C )  
Ou tpu t :  key candidate(s) for k = (kl, k2, k3) 
Processing: 

1: for each possible key K = (K1, K2, K3) d o  
2: i f C = 3 D E S K ( P ) t h e n  
3: display K = (Kl, K2, K3) 
4: e n d  if 
5: e n d  for 

2 Let C* : {0,1)" 4 {0, 1)64 denote a uniformly distributed random 
permutation. What is the probability that C*(P) = C. 



20 EXERCISE BOOK 

3 Assuming that 3DESK roughly behaves like C* when K is a uniformly 
distributed random key, estimate the number of wrong keys (i.e., 
different from k) displayed by Algorithm 1. 

4 Assume that an adversary has t distinct plaintext/ciphertext pairs 
denoted (Pi, Ci) for i = 1,. . . , t ,  all encrypted under the same (still 
unknown) key k (so that Ci = 3DESk(Pi)). Write an algorithm sim- 
ilar to Algorithm 1 that reduces the number of wrong keys that are 
displayed (but which does at least display k). What is the total 
number of DES encryptions/decryptions of this algorithm? 

5 Express the average number of wrong keys that are displayed by your 
algorithm in function of t (which is the number of available plain- 
textlciphertext couples). Evaluate the necessary number of couples 
in order to be almost sure that only the good key k = (kl, k2, k3) is 
displayed. 

D Solution on page 37 

Exercise 7 An Extension of  DES t o  128-bit Blocks 

DES is a 64-bit plaintext block cipher which uses a 56 bit key. 

1 What is the complexity of exhaustive search against DES? 

We can increase the security against exhaustive search in a triple mode 
by using two-key 3DES. 

2 What is the complexity of exhaustive search against 3DES? 

3 We now consider the CBC mode of operation. We want to mount 
a "collision attack". Show how a collision on encrypted blocks in 
CBC mode can leak some information on the plaintexts. What is the 
complexity of this attack when the block cipher used is DES? What 
is the complexity if we replace DES by 3DES? How can we protect 
ourselves against this attack? 

We now try to transform DES into a block cipher with 128-bit plain- 
text blocks, that we denote ExtDES. We use a 112-bit key which is 
split into two DES keys K1 and K2. For this, we define the encryption 
of a 128-bit block x as follows: 

rn we split x into two 64-bit halves xr, and XR such that x = X L ~ ~ X R  

rn we let u~ = DESK, (xL) and UR = DESK, (XR) 



Conventional Cryptography 21 

we split uLlluR into four 32-bit quarters u l ,  u2, us, u4 such that 
UL = u111u2 and UR = u311u4 

rn we let VL = DES;(:(U~ IIu4) and VR = D E S K : ( U ~ ~ ~ U ~ )  
rn we split v ~ l l v ~  into four 32-bit quarters v1,v2,v3,v4 such that 

VL = v111v2 and VR = v311v4 

we let YL = DESK, (vlllv4) and y~ = DESK, (v311va) 
we define y = yL[lyR as the encryption E x ~ D E S ~ , ~ ~ ~ ,  (x) of x 

4 Draw a diagram of ExtDES. 

5 Explain how this special mode is retro-compatible with 3DES: if an 
embedded system implements it, how can it simulate a 3DES device? 
Same question with DES: how is this special mode retro-compatible 
with DES? 

6 Do you think that the new scheme is more secure than 3DES? Do 
you think that it is more secure than DES? 

7 Let x and x' be two plaintexts, and let y = ExtDESK, llK2 (x) and y' = 
ExtDESK, 11K, (2') be the corresponding known ciphertexts. Explain 
how a smart choice of x and x' allows us to detect that we have 
u4 = uh and vq = vh simultaneously (here uh and vi are the internal 
intermediate values for computing y'). 

8 Use the previous question to mount a chosen plaintext attack whose 
goal is to find a (x, x') pair with u4 = u& and v4 = vi simultaneously. 
What is the complexity of this attack? 

9 Explain how to use this attack in order to reduce the security of 
ExtDES to the security of DES against exhaustive search? What can 
you say about the security of ExtDES now? 

D Solution on page 40 

Exercise 8 Attack Against the OFB Mode 

Assume that someone sends encrypted messages by using DES in the 
OFB mode of operation with a secret (but fixed) IV value. 

1 Show how to perform a known plaintext attack in order to decrypt 
transmitted messages. 

2 Is it better with the CFB mode? 

3 What about the CBC mode? 

D Solution on page 42 



22 EXERCISE BOOK 

Exercise 9 *Linear Feedback Shift Registers 

We consider the ring Z2[X] of polynomials with coefficients in Z2 
with the usual addition and multiplication. In the whole exercise, we 
consider an irreducible polynomial P ( X )  E Z2[X] of degree d. We define 
the finite field K = Z2[X]/(P(X)) of the polynomials with a degree at  
most (d - 1) with coefficients in Z2, with the usual addition and with 
the multiplication between a(X) ,  b(X) E Z2 [XI defined by 

a(X)  * b(X) = a(X)  x b(X) mod P (X) .  

We build a sequence so (X), sl (X), . . . in K defined by so (X) = 1 and 
st+1(X) = X * st(X) for all t > 0. We have 

st(X) = Xt mod P(X) for all t 2 0. 

1 Compute the first eight elements of the sequence when P(X) = X3 + 
X + 1. What is the period of the sequence? 

2 To each element q(X) = qo + - . . + qd-lXd-l of K we assign an integer 
T defined by 

4'90 +q1 ' 2 " ' +  qd-1 '2d-1. 

How is it possible to implement the computation of from st with 
the usual instructions available in a microprocessor? 

3 We define ct,j as being the coefficient of Xi in s t (X)  and the d x d 
matrix Mt with elements in Z2 as 

for 1 < i , j  L: d and t 2 0 .  

rn Show that there exists a relation Mt+1 = B x Mt and compute 
the matrix B. 

rn Show that for a given 0 5 j 5 d - 1, there exists an order-d linear 
recurrence relation for the sequence ct+d,j for all t 2 0, i.e., from 
C t , j ,  C t + l , j ,  . . . , ct+d-l,j one can linearly compute ct+d,j. 

rn How is it possible to build an electronic circuit which computes 
the sequence defined in the first question with 1-bit registers and 
1-bit adders? 

