
2 THE BASIC CCR MODEL 

2.1 INTRODUCTION 

This chapter deals with one of the most basic DEA models, the CCR models 
which was initially proposed by Charnes, Cooper and Rhodes in 1978. Tools 
and ideas commonly used in DEA are also introduced and the concepts devel­
oped in Chapter 1 are extended. There, for each DMU, we formed the virtual 
input and output by (yet unknown) weights (vi) and {ur): 

Virtual input = viXio + • • • + VmXmo 

Virtual output = uiyio + • • • + UsHso-

Then we tried to determine the weight, using linear programming so as to 
maximize the ratio 

virtual output 
virtual input 

The optimal weights may (and generally will) vary from one DMU to another 
DMU. Thus, the "weights" in DEA are derived from the data instead of being 
fixed in advance. Each DMU is assigned a best set of weights with values that 
may vary from one DMU to another. Additional details and the algorithms 
used to implement these concepts are explained in succeeding chapters. 

21 
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2.2 DATA 

In DEA, the organization under study is called a Z)MC/(Decision Making Unit). 
The definition of DMU is rather loose to allow fiexibility in its use over a wide 
range of possible applications. Generically a DMU is regarded as the entity 
responsible for converting inputs into outputs and whose performances are to be 
evaluated. In managerial apphcations, DMUs may include banks, department 
stores and supermarkets, and extend to car makers, hospitals, schools, public 
libraries and so forth. In engineering, DMUs may take such forms as airplanes 
or their components such as jet engines. For the purpose of securing relative 
comparisons, a group of DMUs is used to evaluate each other with each DMU 
having a certain degree of managerial freedom in decision making. 

Suppose there are n DMUs: DMUi, DMU2V5 ^^d DMUn- Some common 
input and output items for each of these j = l,. . . ,n DMUs are selected as 
follows: 

1. Numerical data are available for each input and output, with the data as­
sumed to be positive^ for all DMUs. 

2. The items (inputs, outputs and choice of DMUs) should reflect an analyst's 
or a manager's interest in the components that will enter into the relative 
efficiency evaluations of the DMUs. 

3. In principle, smaller input amounts are preferable and larger output amounts 
are preferable so the efficiency scores should reflect these principles. 

4. The measurement units of the different inputs and outputs need not be 
congruent. Some may involve number of persons, or areas of ffoor space, 
money expended, etc. 

Suppose m input items and s output items are selected with the properties 
noted in 1 and 2. Let the input and output data for DMUj be (xij, X2jj..., Xmj) 
and (^ij, y2j,"", Vsj), respectively. The input data matrix X and the output 
data matrix Y can be arranged as follows. 

X = 

I ^11 
^2\ 

Xl2 

\ ^ml ^m2 

X2n 

(2.1) 

Y = 

( v\\ yi2 
2/21 2/22 

V Vsi ys2 

Vln \ 
2/2n 

Vsn J 

(2.2) 
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where X is an (m x n) matrix and F an (5 x n) matrix. For example, the 
hospital case in Section 1.5 has the data matrices: 

X = 

Y ^ 

20 19 25 27 22 55 33 31 30 50 53 38 
151 131 160 168 158 255 235 206 244 268 306 284 

100 150 160 180 94 230 220 152 190 250 260 250 
90 50 55 72 66 90 88 80 100 100 147 120 

so xij = number of doctors and X2j = number of nurses used by hospital j 
in servicing (= producing) yij — number of outpatients and 2/2j = number of 
inpatients. 

2.3 THE CCR MODEL 

Given the data, we measure the efficiency of each DMU once and hence need 
n optimizations, one for each DMUj to be evaluated. Let the DMUj to be 
evaluated on any trial be designated as DMUo where o ranges over 1, 2,..., n. 
We solve the following fractional programming problem to obtain values for the 
input "weights" {vi) {i = l,...,m) and the output "weights" {ur) (r = 1,...,5) 
as variables. 

( F ^ ) max e = ^^y^o+u,y,. + .-. + u.y., 
V,U ViXio + V2X20 H 1- VmXmo 

subject to '— '- < 1 0 = 1 , . . . , n) (2.4) 
V\X\j -J- ' ' ' -T Vm^mj 

' i^ l ,V2, . - - , '^m > 0 (2.5) 

u i , i i 2 , . . . , ' U s > 0. (2.6) 

The constraints mean that the ratio of "virtual output" vs. "virtual input" 
should not exceed 1 for every DMU. The objective is to obtain weights {vi) and 
{ur) that maximize the ratio of DMUo, the DMU being evaluated. By virtue 
of the constraints, the optimal objective value ^* is at most 1. Mathematicahy, 
the nonnegativity constraint (2.5) is not sufficient for the fractional terms in 
(2.4) to have a positive value. We do not treat this assumption in explicit 
mathematical form at this time. Instead we put this in managerial terms by 
assuming that all outputs and inputs have some nonzero worth and this is to 
be reflected in the weights Ur and Vi being assigned some positive value. 

