Chapter 2

SURVEY OF EXISTING APPROACHES

In this chapter, we give an overview of existing indexes for metric spaces.
Other relevant surveys on indexing techniques in metric spaces can be found
in [Chavez et al., 2001b] or [Hjaltason and Samet, 2003a]. In the interests of
a systematic presentation, we have divided the individual techniques into four
groups. In addition we also present some techniques for approximate similar-
ity search. Specifically, techniques which make use of ball partitioning will
be found in Section 1, while Section 2 describes indexing approaches based
on generalized hyperplane partitioning. A significant group of indexing meth-
ods computes distances to characteristic objects and then uses these results to
organize the data. Such methods are reported in Section 3. In order to maxi-
mize performance, many approaches synergically combine several of the basic
principles into a single index. The most important of these hybrid approaches
are reported in Section 4. Finally, Section 5 treats the important topic of ap-
proximate similarity search, which trades some precision in search results for
significant improvements in performance.

1. Ball Partitioning Methods

The advantage of ball partitioning is that it requires only one pivot and,
provided the median distance d,, is known, the resulting subsets contain the
same amount of data. Such a simple concept has naturally attracted a lot of
attention and resulted in numerous indexing approaches being defined. In the
following, we survey the most important of them. The first three structures
assume discrete metric functions with a relatively small domain of values. The
other methods can also be applied for continuous functions.

68 SIMILARITY SEARCH

1.1 Burkhard-Keller Tree

Probably the first solution to support searching in metric spaces was that
presented in [Burkhard and Keller, 1973]. It is called the Burkhard-Keller Tree,
BKT. The tree assumes a discrete distance function and is built recursively in
the following manner: From an indexed dataset X, an arbitrary object p € X
is selected as the root node of the tree. For each distance ¢ > 0, subsets
X; = {o € X,d(o,p) = i} are defined as groups of all objects at distance 4
from the root p. A child node of root p is built for every non-empty set X;.
All child nodes can be recursively repartitioned until it is no longer possible to
create a new child node. When a child node is being divided, some object o,
from the set X is chosen as a representative of the set. A leaf node is created for
every set X; provided X; is not repartitioned again. A set X; is no longer split
if it contains only a single object. Objects chosen as roots of subtrees (stored
in internal nodes) are called pivots.

The algorithm for range queries is simple. The range search for query R(q,)
starts at the root node of the tree and it compares its object p with the query
object ¢. If p satisfies the query, that is if d(p, ¢) < r, the object p is returned.
Subsequently, the algorithm enters all child nodes o; such that

maz{d(q,p) —r,0} <i<d(¢g,p)+r 2.1

and proceeds recursively downward. Observe that Equation 2.1 cuts out some
branches of the tree. The inequality is a direct consequence of the lower bounds
provided by Lemma 1.2 (pg. 31). In particular, by applying the lemma with
r; = ¢ and r, = 4, we find that the distance from ¢ to an object o in the inspected
tree branch is at least max{d(q, p) —%,7—d(g, p), 0}. Thus, we visit the branch
i if and only if maxz{d(q,p) — %, — d(q,p),0} < r.

Figure 2.1b shows an example where the BKT is constructed from objects
of the space illustrated in Figure 2.1a. Objects p, o1, and o4 are selected as
roots of subtrees, so-called pivots. The range query is given by the object
g and radius r = 2. The search algorithm discards some branches and the
accessed branches are emphasized in the figure. Obviously, if the radius of
range query grows the number of accessed subtrees (branches) increases. This
leads to higher search costs, which are usually measured in terms of the number
of distance computations. During the range query evaluation, the algorithm
traverses the tree and determines distances to pivots in internal nodes. Thus, the
increasing number of accessed subtrees leads to a growing number of distance
computations because pivots in individual nodes are different.

BKTs are linear in space O(n) and the construction complexity measured
in terms of the number of distance computations is O(nlogn). Search time
complexity, also measured in terms of distance computations, is O(n®), where
« is a real number satisfying O < o < 1 which depends on the search radius
and the structure of the tree, see [Chavez et al., 2001b].

Survey of existing approaches 69

o}
.-05 -~
. Pials N
. ; L. ,0’03 . \\‘
0, - PRI Lo, P
40 02 v
E '.o-{. » 1 2
q /
~\\ . , 3 4
. AN -y,
. Mo . 0) 0 o
. op . e 1 3 4 7
' .00,
(97 3 3 6
0y Os O
‘o. . .
[P L
.8 BKT

@ ®)

Figure 2.1. (a) An example of a metric space and a range query, (b) BKT built over the sample
space.

1.2 Fixed Queries Tree

The Fixed Queries Tree, FQT, originally presented in [Baeza-Yates et al.,
1994], is a modification of the BKT. In contrast to BKTs, where pivots on
individual levels are different, Fixed Queries Trees use a single pivot for all
nodes at the same level (see Figures 2.1b and 2.2a). All objects in a given
dataset X are stored in leaves and internal nodes are used for navigation during
the search (or insertion). The range search algorithm is the same as for the BKT.
The advantage of this structure is a reduced number of distance computations,
because even if more than one subtree has to be accessed to evaluate a query,
only one distance computation between the query object and a specific pivot
per level is computed. The experiments presented in [Baeza-Yates et al., 1994]
confirm that FQT's need fewer distance computations than BKTs.

Figure 2.2a shows an example of an FQT built over the data of Figure 2.1a
with objects p and o4 as pivots on corresponding levels. Observe that all objects
are stored in leaves, including the objects selected as pivots. The branches
highlighted represent the process that evaluates the query R(q, 2).

The space complexity is superlinear because the objects selected as pivots
are duplicated, so the complexity varies from O(n) to O(nlogn). The number
of distance computations required to build the tree is O(n logn). The search
complexity is O(n®), where « in the range 0 < « < 1 depends on the query
radius and the object distribution in the metric space.

A variant of the FQT, called the Fixed-Height Fixed Queries Tree, FHFQT,
is proposed in [Baeza-Yates et al., 1994, Baeza-Yates, 1997]. This structure has
all its leaf nodes at the same level, i.e., leaves are at the same depth k. In other
words, shorter paths are extended by additional paths. The enlargement of the

70 SIMILARITY SEARCH

4 < o4

(o]

3
<o
P 03 o7
02 ol o4 05 o6 p 02 ol 03 04 05 0607

FQT FHFQT
(2) (b)

Figure 2.2. Examples of (a) FQT and (b) FHFQT built over objects of the data space depicted
in Figure 2.1a.

tree can actually improve search performance, because the search process in
the extended paths can be stopped before reaching the leaf. Note the distance
computation to pivots for the extended paths does not typically imply extra
costs, because such distances are computed due to the search needs of other
(non-extended) paths. If we increase the height of the tree by thirty, we only
add thirty more distance computations for the entire similarity search. We
may introduce many new node traversals, but these are very cheap operations.
However, thirty pivots filter out many objects, so the final candidate set is much
smaller. This approach to filtering is explained in Section 7.6 of Chapter 1. For
convenience, see Figure 2.2b where an example of the FHFQT is provided.

The space complexity of the FHFQT is superlinear and lies somewhere be-
tween O(n) and O(nh), where h is the height of the tree. The FHFQT is
constructed with O(nh) distance computations. Search complexity is claimed
to be constant O(h), that is the number of distance evaluations computed to h
pivots. The extra CPU time is proportional to the number of traversed nodes
and remains O(n®), where 0 < a < 1 depends upon the query radius and the
indexed space. The extra CPU time is spent on comparing distance values (in-
tegers) and in traversing the tree. In practice, the optimal tree height A = logn
cannot always be achieved due to the space limitations.

1.3 Fixed Queries Array

The Fixed Queries Array, FQA, is presented in [Chdvez et al., 2001a, Chavez
et al., 1999b]. Though the structure of FQA is strongly related to the FHFQT,
it is not a tree structure. First, the FHFQT with height A is built on a given
dataset X. If the root-to-leaf paths of the FHFQT are traversed in order from
left to right and placed in an array, the result is the FQA. Each column consists
of h numbers representing distances to every pivot utilized in the FHFQT. In
fact, the sequence of h numbers is the path from the root of FHFQT to its leaf.
The FQA structure simply stores the database objects lexicographically sorted

Survey of existing approaches 71

<o p
0 3 5
< o4 p 02 ol 03 o4 o5 o6 o7
4!%\640375 0 2 2 3 4 4 4 5 =<-=-p
p o2 ol 03 04 05 0607 4 3 6 4 0 3 7 § = o4
FHFQT FQA

(@) (b)

Figure 2.3. (a) An example of the FHFQT tree, (b) FQA built from the FHFQT.

by this sequence of distances. Specifically, the objects are initially sorted with
respect to the first pivot and those at the same distance are sorted with respect to
the second pivot and so on. For illustration, Figure 2.3b shows the FQA array
constructed from the FHFQT in Figure 2.3a.