4 What are the possible values of the period of the sequence si(X) for 
i 2 O? When is it maximal? 

D Solution on page 42 



Conventional Cryptography 

Exercise 10 *Attacks on Cascade Ciphers 

In this exercise, we consider a block cipher of block length n and of 
key length e. The encryption function of the block cipher is denoted E. If 
P E (0, lIn denotes a plaintext and k E (0, lie is an encryption key, then 
Ek(P) = C E (0, lIn is the ciphertext obtained by encrypting P under 
the key k. We denote D the corresponding decryption function, such that 
Dk(Ek(P)) = P for any plaintext P E (0, l jn and any key k E (0, lie. A 
cascade cipher is the concatenation of L > 1 identical block ciphers with 
independent keys, denoted kl, . . . , k L .  In this configuration, the output 
of block cipher i is the input of block cipher i + 1. The plaintext is the 
input of the first block cipher and the ciphertext is the output of the 
last block cipher. For simplicity, we denote Eki and Dki by Ei and Di 
respectively (see Figure 2.2). 

What is the complexity (in terms of number of encryptions) of the 
exhaustive key search of Algorithm 2 on the block cipher? What 
is the complexity of a similar exhaustive key search on a cascade 
of L block ciphers? Give the name of an attack which reduces this 
complexity for the specific case where L = 2. Recall its complexity. 

Algorithm 2 Exhaustive key search algorithm 
Input: a plaintext/ciphertext pair (P, C) such that C = Ek(P) 
Output: key candidate(s) for k 
Processing: 

1: for each possible key K do 
2: if C = EK (P) then 
3: display K 
4: end if 
5: end for 

We now wonder how many (wrong) keys are displayed by Algorithm 2. 

2 Let C* : (0, l)n + (0, lIn denote a uniformly distributed random 
permutation. Let x and y be some fixed elements of (0, l I n .  What 
is the probability that C*(x) = y? Let K E (0,l)' be a random 

Figure 2.2. A cascade of L block ciphers 



24 EXERCISE BOOK 

variable. Assuming that EK roughly behaves like C*, compute an 
estimation of the amount of wrong keys displayed by Algorithm 2. 
How many wrong keys are displayed for a similar algorithm on a 
cascade of L ciphers? 

Assume that the adversary knows t plaintext/ciphertext pairs, all cor- 
responding to the same key k .  

3 Write an optimized algorithm, similar to Algorithm 2, which exploits 
these t pairs to reduce the number of wrong guesses. Estimate the 
number of wrong keys that are displayed. 

4 If you replace the block cipher by a cascade of L block ciphers in 
your algorithm, what would be an estimation of the number of wrong 
keys which are displayed? Using your approximation, how should t 
be selected in order to be almost sure to have only one good key 
candidate after an exhaustive search on 3DES (with 3 independent 
keys)? 

D Solution on page 44 

Exercise 11 Attacks on Encryption Modes I 

In this exercise, we consider a block cipher of block length n and of 
key length e. The encryption function of the block cipher is denoted 
E. If P E (0, lIn denotes a plaintext, and k E (0, lie is an encryption 
key, then Ek(P) = C E (0, l)n is the ciphertext obtained by encrypt- 
ing P under the key k. We denote by D the corresponding decryption 
function, such that Dk(Ek(P))  = P for any plaintext P E (0, l)n and 
any key k E (0, lie. Instead of using a simple cascade of block ciphers, 
we consider so called multiple modes of operation. The four modes of 
operation we will consider are ECB, CBC, OFB, and CFB (represented 
on Figure 2.3). Just as cascade of block ciphers consists in concatenat- 
ing block ciphers, multiple modes of operation consist in concatenating 
modes of operations. For example, the notation CBClCFB refers to the 
mode where the output of the CBC mode is the input of the CFB mode 
(see Figure 2.4). 

Note that two independent keys are used here, one in the CBC mode, 
the other in the CFB mode. In this exercise, we assume that n > e (i.e., 
that the block length is larger than the key length) and that all the IV 's 
are known to the adversary. For simplicity, we denote Eki and Dki by Ei 
and Di respectively. 



Conventional Cryptography 

(a) ECB mode 

(b) CBC mode 

(c) OFB mode 

(d) CFB mode 

Figure 2.3. Basic modes of operation 



EXERCISE BOOK 

Figure 2.4. The CBClCFB mode of operation 

1 Draw the scheme corresponding to the inversion of the CBClCFB 
mode represented in Figure 2.4. 

Consider the ECBIECBICBC-I mode of operation represented on Fig- 
ure 2.5. We are going to mount a chosen plaintext attack against it. The 
plaintext P we choose, is the concatenation of three n-bit blocks such 
that P = (A, A, B) (where A, B E (0, lIn denote arbitrary blocks of n 
bits). The three blocks of the corresponding ciphertexts are denoted C1, 
C2, and C3. 

2 Using the notations of Figure 2.5, find a relation between A", k3, 
IV, and C1. Similarly, find a relation between A", IV, C1, and C2. 
Deduce a relation between k3, IV, C1, and C2. 

3 Deduce an attack which recovers k3. Once k3 is found, how do you 
recover kl and k2? What is the complexity of the whole attack? 

We now consider the OFBlCBClECB mode (see Figure 2.6). This 
time, we are going to mount a chosen-ciphertext attack. The ciphertext 
C we choose, is the concatenation of four n-bit blocks such that C = 
(A, A, B,  B) (where A, B denote arbitrary blocks of n bits). The four 
blocks of the corresponding plaintext are denoted Pl to P4. 

4 Find a relation between kl, k3, IV1, IV2, PI, P2 and A. Similarly, 
find a relation between kl, k3, IV1, P3, Pq, A, and B. 

5 Deduce a (smart) attack that recovers kl and k3. Once this is done, 
how can k2 be recovered? Compute the complexity of the attack. 

P Solution on page 45 



Conventional Cryptography 

Figure 2.5. Attacking the ECBIECBICBC-l mode of operation 

Figure 2.6. Attacking the OFBlCBClECB mode of operation 



28 EXERCISE BOOK 

Exercise 12 Attacks on Encryption Modes II 

We use the notations of the previous exercise. Here, we consider the 
CBCICBC-I ICBC-I mode (represented on Figure 2.7 for two plaintext 
blocks). For this attack, we mount a chosen-ciphertext attack. More- 
over, the adversary will have the ability to choose the value of IV2 (the 
values of IV1 and IV3 are only known and fixed). The attack we will 

consider is described in Algorithm 3. We denote c(" = (c!", 6;)) the 

ith chosen ciphertext and P(" = (Pii), Pii)) the corresponding plaintext. 

Similarly, IVY) denote the ith chosen value for IV2. 

Figure 2.7. Attacking the CBCICBC-'ICBC-' mode of operation 

1 Give an approximation of the complexity of Algorithm 3. 

2 Show that if P:) = P,(i1, then P$) = p2 (') 

Hint: Use the fact that we set c;) to IVY) in Algorithm 3. 

3 Find a relation between IVY), IV!$, K3, IV3, Cii), and c?) equiva- 

lent to the condition P:" = P?. 

