
Chapter 2 

SURVEY OF EXISTING APPROACHES 

In this chapter, we give an overview of existing indexes for metric spaces. 
Other relevant surveys on indexing techniques in metric spaces can be found 
in [Chavez et al., 2001b] or [Hjaltason and Samet, 2003a]. In the interests of 
a systematic presentation, we have divided the individual techniques into four 
groups. In addition we also present some techniques for approximate similar­
ity search. Specifically, techniques which make use of ball partitioning will 
be found in Section 1, while Section 2 describes indexing approaches based 
on generalized hyperplane partitioning. A significant group of indexing meth­
ods computes distances to characteristic objects and then uses these results to 
organize the data. Such methods are reported in Section 3. In order to maxi­
mize performance, many approaches synergically combine several of the basic 
principles into a single index. The most important of these hybrid approaches 
are reported in Section 4. Finally, Section 5 treats the important topic of ap­
proximate similarity search, which trades some precision in search results for 
significant improvements in performance. 

1. Ball Partitioning IMethods 

The advantage of ball partitioning is that it requires only one pivot and, 
provided the median distance dm is known, the resulting subsets contain the 
same amount of data. Such a simple concept has naturally attracted a lot of 
attention and resulted in numerous indexing approaches being defined. In the 
following, we survey the most important of them. The first three structures 
assume discrete metric functions with a relatively small domain of values. The 
other methods can also be applied for continuous functions. 
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1.1 Burkhard-Keller Tree 
Probably the first solution to support searching in metric spaces was that 

presented in [Burkhard and Keller, 1973]. It is called the Burkhard-Keller Tree, 
BKT. The tree assumes a discrete distance function and is built recursively in 
the following manner: From an indexed dataset X, an arbitrary object p £ X 
is selected as the root node of the tree. For each distance i > 0, subsets 
Xi = {o e X, d{o^p) — i} are defined as groups of all objects at distance i 
from the root p. A child node of root p is built for every non-empty set Xi. 
All child nodes can be recursively repartitioned until it is no longer possible to 
create a new child node. When a child node is being divided, some object Oj 
from the set Xi is chosen as a representative of the set. A leaf node is created for 
every set Xi provided Xi is not repartitioned again. A set Xi is no longer split 
if it contains only a single object. Objects chosen as roots of subtrees (stored 
in internal nodes) are called pivots. 

The algorithm for range queries is simple. The range search for query R{q^r) 
starts at the root node of the tree and it compares its object p with the query 
object q. If p satisfies the query, that is if d(p, q) < r, the object p is returned. 
Subsequently, the algorithm enters all child nodes Oi such that 

max{d{q^p) — r^Gi] <i < d{q^p) + r (2.1) 

and proceeds recursively downward. Observe that Equation 2.1 cuts out some 
branches of the tree. The inequality is a direct consequence of the lower bounds 
provided by Lemma 1.2 (pg. 31). In particular, by applying the lemma with 
ri = i and r^ — i, we find that the distance from q to an object o in the inspected 
tree branch is at least max{d{q^ p) — i^i — d{q^ i^), 0}. Thus, we visit the branch 
i if and only if max{d{q^p) — i^i — d{q^p)^0} < r. 

Figure 2.1b shows an example where the BKT is constructed from objects 
of the space illustrated in Figure 2.1a. Objects p, oi, and 04 are selected as 
roots of subtrees, so-called pivots. The range query is given by the object 
q and radius r = 2. The search algorithm discards some branches and the 
accessed branches are emphasized in the figure. Obviously, if the radius of 
range query grows the number of accessed subtrees (branches) increases. This 
leads to higher search costs, which are usually measured in terms of the number 
of distance computations. During the range query evaluation, the algorithm 
traverses the tree and determines distances to pivots in internal nodes. Thus, the 
increasing number of accessed subtrees leads to a growing number of distance 
computations because pivots in individual nodes are different. 

BKTs are linear in space 0{n) and the construction complexity measured 
in terms of the number of distance computations is O(nlogn). Search time 
complexity, also measured in terms of distance computations, is O(n^), where 
a is a real number satisfying 0 < a < 1 which depends on the search radius 
and the structure of the tree, see [Chavez et al., 2001b]. 
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Figure 2.1. (a) An example of a metric space and a range query, (b) BKT built over the sample 
space. 