2.4 FROM A FRACTIONAL TO A LINEAR PROGRAM 

We now replace the above fractional program {FPo) by the following linear 
program (LP^), 

{LPo) m ^ 0 = fxiyio + • • • + HsVso (2.7) 
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subject to UiXio + • 

l^iVij + • 

Z / l , Z / 2 , . . . 

/ ^ 1 , M 2 , - . 

1 ^m^mo — -L 

(j = l , . . . , n ) 

,^m > 0 

. ,^5 > 0. 

i ^m*^mj 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

Theorem 2.1 The fractional program {FPQ) is equivalent to (LPQ). 

Proof. Under the nonzero assumption of v and X > 0, the denominator 
of the constraint of {FPo) is positive for every j , and hence we obtain (2.3) 
by multiplying both sides of (2.4) by the denominator. Next, we note that 
a fractional number is invariant under multiplication of both numerator and 
denominator by the same nonzero number. After making this multiplication, 
we set the denominator of (2.3) equal to 1, move it to a constraint, as is done in 
(2.8), and maximize the numerator, resulting in {LPQ). Let an optimal solution 
of {LPo) be (i>' = I/*, ^ — /x*) and the optimal objective value ^*. The solution 
(v = V*^u — /i*) is also optimal for {FPQ), since the above transformation is 
reversible under the assumptions above. {FPo) and {LPo) therefore have the 
same optimal objective value 6*. • 

We also note that the measures of efficiency we have presented are "units 
invariant" — i.e., they are independent of the units of measurement used in the 
sense that multiplication of each input by a constant 6i > 0, i = l , . . . , m , and 
each output by a constant Pr > 0, r = 1 , . . . , s, does not change the obtained 
solution. Stated in precise form we have 

Theorem 2.2 (Units Invariance Theorem) The optimal values of max 
9 = 9* in (2,3) and (2.7) are independent of the units in which the inputs and 
outputs are measured provided these units are the same for every DMU. 

Thus, one person can measure outputs in miles and inputs in gallons of gasoline 
and quarts of oil while another measures these same outputs and inputs in 
kilometers and liters. They will nevertheless obtain the same efficiency value 
from (2.3) or (2.7) when evaluating the same collection of automobiles, say. See 
Note 2 for proof.^ 

Before proceeding we note that {LPQ) can be solved by the simplex method 
of linear programming. The optimal solution can be more easily obtained by 
dealing with the dual side of {LPo), however, as will be explained in detail in 
Chapter 3. 

In any case let us suppose we have an optimal solution of {LPo) which we 
represent by (^*, i;*, u*)^ where v* and u* are values with constraints given 
in (2.10) and (2.11). We can then identify whether CCR-efficiency has been 
achieved as follows: 

Definition 2.1 (CCR-Efficiency) 
L DMUo is CCR-efficient if 9* = 1 and there exists at least one optimal 
(-y*,!/*), with i;* > 0 and u* > 0. 
2. Otherwise, DMUo is CCR-inefficient. 
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Thus, CCR-inefficiency means that either (i) ^* < 1 or (n) 9* = 1 and at 
least one element of {v*,u*) is zero for every optimal solution of {LPQ). We 
will explain the latter case using an example in Section 2.6.2, and a detailed 
description of CCR-efficiency will be given in Chapter 3. 

Now we observe the case where DMUo has 0* < 1 (CCR-inefficient). Then 
there must be at least one constraint (or DMU) in (2.9) for which the weight 
(t;*,i6*) produces equality between the left and right hand sides since, other­
wise, ^* could be enlarged. Let the set of such j G { 1 , . . . ,n} be 

s m 

K = {J-- E<2''-i = E < ^ ' ^ } - (2.12) 

The subset EQ of E'^^ composed of CCR-efficient DMUs, is called the reference 
set or the peer group to the DMUo- It is the existence of this collection of 
efficient DMUs that forces the DMUo to be inefficient. The set spanned by EQ 
is called the efficient frontier of DMUo-

2.5 MEANING OF OPTIMAL WEIGHTS 

The (t;*, u*) obtained as an optimal solution for {LPQ) results in a set of 
optimal weights for the DMUo- The ratio scale is evaluated by : 

e* = pf^4^. (2.13) 

From (2.8), the denominator is 1 and hence 

s 

e* = Y,<yro. (2.14) 

As mentioned earlier, (i;*, t̂ *) are the set of most favorable weights for the 
DMUo in the sense of maximizing the ratio scale, f * is the optimal weight 
for the input item i and its magnitude expresses how highly the item is eval­
uated, relatively speaking. Similarly, li* does the same for the output item r. 
Furthermore, if we examine each item v^xio in the virtual input 

E vtxio {= 1), (2.15) 

then we can see the relative importance of each item by reference to the value 
of each v*Xio. The same situation holds for u*yro where the u* provides a 
measure of the relative contribution of ŷ o to the overall value of 9*. These 
values not only show which items contribute to the evaluation of DMUo, but 
also to what extent they do so. 