4 Deduce an attack that recovers the value of K3. Once K3 is found, 
how can K1 and K2 be recovered? What is the overall complexity of 
the attack? 



Conventional Cryptography 29 

Algorithm 3 Looking for collisions in C B C I C B C - ~ I C B C - ~  
Output:  P(", ~ ( j ) ,  d i ) ,  and such that P,(" = P?) 
Processing: 

1: i t 1  
2: repeat  
3: Choose c!" and I V ~ )  at random 

(i) 4: cy c IV, 

5: Obtain and store P:" and P?) 
- 

6: i t i + l  
i: until P,(" = P?) for some j < i 
8: Display ~ ( ~ 1 ,  ~ ( j ) ,  ~ ( ~ 1 ,  and 

D Solution on page 47 

Exercise 13 *A Variant of A511 I 

In stream ciphers, the prevailing encryption is a bitwise XOR opera- 
tion between the m-bit plaintext and the m-bit keystream which is the 
output of a so-called keystream generator fed by the L-bit secret key, 
where m is much larger than !. An ideal assumption for good stream 
ciphers is that any &bit window of the m-bit keystream is eventually 
modified when the Gbit key is modified. This exercise aims at doing 
a small test of the above assumption, taking as an example the A511 
keystream generator. A511 consists of three Linear Feedback Shift Reg- 
isters (LFSRs) denoted by R1, R2, and R3, with respective length of 19, 
22, and 23 bits. The total content of all three LFSRs is 19+22+23 = 64 
bits. Hereafter we call the 64-bit initial content (also called initial state) 
of the three LFSRs as the key of A5/1. We denote by Ri[n] the content 
of the nth cell of &, for i = 1,2,3, where n starts at 0. Each LFSR has 
one clocking tap: R1[8], R2[10], and R3[10]. At each clock cycle, one 
keystream bit is generated according to the following procedures (see 
Figure 2.8): 

The three LFSRs make a clocking vote according to the majority of 
the current three clocking taps. 

Each Ri compares the voting result with its own clocking tap. If they 
are equal, Ri is shifted: 

- a feedback bit is computed by XORing the content of the fixed 
subset of cells of Ri, i.e., the feedback for R1, R2, and RQ is 



30 EXERCISE BOOK 

- the content of all cells in Ri (except the leftmost) are shifted to 
the left by one position simultaneously; 

- Ri[O] is updated by the precomputed feedback; 

u . 
majority control shift direction 

I 

18 13 8 0 

Figure 2.8. A511 keystream generator 

I 

1 Show that when R1 is loaded with a special initial state, then, re- 
gardless of its movement in the future, its state never changes. Is it 
possible to extend your solution to R2 and R3? 

R1 

2 Use the previous answer to disprove the aforementioned assumption 
in the following special case of A5/1: show that the all-zero 64-bit 
keystream can be generated by different 64-bit keys. 

3 Compute a tight lower bound on the number of different keys that 
generate such a keystream. 

I I L- I I 

63 4 
output 21 1:o 0 

- & t ( I I I I I I I I I I I I I I I / l I I I I R 2  A 1 I 

rn I 4 
I 

22 LO 7 0 

Let us now consider a variant of A5/1, by replacing the majority function 
with the minority function for the clocking vote, where the minority 
function of three binary bits a ,  b, c is defined by 

I 
I 

i f a = b = c  
minority(a, b, c )  = 

a $ b $ c otherwise. 

I R3 

4 Similarly to Question 2, show that several keys will produce the all- 
zero 64-bit keystream for this variant. 

I I l I a ! 



Conventional Cryptography 31 

5 Recompute Question 3 under the constraint that initially two clocking 
taps out of three are both one. 

6 Check whether the assumption is true or false now for this variant of 
A5/1. 

7 Compare the lower bounds obtained in questions 3 and 5, and briefly 
discuss the security strength of A511 and its variant. 

D Solution on page 49 

Exercise 14 *A Variant of A511 II 

We consider the A511 keystream generator described in Exercise 13 
and shown on Figure 2.8. We assume that the three initial values of the 
LFSRs are chosen independently and uniformly at random. 

1 For i = 1,2,3,  what is the probability that Ri is shifted at  the first 
clock? What is the probability that it is not shifted? 

2 What is the probability that exactly two LFSRs are shifted at the 
first clock? 

3 What is the probability mass function for the movement of three 
LFSRs at the first clock? 

4 What is the conditional probability mass function of the first clocking 
given the initial clocking? 

We define the minority function between three binary bits a ,  b, c by 

i f a = b = c  
minority(a, b, c)  = 

a @ b @ c otherwise. 

We consider a variant of A511 where we replace the majority function 
with the minority function for the clocking vote. 

5 Recompute the previous questions for this variant of A5/1. 

6 What conclusion can you draw about the security strength of using 
majority and minority function for the clocking vote? 

D Solution on page 51 



32 EXERCISE BOOK 

Exercise 15 *Memoryless Exhaustive Search 

A cryptanalyst would like to break a keyed cryptographic system. 
Assume he has access to an oracle which, for each queried key, answers 
whether it is the correct one or not. We use the following notations. 

The total number of possible keys is denoted N .  The list of all 
possible keys is denoted {kl, k2,. . . , kN). 

The random variable corresponding to the key known by the oracle 
is denoted K ,  i.e., the correct key known by the oracle is ki (i E 
(1, . . . , N)) with probability Pr[K = ki]. Unless specified, K is not 
assumed to be uniformly distributed. 

4 The random variable corresponding to the key chosen by the crypt- 
analyst is denoted E, i.e., the probability that the cryptanalyst sends 
ki (i E (1,. . . , N))  to the oracle is P ~ [ E  = ki]. 

The cryptanalyst iteratively queries the oracle with randomly selected 
keys, in an independent way, until he finds the right one. Note that, 
as the queries are independent, the complexity could in principle be 
infinite (we say that the algorithm is memoryless). The strategy of the 
cryptanalyst is to select a distribution for his queries. 

1 Compute the expected complexity E[C] (in terms of oracle queries) 
in general, and when the key distribution is uniform (i.e., when K is 
uniformly distributed). How do you improve the attack? 