The range search algorithm is inherited from the FHFQT. Each internal node
of the FHFQT corresponds to a range of elements in the FQA. Child nodes
have a range of elements which is a subrange of their parents’ range in the
array. Naturally, there is a similarity between the FQA approach, the suffix
trees, and the suffix arrays [Frakes and Baeza-Yates, 1992]. Navigation in the
tree algorithm of the FHFQT is simulated by the binary search through the new
range inside the current one.

The FQA is able to use more pivots than the FHFQT, which improves effi-
ciency and search pruning. The authors of [Chdvez et al., 2001a] show that the
FQA outperforms the FHFQT. The space requirements are n - h - b bits, where
b is the number of bits used to store one distance. The number of distance
computations evaluated during the search is O(h). As proved in [Baeza-Yates
and Navarro, 1998], the extra CPU complexity of the FHFQT is O(n®). The
FQA has O(n®logn) extra complexity, where 0 < « < 1. The extra CPU
time is due to the binary search of the array.

All the search structures presented above (BKT, FQT, FHFQT, and FQA)
were designed for discrete metric functions, since a separate child is needed
for any specific distance value. If we apply them to the continuous case, the
tree degenerates to a flat tree of height one, and the search algorithm in effect
performs a sequential scan.

In order to properly transform the continuous case to the discrete, we must
segment the domain of potential distance values into a small set of subranges.
Two discretizing schemata for the FQA have been proposed in [Chédvez et al.,
1999b, Chdvez et al., 2001a]. The former divides the range of possible values
into slices of identical width, the result being labeled a Fixed Slices Fixed

72 SIMILARITY SEARCH

(@ b

Figure 2.4. Examples of range queries: (a) Sp is not accessed, (b) both subsets must be visited.

Queries Array. Such partitioning may lead to empty slices where no database
object is accommodated. This, then, has motivated a more recent approach in
which the entire range is divided into slices, each containing the same number
of database objects. In other words, the domain is divided into fixed quantiles.
The resulting FQA is called the Fixed Quantiles Fixed Queries Array.

1.4 Vantage Point Tree

The Vantage Point Tree (VPT) [Yianilos, 1993] is expressly designed for
continuous distance functions, but discrete distance functions are also supported
with virtually no modifications. It is based on the ball partitioning principle
described in Section 5 of Chapter 1, which divides a set .S into subsets S; and
S, based upon a chosen object p called a vantage point or pivot, and the median
distance d,, from p to the objects in S. Starting with the whole set of objects X
and recursively applying this partitioning procedure leads to a balanced binary
tree. Applying the median to divide a dataset into two subsets can be replaced
by a strategy which instead employs the mean of distances from p to all objects
in X'\ {p}. This method, called the middle point in [Chdvez et al., 2001b], may
yield better performance for high-dimensional vector data. A disadvantage of
the middle point strategy is that it may produce an unbalanced tree, impacting
negatively on search algorithm efficiency.

The search algorithm for a range query R(q, r) traverses the VPT from root
to leaves. For each internal node, it evaluates the distance d(g, p) between the
pivot p and the query object q. If d(q, p) < r, the pivot p is reported to output.
For internal nodes, the algorithm must also decide which subtrees to access.
Doing so requires establishing lower bounds on the distances from ¢ to objects
in the left and right subtrees. If the query radius r is less than the lower bound,
the algorithm does not visit the corresponding subtree. Figure 2.4a provides
an example of a situation in which the inner ball region need not be accessed,
whereas Figure 2.4b shows an example in which both subtrees must be checked.
The lower bounds are established using Lemma 1.2 (pg. 31). More precisely,
applying the equation and setting ; = O and r;, = d,,,, we have that the distance

Survey of existing approaches 73

P,

P,

(@ (b)

Figure 2.5. An example of VPT with two pivots p; and p2: (a) the 2-D overview and (b) the
corresponding tree representation.

from ¢ to any object in the left branchis atleast maz{d(q, p)—dp,, 0}. Likewise,
setting r; = dr, and r;, = oo we get that the distance from ¢ to an object in the
right subtree is at least maxz{d,, — d(g,p), 0}. Thus, we enter the left branch if
maxz{d(q,p) — dm,0} < r and the right branch if maz{d,, — d(q,p),0} < r.
Note both subtrees can be visited simultaneously.

The ball partitioning principle applied in VPTs does not guarantee that the
ball region around pivot pa will be completely inside the ball region around
pivot p1, which is the parent of py. For convenience, see Figure 2.5 where the
situation is depicted for a query object ¢. In general, it is possible that the lower
bound from ¢ to a child node is smaller than the lower bound from ¢ to the
child’s parent node, that is

maz{d(q,p2) — dm,,0} < maz{d(q,p1) — dm,,0}.

But this will not affect the behavior or correctness of the search algorithm —
objects rooted in the subtree of py are not closer than maz{d(g, p1) — dm,, 0},
even though the lower bounds may claim the opposite. In other words, objects
in the left subtree of py (the set Sp) are somewhere in the white area inside the
ball region of ps and not in the shaded region (see Figure 2.5). On the other
hand, objects in the right branch (the set S7) must be in the hatch-marked area
and not outside the ball region around p;.

In constructing the VPT, many distance computations between pivots and
objects are evaluated. For every object o in a leaf, distances are computed to
each pivot p on the path from root to leaf. This information can be used to
construct a more efficient search algorithm. The idea is employed in so-called
VP? trees, which are variants of VPTs proposed in [Yianilos, 1993]. Distances
computed during insertion of objects are remembered and stored in the structure
of the VP? tree. They are then used in the range search algorithm as follows:

» if |d(g,p) — d(p,0)| > r holds, we discard the object o without actually
computing the distance d(g, o),

74 SIMILARITY SEARCH

n if (d(q,p)+d(p,0)) < rholds, we directly include the object o in the query
response set, again without computing the distance d(q, o).

Given the distances d(g,p) and d(p, 0), Lemma 1.1 (pg. 29) forms the lower
and upper bounds of the actual distance between ¢ and o:

Id(Q7p) - d(p, 0)| < d(qa 0) < d(Qap) + d(pa 0)'

Thus the previous two pruning conditions are in fact direct consequences of
Lemma 1.1.

Another variant of the VPT, also proposed in [Yianilos, 1993], is called the
VP$ tree. This tree is a further extension of the VP? tree, where each leaf node
is conceived as a bucket, that is, a unit of storage able to accommodate more
than one object.

14.1 Multi-Way Vantage Point Tree

Figure 2.4b shows an elementary situation in which the search algorithm of
the VPT must enter both subtrees and examine all objects. If such a situation
occurs in many tree nodes, the global efficiency of the search deteriorates.
In [Bozkaya and Ozsoyoglu, 1997], the authors have tried to approach this
problem by extending the binary VPT to a k-ary tree, with & > 2. The tree uses
k — 1 thresholds (percentiles) dy,, , - -+ , dpm, _, in place of the single median d,,
to partition the dataset into &k subsets via spherical cuts. The modified tree is
called the Multi-Way Vantage Point Tree, mw-VPT. Unfortunately, experiments
reveal the performance of mw-VPTs is not always better because the spherical
cuts become too thin. Take, for example, the case of high-dimensional domains
where distances between any pair of objects are practically the same. The
search algorithm leads to more branches of the tree being accessed during
query execution. If ¢ of & children of a node have to be searched then ¢ distance
computations are evaluated at the next level because all distances between the
query object g and each pivot of the accessed children have to be determined —
the VPT keeps a different pivot for each internal node at the same level.

Another extension of the VPT is called the Optimistic Vantage Point Tree,
presented in [Chiueh, 1994]. This paper formulates algorithms for nearest
neighbor queries and reports exhaustive performance tests on a database of
image features.

These VPTs require O(n) space, the construction time for a balanced tree is
O(nlogn), and search time complexity is O(logn). The author of [Yianilos,
1993] claims this is only valid for very small query radii — too small to be
interesting. The construction time of mw-VPT is O(nlog, n) in terms of
distance computations. The space complexity is the same, i.e., O(n). Likewise
search time complexity is O(logy n).

Survey of existing approaches 75

Figure 2.6. (a) An example of bp, function with excluded points emphasized, (b) the VPF
consisting of two trees.

1.5 Excluded Middle Vantage Point Forest

The Excluded Middle Vantage Point Forest, VPF, presented in [Yianilos,
1999], is another structure based on the ball partitioning principle. The moti-
vation for the VPF comes from the following observation: Though the search
time of the VPT [Yianilos, 1993] is sublinear, its performance depends upon
not only the dataset, that is the distance distribution in X, but also on the choice
of specific query object g. The VPF structure supports the worst-case sublinear
search time for queries with a fixed radius up to the maximum p, so perfor-
mance does not depend on the query object distribution. The VPF introduces
a new concept of excluding objects at middle distances by modifying the ball
partitioning technique. This principle has already been described in Section 5
of Chapter 1. For convenience, we repeat the key formula below.