2.6 EXPLANATORY EXAMPLES 

We illustrate the use of the CCR model via the following small-scale examples. 
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2.6.1 Example 2.1 (1 Input and 1 Output Case) 

Table 2.1 shows 8 DMUs with 1 input and 1 output. (The first example in 
Chapter 1). 

Table 2.1. Example 2.1 

DMU 

Input 

Output 

A 

2 

1 

B 

3 

3 

C 

3 

2 

D 

4 

3 

E 

5 

4 

F 

5 

2 

G 

6 

3 

H 

8 

5 

We can evaluate the efficiency of DMU A, by solving the LP problem below: 

A > max 6 — u 
subject to 2f = 1 

u<2v 
2u < 3v 
An < bv 
Zu < ^v 

{A) 
(C) 
(E) 
(G) 

3u < 3v 
3u < 4v 
2u < 5v 
5u < Sv 

(B) 
(D) 
(F) 
(H) 

where all variables are constrained to be nonnegative. 
The optimal solution, easily obtained by simple ratio calculations, is given by 

('?;* = 0.5, u* = 0.5, 6>* = 0.5). Thus, the CCR-efficiency of A is <9* - u* = 0.5. 
The reference set for A is found to be EA — {B} by inserting u* — 0.5 and 
V* = 0.5, the best possible weights for DMU A, in each of the above constraints. 
Thus the performance of B is used to characterize A and rates it as inefficient 
even with the best weights that the data admit for A. 

The efficiency of B can be similarly evaluated from the data in Table 2.1 by: 

< B > max 6 = 3u 
subject to 3v = 1 

u<2v {A) 3u < 3v {B) 
2u < 3v (C) 3u < Av [D) 

4u < 5v (E) 2u < 5v (F) 
3u<6v (G) 5u<Sv {H) 

The optimal solution is (v* = 0.3333, u* = 0.3333, 6>* = 1) and B is CCR-
efficient. See Definition 2.1. 

We can proceed in a similar way with the other DMUs to obtain the results 
shown in Table 2.2. Only DMU B is efficient and is in the reference set of 
all of the other DMUs. (See Figure 2.1.) Figure 2.1 portrays the situation 
geometrically. The efficient frontier represented by the solid line passes through 
B and no other point. The 0* values in Table 2.2 show what is needed to bring 
each DMU onto the efficient frontier. For example, the value of 0* = 1/2 applied 
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Table 2.2. Results of Example 2.1 

27 

DMU 

A 
B 
C 
D 
E 
F 
G 
H 

CCR(^*) 

0.5000 
1.0000 
0.6667 
0.7500 
0.8000 
0.4000 
0.5000 
0,6250 

Reference Set 

B 
B 
B 
B 
B 
B 
B 
B 

to A's input will bring A onto the efficient frontier by reducing its input 50% 
while leaving its output at its present value. Similarly 0.6667 x 3 = 2 will 
position C on the frontier. And so on. 

6 n 

5 -

4 -
0) 

- 3 -
CO '^ 

00 
2 -

1 -

0 - C , ,— 

Efficient 
Frontier y 

«x-̂  X *o •G 
•c V 

1 1 1 1 1— 

m 
H 

1 1 

2 3 4 5 6 

Employee 

Figure 2.1. Example 2.1 

2.6.2 Example 2.2 (2 Inputs and 1 Output Case) 

Table 2.3 shows 6 DMUs with 2 inputs and 1 output where the output value is 
unitized to 1 for each DMU. 