2 If the a priori distribution of the keys is not uniform (but known by 
the adversary), what is the best memoryless algorithm for finding the 
key with the oracle? Prove that its complexity relates to the R h y i  
entropy of coefficient $ defined by 

Reminder: Lagrange multipliers can be used to find the extremum 
of a function 



Conventional Cryptography 

subject to the k < n constraints 

where f ,  gl , . . . , gr, are functions with continuous first partial deriva- 
tives. Consider the function Q, : Rn t R defined by 

The Xi's are the Lagrange multipliers. If a point a = (al, . . . , a,) E 
Rn is an extremum of f under the conditions (2.2), it must satisfy 

I g1 (a) = g2 (a) = . . . = gk (a) = 0, 

( 3  9 )  

Therefore, in order to find an extremum of f under the conditions 
given by (2.2), one should solve (2.3) with respect to the variables 
a l , a2 , . . .  , an ,Xl , . . .  , h e  

D Solution on page 53 



EXERCISE BOOK 

Solutions 

Solution 1 Weak Keys of DES 

If the subkeys kl  to k16 are equal, then the reversed and original key 
schedules are identical. In that case, DESk clearly is an involution. The 
sixteen subkeys will be equal when the registers C and D are all-zero 
or all-one bit vectors, as the rotation of such bitstrings has no effect on 
them. Therefore, the four weak keys of DES can easily be computed 
by applying P C I - I  to the four possible combinations of these C and D 
values. We have represented the weak keys of DES on Table 2.1, where 
{bin denotes a sequence of n bits all equal to b. The existence of weak 
keys is known at least since the publication of [14]. 

Table 2.1. Weak keys of DES 

Solution 2 Semi-Wea k Keys of DES 

First, note that it is possible to generate a DES decryption schedule 
on-the-fly. After k16 is generated, the values of C and D are equal 
to the original ones, since they both have been submitted to a 28-bit 
rotation. Thus, provided that one exchanges the left rotations with 
right rotations and the amount of the first rotation to 0 (instead of l), 
the same algorithm used to generate kl  up to k16 can also generate the 
subkeys kls  down to k l .  

A pair of semi-weak keys occurs when the subkeys kl through k16 
of the first key are respectively equal to the subkeys k& through k i  of 
the second one. This requires that the following system of equations is 



Conventional Cryptography 

verified. 

Of course, a similar system should also hold between D and Dl. Re- 
placing the ri7s by their values, it is easy to see that the systems imply 
that C = ROL2i+l(C1) and D = ROL2i+l(D1) for any integer i. From 
this, we deduce the possible shapes of subkeys registers. They are rep- 
resented on Table 2.2, where {bin denotes a sequence of n bits all equal 
to b and where {blb2jn denotes a sequence of 2n bits having the follow- 
ing shape: blb2blb2 . . . blb2. The final semi-weak keys are obtained by 
applying PCI-I on (C, D) and on (C1, Dl). The existence of semi-weak 
keys is known at least since the publication of [14]. 

Table 2.2. Semi-weak key pairs of DES 

Solution 3 Complementation Property of  DES 

1 First note that Z@ y = and that Z@ y = x @ y. The initial and 
final permutations (IP and IP-l) do not have any influence on our 
computations, so we will not consider them. We can write one round 
of DES as 

(CL, CR) +- (PR, PL @ F(PR, K ) )  

where PL and PR denote the left and right half of the plaintext, 
respectively, where CL and CR denote the left and right half of the 
ciphertext and where K denotes the key. From the definition of the 
key schedule algorithm, we see that if we take the bitwise complement 
of the key, then each subkey will turn into its bitwise complement as 
well. Furthermore, from DES F-function definition, we can see that 
if we complement its input and the subkey, then the input of the 



36 EXERCISE BOOK 

S-boxes and thus the output will remain the same. We can thus 
write 

If we extend this to the whole Feistel scheme, then we can conclude 
that DES,(:) = DESK(.). 

2 Algorithm 4 describes a brute force attack that exploits the comple- 
mentation property of DES. Note that in this algorithm, Z corre- 
sponds to DESk(x) = DES%(z). Therefore, if the condition of line 6 is 
true, we almost surely have K = z. In the loop, the only heavy com- 
putation is the computation of DESk(x), and we expect to perform 
254 such computations. 

Algorithm 4 Brute force attack using the complementation property 
Input: a plaintext x and two ciphertexts DESK(x) and DESK(:) 
Output: the key candidate for K 
Processing: 

1: for all non-tested key k do 
2: c c DESk(x) 
3: i fc=DESK(x)then 
4: output k and stop. 
5: end if 
6: ifi?=DESK(:)then 
7: output % and stop. 
s: end if 
9: end for 

The complementation property of DES is known at least since the pub- 
lication of [14]. 

Solution 4 3DES Exhaustive Search 

1 As the total length of the key is 112 bits, the average complexity of 
an exhaustive search against two-key 3DES is . 2112 = 2'l1. 



Conventional Cryptography 37 

2 It is easy to see that the complementation property of DES can be 
extended to 3DES: 

Using an algorithm very similar to Algorithm 4 (where we just replace 
DESK by 3DESKl,K2), we can reduce the complexity by a factor 2. 
The average complexity becomes 2'". 

Solution 5 2DES and Two-Key 3DES 

1 (a) A naive exhaustive search has a worst-case complexity of 2112 DES 
evaluations and an average complexity of 2ll1 DES evaluations. 

(b) A meet-in-the-middle attack has a memory complexity of 256 64- 
bit blocks and a computational complexity of approximately 2.256 
DES evaluations. 

2 (a) A naive exhaustive search for a two-key 3DES has a worst-case 
complexity of 3 2112 DES evaluations and an average complexity 
of 3 - 2''' DES evaluations. 

(b) The attack is given in Algorithm 5. It  focuses on the case where 
the result after the first encryption stage is the all-zero vector, 
denoted by 0. Note that in the algorithm, 

and thus, 
B ~ ,  = DES;;: (0) = PK2. 

Consequently, the two keys kl, k2 found in line 10 in the algorithm 
(such that Bk, = Pk2) are indeed a candidate solution pair. The 
number of DES encryptions in Algorithm 5 is 256 5 < 2". Both 
tables store 256 entries of 56 + 64 = 120 < 27 bits each. The 
memory requirements is thus 2 . 256 . 27 . T3 = 261 bytes. 

Solution 6 *Exhaustive Search on 3DES 

1 The algorithm successively tries each possible key. It  does not stop 
until the last possible key is tried. Therefore, the number of iterations 



38 EXERCISE BOOK 

Algorithm 5 Attacking two-key 3DES 
Input: a box 3DESKlIK,(.) encrypting 64-bit plaintexts according to 

(2.1), under the keys K1 and K2 
Output: K1 and K2 
Processing: 

1: for all k E (0, 1)56 do 
2: P ~ + D E s ; ~ ( o )  
3: store (Pk, k) in a table Tl (sorted according to Pk) 
4: Ck  DESK^, KZ ( P k  ) 
5: B~ + DES;~(C~)  
6: store (Bk, k) in a table T2 (sorted according to Bk) 
7: end for 
8: sort the table TI according to the Pk's values 
9: sort the table T2 according to the Bk7s values 

lo: Store the keys kl,k2 E (0, 1)56 such that Bkl = Pk2 in another 
table T. This table contains candidate solution pairs K1 = kl and 
K2 = k2. 