04f d(o,p) <dm—p
bpy(0) =< 1if d(o,p) > dm +p (2.2)
2 otherwise

Figure 2.6a depicts an example of the bp, function, in which a dataset has
been divided into two sets Sy, S, with the exclusion set Sy containing objects
excluded from the partitioning process. A binary tree is built recursively by
repartitioning Sy and S7. The resulting exclusion sets Sy are used to create
another binary tree via the same principle. This procedure is repeated, and
a forest of VPTs is produced. Figure 2.6b provides an example of the VPFE.
The first tree is built on the dataset X. All exclusion sets of the first tree, i.e.,
{85, 54,54}, are organized in the second tree. This process continues until
the exclusion sets are not empty.

Excluding objects at distances near the threshold d,,, has the outcome that
no more than one branch of any internal node must be followed if the query

76 SIMILARITY SEARCH

radius is less than or equal to p. The following tree is searched if and only if
the excluded area must be visited. It is correct to have the search algorithm
enter only a single subtree (left or right) because every pair of objects (z,y)
such that = belongs to the left subtree and y belongs to the right, must be at
a distance greater than 2p, that is, d(x,y) > 2p. To prove this, consider the
definition of the bp, function in Equation 2.2. This implies d(z,p) < dp, — p
and d(y,p) > dm + p. Since the triangle inequality holds between z, y, p, we
get d(z,y) + d(z,p) > d(y, p). Combining these inequalities and simplifying,
we arrive at the desired formula, d(z,y) > 2p.

The VPF is linear in O(n) space, with a construction time of O(n*~%), where
O(n'~?) is the number of trees in the VPF. Similarity queries are answered in
O(n'~%log n) distance computations. In a parallel environment with O(n1=%)
processors, search complexity is logarithmic, O(logn). The parameter 0 <
a < 1 depends on p, the dataset, and the distance function. Unfortunately, to
achieve a greater value of ¢, the p parameter must be quite small.

2. Generalized Hyperplane Partitioning Approaches

In this section, we survey methods based on an approach which is orthog-
onal to ball partitioning. Specifically, we focus on Bisector trees and variants
on them called the Monotonous Bisector Trees and Voronoi Trees. Next, we
discuss properties of Generalized Hyperplane Trees. All these techniques share
a common architecture based upon generalized hyperplane partitioning.

2.1 Bisector Tree

Probably the first indexing structure to use generalized hyperplane partition-
ing was the Bisector Tree (BST), proposed in [Kalantari and McDonald, 1983].
The BST is a binary tree built recursively over a dataset X as follows: Two
pivots p1, p2 are selected at each node and a hyperplane partition is applied. Ob-
jects nearer the pivot p; than ps form the left subtree, while the objects closer to
ps create the right subtree. For each of the pivots, covering radii are established
and stored in respective nodes. The covering radius is the maximum distance
between the pivot and any object in its subtree. The search algorithm for range
query R(q,r) enters a subtree if d(q, p;) — r is not greater than the covering ra-
dius r{ of p;. Thus, we can prune a branch if the query does not intersect the ball
centered at p; with covering radius r{. The pruning condition d(q, p;) —r < r§
is correct because its modification d(g, p;) — r{ < r is a direct consequence of
the lower bound of Lemma 1.2 (pg. 31) with substitutions r; = 0 and rp, = r{.
From the definition of the range query, d(g, o) is upper-bounded by the query
radius 7.

A variant of the BST, called the Monotonous Bisector Tree (MBT), has been
proposed in [Noltemeier et al., 1992b, Noltemeier et al., 1992a]. The idea

Survey of existing approaches 77

P Py

03 O4 08 02 05 O6 O7

GHT

(a) (®)

Figure 2.7. Generalized Hyperplane Tree (GHT): (a) a range query requiring access to both
subsets of the hyperplane partition, (b) the corresponding structure of the tree.

behind this structure is that one of the pivots of each internal node other than
the root node is inherited from its parent node. Specifically, pivots representing
the left and the right subtrees are copied to the corresponding child internal
nodes, respectively. This technique results in a structure with fewer pivots, and
thus fewer distance computations are needed to execute a query.

BSTs are linear in space O(n) and require O(n log n) distance computations
to construct the tree. Search complexity is not analyzed by the authors.

An improvement on the BST called the Voronoi Tree (VT) is proposed
in [Dehne and Noltemeier, 1987]. The VT uses two or three pivots in each
internal node and also has the property that the covering radii are reduced as
we move downwards in the tree. This provides better packing of objects in
subtrees. The author of [Noltemeier, 1989] shows that balanced VTs can be
obtained using an insertion algorithm similar to that of B-trees [Comer, 1979].

2.2 Generalized Hyperplane Tree

The Generalized Hyperplane Tree (GHT) proposed in [Uhlmann, 1991] is
very similar to the BST in that both partition the dataset recursively via the
generalized hyperplane principle. The difference is that the GHT does not use
covering radii as a pruning criterion during the search operation. Instead, the
GHT uses the hyperplane between pivots p; and ps to decide which subtrees
to visit. Figure 2.7 depicts an example of the GHT. In (a), the partitioning is
indicated and a range query specified. The corresponding tree structure can
be seen in (b). At search time, we traverse the left subtree if d(g,p1) — 7 <
d(q, p2) + r. The right subtree is visited if d(g, p1) + r > d(gq, p2) — r holds.

78 SIMILARITY SEARCH

Again, note that it is possible to enter both subtrees. Observe also that the first
inequality comes from Lemma 1.4 (pg. 34) and from the fact that d(g,0) <,
i.e., from the constraint given in the query specification. The second inequality
is based on the same prerequisites, however, Lemma 1.4 is used in reverse, that
is, the assumption about the position of 0 is d(o, p1) > d(o, p2). A modification
of the GHT that adopts the idea of reusing one pivot from the parent node,
applied in MBTs, is presented in [Bugnion et al., 1993].

The space complexity of GHTs is O(n) and O(nlogn) distance computa-
tions are needed to construct the tree, the same as with BSTs. Unfortunately,
search complexity was not analyzed by the authors. [Uhlmann, 1991] argues
that GHT's should work better than VPTs in high-dimensional vector spaces,
but no proof is provided.

3. Exploiting Pre-Computed Distances

When distance computations become expensive, a sound objective is to re-
duce their number to a minimum. To give efficient answers to similarity search
queries, [Shasha and Wang, 1990] have suggested using pre-computed distances
between data objects. For a datafile of n objects, a table of size n X n is used to
store distances between data objects once computed. Pairwise distances which
are not stored are estimated as intervals using the pre-computed distances. Dis-
tances unknown in advance will be, e.g., those from a query object to database
objects. This technique of storing and using pre-computed distances may be
effective for datasets of small cardinality. But space requirements and search
complexity become overwhelming for larger files.

In this section, we discuss other techniques based on a matrix of distances
between objects in a metric space. Specifically, we present the Approximating
and Eliminating Search Algorithm and its linear variant. We also briefly men-
tion other modifications or improvements, such as TLAESA, ROAESA, and
Spaghettis.

3.1 AESA

The Approximating and Eliminating Search Algorithm (AESA), presented
in [Vidal, 1986, Vidal, 1994], uses a matrix of distances between database
objects which have been computed during the creation of the AESA structure.
The structure is simply an n X n matrix holding the distances between all pairs
of n database objects. Due to the symmetry property of metric functions only
that half of the matrix lying below the diagonal need to be stored, resulting in
n(n — 1)/2 distances. Unlike the methods of previous sections, every object
in the AESA plays the role of pivot.

The search operation for a range query R(g,r) (and similarly for nearest
neighbor queries) picks an object p at random and uses it as a pivot. The distance

Survey of existing approaches 79

from q to p is evaluated and used for pruning some objects. An object o can be
pruned if |d(q, p) — d(p,0)| > r, i.e., if the lower bound from Lemma 1.1 on
page 29 is greater than the query radius . Note again that this pruning condition
only utilizes distances which have already been evaluated. The algorithm then
chooses another pivot from among the still remaining objects. The choice of
pivot is influenced by the lower bound |d{(q,p) — d(p,0)|. Since we want to
maximize the pruning effect, we must maximize the lower bound resulting
in the choice of the closest object p to ¢ [Vidal, 1986]. The new pivot is
used in the pruning condition to further eliminate some non-discarded objects.
The process is repeated until the set of non-discarded objects is small enough.
Finally, the remaining objects are checked directly with g, i.e., distances d(q, o)
are evaluated and objects satisfying d(g, 0) < r are returned.