(1) The linear program for DMU A is: 

A > max 
subject to 

e = u 
4vi + 3^2 = 1 
u < 4:Vi + 3i'2 

U < 8Vi + V2 

u < 21̂ 1 + Av2 

{A) 
(C) 
{E) 

u <7vi-{- 2>V2 

u < Avi + 21̂ 2 

U < lOi^i + V2 

(B) 
(D) 
(F) 

where all variables are constrained to be nonnegative. 
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Table 2.3. Example 2.2 

Input 

Output 

DMU 

Xi 

X2 

y 

A 

4 
3 

1 

B 

7 
3 

1 

C 

8 
1 

1 

D 

4 
2 

1 

E 

2 
4 

1 

F 

10 
1 

1 

This problem can be solved by a linear programming code. It can also 
be solved by simply deleting V2 from the inequalities by inserting V2 — (1 — 
^vi)lZ and observing the relationship between vi and u. The (unique) optimal 
solution is {vl = 0.1429, v^ = 0.1429, i/* := 0.8571, 6>* = 0.8571) and the 
CCR-efRciency of A is 0.8571. By applying the optimal solution to the above 
constraints, the reference set for A is found to be EA = {D^ E}. 

(2) The linear program for DMU B is: 
< B > max 0 = u 

subject to 7^1 + 3v2 = 1 
u<4vi-\- 3i;2 {A) u<7vi+ 3v2 {B) 
u<Svi+ V2 (C) u<4vi-\- 1v2 (D) 
u<2vi-\- Av2 {E) u < 10^1 + V2 {F) 

The (unique) optimal solution is {v^ = 0.0526, v^ = 0.2105, tx* = 0.6316, 6>* = 
0.6316), the CCR-efficiency of B is 0.6316, and the reference set is EB = 
{C, D}. 

Now let us observe the difference between the optimal weights v^ — 0.0526 
and v^ = 0.2105. The ratio v^v^ = 0.2105/0.0526 := 4 suggests that it is 
advantageous for B to weight Input X2 four times more than Input xi in order 
to maximize the ratio scale measured by virtual input vs. virtual output. These 
values have roles as measures of the sensitivity of efficiency scores in reference 
to variations in input items. This topic will be dealt with in detail in Chapter 
9 of this book where a systematic basis for conducting such sensitivity analyses 
will be provided. Here we only note that our analysis shows that a reduction 
in Input X2 has a bigger effect on efficiency than does a reduction in Input xi. 

(3) An optimal solution for C is {v^ = 0.0833,'J;^ = 0.3333,1^* =r 1,6>* = 1) 
and C is CCR-efficient by Definition 2.1. However, the optimal solution is not 
uniquely determined, as will be observed in the next section. 

Likewise, D and E are CCR-efficient. 
(4) The linear program for DMU F is: 

(D) 

< F > max 
subject to 

0 = u 

10t»i + 7;2 =̂  1 
u < Avi + 3v2 
U < 8i ' i + V2 

u < 21̂ 1 -f 41̂ 2 

(A) 
iC) 
(E) 

u < 7vi + 3^2 
7i < 4 f 1 + 2^2 

U < lOi^i + V2 
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The optimal solution for F is {vl = 0, t'2 = 1, u* = 1, ^* = 1) and with 
9* = 1, F looks efficient. However, we notice that '̂* — 0. We therefore assign 
a small positive value e to vi and observe the change in 0*. That is, we use 
the data for F and with lOe + '̂2 = 1 to obtain t!2 = 1 - lO :̂. By inserting this 
value in the above inequalities, the following constraints are obtained: 

u<3-
u<l-
u<4-

-26e 
-2e 
-3Ss 

(A) 
(C) 
(E) 

u<3-
u<2-
u< 1 

- 236: (B) 
- We (D) 

(F) 

Noting that £ is a small positive value, the minimum of the right-hand terms 
is attained with 

u = l-2e. 

Therefore, for any £ > 0 , it follows that ^* = 1 - 26: < 1. Thus, vi must be zero 
in order for F to have 0* = 1. We therefore conclude that F is CCR-inefficient 
by Definition 2,1. 

Furthermore, let us examine the inefficiency of F by comparing F with 
C. C has Input xi = 8 and Input X2 = I, while F has Input Xi — 10 
and Input X2 — 1- F has 2 units of excess in Input xi compared with C, 
This deficiency is concealed because the optimal solution forces the weight of 
Input xi to zero {vl = 0 ) . C is in the reference set of F and hence by direct 
comparison we can identify the fact that F has used an excessive amount of 
this input. 

It is not always easy to see such an excess in an input (or a shortage in 
output) from the optimal solution of the CCR model. In the next chapter, we 
will approach the CCR model from the dual side of the linear program and this 
will enable us to determine the excesses and shortfalls explicitly by the nonzero 
values with which these are identified. 

A DMU such as F , with 0* = 1 and with an excess in inputs and/or a 
shortage in outputs, is called ratio efficient but mix inefficient. 

Table 2.4 shows the CCR-efficiency (6>*) of Example 2.2 and Figure 2.2 de­
picts the efficient frontier. 