1,2 Fixed Queries Tree 
The Fixed Queries Tree, FQT, originally presented in [Baeza-Yates et al., 

1994], is a modification of the BKT. In contrast to BKTs, where pivots on 
individual levels are different. Fixed Queries Trees use a single pivot for all 
nodes at the same level (see Figures 2.1b and 2.2a). All objects in a given 
dataset X are stored in leaves and internal nodes are used for navigation during 
the search (or insertion). The range search algorithm is the same as for the BKT. 
The advantage of this structure is a reduced number of distance computations, 
because even if more than one subtree has to be accessed to evaluate a query, 
only one distance computation between the query object and a specific pivot 
per level is computed. The experiments presented in [Baeza-Yates et al., 1994] 
confirm that FQTs need fewer distance computations than BKTs. 

Figure 2.2a shows an example of an FQT built over the data of Figure 2.1a 
with objects p and 04 as pivots on corresponding levels. Observe that all objects 
are stored in leaves, including the objects selected as pivots. The branches 
highlighted represent the process that evaluates the query R{q^ 2). 

The space complexity is superlinear because the objects selected as pivots 
are duplicated, so the complexity varies from 0{n) to ö{n log n). The number 
of distance computations required to build the tree is 0{n log n). The search 
complexity is 0{n^), where a in the range 0 < a < 1 depends on the query 
radius and the object distribution in the metric space. 

A variant of the FQT, called the Fixed-Height Fixed Queries Tree, FHFQT, 
is proposed in [Baeza-Yates et al., 1994, Baeza-Yates, 1997]. This structure has 
all its leaf nodes at the same level, i.e., leaves are at the same depth h. In other 
words, shorter paths are extended by additional paths. The enlargement of the 
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Figure 2.2. Examples of (a) FQT and (b) FHFQT built over objects of the data space depicted 
in Figure 2.1a. 

tree can actually improve search performance, because the search process in 
the extended paths can be stopped before reaching the leaf. Note the distance 
computation to pivots for the extended paths does not typically imply extra 
costs, because such distances are computed due to the search needs of other 
(non-extended) paths. If we increase the height of the tree by thirty, we only 
add thirty more distance computations for the entire similarity search. We 
may introduce many new node traversals, but these are very cheap operations. 
However, thirty pivots filter out many objects, so the final candidate set is much 
smaller. This approach to filtering is explained in Section 7.6 of Chapter 1. For 
convenience, see Figure 2.2b where an example of the FHFQT is provided. 

The space complexity of the FHFQT is superlinear and lies somewhere be­
tween 0{n) and 0{nh), where h is the height of the tree. The FHFQT is 
constructed with 0{nh) distance computations. Search complexity is claimed 
to be constant 0{h), that is the number of distance evaluations computed to h 
pivots. The extra CPU time is proportional to the number of traversed nodes 
and remains 0{n^), where 0 < a < 1 depends upon the query radius and the 
indexed space. The extra CPU time is spent on comparing distance values (in­
tegers) and in traversing the tree. In practice, the optimal tree height h = \ogn 
cannot always be achieved due to the space limitations. 

1.3 Fixed Queries Array 
The Fixed Queries Array, FQA, is presented in [Chavez et al., 2001a, Chavez 

et al., 1999b]. Though the structure of FQA is strongly related to the FHFQT, 
it is not a tree structure. First, the FHFQT with height h is built on a given 
dataset X. If the root-to-leaf paths of the FHFQT are traversed in order from 
left to right and placed in an array, the result is the FQA. Each column consists 
of h numbers representing distances to every pivot utilized in the FHFQT. In 
fact, the sequence of h numbers is the path from the root of FHFQT to its leaf. 
The FQA structure simply stores the database objects lexicographically sorted 
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Figure 2.3. (a) An example of the FHFQT tree, (b) FQA built from the FHFQT. 

by this sequence of distances. Specifically, the objects are initially sorted with 
respect to the first pivot and those at the same distance are sorted with respect to 
the second pivot and so on. For illustration, Figure 2.3b shows the FQA array 
constructed from the FHFQT in Figure 2.3a. 

The range search algorithm is inherited from the FHFQT. Each internal node 
of the FHFQT corresponds to a range of elements in the FQA. Child nodes 
have a range of elements which is a subrange of their parents' range in the 
array. Naturally, there is a similarity between the FQA approach, the suffix 
trees, and the suffix arrays [Frakes and Baeza-Yates, 1992]. Navigation in the 
tree algorithm of the FHFQT is simulated by the binary search through the new 
range inside the current one. 