According to experiments presented in [Vidal, 1994], AESA performs an
order of magnitude better than competing methods and it is argued that it has a
constant query time with respect to the size of database (O(1)). This superior
performance is obtained at the expense of quadratic space complexity O(n?)
and quadratic construction complexity. The extra CPU time is spent scanning
the matrix, and ranges from O(n) up to O(n?). However, we should note
that one distance computation is much more expensive than one scan through
the matrix. Although its performance is promising, AESA is applicable only
for small datasets. If, by contrast, range queries with large radii, or nearest
neighbor queries with high & are specified, AESA tends to require O(n) distance
computations, the same as a trivial linear scan.

3.2 Linear AESA

The main drawback of the AESA approach being quadratic in space is solved
in the Linear AESA (LAESA) structure [Micé et al., 1992, Micd et al., 1994].
This works around the problem by storing distances from objects to only a
fixed number m of pivots. Thus, the distance matrix is n X m rather than the
n(n — 1) entries used in the AESA. However, this has its price: a new problem
arises in choosing appropriate pivots. In [Micé et al., 1994], the pivot selection
algorithm attempts to choose pivots that are as far away from each other as
possible, in keeping with the observations noted in Section 10.5 of Chapter 1.

The search procedure is nearly the same as in the AESA, except for the fact
that some objects will not be the pivots. Thus, we cannot choose the next pivot
from non-discarded objects up to now, because we might have eliminated some
pivots. First, the search algorithm eliminates objects using all pivots. Then, all
remaining objects are directly compared with the query object g. More details
can be found in [Hjaltason and Samet, 2000], which also provides a description
of the nearest neighbor search algorithm.

The space complexity and construction time of LAESA are O(mn), while
search complexity is m + O(1). The extra CPU time can be reduced by a

80 SIMILARITY SEARCH

modification called Tree LAESA (TLAESA), proposed in [Micé et al., 1996].
TLAESA builds a GHT-like structure using the same m pivots, with the ex-
tra CPU time being between O(logn) and O(mn). The AESA and LAESA
approaches are compared in [Rico-Juan and Micé, 2003].

3.3 Other Methods

A structure similar to the LAESA is proposed in [Shapiro, 1977]. It also
stores mn distances in a matrix n X m. However, the search procedure for
R(gq,r) queries is slightly different. Database objects (o1, ... 0,) are sorted
according to their distance from the first pivot p;. The search starts with the
object o; such that |d(p1, 0;) — d(p1, ¢q)| is minimized, fori = 1,...,n. Note
that this is the lower bound on d(q, 0;) defined by Lemma 1.1. In other words,
we start with an object potentially closest to g. The object o; is checked against
all pivots p; (§ = 1,...,m) and if |d(p;, 0;) — d(q,p;)| > r is true for any p;,
then o; cannot qualify for R(q,r). Observe that distances d(p;, 0;) are stored in
the matrix and the distances d(q, p;) are computed only once at the beginning
of the query evaluation. If o; is not eliminated by this condition, the distance
d(g, 0;) must be computed to decide whether o; qualifies or not. The search
continues with objects 0;{1, 0;—1, 0j+2, 0j—2, . .. until the pruning conditions
|d(p1, 0i+c) — d(g,p1)| > r and |d(p1, 0;—c) — d(q, p1)| > r are valid.

Another improvement on LAESA is a method called Spaghettis, introduced
in [Chédvez et al., 1999a]. This approach also stores mn distances, organized in
m arrays of length n. Each array of distances to a pivot is sorted according to
the distances it contains. The order of any two objects 0;, 0; may be inconsistent
from one array to another, since distances to the corresponding pivots may differ
e.g. d(p1,0;) < d(p1,05) and d(p2,0;) > d(p2,0;). Thus, permutations of
objects must be stored with respect to the preceding array. During the range
search, m intervals are defined on individual arrays, [d(q,p1) — r,d(q,p1) +
r],...,ld(g,pm) — r,d(q, pm) + 7]. All objects that qualify for the query will
belong to the intersection of all these intervals. Each object in the first interval
is checked to see whether it is a member of all other intervals — the stored
permutations are used for traversing through arrays of distances. Finally, the
non-discarded objects are compared with the query object for qualification. The
extra CPU time is reduced to O(m logn).

Both AESA and LAESA have an overhead of O(n), measured in terms of
computations other than distance evaluations (i.e., searching the matrix). The
Reduced Overhead AESA (ROAESA) from [Vilar, 1995] applies heuristics to
eliminate unneeded traversals of the matrix. However, this technique is only
applicable to nearest neighbor queries, and the range search algorithm is not
accelerated. A variant of LAESA, designated the Approximating k-LAESA
(Ak-LAESA), is presented in [Moreno-Seco et al., 2003]. This variant pro-

Survey of existing approaches 81

vides a faster algorithm for kN N queries particularly designed for classification
purposes.

4. Hybrid Indexing Approaches

Indexing methods which employ pre-computed distances provide promising
performance boosts in terms of computational costs. Their disadvantage lies in
their enormous space requirements. A straightforward remedy is to combine
both the partitioning principle and the pre-computed distances technique into
a single index structure. Basically this entails having search algorithms take
advantage of stored pre-computed distances while traversing a hierarchy-like
structure built using partitioning principles.

Such an approach is applied to Multi Vantage Point Trees, presented later
in this section. We also tackle slightly different approaches based on Voronoi
diagrams, namely the Geometric Near-neighbor Access Tree and the Spatial
Approximation Tree. Finally, we also provide the reader with a short summary
of the M-tree, a disk-based access structure which has become very popular.
The M-tree and its variants are discussed in-depth in Chapter 3. In addition, we
briefly mention the new concept of similarity hashing, which is again analyzed
in greater depth in the next chapter.

4.1 Multi Vantage Point Tree

The Multi Vantage Point Tree (MVPT) [Bozkaya and Ozsoyoglu, 1997,
Bozkaya and Ozsoyoglu, 1999] is an extension of the VPT. The motivation
behind the MVPT is to cut down on the number of pivots used to construct a tree,
since computing distances between a query object and pivots brings significant
search costs. One source of motivation is the FQT described in Section 1.2.
Another interesting approach to helping reduce distance computations is based
on storing distances between pivots and objects in leaf nodes — such distances
are computed in the course of tree construction. The extra information kept in
leaves is then exploited by a sort of filtering algorithm, explained in detail in
Section 7.6 of Chapter 1. The filtering algorithm dramatically decreases the
number of distance computations needed to answer similarity queries.

The MVPT uses two pivots in each internal node, instead of one as in the
VPT. Thus, each internal node can be considered to be two VPT levels collapsed
into one node. There is one significant difference. While VPTs use different
pivots at lower levels, MVPTs apply only one. Thus all children at the lower
level employ the same pivot. This allows for fewer pivots while still preserving
the fanout, or degree of branching. Figure 2.8 depicts a situation where a VPT
is collapsed into an MVPT. Observe that some sets are partitioned using pivots
that are not members of the sets. This never occurs in VPTs. In Figure 2.8b,
so is the set around p; which is divided using p» and the radius d,,,. In this

82 SIMILARITY SEARCH

Ps P2

@ ®)

Figure 2.8. Comparison of the VPT and MVPT structures: (a) VPT with three pivots for
partitioning to four sets, (b) MVPT using only two pivots.

case, each pivot leads to two subsets, which implies that the fanout of an MVPT
node is 22, Since a pivot can generally partition data into m subsets, an internal
node can root m? child nodes. In addition, MVPT can employ k pivots in each
internal node, which implies a fanout of m*. Moreover, each object in the leaf
node is associated with a list of distances to the first [pivots, which are used
for additional pruning at search time.

Since no objects are duplicated, space complexity is O(n) - objects chosen as
pivots appear only in internal nodes. However, MVPTs need some extra space
to keep [pre-computed distances for each object in leaves. Construction time
complexity is O(nk log,,« n), where log, . n is the height of the balanced tree.
Search complexity is O(k log,,x), but is valid only for very small query radii.
In the worst case, search complexity will be O(n). The authors of [Bozkaya and
Ozsoyoglu, 1999] show experimentally that MVPTs outperform VPTs, which
they mainly attribute to the greater number of pivots in internal nodes rather
than the increased fanout m. The largest performance boosts are achieved by
storing more pre-computed distances in leaves.

4.2 Geometric Near-neighbor Access Tree

The Geometric Near-neighbor Access Tree (GNAT), proposed by [Brin,
1995], uses m pivots in each internal node. Specifically, a set of pivots P =
{p1,...,pm} is chosen and the dataset X is split into S1, ..., Sy, subsets, de-
pending on the shortest distance to a pivot in P. In other words, for any object
0 € X — P, o is a member of the set S; if and only if d(p;, 0) < d(p;,0) for
allj = 1,...,m. Thus, applying this procedure recursively we build an m-ary
tree. Figure 2.9 shows a simple example of the first level of a GNAT structure.

Survey of existing approaches 83

Py P, P3 Py
o5 0, 0, 04 0, 0, 0, 0, 0g
GNAT

() (b)

Figure 2.9. The Geometric Near-neighbor Access Tree: (a) an example of partitioning, (b) the
corresponding tree.