11: If there are more than one candidate in T, test each key pair on a 
small number of plaintext/ciphertext pairs until only one remains. 
Display this solution. 

is exactly equal to the number of possible keys times the number of 
DES encryptions for each (which is 3). Therefore, the number of DES 
encryptions/decryptions of the algorithm is 3 . 23'56 = 3 2168. 

2 The random permutation C* is uniformly distributed among all pos- 
sible permutations, and there are (2")! of them. Consequently, if 
c : (0, 1)64 + (0, 1)64 is a given permutation, we have Pr[C* = c] = 

(see Exercise 1 in Chapter 1). Now, we are given two (fixed) 

values P, C E { O , I ) ~ ~ .  We have 

where the last sum simply is the number of permutations mapping 
P on C,  which is the number of permutations of a set of cardinality 
264 - 1. Finally, 

Pr[C* (P) = C] = 



Conventional Cryptography 39 

3 We assume that PrK[3DESK(P) = C] = Prc* [C*(P) = C] = 2-". 
Multiplying this probability by the number of tried keys, we obtain 
the number of keys that are displayed: 

All the displayed keys (except one) are wrong keys! 

4 We consider Algorithm 6. The algorithm clearly displays k as we do 

Algori thm 6 Exhaustive key search algorithm on 3DES, using t plain- 
textlciphertext pairs 
Inpu t :  t plaintext/ciphertext pairs (Pi, Ci), for i = 1, . . . , t ,  all en- 

crypted under the same key k 
Ou tpu t :  key candidate(s) for k = (kl, k2, k3) 
Processing: 

1: for each possible key K = (Kl,  K2, K3) d o  
2: i f C i = 3 D E S K ( P i ) f o r i = 1 ,  . . . ,  t t h e n  
3: display K = (Kl , K2, K3) 
4: e n d  if 
5: e n d  for 

have Ci = 3DESk(Pi) for all i = 1, .  . . , t .  It  reduces the number of 
wrong keys that are displayed because it is clearly more difficult to 
find a wrong key satisfying Ci = 3DESL(Pi) for i = 1, .  . . , t (with 
t > 1) than to find a wrong key such that C = 3DESz(P) (for only 
one pair). The total number of encryption/decryption steps that 
have to be performed is simply t times the number found in the first 
question (we assume that we always perform t times 3DES in the if 
statement of the algorithm). Therefore, this algorithm needs 3 .  2168. t 
encryptions/decryptions. 

5 Still assuming that PrK[3DESK(P) = C] = Prc* [C*(P) = C] = 2-64, 
the mean value N of wrong keys displayed by Algorithm 6 is 

N = number of tried keys x 11 Pr[3DESK (Pi) = Ci] 
i=l K 

Table 2.3 gives the approximate number N of wrong keys that are 
displayed, in terms of the number t of available plaintext/ciphertext 
pairs. According to this table, only 3 pairs are necessary to make 
almost sure that only the good key will be displayed. 



40 EXERCISE BOOK 

Table 2.3. Average value N of wrong keys that are displayed by Algorithm 6, in 
terms of the number t of plaintext/ciphertext pairs 

Solution 7 An Extension o f  DES to  128-bit Blocks 

1 The exhaustive search complexity is 256 in the worst case. It  is 255 
in average and can be reduced by a factor of 2 by using the comple- 
mentation property (see Exercise 3 in this chapter). 

2 A key for 3DES consists of two keys for DES, so the key length is 112. 
The exhaustive search complexity is thus 2112 in the worst case for 
3DES. It  is 211' in average and can be further reduced by a factor of 2 
by using the complementation property (see Exercise 4 in Chapter 2). 

3 In CBC mode of operation, the ith ciphertext block yi is 

where xi is the i th plaintext block. If it happens that yi = yj (which 
is a collision), we deduce that y+l$ xi = yj-1 $ x j  which leads to 

yi-1 a3 yj-1 = xi a3 xj. 

Hence, we can thus deduce some plaintext information from the value 
yi-1 $ yj-1. The complexity corresponds to the expected number of 
blocks after which we can expect a collision (see Exercise 1, Chap- 
ter 3). According to the Birthday Paradox, we know that we need a 
number of blocks within the order of magnitude of the square root of 
the cardinality of the output domain, i.e., @ = 232. We note that 
the complexity of this attack is not increased by using 3DES instead 
of DES as the block size remains the same. In order to thwart this 
attack, we thus need to enlarge the block size. 

4 See Figure 2.9. 

5 With XL = XR, we obtain yr, = y~ = 3DESKI,K2 (xL). So a circuit 
which computes this new scheme can be used to compute 3DES. 

Similarly, with Kl  = K2, we obtain compatibility with DES. 

6 The previous question leads to the intuition that this new scheme is 
at  least as strong as DES and 3DES. It seems more secure than DES 



Conventional Cryptography 

Figure 2.9. A 128 bit extention of DES 

as the key size is increased and at least as secure as 3DES as the key 
size is the same. The advantage of this scheme is that it is protected 
against the collision attack in CBC mode. 

7 If we choose x and x1 such that XL = x i ,  then 

8 We take an arbitrary (fixed) 64-bit string a. For many 64-bit strings 
p we encrypt x = all& With non-negligible probability, we will get 
a collision on the yL's after a number of encryption within the order 
of magnitude of 232. We will thus get x = aIIP and x1 = allP1 such 
that u4 = U& and v4 = v i .  The complexity is within the order of 
magnitude of 232. 

9 After the previous attack, the equation u4 = uI4 can be written as the 
equality between the 32 rightmost bits of DESK, (P) and DESK, (PI). 
The equation v4 = v i  can be written as the equality between the 32 
rightmost bits of DESL; (yL) and DESF; (yi).  We can thus perform an 
exhaustive search in order to recover K1, by testing both equalities. 
This attack requires 256 operations. Note that with high probabil- 
ity, only the right key is raised. Once K1 is found, 256 additional 
operations are required in order to recover K2. 
We now see that this new scheme can be broken within about 256 op- 
erations. Consequently, it is not more secure than DES and definitely 
less secure than 3DES. 



42 EXERCISE BOOK 

Solution 8 Attack Against the  OFB Mode 

1 The OFB mode is nothing but a one-time pad with a sequence gen- 
erated from the IV and the secret key. If they are both fixed, the 
sequence is always the same as it is independent from the plaintext. 
Therefore, from a known plaintext attack with only one known mes- 
sage, we can recover the key stream and decrypt any new ciphertext 
(of the same length or shorter). 

2 The CFB mode is stronger against this issue, except for the first 
block. The first encrypted block is equal to the first plaintext block 
XORed with a value generated from IV and from the key only. The 
next values in the sequence depend on the plaintext. Similarly, note 
that if two plaintexts are equal on their first n blocks, the knowledge 
of one of the plaintexts allows to recover the (n + 1)th block of the 
other plaintext. 