The FQA is able to use more pivots than the FHFQT, which improves effi­
ciency and search pruning. The authors of [Chavez et al., 2001a] show that the 
FQA outperforms the FHFQT. The space requirements are n • /i • 6 bits, where 
h is the number of bits used to store one distance. The number of distance 
computations evaluated during the search is 0{h). As proved in [Baeza-Yates 
and Navarro, 1998], the extra CPU complexity of the FHFQT is O(n^). The 
FQA has 0{n^\ogn) extra complexity, where 0 < a < 1. The extra CPU 
time is due to the binary search of the array. 

All the search structures presented above (BKT, FQT, FHFQT, and FQA) 
were designed for discrete metric functions, since a separate child is needed 
for any specific distance value. If we apply them to the continuous case, the 
tree degenerates to a flat tree of height one, and the search algorithm in effect 
performs a sequential scan. 

In order to properly transform the continuous case to the discrete, we must 
segment the domain of potential distance values into a small set of subranges. 
Two discretizing schemata for the FQA have been proposed in [Chavez et al., 
1999b, Chavez et al., 2001a]. The former divides the range of possible values 
into slices of identical width, the result being labeled a Fixed Slices Fixed 



72 SIMILARITY SEARCH 

(a) (b) 

Figure 2.4. Examples of range queries: (a) So is not accessed, (b) both subsets must be visited. 

Queries Array. Such partitioning may lead to empty slices where no database 
object is accommodated. This, then, has motivated a more recent approach in 
which the entire range is divided into slices, each containing the same number 
of database objects. In other words, the domain is divided into fixed quantiles. 
The resulting FQA is called the Fixed Quantiles Fixed Queries Array. 

lA Vantage Point Tree 
The Vantage Point Tree (VPT) [Yianilos, 1993] is expressly designed for 

continuous distance functions, but discrete distance functions are also supported 
with virtually no modifications. It is based on the ball partitioning principle 
described in Section 5 of Chapter 1, which divides a set S into subsets ^i and 
S'2 based upon a chosen object p called a vantage point or pivot, and the median 
distance dm from p to the objects in S. Starting with the whole set of objects X 
and recursively applying this partitioning procedure leads to a balanced binary 
tree. Applying the median to divide a dataset into two subsets can be replaced 
by a strategy which instead employs the mean of distances from p to all objects 
in X \ {p}. This method, called the middle point in [Chavez et al., 2001b], may 
yield better performance for high-dimensional vector data. A disadvantage of 
the middle point strategy is that it may produce an unbalanced tree, impacting 
negatively on search algorithm efficiency. 

The search algorithm for a range query i?(g, r) traverses the VPT from root 
to leaves. For each internal node, it evaluates the distance d{q^ p) between the 
pivot p and the query object q. If d{q^ p) < r, the pivot p is reported to output. 
For internal nodes, the algorithm must also decide which subtrees to access. 
Doing so requires establishing lower bounds on the distances from q to objects 
in the left and right subtrees. If the query radius r is less than the lower bound, 
the algorithm does not visit the corresponding subtree. Figure 2.4a provides 
an example of a situation in which the inner ball region need not be accessed, 
whereas Figure 2.4b shows an example in which both subtrees must be checked. 
The lower bounds are established using Lemma 1.2 (pg. 31). More precisely, 
applying the equation and setting vi — Q and rh = dm, we have that the distance 
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Figure 2.5. An example of VPT with two pivots pi and p2'. (a) the 2-D overview and (b) the 
corresponding tree representation. 

from q to any object in the left branch is at least max{d{q^ p)—dm^O}. Likewise, 
setting ri = dm and r/j, = oo we get that the distance from q to an object in the 
right subtree is at least max{dm — d{q^ p), 0}. Thus, we enter the left branch if 
max{d{q^p) — dm^ 0} < r and the right branch if max{dm — d{q^p)^0} < r. 
Note both subtrees can be visited simultaneously. 

The ball partitioning principle applied in VPTs does not guarantee that the 
ball region around pivot p2 will be completely inside the ball region around 
pivot pi, which is the parent ofp2- For convenience, see Figure 2.5 where the 
situation is depicted for a query object q. In general, it is possible that the lower 
bound from q to a. child node is smaller than the lower bound from q to the 
child's parent node, that is 

max{d{q,p2) - dm2,0} < max{d{q,pi) - rfmi,0}. 