Observe the close relationship between this idea and the Voronoi-like partition-
ing of vector spaces [Aurenhammer, 1991]. Each subset S; corresponds to a
cell in the Voronoi diagram — GNAT calls this cell the Dirichlet domain. The
parameter m is adjusted according to the level of the tree. In fact, the number
of children (i.e., the value of m) should be proportional to the number of data
objects allocated in the node.

Besides applying the m-ary partitioning principle, the GNAT also retains
objects’ distances to their respective pivots. This enables additional pruning
during the search, resulting in a range search algorithm quite different from the
one used for the GHT. In each internal node, an m X m table consisting of
distance ranges is stored. Specifically, the minimum and maximum distances
between each pivot p; and the objects of each subset S; are stored. Formally,

the range [rfj rff], i,j-=1,...,m, is defined as follows:
i .
r’ = min d(p;,0
! 0€S8;U{p;} (pi,0),
i _
r? = max d(p;,0).
h OESjU{pj} (p“)

Note that the lower bound rl” for pivot p; itself is equal to zero, since the
minimum is at distance d(p;, p;) = 0. Figure 2.10 illustrates two ranges. The
first [r?, 7] is defined for pivot p; and set .S; around pivot p;, while the second

is [T,.lj]) r.;LJ] for pivot Dy itself.

34 SIMILARITY SEARCH

Figure 2.10. An example of the pruning effect of ranges in GNAT for two queries R(q1,71)
and R(QQ, T‘Q).

The range search algorithm for query R(q,) proceeds depth-first. In each
internal node N, the distances between g and the pivots of NV are computed
and subtrees not containing qualifying objects are eliminated. After all dis-
tances from ¢ to pivots have been computed, the algorithm visits all subtrees
that remain. Starting with the set of pivots P, the procedure applied in each
internal node is described in the following steps: First, pick one pivot p; from
P (repeatedly, but do not pick the same pivot twice) and compute the distance
d(p;,q). If d(p;,q) < r holds, the pivot p; is returned in the query result.
Afterwards, for all p; € P we remove p; from P if d(g,pi) —r > 1/ or
d(g,p;)+r < rl”. The inequalities are direct consequences of the lower bound
maz{d(q,p;)—ry, 7’ —d(g, p;)} < rof Lemma 1.2 (pg.31) withd(g, 0) < r.
When all pivots in P are examined, the subtrees of the node N corresponding
to the remaining pivots in P are visited. Note that a pivot p; can be discarded
from P before its distance to ¢ has been evaluated. Figure 2.10 depicts a sit-
uation in which two range queries R(qi,71) and R(g2,72) are given. In this
example, only the range [r}?, r}7] is sufficient for the query R(g1, 1) to discard
pj. However, the other query requires the additional range[r}’, r,”lj] to prune
the subtree around p;.

The space complexity of the GNAT index structure is O(nm?), because
tables consisting of m? elements are stored in each internal node. GNAT is
built in O(nmlog,, n) time. The search complexity was not analyzed by the
authors, but experiments in [Brin, 1995] reveal that the GNAT outperforms the
GHT and VPT structures.

Survey of existing approaches 85

4.3 Spatial Approximation Tree

The indexes which have been described so far all use a partitioning principle
to recursively divide the data space into subsets. For example, the GHT and
GNAT are inspired by the Voronoi-like partitioning. In the following, we intro-
duce the Spatial Approximation Tree, the sa-tree (SAT), proposed in [Navarro,
1999, Navarro, 2002]. The SAT is also based on the Voronoi diagrams, but in
contrast to the GHT and GNAT it tries to approximate the structure of the Delau-
nay graph. Given a Voronoi diagram, a Delaunay graph, defined in [Navarro,
2002], is a graph where each node represents one cell of the Voronoi diagram
and where nodes are connected with edges if the corresponding Voronoi cells
are directly neighboring cells. In other words, the Delaunay graph is a repre-
sentation of relations between cells in the Voronoi diagram. In the following,
we use the term object for a node of the Delaunay graph and vice versa.

The search algorithm for the nearest neighbor of a query object g starts with
an arbitrary object (node in the Delaunay graph) and proceeds to a neighboring
object closer to ¢ as long as it is possible. If we reach an object o where all
neighbors of o are further from ¢ than o, the object o is the nearest neighbor of g.
The correctness of this simple algorithm is obvious. Unfortunately, it is possible
to show that without more information about a given metric space M = (D, d),
knowledge of the distances between objects in a finite set X C D does not
uniquely determine the Delaunay graph for X (for further details see [Navarro,
2002, Hjaltason and Samet, 2003a]). Thus, the only way to ensure the search
procedure is correct is to use a complete graph, that is, the graph containing all
edges between all pairs of objects in X. However, such a graph is not suitable
for searching because the decision as to which edge should be traversed from
the starting object requires computing distances from the query to all remaining
objects in X. This boils down to a linear scan of all objects in the database and
thus, from a searching point of view, is useless.

For a dataset X, the SAT is defined as follows: An arbitrary object p is
selected as the root of the tree and the smallest possible set N{p) of all its
neighbors is determined so that:

o€ N(p) & Vd € N(p) \ {0} : d(o,p) < d(o0,0).

The intuition behind this definition is that for a valid set N (p) (not necessarily
the smallest), each object of N (p) is closer to p than to any other object in N (p)
and all objects in X \ N (p) are closer to an objectin N (p) than to p. Figure2.11b
shows an example of SAT built on a dataset depicted in Figure 2.11a. The
object 07 has been selected as the root node. The set of neighbors for o is
N(o1) = {02,03,04,05}. Note that object o7 cannot be included in N(o;)
since o7 is closer to o3 than to o;.

To build the tree, a child node is defined for every neighbor and the objects
nearest the child are structured in the same way as defined above. The distance

86 SIMILARITY SEARCH

[]
O3
° % °
0
o.e 2
7 o
3
)
. 5 ® 0
O
O
e0, o' w0,
o ®
00
9
[] 010
() ®)

Figure 2.11. An example of SAT: (a) the dataset, (b) SAT structure with the root o;.

to the furthest object o from p is also stored in each node, i.e., for the root node,
max,ex {d(p, 0)}. In conventional terminology, it is the covering radius 7°.

As argued in [Navarro, 2002], the construction of N (p) is NP-complete, so
a heuristics is proposed which builds the set N(p) in a way which may not be
minimal. The method of selecting the set of neighbors influences the shape of
the resulting tree. When the set is not minimal the fanout of the tree increases,
which impacts upon search costs. The heuristics starts with an object p, a set
S = X \ {p}, and initially empty set N (p). We first sort the members of S
with respect to their distance to p. Next, we pick an object o from S and add
it to N(p) if it is closer to p than any other object in N(p). In this fashion, we
incrementally construct a suitable set of neighbors.

The range search algorithm for the query R(q, r) starts at the root node and
traverses the tree, visiting all non-discardable subtrees. Recall that at the node
p, we have the set of all neighbors N (p). The algorithm first finds the closest
object o, € N(p)U{p} to g. Then, it discards all subtrees o4 € N(p) such that

d(g,04) > 2r + d(q, 0c). (2.3)

Such a pruning criterion is correct and is a consequence of Lemma 1.4 (pg. 34)
with substitutions p; = o4 and py = o,. In particular, we get

(Q7 Od) — d(q’ OC)

d
max{ 5

,0} < d(g,0).

Providing that d(q, o) < r (the range query constraint) and ¢ is closer to o than
to og we get (d(g, 04) — d(g,0c))/2 < r. The branch o4 can easily be pruned if
(d(g,04) — d(g,0c))/2 > r, which is exactly what we desired.

The reason we select the closest object o, to g is we want to maximize the
lower bound of Lemma 1.4. When the current node is not the root of tree,
we can even improve the pruning effect. Figure 2.12 depicts a sample SAT

Survey of existing approaches 87

Figure 2.12. A sample of the SAT structure.

with root ¢, current node p (with neighbors p1, p2, p3), and query object gq. The
dashed lines represent the boundaries between Voronoi cells of the first level of
the SAT. The dotted lines depict the same for the second level. Assuming the
current node is p, the algorithm presented above selects p among {p, p1, p2, p3 }
as the closest object to g, even though the object sg is closer. If we choose
sg as the closest object, we further strengthen the pruning effect. However,
this requires modifying the procedure for picking the closest object as follows:
Select the closest object o, from p’s ancestor, including its neighbors and their
associated neighbors, i.e., 0c € [Upea(p) (N (0) U {0}). Here, A(p) consists
of the ancestors of p and its neighbors — in the figure, A(p) = {¢t,p, s,u,v}.
Finally, the covering radius r¢ of each node is used to further reduce search
costs. We do not visit a node p if d(q, p) > r° + r. This expression is derived
from the lower bound in Lemma 1.2 (pg. 31) with r; = 0, r;, = r¢ and from the
fact that d(q, o) < r. The search algorithm is correct and returns all qualifying
objects regardless of the strategy of selecting the closest object o.. In other
words, the strategy only influences the efficiency of pruning, see Equation 2.3.