DMU 

A 
B 
C 
D 
E 
F 

Xi 

4 
7 
8 
4 
2 

10 

X2 

3 
3 
1 
2 
4 
1 

Table 2.4. 

y 

1 
1 
1 
1 
1 
1 

CCR(^*) 

0.8571 
0.6316 
1 
1 
1 
1 

Results of Example 

Reference Set 

D E 
CD 
C 
D 
E 
C 

2.2 

Vl 

.1429 

.0526 

.0833 

.1667 

.2143 
0 

V2 

.1429 

.2105 

.3333 

.1667 

.1429 
1 

u 

.8571 

.6316 
1 
1 
1 
1 
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Figure 2.2. Example 2.2 

10 

2.7 ILLUSTRATION OF EXAMPLE 2.2 

In order to demonstrate the role of weights (v^u) for identifying the CCR-
efRciency of DMUs, we will show graphically the efficient frontier of Example 
2.2 in the weight variables (^multiplier) space. Example 2.2 has 2 inputs and 
1 output, whose value is unitized to 1. For this simple example we can illus­
trate the situations using a two dimensional graph. The linear programming 
constraints for each DMU have the following inequalities in common with all 
variables being constrained to be nonnegative. 

u < 4f 1 -f- 3v2 
u < St'i + f 2 
u < 2^1 + A.V2 

{A) u<7vi-^ ?>V2 (B) 
(C) u<4vi-\- 2^2 (D) 
[E) U < 10?;i + V2 (F) 

Dividing these expressions by u > 0, we obtain the following inequalities: 

l<4{vi/u)-\-3{v2/u) {A) 
l<S{vi/u) + {v2/u) (C) 
1 < 2{vi/u)+4{v2/u) {E) 

l<7{vi/u) + 3{v2/u) {B) 
l<4:{vi/u)-\-2{v2/u) {D) 
l<10{vi/u) + {v2/u) (F) 

These inequalities are depicted in Figure 2.3 by taking vi/u and V2/U as axes. 
The area denoted by P then shows the feasible region for the above constraints. 
The boundary of P consists of three line segments and two axes. The three 
line segments correspond to the efficient DMUs C, D and E. 

We explain this situation using D as an example and we also explain the 
relationship between this region and the inefficient DMUs using A as an exam­
ple. 
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1. Example D 
The linear program for D consists of the preceding inequalities plus the 
following, 

max u 

subject to Avi + 2̂ '2 = 1-

Dividing (2.16) by u, we have 

A{vi/u) + 2{v2/u) = l/u, 

(2.16) 

(2.17) 

The objective function u -> max yields the same solutions as 1/u -> min, so 
the problem is to find the minimum t for which the following line touches 
the region P : 

A{vilu)^2{v2lu)^t. (2.18) 

From Figure 2.3 we see that t = 1 (and hence u = 1) represents the optimal 
line for D, showing that D is efficient. It is also easy to see that D is efficient 
for any weight {vi^ V2) on the fine segment (P25 ^3)- This observation leads 
to the conclusion that the optimal (t'l, V2) for D is not unique. In fact, 
the value {vi = .1667, V2 — .1667) for D in Table 2.4 is an example, and 
actually corresponds to F3 in Figure 2.3. See Problem 2.1 at the end of this 
Chapter. 

Similarly, any (fi, V2) on the line segment (Pi, P2) expresses the optimal 
weight for C and any {vi, V2) on the line segment (P3, P4) for E. 

Thus, the optimal weights for an efficient DMU need not be unique and we 
should be careful to keep this in mind. 

2. Example A 
Next, we consider the inefficient DMUs, taking A as an example. The linear 
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program for A consists of the following expressions added to the inequalities 
above: 

max u 

subject to Avi + 3^2 1. 

As with example J9, (2.19) can be transformed into 

A{vi/u) + 3{v2/u) = t. 

(2.19) 

(2.20) 

Then the problem is to find the minimum t within the region P . Referring 
to Figure 2.4, we can see that the solution is given by the point P3, where 
the line parallel to line A touches the region P for the first time. P3 is the 
intersection of lines D and E and this is the geometric correspond of the fact 
that the reference set to A consists of D and E. A simple calculation finds 
that t = 1/0.8571 and hence the efficiency of A is u = .8571. The value of 
( f i , V2) at P3 is : 

vi = .1667 X .8571 - .1429, V2 - .1667 x .8571 = .1429, (2.21) 

which are the optimal weights for A. The optimal weights for A are unique. 
Usually, the optimal weights for inefficient DMUs are unique, the exception 
being when the line of the DMU is parallel to one of the boundaries of the 
region P . 