But this will not affect the behavior or correctness of the search algorithm -
objects rooted in the subtree ofp2 are not closer than max{d{q^ pi) — dmi, 0}, 
even though the lower bounds may claim the opposite. In other words, objects 
in the left subtree of p2 (the set So) are somewhere in the white area inside the 
ball region of p2 and not in the shaded region (see Figure 2.5). On the other 
hand, objects in the right branch (the set Si) must be in the hatch-marked area 
and not outside the ball region around pi. 

In constructing the VPT, many distance computations between pivots and 
objects are evaluated. For every object o in a leaf, distances are computed to 
each pivot p on the path from root to leaf. This information can be used to 
construct a more efficient search algorithm. The idea is employed in so-called 
VP^ trees, which are variants of VPTs proposed in [Yianilos, 1993]. Distances 
computed during insertion of objects are remembered and stored in the structure 
of the VP^ tree. They are then used in the range search algorithm as follows: 

• if \d{q^p) — d{p,o)\ > r holds, we discard the object o without actually 
computing the distance d{q, o). 
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• if {d{q^ p) + d{p^ o)) <r holds, we directly include the object o in the query 
response set, again without computing the distance d{q^ o). 

Given the distances d{q^p) and d{p^ o). Lemma 1.1 (pg. 29) forms the lower 
and upper bounds of the actual distance between q and o: 

\d{q,p)-d{p,o)\ <d{q,o) < d{q,p) + d{p,o). 

Thus the previous two pruning conditions are in fact direct consequences of 
Lemma 1.1. 

Another variant of the VPT, also proposed in [Yianilos, 1993], is called the 
Yps6 |.j.gg -pî jg |.j.̂ g jg ̂  further extension of the VP^ tree, where each leaf node 
is conceived as a bucket, that is, a unit of storage able to accommodate more 
than one object. 

1.4.1 Multi-Way Vantage Point Tree 

Figure 2.4b shows an elementary situation in which the search algorithm of 
the VPT must enter both subtrees and examine all objects. If such a situation 
occurs in many tree nodes, the global efficiency of the search deteriorates. 
In [Bozkaya and Özsoyoglu, 1997], the authors have tried to approach this 
problem by extending the binary VPT to a fc-ary tree, with k > 2. The tree uses 
k — 1 thresholds (percentiles) dmi r " ^ ^mk-i ^^ place of the single median dm 
to partition the dataset into k subsets via spherical cuts. The modified tree is 
called the Multi-Way Vantage Point Tree, mw-VPT. Unfortunately, experiments 
reveal the performance of mw-VPTs is not always better because the spherical 
cuts become too thin. Take, for example, the case of high-dimensional domains 
where distances between any pair of objects are practically the same. The 
search algorithm leads to more branches of the tree being accessed during 
query execution. If i of A: children of a node have to be searched then i distance 
computations are evaluated at the next level because all distances between the 
query object q and each pivot of the accessed children have to be determined -
the VPT keeps a different pivot for each internal node at the same level. 

Another extension of the VPT is called the Optimistic Vantage Point Tree, 
presented in [Chiueh, 1994]. This paper formulates algorithms for nearest 
neighbor queries and reports exhaustive performance tests on a database of 
image features. 

These VPTs require 0{n) space, the construction time for a balanced tree is 
0{n\ogn), and search time complexity is (9(logn). The author of [Yianilos, 
1993] claims this is only valid for very small query radii - too small to be 
interesting. The construction time of mw-VPT is ö{n\og^n) in terms of 
distance computations. The space complexity is the same, i.e., 0{n). Likewise 
search time complexity is 0{[og^ n). 
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Figure 2.6. (a) An example of bpp function with excluded points emphasized, (b) the VPF 
consisting of two trees. 

1.5 Excluded Middle Vantage Point Forest 
The Excluded Middle Vantage Point Forest, VPF, presented in [Yianilos, 

1999], is another structure based on the ball partitioning principle. The moti­
vation for the VPF comes from the following observation: Though the search 
time of the VPT [Yianilos, 1993] is sublinear, its performance depends upon 
not only the dataset, that is the distance distribution in X, but also on the choice 
of specific query object q. The VPF structure supports the worst-case sublinear 
search time for queries with a fixed radius up to the maximum p, so perfor­
mance does not depend on the query object distribution. The VPF introduces 
a new concept of excluding objects at middle distances by modifying the ball 
partitioning technique. This principle has already been described in Section 5 
of Chapter 1. For convenience, we repeat the key formula below. 