The tree is built in O(nlogn/loglogn) time, takes O(n) space and its
search complexity is @(nl_e(l/ loglog ”)). The SAT is designed as a static
structure. More details can be found in [Navarro, 1999, Hjaltason and Samet,
2003a, Navarro, 2002]. A dynamic version of SAT is presented in [Navarro and
Reyes, 2002].

4.4 M-tree

A dynamic structure called the Metric Tree (M-tree) is proposed in [Ciaccia
et al.,, 1997b]. It can handle data files that change size dynamically, which
becomes an advantage when insertions and deletions of objects are frequent.
In contrast to other metric trees, the M-tree is built bottom-up by splitting its
fixed-size nodes. Each node is constrained by sphere-like (ball) regions of the
metric space. A leaf node entry contains an identification of the data object,

88 SIMILARITY SEARCH

its feature value used as an argument for computing distances, and its distance
from a routing object (pivot) that is kept in the parent node. Each internal node
entry keeps a child node pointer, the covering radius of the ball region that
bounds all objects indexed below, and its distance from the associated pivot.
Obviously, the distance to the parent pivot has no meaning for the root. The
pruning effect of search algorithms is achieved by using the covering radii and
the distances from objects to their pivots in parent nodes.

Dynamic properties in storage structures are highly desirable but typically
have a negative effect on performance. Furthermore, the insertion algorithm of
the M-tree is not deterministic, i.e., inserting objects in different order results
in different trees. That is why the bulk-loading algorithm has been proposed
in [Ciaccia and Patella, 1998]. The basic idea of this algorithm works as follows:
Given a set of objects, the initial clustering produces & sets of relatively close
objects. This is done by choosing & distant objects from the set and making
them representative samples. The remaining objects get assigned to the nearest
sample. Then, the bulk-loading algorithm is invoked for each of these k sets,
resulting in an unbalanced tree. Special refinement steps are applied to make
the tree balanced.

The idea of M-trees was later extended by [Traina, Jr. et al., 2000b] in
a metric tree structure called the Slim-tree. In order to get control over the
overlap between metric regions, the fat-factor is defined and systematically
used. The concept of fat-factor has been described in detail in Section 10.4 of
Chapter 1. Slim-trees also use new insertion and split algorithms which result
in improved performance. Slim-trees and many other variants of M-trees are
described in Chapter 3.

4.5 Similarity Hashing

Similarity Hashing (SH), as proposed in [Gennaro et al., 2001] is built upon a
completely different principle. It is a multi-tier hashing structure, consisting of
search-separable sets on each tier, organized in buckets. The structure supports
easy insertion and bounded search costs, because at most one bucket need
to be accessed at each level for range queries up to a pre-defined value of the
search radius. At the same time, the number of distance computations is always
significantly reduced by the use of pre-computed distances obtained at insertion
time. Buckets of static files can be arranged in such a way that I/O costs never
exceed the cost of scanning a compressed sequential file. Experimental results
demonstrate the performance of SH is superior to other available tree-based
structures.

The similarity hashing approach is exploited in the so-called the D-index
structure [Dohnal et al., 2003a]. The D-index applies excluded middle parti-
tioning to hashed organizations. In contradistinction to VPF, navigation along
the tree branches is unnecessary, and each storage bucket is directly accessible.

Survey of existing approaches 89

In principle, the concept of similarity hashing is not necessarily restricted to
the excluded middle partitioning principle. [Dohnal et al., 2001] define another
three p-split functions that are able to achieve the same effect, i.e., to produce sets
separable up to a pre-defined distance radius p. Based on well-known geometric
concepts, these methods are called the elliptic, hyperbolic, and pseudo-elliptic
p-split functions. The second section of Chapter 3 deals with the D-Index and
its variants suitable for similarity joins, and further extends the description of
similarity hashing.

5. Approximate Similarity Search

Some applications can benefit from a very fast response to similarity queries
even when it is obtained at the expense of precision in results. The fundamental
concepts have already been discussed in Section 9 of Chapter 1. In the following,
we survey some interesting approaches that have been proposed in the literature.

First, we briefly cover certain approximation techniques that exploit space
transformations. Then we provide a more extensive presentation of techniques
which reduce the subset of data that must be examined. Most of these techniques
were originally applied to vector spaces, but some can also be used in generic
metric spaces.

5.1 Exploiting Space Transformations

Space transformations are convenient to use for approximate similarity search.
This has already been mentioned in Section 9 of Chapter 1. Obviously the trans-
formations must satisfy the constraints described in Section 8 of Chapter 1. The
general strategy is as follows: First, the original space is transformed. Then
all search requests are executed in the projected space. Some false hits may be
returned — but approximate similarity search algorithms do not apply the final
cleansing phase which is necessary for obtaining exact results.

An approach to dimensionality reduction specifically designed for approxi-
mate similarity searching has been proposed in [Egecioglu and Ferhatosman-
oglu, 2000]. The authors propose a dimensionality reduction technique that
offers an easy way to compute the inner product between vectors approxi-
mately. Given a vector 2 = (z1,. .., 24), let 1p(Z) denote L, norm to the p-th
power. Then ¢,(2) = (|| Z |lp)? = [Lp(Z,0)]?, where 0 = (0,...,0). The
inner product of two vectors < z,y > can be approximated with the estimate
of its m-power as < Z, § >~ b1Y1(Z)Y1(¥) + . - . + b ¥m (&) Ym (¥), where

m < dand by,...,b, are parameters that should be tuned to obtain a good
approximation. This technique saves disk space by storing the m-dimensional
vector (¢1(Z), ..., ¥m(Z)) instead of the d-dimensional vector Z, given that

the approximate inner product can be computed using it. It also allows the

90 SIMILARITY SEARCH

Euclidean distance || £ — ¥/ ||2 to be also approximated, given that

| =7 lla= V(&) + ¢2(i) —2 < &, 7> .

In [Ogras and Ferhatosmanoglu, 2003], this approximation method is further
refined as follows: The d-dimensional space is divided into orthogonal sub-
spaces S1, . . . , S5 each having | dimensions, [= d/s. Let 2 P; be the projection
of vector Z in the subspace S;. The Euclidean distance between & and ¢/ can be
computed exactly as || Z—§ ||o=|| ZPi—§P1 |2 +... + || ZPs—§Ps ||2. Ifthe
individual || ZP; — §P; ||2 are separately approximated using the approximate
inner product technique, the approximation of the entire Euclidean distance
which results is more precise. The authors note that the basic inner product
approximation retains information on the magnitude of vectors only. A refined
technique, also based on the space decomposition, is able to additionally retain
information about the shape of approximated vectors, i.e., their direction.

A further approach to space transformation is presented in [Weber and
Bohm, 2000], based on so-called Vector Approximation files, VA-files. The
VA-file [Weber et al., 1998] reduces the size of multi-dimensional vectors by
quantizing the original data objects. It demands a nearest neighbor search per-
formed in two steps. Initially, the approximated vectors are scanned to identify
candidate vectors. Then, in the second step, the candidate vectors are visited
in order to find the actual nearest neighbors. The approximate search vari-
ant on this algorithm basically omits the second step of the exact search. A
modification of the VA-files approach has been proposed in [Ferhatosmanoglu
et al., 2000] in which the VA-file building procedure is improved by initially
transforming the data into a more suitable domain using the Karhunen-Loeve
transform, KLT. An approximate search algorithm based on the modified VA-
file approach is proposed in [Ferhatosmanoglu et al., 2001]. The performance
improvement offered by techniques based on VA-files is significant. However,
they are applicable to vector spaces only.

A final approach which falls into this category is FastMap [Faloutsos and Lin,
1995]. This technique is also suitable for generic metric spaces, provided we
have k feature-extraction functions which transform the metric space into a k-
dimensional space. A similar technique which is, however, applicable directly
to metric spaces is called MetricMap {Wang et al., 2000] and has already been
discussed in Section 8.3 of Chapter 1.

5.2 Approximate Nearest Neighbors with BBD Trees

Suppose we have a query object ¢ and a dataset X represented in a vector
space whose distances are measured by Minkowski distance functions. Arya
et al. [Arya et al., 1998] propose an approximate nearest neighbor algorithm
which guarantees to find (7 +¢)-k-approximate-nearest-neighbors. Specifically,
it retrieves k objects whose distances from the query are at most 1 + € times

Survey of existing approaches 91

Figure 2.13. Overview of the approximate nearest neighbors search algorithm using BBD trees.

larger than that of the k-th actual nearest neighbor of ¢. The time complexity
of this algorithm is O(klogn), where n is the size of the dataset X. The
parameter e is used to control the tradeoff between the efficiency and quality of
the approximation. The higher the value of e, the higher the performance and
€rTor.