0.1 0.2 

Figure 2.4 

0.3 0.4 

The Case of DMU A 

2.8 SUMMARY OF CHAPTER 2 

In this chapter, we introduced the CCR model, which is a basic DEA model. 
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1. For each DMU, we formed the virtual input and output by (yet unknown) 
weights {vi) and (w^): 

Virtual input = viXio + • • • + VmXmo 

Virtual output = uiyio + • • • + UsVso-

Then we tried to determine the weight, using linear programming so as to 

maximize the ratio 
virtual output 
virtual input 

The optimal weights may (and generally will) vary from one DMU to another 
DMU. Thus, the "weights" in DEA are derived from the data instead of being 
fixed in advance. Each DMU is assigned a best set of weights with values 
that may vary from one DMU to another. Here, too, the DEA weights differ 
from customary weightings (e.g., as in index number constructions) so we 
will hereafter generally use the term "multiplier" to distinguish these DEA 
values from the other commonly used approaches. 

2. CCR-efficiency was defined, along with the reference sets for inefficient DMUs. 

3. Details of the linear programming solution procedure and the production 
function correspondence are given in Chapter 3. 

2.9 SELECTED BIBLIOGRAPHY 

The term 'Decision Making Unit' (DMU) was used for the first time in the CCR 
model proposed in Charnes, Cooper and Rhodes (1978)."^ The term DEA (Data 
Envelopment Analysis) was introduced in their report "A Data Envelopment 
Analysis Approach to Evaluation of the Program Follow Through Experiment 
in U.S. Public School Education," (1978),^ Rhodes (1978)^ and appeared in 
Charnes, Cooper and Rhodes' subsequent paper (1979).^ DEA originated from 
efforts to evaluate results from an early 1970's project called "Program Follow 
Through"—a huge attempt by the U.S. Office (now Department) of Education 
to apply principles from the statistical design of experiments to a set of matched 
schools in a nationwide study. The purpose of the study was to evaluate educa­
tional programs designed to aid disadvantaged students in U.S. public schools. 
The data base was suflftciently large that issues of degrees of freedom, etc., were 
not a serious problem despite the numerous input and output variables used in 
the study. Nevertheless, unsatisfactory and even absurd results were secured 
from all of the statistical-econometric approaches that were tried. While trying 
to respond to this situation, Rhodes called Cooper's attention to Farrell's sem­
inal article, "The Measurement of Productive EflSciency," in the Journal of the 
Royal Statistical Society (1957). Charnes, Cooper and Rhodes extended Far­
rell's work and succeeded in establishing DEA as a basis for efficiency analysis. 
Details of the project are described in Charnes, Cooper and Rhodes (1981).^ 
A brief history of DEA can be found in Charnes and Cooper (1985).^ 
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2.10 PROBLEM SUPPLEMENT FOR CHAPTER 2 

P r o b l e m 2.1 

In Example 2.2, determine the region of (i'i,f2) that makes each of DMUs C, 
D and E efficient, by referring to Table 2.4 and Figure 2.3. 

Suggested Answer : For C: line segment PiP2- This is the line segment stretch­
ing from {vi/u — 0, V2/U — 1) at Pi to {vi/u = .08333, V2/U = .3333) 
at P2. For D: line segment ^2^3- This is the line segment stretching from 
{vi/u = .08333, V2/U = .3333) at P2 to {vi/u = .1667, V2/U = .1667) at 
P3. For E: line segment P3P4. This is the line segment stretching from 
{vi/u = .1667, V2/U = .1667) at P3 to {vi/u = .5, 7;2/'u = 0) at P4. 

Problem 2.2 

Use the data of Tables 2.3 and 2.4 to relate Figures 2.2 and 2.3. 

Suggested Answer : The relation between Figures 2.2 and 2.3 is an example of 
what is called "the point-to-hyperplane correspondence" in mathematical pro­
gramming. This means that the coordinates of the points for the representation 
in one of the spaces correspond to the coefficients for the hyperplanes in the 
dual (here=multiplier) space. The spaces in these figures are 2-dimensional, 
so the hyperplanes take the form of lines. For example, the coordinates for 
A in Figure 2.2 as obtained from Table 2.3 correspond to the coefficients in 
4i'i -f 3^2 > lu, the expression associated with DMU A as obtained from Table 
2.4. In this single output case, we can use (2.19) to effect a further simplifica­
tion by moving to homogenous coordinates and then try to minimize t, as given 
in (2.20). This minimization is undertaken subject to the similar transforma­
tion (to homogenous coordinates) for all of the other constraints obtained from 
Table 2.4. The result, as given in the discussion of (2.21), is t = 1/0.8571, so 
u = 0.8571 and t̂ i = tJ2 = 0.1429. Substitution in the expression with which 
we began then gives 

1.00 = 4vi + 3^2 >lu = 0.8571. 