3 The CBC mode is not vulnerable to this kind of attack. 

Solution 9 *Linear Feed back Shift Registers 

1 The first eight elements of the sequence are given in Table 2.4, from 
which it is clear that the period is equal to 7. 

Table 2.4. The first values of the simple LFSR sequence 

2 We use a LSL (Logical Shift Left) instruction which shifts an integer 
one bit to the left. Furthermore, we suppose that we can test the 
bit in position d (the leftmost one being in the carry flag after a 
shift). If it is equal to 1, then one subtracts P ( X )  in order to get 
the remainder. Note that subtracting P ( X )  simply corresponds to 
XORing P ( X )  as we work modulo 2 here. 

3 We let P ( X )  = P o + P I X + . . . +  PdPlXd-I + x d .  Let Q(X)  = Qo+ 
. + Q ~ - ~ x ~ - ~  be a polynomial of K. It can be represented by a row 



Conventional Cryptography 43 

vector G = (QO, . . . , Qd-1) E z;. Consequently, the multiplication 
by X in K can be represented by a matrix multiplication. Indeed, if 
we denote by R ( X )  = Ro + - .  - + R ~ - ~ x ~ - ~  = X * Q ( X ) ,  we have 

or equivalently 

From the previous equation, it is clear that the multiplication by X 
can be represented by. 

0 1 0 

- 
R = G x B where B = 

0 0 0 - . -  
Po PI P2 . . .  Pd-I 

By definition of the sequence, we thus have Bi+t = Si+t-l x B for all 
i 2 1 and t 2 0. Noting that the ith row of Mt corresponds to 3i+t-1 

and that the i th of Mt+1 corresponds to Si+t, we deduce that 

Noting that Mo is the identity matrix, we can see that Mt = Bt  for 
all t 2 0. Consequently Mt and B commute, so that Mt+1 = B x Mt. 
The linear recurrence is now given by 

If we take the irreducible polynomial of degree 3 of the first question 
as an example, we obtain 

which can be computed by the circuit shown on Figure 2.10. 

4 The natural subgroup K*  of the field K is of cardinality (2d - 1).  The 
set { X t  mod P ( X )  , t 2 0 )  being a subgroup of K*, its order must 
divide (2d - 1). Thus, the period of the sequence must be a divisor 
of (2d - 1).  The period is maximal if X is a primitive element of K ,  
i.e., a generator of K*. 



EXERCISE BOOK 

Figure 2.10. A circuit implementing the recurrence formula of the 

Solution 10 *Attacks on Cascade Ciphers 

LFSR 

1 The time complexity is 2e. A cascade of L block ciphers can be viewed 
as a block cipher of key length L . l (as the L keys are independent), 
so that the time complexity would be 2L'e. 
When L = 2 the meet-in-the-middle attack reduces the time com- 
plexity from 22e down to 2 . 2e = 2e+1. In that case, the storage 
complexity is 2e. 

2 As in Solution 6, we can prove that Pr[C*(x) = y] = 2Tn. As- 
suming that EK roughly behaves like a random permutation when 
K is randomly chosen among all possible wrong keys, we estimate 
Pr[EK(P) = C] x 2-n. Thus, the number of wrong keys displayed 
by the algorithm is approximately 2e - 2-n, that is 0 ( 2 ~ - ~ ) .  For a 
cascade cipher, a total of wrong keys are displayed. 

3 Algorithm 7 exploits the t pairs at disposal. Considering that EK 

Algori thm 7 Exhaustive key search algorithm with t plain- 
textlciphertext pairs 
Input :  t plaintext/ciphertext pairs (Pi, Ci), such that Ci = Ek(Pi), with 

i = l ,  . . . ,  t 
Ou tpu t :  key candidate(s) for k 
Processing: 

1: for each possible key K d o  
2: i f C i = E K ( P ! ) f o r a l l i = l ,  . . . ,  t t h e n  
3: display K 
4: e n d  if 
5: e n d  for 

roughly behaves like a random permutation when K is chosen among 
all possible wrong keys, we obtain 

t 

Pr[EK(Pi) = Ci for all i = 1 , .  . . , t] x n ~ r [ ~ ~ ( & )  = G] x 2-tn . 
i=l 



Conventional Cryptography 

Table 2.5. Exhaustive key search on 3DES 

t 1 2 3 4 
Approx, number of wrong keys 2 .  lo31 1012 6 .  lop8 3 .  

The number of wrong keys displayed by Algorithm 7 is thus ~ 3 ( 2 ~ - ~ ~ ) .  

4 The number of wrong keys in this case is 0 ( 2 ~ " - ~ ~ ) .  For 3DES, 
L = 3, l = 56, and n = 64. The number of wrong keys displayed 
are given in Table 2.5 for different values of t. With 3 pairs, the 
adversary makes almost sure that only the good key is displayed. 

More details about cascade ciphers and their security can be found 
in [29]. 

Solution 11 Attacks on Encryption Modes I 

1 The inverse of the CBClCFB mode is represented on Figure 2.11. 

Figure 2.11. The inverse of the CBClCFB mode 

L It  can eas ily- be checked that D3(At1) @ IV = C1 and that IV 
A" @ C2, so that 

(2.4) 

3 Algorithm 8 recovers Ic3 with a time complexity of ~ ( 2 ~ ) .  As n > l ,  



46 EXERCISE BOOK 

Algorithm 8 Recovering ks in ECBIECBICBC-I mode 
Input: the initial vector IV and two ciphertext blocks C1 and C2 
Output: key candidate(s) for ks 
Processing: 

1: for each possible key K3 do 
2: if Equation (2.4) holds then 
3: display K3 
4: end if 
5: end for 

it does not yield any wrong key (with high probability). Once ks is 
found, the adversary can peel the third layer off, and do a meet-in-the- 
middle attack on the last two layers. Note that we typically need both 
plaintext blocks A and B in order to eliminate wrong key candidates 
during the meet-in-the-middle. The complexity of this part of the 
attack is ~ ( 2 ' )  in time and ~ ( 2 ' )  in storage. The complexity of the 
whole attack is ~ ( 2 ' )  in time, ~ ( 2 ' )  in storage, and we need 3 chosen 
plaintext blocks. 

4 It can easily be checked that 

and that 

5 Algorithm 9 uses a technique similar to a meet-in-the-middle attack 
in order to recover kl and ks. The time complexity is 0(2') and 
the storage complexity is ~ ( 2 ~ ) .  As n > ! and as two equations 
have to hold before a key pair can be displayed, the algorithm does 
not yield any wrong key pair (with high probability). Once kl and 
k3 are found, the adversary can peel off the first and third layers 
and perform a simple exhaustive search on k2 in 0 ( 2 ~ ) .  The overall 
complexity of the attack is ~ ( 2 ~ )  in time, ~ ( 2 ' )  in storage, using four 
chosen ciphertext blocks. 