As its underlying indexing structure, the algorithm uses the Balanced Box-
Decomposition tree (BBD) that is a variant of the Quad-tree [Samet, 1984] and
is similar to other balanced structures based on box-decomposition [Bern et al.,
1993, Bespamyatnikh, 1995, Callahan and Kosaraju, 1995]. A property of the
BBD tree is that regions associated with nodes which have the same parent do
not overlap. Node regions are recursively repartitioned until they contain only
one object, thus every region associated with a leaf node contains just a single
object. The tree has O(n) nodes and is built in O(dn logn) time, where d is
the number of dimensions of the vector space.

The nearest neighbor algorithm associated with this data structure proceeds
as follows: Given a query object g, the tree is traversed and the unique leaf node
associated with the region containing the query is found in O(logn). At this
point, a priority search is performed by enumerating leaf regions in increasing
order of distance from the query object. The distance from an object o to a
region is computed as the distance of o to the closest point that can be contained
in the region. When a leaf region is visited, the distance of the associated object
from ¢ is measured and the % closest points seen so far are recorded. Let us call
okA the current k-th closest point. The algorithm terminates when the distance
from g to the region of current leaf is larger than d(g, of'), that is, the current
region cannot contain objects whose distance from the query object is shorter
than that of oﬁ. Since all remaining leaf regions are more distant from the
current region, the k objects retrieved so far are the k nearest neighbors to q.

92 SIMILARITY SEARCH

In contrast, the approximate nearest neighbor algorithm uses a stop condition
to terminate the search prematurely. Specifically, the algorithm stops as soon
as the distance to the current leaf region exceeds d(g,04)/(1 + €). It is easy
to show that under these circumstances, o,’;‘ is the (1 + €)-k-th-approximate-
nearest-neighbor. To clarify the behavior of the precise versus approximate
nearest neighbor search algorithms, look at Figure 2.13, in which data objects
are represented as black spots and a query 1N N(q) is posed. Each object is
included in a rectangular region associated with a leaf node. Given a near-
est neighbor query 1N N(g), every region is identified by a number assigned
incrementally and based on the distance of the region to the query object q.
Thus, the region containing ¢ itself is assigned the value 1, while the region
farthest away is labeled 10. The algorithm starts to search in Region 1 for a
potential nearest object to q. The figure illustrates the situation in which Region
3 has been accessed in the current stage of execution, and the object o found
as the current closest object. The circumference is indicated as having radius
d(q,0?). The precise algorithm will continue accessing regions that overlap
the circumference and stop only after accessing Region 10, which contains
the actual nearest neighbor. The approximate algorithm, by contrast, accesses
only those regions which overlap the dotted circumference whose radius is
d(q,0%)/(1 + €). Therefore, it terminates after accessing Region 8, missing
the actual nearest neighbor.

The priority search can be performed in O(mlogn), where m stands for
the number of regions visited. The upper bound on m depends only on the
dimensionality d, € of the space and the number of nearest neighbors k, for any
Minkowski metric, and is defined as 2k + [1 + 6d/e]?. Provided that d and
e are fixed, the algorithm finds the (1 + ¢€)-k-approximate-nearest-neighbors in
O(klogn) time.

Note that upper bound on m is independent of the dataset size n. How-
ever, it depends exponentially on d, so this algorithm is feasible only in low-
dimensional vector spaces.

5.3 Angle Property Technique

Other two vector-space-only techniques for reducing the number of nodes
accessed during nearest neighbor searches are proposed in [Pramanik et al.,
1999a, Pramanik et al., 1999b]. The chief novelty of these techniques lies in
their exploitation of angles formed by objects contained in a ball region, the
center of this region and a query object (see Figure 2.14). These techniques have
been successfully applied to SS-trees [White and Jain, 1996]. However, they are
generally applicable to any access method for vector spaces which partitions the
data space, restricts groups of objects with ball regions, and organizes regions
hierarchically.

Survey of existing approaches 93

q

Figure 2.14. An angle between objects contained in a ball region and a query object ¢ with
respect to the center p of the ball region.

The heuristics employed in the search algorithm and proposed in [Pramanik
etal., 1999a, Pramanik etal., 1999b] is justified by the following three properties
of datasets in high-dimensional vector spaces:

= Asdimensionality rises, the points in a ball region become almost equidistant
from the region’s center.

m With the increasing dimensionality, the radii of smaller child ball regions
grow nearly as fast as the radius of the parent ball region, and thus their
centers also tend to be close to each other.

= Given a query point and a set of points covered by a ball region, the angle
between the query point and any point in the ball region will fall into an
interval of angles around 90 degrees. As dimensionality grows, this interval
will decrease.

Assuming regions are hierarchically structured, the algorithm uses an approx-
imate pruning condition to decide whether a region should be accessed or not.
In [Pramanik et al., 1999a], it is suggested that a region be inspected if at least
one of the following conditions holds:

m The node corresponding to the region is an internal node.

» The center of the region’s parent is contained in the ball region defined by
the query object and the current candidate set of nearest neighbors.

m Theregion’s center resides in the half of the parent’s ball region closer to the
query object, i.e., the angle between the center of the region and the query
object with respect to the center of the parent’s ball region is less than 90
degrees.

94 SIMILARITY SEARCH

Figure 2.15. 1If the query region does not intersect promising portions of the data region, the
region is discarded.

On reaching a leaf node, all objects of the leaf are examined and directly com-
pared to the query object. If an object is closer to the query object than the
current candidate for the k-th nearest neighbor, it is added to the response,
superseding the k-th nearest neighbor.

This algorithm is, however, unable to trade performance with quality of
results. In [Pramanik et al., 1999b], the algorithm is further improved by intro-
ducing a threshold angle 6 to allow such a trade-off. Here is a brief sketch of
how the improvement comes about:

According to the properties listed above, the area where qualifying objects
are most likely to be found is close to the border of the ball region, forming an
angle of about 90 degrees with the query object. Assume 6 indicates the value
of such an angle and the angle « is obtained by considering the query object
g, the region’s center p and the intersection of the query region and the region
being examined (see Figure 2.15). If the angle « is greater than 8, the region is
accessed, otherwise it is excluded ~ this is the situation depicted in the figure.
Notice that if § = 0 all regions overlapping the query region are accessed and

_the query response-set is determined exactly.

5.4 Clustering for Indexing

The Clindex technique (Clustering for indexing) performs approximate sim-
ilarity searches in high-dimensional vector spaces using an index structure sup-
ported by a clustering technique [Li et al., 2002]. The Clindex partitions the
dataset into similar clusters, i.e., into clusters containing elements close to each

Survey of existing approaches 95

other in the space. Each cluster is represented by a separate file and all files are
sequentially stored on a disk.

The Clindex technique uses a new algorithm for building clusters of objects.
The algorithm starts by dividing each dimension of the d-dimensional vector
space into 2" segments, so every segment can be identified using an n-bit
number. This process forms (2")¢ cells in the data space. The clustering
algorithm aggregates these cells into clusters as follows: Each cell is associated
with the number of objects it contains. The algorithm starts with the cells
containing the largest number of objects and checks to see if they are adjacent
to other clusters. If a cell is not adjacent to any cluster it is used as the seed
for a new cluster. If a cell is adjacent to just one cluster, it is attached to that
cluster. Finally, if the cell neighbors more than one cluster a special heuristics
is applied to decide whether the clusters should be merged or to which cluster
the cell belongs. This process is iterated until the remaining cells contain fewer
objects than a specified threshold. Underfilled or empty cells are grouped in an
outlier cluster and stored separately.

Once the clusters are obtained, an indexing structure is built for speeding
access to them. The index is a simple encoding scheme which maps an object
toacell and acell toits corresponding cluster. The associations between clusters
and disk files are also kept.

Approximate similarity search is processed by first identifying the cluster
to which the query object belongs. This is obtained by determining the cell
which covers the query object and then identifying the corresponding cluster.
If the query’s cell is empty, a cluster cannot be obtained, so a cluster having the
centroid closest to the query object is located. Once a cluster is identified, the
file corresponding to it is sequentially searched, and objects qualifying for the
query are returned. Of course, this search algorithm is approximate, because
only one cluster is examined. In fact, it might happen that objects in non-
selected clusters might also qualify for the query, so these objects are falsely
dismissed by the algorithm.

5.5 Vector Quantization Index

Another approach that uses a clustering technique to organize data and pro-
cess similarity queries approximately is the Vector Quantization Index (VQ-
index) [Tuncel et al., 2002]. The VQ-index is based on reducing both the
dataset and the size of data objects at the same time. The basic idea is to orga-
nize the dataset into subsets which are not necessarily disjoint, and then reduce
the size of data by compression. The approximate search algorithm first iden-
tifies the subset to be searched. Next, it goes through its compressed content
and qualifying objects are reported.