Hence DMU A is found to be inefficient. It should have produced more output, 
or used less input (or both). 

This evaluation, as noted in Table 2.4, is determined relative to the corre­
sponding expressions obtained for D and E — both of which achieve equality 
between both sides of their expressions, while using these same (best) weights 
for A — viz. 

D : 0.8574 = 4vi + 2v2 « 0.8571 
E : 0.8574 = 2^i + ^V2 ^ 0.8571. 

We now note that the points for A and B in Figure 2.2 lie above the effi­
cient frontier whenever the corresponding hyperplanes (here=lines) lie below 
the hyperplanes for D and E in Figure 2.3. The situation for P , which is 
also inefficient, differs because its hyperplane (=line) intersects the efficiency 
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frontier at one point, Pi, but otherwise lies everywhere below it. This is the 
dual reflection of the hyperplane-to-point correspondence while examination of 
Figure 2.2 shows that F has the same coordinate as C for Input 2 but F's 
coordinate for Input 1 exceeds the value of the same coordinate for C, 

In this chapter we examined the multiplier model in which the maximizing 
objective tries to move each hyperplane "up," as far as the other constraints 
allow, with the highest hyperplanes used to determine the boundaries of P , as 
exhibited in Figure 2.3. In the next chapter we shall examine the minimizing 
model which moves in the opposite direction in order to move the boundaries 
of P (the production possibility set) as far "down" as possible. Then we shall 
use the duality theorem of linear programming to show that the optimal values 
yield the same production possibility sets so either (or both) problems may be 
used, as desired and, even better, a suitable reading of the solution yields the 
solution to both problems when either one is solved. 

Problem 2.3 
Can you relate the CCR ratio form given by (2.3)-(2.6) in this chapter to the 
"ratio of ratios" form given by (1.4) in Chapter 1 for engineering efficiency? 

Suggested Response : The "ratio of ratios" form given for engineering efficiency 
in (1.4) is for use with a single input and a single output. This can be interpreted 
as "virtual inputs" and "virtual outputs" for the values used in the numerators 
and denominators of (2.3)-(2.6) when specific values are assigned to all of the 
variables Ur and Vi, To put these ratios in the form of a "ratio of ratios" we 
will use what is called the TDT (Thompson-Dharmapala-Thrall) measure of 
efficiency obtained from the following problem, 

max ^ ^ f i ^ f l ^ / ^ L l i f r M (2.22) 

where ^ I H I ^ ^ T M = maximum,=i,..,„ ( f i f ^ ^ ^ ^ l (2-23) 

Ur.Vi > 0 Vr,i. (2.24) 

Here '^r^i^^ means "for all r, i." Thus, for each choice of Ur and Vi^ the max­
imum of the ratios in the braces on the right in the last expression is to be 
used as the denominator ratio in the first expression. Considering all allowable 
possibilities the problem is to maximize the ratio in (2.22) and "theoretical" 
as well as "observed" values may be used in these expressions if desired. A 
detailed discussion of the TDT measure and its properties may be found in 
W.W. Cooper, R.G. Thompson and R.M. Thrall "Extensions and New Devel­
opment in DEA," Annals of Operations Research, 66, 1996, pp.3-45. Here we 
only note that no bounds are placed on the admissible values in the ratios of 
the last expression. The idea is to allow these to be specialized, if one wants to 
do so, by imposing such bounds on any or all these ratios. If we limit all the 
ratio values to a bound of unity, as is done in (2.4), we obtain the model given 
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in (2.3)-(2.6). The value of the objective, (2.3), can then be interpreted as a 
"ratio of ratios" because a necessary condition for a solution to be optimal in 
(2.3)-(2.6) is that at least one of the ratios must achieve the maximal allowable 
value of unity. Thus, the maximization for (2.3)-(2.6) obtains an optimal value 
in the form of "ratio of ratios" in which the maximal term in the braces gives 

E r ^ l KV rk 

E m * 
1. 

Problem 2.4 

Background: "Evaluating Efficiency of Turbofan Jet Engines in Multiple Input-
Output Contexts: A Data Envelopment Analysis Approach," by S. Bulla, 
W.W. Cooper, K.S. Park and D. Wilson(1999)^° reports results from a study of 
29 jet engines produced by different manufacturers. The engineering measure 
of efficiency is given hy r] = TV/Q where T = Thrust of Engine, V = Cruise 
Velocity and Q = Heat Input from Fuel. The DEA evaluations were based on 
these same two outputs but the single input (in the denominator) was replaced 
by 3 inputs: (1) Fuel Consumption (2) Weight of Engine and (3) Drag. 