A detailed study of cryptanalysis of multiple modes of operation can be 
found in [3, 41. More recently, known-IV attacks against triple modes of 
operation were proposed in [20]. 



Conventional Cryptography 47 

Algorithm 9 Recovering kl and k3 in OFBlCBClECB mode with a 
meet-in-the-middle attack 
Input: the initial vectors IV1 and IV2, the plaintext blocks PI, P2, P3, 

and P4, the two ciphertext blocks A and B 
Output: key candidate(s) for kl and k3 
Processing: 

I: for each possible key K3 do 
2: insert (D3 (A), D3(A) @ D3 (B), K3) in a table (keyed with the first 

entries) 
3: end for 
4: for each possible key K1 do 
5: if equations (2.5) and (2.6) hold then 
6: display (K1, K3) 
7: end if 
8: end for 

Solution 12 Attacks on Encryption Modes II 

Figure 2.12. Collisions in CBCICBC-' ICBC-' mode 

1 The algorithm stops when a collision between two strings of n bits 
occurs. Therefore, its time complexity is 0 ( 2 ~ / ~ ) .  



48 EXERCISE BOOK 

2 We use the notations of Figure 2.12. We assume that P,(") = P?) for 
some i # j .  As IV1 is a constant, this implies that 

We also have 

so that BY) = BF) because of (2.7). Thus, by using (2.7) again, we 
obtain 

(4 - (d A2 - A, . (2.8) 

From (2.7) and from (2.8) we conclude that 

3 As IV1 is constant, 

4 Algorithm 10 recovers K3 in 2k time complexity. Once K3 is found, 
the adversary can peel the third layer off and mount a meet-in-the- 
middle attack on the first two layers. The overall complexity of the 

Algorithm 10 Recovering ks CBCICBC-'1c~C-l mode - - - 

Input: I V ~ ) ,  IVY), IV3, c!", and c?) 
Output: key candidate(s) for k3 
Processing: 

1: for each possible key K3 do 
2: if Equation (2.9) holds then 
3: display K3 
4: end if 
5: end for 

attack is 0 ( 2 ~ )  in time, ~ ( 2 ' )  in storage, and needs ~ ( 2 ~ 1 ~ )  chosen 
ciphertexts. 

A detailed study of cryptanalysis of multiple modes of operation can be 
found in [3, 41. More recently known-IV attacks against triple modes of 
operation were proposed in [20]. 



Conventional Cryptography 

Solution 13 *A Variant of A511 I 

1 When R1 is loaded with all zeros, no matter which subset of cells is 
chosen to compute the feedback, the feedback is always zero, hence, 
the next state of all zeros does not change. Of course, this also applies 
to R2 and R3. 

2 When two LFSRs out of three are initialized by all zeros, we can view 
A511 equivalently as consisting of the remaining single LFSR, which 
outputs the leftmost bit at  each clock pulse and is shifted if and only 
if its clocking tap is zero. Note that the clocking tap of a non-zero 
LFSR cannot always be zero. Thus, after a limited number of clock 
pulses, the clocking tap of the equivalent LFSR would be equal to 1 so 
that the LFSR will stop forever and output the same bit. So, as long 
as the non-zero LFSR outputs zero before (and when) its clocking 
tap turns to 1, A511 generates the all-zero keystream (including the 
special case of three all-zero LFSRs initially). 

3 We consider the following four different cases: 

w For R1 = Rz = R3 = 0: There is only one (trivial) possibility. 

w For R1 # 0 and R2 = R3 = 0: If R1[8] = 1, R1 is never shifted. 
In that case, it is sufficient to also have R1[18] = 0 to obtain 
a keystream with only zeros. This leaves 219-2 = 217 different 
initialization states. We can also consider the case where R1 [8] = 
0 and R1[7] = 1, so that R1 will be shifted exactly once. Here, 
it is sufficient to have R1 [18] = R1 [17] = 0 to obtain a keystream 
with only zeros. This leaves 219-4 = 215 d ifferent initialization 
states. Following the same reasoning, we deduce the following 
lower bound on the number of possible initializations states in 
this case: 

w For R2 # 0 and R1 = R3 = 0: We similarly obtain a lower bound 
eaual to 

For R3 # 0 and R1 = R2 = 0: We similarly obtain a lower bound 



50 EXERCISE BOOK 

Summing these values, we conclude that there are at least 222 such 
initialization states. 

4 When the initial clocking taps of the three LFSRs are all equal, none 
of the three LFSRs will ever be shifted. Hence, provided that the 
XOR of the three LFSRs output bits is zero at  some time, we will 
obtain the all-zero keystream. 

Alternatively, when one LFSR out of three is all-zero initially and the 
initial clocking taps of the other two LFSRs are both one, then only 
the all-zero LFSR is shifted (without changing its state however). I t  
is actually shifted forever, while the remaining two LFSRs would stop 
forever. So, as long as the leftmost bits of two non-zero LFSRs are 
equal and the clocking taps are both one, the variant A511 generates 
the all-zero keystream. 

5 We consider the following four different cases: 

a Case where the three LFSRs all stop forever: we have 264-2-1 = 
261 different initial states that satisfy two linear relations: one 
clocking constraint and one output constraint. 

a For R1 = 0: In this case, if R2[10] = R3[10] = 1 and R2[21] = 
R3[22] we know that we obtain the all-zero keystream. There 
are 222+23-3 = 242 different initial states that satisfy these con- 
straints. 

a For R2 = 0: Similarly, we find 219+23-3 = 239 different initial 
states that produce the all-zero keystream. 

a For R3 = 0: Similarly, we find 219+22-3 = 238 different initial 
states that produce the all-zero keystream. 

Summing up these values, we obtain a lower bound between 262 and 
263 on the number of possible initial states that produce the all-zero 
keystream. 

6 Obviously, the assumption does not hold for this variant of A5/1. 

7 A keystream generator should avoid generating the same keystream 
under several keys. These kind of keys are called "weak keys". Al- 
though we only computed lower bounds on the number of weak keys 
for both A511 and its variant, the huge difference between the two 
bounds (222 for the real A511 against 262 for its variant) suggests 
that the variant is much weaker. 