The dataset is grouped into subsets by exploiting a query history in the
following way: Queries from the record of requests posed in the past are divided

96 SIMILARITY SEARCH

into m clusters C; (¢ = 1,...,m) using the k-means algorithm [MacQueen,
1967, Duda and Hart, 1973, Kaufman and Rousseeuw, 1990]. If the query
history is too long, a sample is used instead. A subset .S; of the entire dataset
corresponding to each cluster C; is defined as follows:

5= U iVN(a),
q€C;

where kN N (g) obviously represents the k objects of the dataset nearest to g.
Each subset .S; contains elements of the dataset close to queries in the cluster
C;. Thus an element may belong to several different subsets. The overlap of
subsets S; versus index performance can be tuned by the choice of m and k.
The reduction in object size is obtained using the vector quantization tech-
nique [Gresho and Gray, 1992]. The objective of the vector quantization is
to map an arbitrary vector from the original d-dimensional space into a repro-
duction vector. Reproduction vectors form a set of n representatives from the
original space. The process of mapping can be decomposed into two modules —
an encoder Enc and a decoder Dec. The encoder transforms the original space

R? into a set {1,...,n} of numbers, thus each vector z € R? gets assigned
an integer Enc(z) = ¢ (1 < ¢ < n). The decoder, by contrast, maps the set
{1,...,n} to the set of n reproduction vectors, so-called code-vectors, which

in fact, approximate all possible vectors from RY, i.e., Dec(c) = z, z € R%.
For each subset .S;, a separate encoder Enc; and decoder Dec; is defined. S;
is compressed by representing it with the set S{™¢ = {Enc;(z)|Vz € S;}. The
decoder function Dec; is used to obtain the reproduction vectors corresponding
to the elements in S{"¢, i.e., the approximation of the original elements in S;.
Here is an example: Having a fixed encoder Enc, several vectors can be
mapped to a single number c¢. The best value for the corresponding code-
vector is one minimizing its average distance to all vectors mapped to ¢. In
this way, a suitable decoder function can be obtained. An approximate nearest
neighbors query is processed by locating the cluster C; nearest the query. Next,
by applying the decoder function Dec; on S, the set S; is reconstructed and
sequentially searched for k nearest neighbors. A certain level of imprecision is
present at both stages. In the first stage, it cannot be guaranteed that the selected
subset S; contains all objects which qualify for the given query. In the second
stage, the vectors contained in the re-created set S; might have distances to the
query object significantly different from the distances of the original vectors.
The approximation quality of the vector quantization technique depends on the
number n of code-vectors. In practice, the number n is much smaller than the
total number of vectors. Initially, the set of code-vectors is very small and huge
collisions are solved by replacing the code-vector in question with two new
vectors, improving the quality of the quantization. However, the experiments
presented in [Tuncel et al., 2002] reveal the VQ-index is very competitive and

Survey of existing approaches 97

outperforms other techniques based on linear quantization by factor of ten to
twenty, while retaining the same precision in the response.

5.6 Buoy Indexing

Another approach to approximate nearest neighbor search which is based on
clustering is presented in [Volmer, 2002]. In this proposal, the dataset is parti-
tioned into disjoint clusters bounded by ball regions. A cluster is represented
by an element called a buoy. Clusters are gradually built by assigning objects
to the cluster with the closest buoy. Radii of ball regions are defined as the
distance between the buoy of a cluster and the furthest element in that cluster.
This iterative optimization procedure attempts to find buoys of clusters so that
radii of ball regions of these clusters are minimized. However, any other clus-
tering algorithm that organizes the space into disjoint clusters bounded by ball
regions can be used with the approximate search algorithm described below.

Imagine a dataset X with clusters C,...,C, C X, where each C; is
bounded by a ball region R; = (p;,r;) and p; denotes the cluster’s buoy.
A precise k-nearest neighbors search algorithm accesses the clusters in the
order determined by the distance between the query and the cluster’s center,
starting with the closest. The qualifying objects from every cluster visited are
determined. This process is repeated until no better objects can be found in
remaining clusters. The stop condition can be formalized as

stop if d(q, o) + r; < d(q,p;), (2.4)

where ¢ is the query object of a kN N(q) query, o is the current k-th nearest
neighbor, and p; and r; form a ball region R; = (p;,7;) of a cluster to be
accessed in the next step.

The proposed approximation strategy is to reduce the amount of data accessed
by limiting the number of accessed clusters, i.e., modifying the stop condition.
A parameter f (0 < f < 1) is introduced which specifies the clusters to be
accessed. Specifically, the approximate kNN search algorithm stops when
either Equation 2.4 holds, or the ratio of clusters accessed exceeds f. This
technique guarantees [f - n] clusters will be accessed at a maximum, where n
stands for the total number of clusters.

The results of experiments reported in [Volmer, 2002} imply query execution
may be about four times faster than a linear scan, with about 95% recall ratio.
The advantage of this method is that it is not limited to vector spaces only but
can be applied to metric spaces as well.

5.7 Hierarchical Decomposition of Metric Spaces

There are other techniques beyond those mentioned for approximate similar-
ity searching which have been especially designed for metric spaces. In what
follows, we briefly introduce the basics of these techniques. However, in view

98 SIMILARITY SEARCH

of their prominent role in the field of approximate similarity search, they are
more extensively discussed in Chapter 4.

5.7.1 Relative Error Approximation

A technique employing a user-defined parameter as an upper bound on ap-
proximation error is presented in [Zezula et al., 1998a, Amato, 2002]. In par-
ticular, the parameter limits the relative error on distances from the query object
to objects in the approximate result-set with respect to the precise results. The
proposed technique can be used for both approximate nearest neighbor and
range searches in generic metric spaces. Assuming a dataset organized in a tree
structure, the approximate similarity search algorithm decides which nodes of
the tree can be pruned even if they overlap with the query region. At the same
time, it guarantees the relative error obtained on distances does not exceed
the specified threshold. On a similar basis, nearest neighbor queries retrieve
(1+€)-k-approximate-nearest-neighbors. Details of this technique are given in
Section 1 of Chapter 4.

5.7.2 Good Fraction Approximation

The technique presented in [Zezula et al., 1998a, Amato, 2002] retrieves k
approximate nearest neighbors of a query object by returning & objects that
statistically belong to the set of [(! > k) actual nearest neighbors of the query
object. The value [is specified by the user as a fraction of the whole dataset.
By using the overall distance distribution, the approximate similarity search
algorithm stops when it determines that £ objects currently retrieved belong to
the specified fraction of objects nearest to the query. This method is discussed
in detail in Section 2 of Chapter 4.

5.7.3 Small Chance Improvement Approximation

An approximate nearest neighbor search strategy proposed in [Zezula et al.,
1998a] and later refined in [Amato, 2002] is based upon the pragmatic observa-
tion that similarity search algorithms for tree structures are defined as iterative
processes where the result-set is improved in each iteration until no further im-
provement can be made. As for k-nearest neighbors queries, algorithms refine
the response, which means that & objects retrieved in the current iteration will
be nearer than those in the previous one. This can be explicitly measured by the
distance between the current k-th object and the query object. Such a distance
decreases rapidly in first iterations and it gradually slows down and remains
almost stable for several iterations before the similarity search algorithm stops.
The approximate similarity search algorithm exploits this behavior and stops
the search algorithm when the reduction of distance to the current k-th object

Survey of existing approaches 99

slows down. A detailed description of this approach is given in Section 3 of
Chapter 4.

5.7.4 Proximity-Based Approximation

A technique that uses a proximity measure to decide which tree nodes can
be pruned even if their bounding regions overlap the query region is proposed
in [Amato et al., 2003, Amato, 2002]. This has already been discussed in
Section 10.2 of Chapter 1 from a theoretical point of view. When the proximity
of a node’s bounding region and the query region is small, the probability that
qualifying objects will be found in their intersection is also small. A user-
specified parameter is employed as a threshold to decide whether a node should
be accessed or not. If the proximity value is below the specified threshold, the
node is not promising from a search point of view, and thus not accessed. This
method is defined for both nearest neighbor and range queries and is discussed
in detail in Section 4 of Chapter 4.

5.7.5 PAC Nearest Neighbor Search

A technique called Probably Approximately Correct (PAC) nearest neighbor
search in metric spaces is proposed in [Ciaccia and Patella, 2000b]. The ap-
proach searches for a (1+¢)-approximate-nearest-neighbor with a user-specified
confidence interval. The proposed algorithm stops execution prematurely when
the probability that the current approximate nearest neighbor is not the (1+¢)-
approximate-nearest-neighbor falls below a user-defined threshold §. Details
of the approach are given in Section 5 of Chapter 4.

2 Springer
http://www.springer.com/978-0-387-29146-8

Similarity Search

The Metric Space Approach

Zezula, P.; Amato, G.; Dohnal, V.; Batko, M.
20086, XV, 220 p., Hardcover

ISBEN: @78-0-387-20146-8