Using data from commercially available sources the results obtained from 
these two approaches to efficiency are portrayed in Figure 2.5 on the left. Co­
efficients for the resulting regression were found to be statistically significant. 
The value of R^, however, suggested that the explanatory power of engineering 
efficiency was low. More input variables are needed to bring the engineering 
results into closer correspondence with the DEA efficiency scores. 
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Engineering efficiency ( T) ) 

(b) 

Figure 2.5. A Scatter Plot and Regression of DEA and Engineering Efficiency Ratings 

As shown at the top of Figure (a), Engines 3 and 19 have the same coor­
dinates. Their "outlier" character suggests that their removal would yield a 
regression with a higher R^. This is confirmed by the new regression and the 
new R^ in Figure (b) where the estimates show statistically significant improve-
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merits. Nevertheless, the same conclusion is reached: more inputs are needed 
for the engineering ratio to provide better "explanations" of the DEA scores, 
but it is not clear how this can be done. 

Assignment: Is the removal of engines 3 and 19 justified or should the potential 
effects on the efficiency scores of other engines also be considered? Discuss. 

Suggested Answer : Statistical independence for all observations is generally as­
sumed in the removal of outliers. However, engines 3 and 19 have DEA ratings 
of unity and this suggests that they may be members of reference sets used 
to evaluate other engines. To check this possibility we use Figure 2.6 which is 
known as an "envelopment map."-^^ 
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TN* = Total number of times that engine 7 (= 1, ..., 29 in column) was used to evaluate other 
engines. 
N* = Number of times that other engines were used to evaluate engine / (= 1,..., 29 in row). 

Figure 2.6. Envelopment Map for 29 Jet Engines 
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The values at the bottom of each column show the number of times an engine 
identified at the top of this column entered into a reference set to evaluate other 
engines, and the total for each row shows the number of other engines used in 
an evaluation. Thus, engine 3 was used a total (net) of 4 times in evaluating 
other engines and the row total shows that no other engine was involved in the 
evaluation of engine 3 — a property of efficient engines when the latter are 
extreme points of the production possibility set. A removal of engine 3 will 
therefore affect the efficiency ratings of other engines — unless in each case 
there exists an alternate optimum in which engine 3 does not actively enter as 
a member of the basis (^reference set). 

No similar interaction with other engines occurs for engine 19, however, as 
is clear from the fact that the row and column totals are both zero for this 
engine. Hence our analysis shows that 19 (but not 3) may be treated as an 
outlier without affecting any other observations. Proceeding in this manner 
produces Figure 2.7 which, though statistically significant, is closer to Figure 
2.5 (a). 
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Figure 2.7. A Comparative Portrayal and Regression Analysis for 28 Engines (All Data 

Except for Engine 19) 

Problem 2.5 

Try to bring the engineering definition into play in a DEA evaluation. 

Suggested Response : As noted in (1.4) the engineering "ratio of ratios" reduces 
to a comparison of actual to theoretically obtainable output from the amount 
of input actually used by any engine. This could be brought into play in a DEA 
evaluation by associating the theoretically obtainable output with the actual 
input for each engine (=DMU). This would produce n additional observations 
giving 2n DMUs from which evaluations would be made. However, there is no 
guarantee that a DMU will be evaluated relative to its own input. A DMU 



BASIC CCR MODEL 39 

evaluation of any engine (=DMU) could utilize a reference set yielding a lower 
input and a higher output. This could be checked and further analyzed, how­
ever, because the members of the reference set would be identified as well as 
the output shortfalls and input excesses for the actual DMU being evaluated. 

Notes 

1. This condition will be relaxed to allow nonnegative data in Chapter 3. Furthermore, 
in Chapter 5 (Section 5.2), we will introduce models which can also deal with negative data. 

2. Proof of Theorem 2.2. Let (9*,<,i '* be optimal for (2.3)-(2.6). Now replace the 
original yrj and Xij by prVrj and 5iXij for some choices of pr,Si > 0. But then choosing 
u'j, = u*/pr and v[ = vl/^i we have a solution to the transformed problem with 6' =6*. 
An optimal value for the transformed problem must therefore have 6'* > 9*. Now suppose 
we could have 6'* > 0*. Then, however, Ur = u'*pr and Vi — v'^6i satisfy the original 
constraints so the assumption Q'* > d* contradicts the optimality assumed for Q* under 
these constraints. The only remaining possibility is Q'* — 6*. This proves the invariance 
claimed for (2.3). Theorem 2.1 demonstrated the equivalence of (LPo) to (FPo) and thus 
the same result must hold and the theorem is therefore proved. • 

3. We use the notations v and u instead of i/ and /x in (LPo). 
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