Conventional Cryptography 51 

Solution 14 *A Variant of A511 II 

1 Let Ti denote the value of the clocking tap of Ri just before it is 
clocked, for i = 1,2,3. We denote by P : ~ ~ ~ ~ ~ ~  the probability that Ri 
is shifted at  the next clock, and P ! ~ ~ ~  the probability that it is not. 
By symmetry, it is sufficient to compute this probability for R1. As 
R1 is not shifted if and only if TI # T2 = T3, we have 

pfixed - 1 1 
1 - 23 ~ T I + T ~ = T ~  = - 

Ti 7 2  ,T3 
4 '  

So that the probability that it is shifted is P T ~ ~ ~ ~ ~ ~  = 1 - P P d  = 2. 
By symmetry, we obtain the same probabilities for R2 and R3, i.e., 

2 Clearly, either 2 or 3 LFSRs are shifted at each clock. In other 
words, when one LFSR is fixed, the two others are shifted. The 
probability that exactly two LFSRs are shifted is thus equal to the 
probability that exactly one is fixed. This probability is simply equal 
to plfiXed + p2fixed + p3fixed = 2 as the three events are disjoint. 

3 We denote by ct E { O , 1 ,  2,3) the way the LFSRs are shifted at time t .  
More precisely, we denote by ct = 0 the case where all three LFSRs 
are shifted, and by ct = i the case where Ri is fixed (the two others 
being necessarily shifted). F'rom the previous questions, we immedi- 
ately obtain 

0 1 Pr[c = i ] = -  fo r i=0 ,1 ,2 ,3 .  
4 

4 If all LFSRs are shifted at time 0, we know that all three taps had 
the same value. But as we assumed that the cells of the LFSRs were 
drawn independently, this tells us nothing about cl, and thus 

1 0 1 Pr[c = clc = 01 = pr[cl = c] = - for all c E {O,1, 2,3). 
4 '  

When c0 # 0, exactly two LFSRs are shifted. As the two new values 
of the clocking taps are uniformly distributed and independent ran- 
dom values, then we have no information whatsoever about the next 
majority value and hence, neither about cl. Therefore, 



EXERCISE BOOK 

We conclude that, for all c, c' E {O,1, 2,3), 

which corresponds to a uniform distribution. 

5 We consider the variant of A5/1. We first note that in this case, 
either exactly one LFSR is clocked (when its clocking tap is different 
from the two others) or no LFSR is clocked at all (when all three 
clocking taps are equal). Using the notations of Question 1, we have 

pfixed - 1 1 3  -Pr [T2#T3]+Pr[Tl=T2=T3]=-+-=- .  
2 4 4  

Consequently, by symmetry, 

p p d  - - - 3 and 
4 

The probability that all three LFSRs stay still during next clock is 
Pr[Tl = T2 = T3] = i, and the probability that exactly one LFSR is 
shifted is pfhifted + p;hifted + pihifted = 3 

Ti. 
We denote ct E {0,1,2,3) the way the LFSRs are shifted a t  time 
t .  This time, we denote by ct = 0 the case where all three LF- 
SRs stay still at  time t ,  and by ct = i the case where Ri is clocked 
(the remaining two LFSRs staying necessarily still). We verify that 
Pr[cO = 01 = 1 4 and that Pr[cO = i ]  = pghifted = a. Therefore, the 
distribution of c0 is uniform. 

Obviously, if no LFSR is shifted at  time t ,  no LFSR will ever be 
shifted. Therefore Pr[cl = OlcO = 01 = 1 and Pr[cl # OlcO = 01 = 0. 
Moreover, if two taps have the same value at time t ,  the correspond- 
ing LFSRs will never be clocked (as they will never be in a minority). 
Therefore, letting c # 0, Pr[cl 4 (0, c)lcO = c] = 0 and, by indepen- 
dence of the LFSRs cells, 

6 For the majority control, the conditional mass function is identical 
to the mass function, which means the next clocking and the current 
clocking are independent. We notice that this is definitely not the 
case for the minority control. In terms of entropy, we can see that 



Conventional Cryptography 53 

H (cl lcO) = $ (resp. 2), and H (cO) = 2 (resp. 2) under minority (resp. 
majority) control. In other words, in the case of minority control, 
if we try to recover the initial state of the LFSRs by guessing the 
clocking sequence, then after guessing two bits for the first clocking, 
we only need to guess 314 bit every clock afterwards on average. In 
the case of majority control, the knowledge of the previous clocking 
tells us nothing about the next one. We conclude that the majority 
control (the actual one used in A5/1) is a better choice from the 
security point of view. 

Solution 15 *Memoryless Exhaustive Search 

1 We first compute the expected complexity E[C] in the general case, 
i.e., without making any assumption about the distribution of K. 
As the queries are independent, the worst case complexity is infinite 
(e.g., the case where the algorithm always tries the same wrong key). 
We have by definition 

Using the Total Probability Theorem, we have 

We can easily compute Pr[C = c I K = ki] as it is the probability 
that the cryptanalyst chooses the right key after (c - 1) wrong guesses 

response {wrong key, right 

Figure 2.13. Adversary modeling a memoryless exhaustive search 



EXERCISE BOOK 

(this is a geometrical distribution) 

where k denotes the key chosen by the cryptanalyst. From (2.10), 
(2.11), and (2.12) we deduce 

- 
=Pr[K=ki]-2 as shown below 

Note that we needed a classical result, namely that we have 

when x is a real value such that 1x1 < 1. In the particular case where 
the key distribution is uniform, we have 

1 
Pr[K = k . ]  - - for a l l i ~  {I, . . . ,  N}, 

"N 

so that 

This is minimal when all the pr[E? = ki] are equal, and in this case 

As this algorithm is memoryless, the same wrong key can be queried 
twice. In order to improve the algorithm, one can use a memory to 
remember previous queries. This is called an exhaustive search. In 
that situation, we would obtain an average complexity 



Conventional Cryptography 55 

2 We go back to the general case where K does not necessarily follow 
the uniform distribution. The cryptanalyst wants to minimize 

We set pi = Pr[K = ki] (which are considered to be a fixed values, 
as they cannot be chosen by the cryptanalyst, but are only known 
to him) and Qi = ~ r [ k  = ki] (which are N real variables). The 
Qi's can be chosen by the adversary, but still have to sum to 1 (as 
they correspond to a probability distribution). Therefore, we must 
compute 

N 

min E[C] = CE 
{QI, . . . ,QN)  i=l Qi 

N 

In order to compute this, we use the theory of the Lagrange Multi- 
pliers. Let <P be defined by 

where X is the Lagrange multiplier. If (ql, . . 
it must satisfy 

qN) is an extremum, 

, ,  N ) ,  



EXERCISE BOOK 

that is 

A =  -2. for all j E {I, ..., N} I : 

so we obtain, for all d E (1,. . . , N}, 

The best strategy for the cryptanalyst is therefore to draw the queries 
C according to the distribution 

average complexity is 
iefined by (2.14). In that case, the 



http://www.springer.com/978-0-387-27934-3