{ Oif d{o,p) <dm- p 
lifd{o,p)>dm + p (2.2) 

2 otherwise 
Figure 2.6a depicts an example of the bpp function, in which a dataset has 
been divided into two sets SQ^SI, with the exclusion set S2 containing objects 
excluded from the partitioning process. A binary tree is built recursively by 
repartitioning ^o and ^ i . The resulting exclusion sets ^2 are used to create 
another binary tree via the same principle. This procedure is repeated, and 
a forest of VPTs is produced. Figure 2.6b provides an example of the VPF. 
The first tree is built on the dataset X. All exclusion sets of the first tree, i.e., 
{S'2,82^82^}, are organized in the second tree. This process continues until 
the exclusion sets are not empty. 

Excluding objects at distances near the threshold dm has the outcome that 
no more than one branch of any internal node must be followed if the query 
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radius is less than or equal to p. The following tree is searched if and only if 
the excluded area must be visited. It is correct to have the search algorithm 
enter only a single subtree (left or right) because every pair of objects (a;, y) 
such that X belongs to the left subtree and y belongs to the right, must be at 
a distance greater than 2p, that is, d(x^ y) > 2p. To prove this, consider the 
definition of the bpp function in Equation 2.2. This implies d{xjp) < dm — p 
and d{y^p) > dm + P- Since the triangle inequality holds between x, y,p, we 
get (i(x, y) + d{x, p) > d{y^ p). Combining these inequalities and simplifying, 
we arrive at the desired formula, d(x, y) > 2p. 

The VPF is linear in 0{n) space, with a construction time of (9(n^~^), where 
0{n^~^) is the number of trees in the VPF. Similarity queries are answered in 
0{in}~^ log n) distance computations. In a parallel environment with 0{n^~^) 
processors, search complexity is logarithmic, (9(logn). The parameter 0 < 
a < 1 depends on p, the dataset, and the distance function. Unfortunately, to 
achieve a greater value of a, the p parameter must be quite small. 

2. Generalized Hyperplane Partitioning Approaches 
In this section, we survey methods based on an approach which is orthog­

onal to ball partitioning. Specifically, we focus on Bisector trees and variants 
on them called the Monotonous Bisector Trees and Voronoi Trees. Next, we 
discuss properties of Generalized Hyperplane Trees. All these techniques share 
a common architecture based upon generalized hyperplane partitioning. 

2.1 Bisector Tree 
Probably the first indexing structure to use generalized hyperplane partition­

ing was the Bisector Tree (BST), proposed in [Kalantari and McDonald, 1983]. 
The BST is a binary tree built recursively over a dataset X as follows: Two 
pivots pi, p2 are selected at each node and a hyperplane partition is applied. Ob­
jects nearer the pivot pi than p2 form the left subtree, while the objects closer to 
P2 create the right subtree. For each of the pivots, covering radii are established 
and stored in respective nodes. The covering radius is the maximum distance 
between the pivot and any object in its subtree. The search algorithm for range 
query i?(g, r) enters a subtree if d(g, p^) — r is not greater than the covering ra­
dius r^ of Pi. Thus, we can prune a branch if the query does not intersect the ball 
centered at pi with covering radius rf. The pruning condition d{qj pi) —r < rf 
is correct because its modification d{q^pi) — r^ < r is a direct consequence of 
the lower bound of Lemma 1.2 (pg. 31) with substitutions ri = 0 and r^ = rf. 
From the definition of the range query, d{q^ 6) is upper-bounded by the query 
radius r. 

A variant of the BST, called the Monotonous Bisector Tree (MBT), has been 
proposed in [Noltemeier et al., 1992b, Noltemeier et al., 1992a]. The idea 
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Figure 2.7. Generalized Hyperplane Tree (GHT): (a) a range query requiring access to both 
subsets of the hyperplane partition, (b) the corresponding structure of the tree. 

behind this structure is that one of the pivots of each internal node other than 
the root node is inherited from its parent node. Specifically, pivots representing 
the left and the right subtrees are copied to the corresponding child internal 
nodes, respectively. This technique results in a structure with fewer pivots, and 
thus fewer distance computations are needed to execute a query. 

BSTs are linear in space 0{n) and require 0{n log n) distance computations 
to construct the tree. Search complexity is not analyzed by the authors. 

An improvement on the BST called the Voronoi Tree (VT) is proposed 
in [Dehne and Noltemeier, 1987]. The VT uses two or three pivots in each 
internal node and also has the property that the covering radii are reduced as 
we move downwards in the tree. This provides better packing of objects in 
subtrees. The author of [Noltemeier, 1989] shows that balanced VTs can be 
obtained using an insertion algorithm similar to that of B-trees [Comer, 1979]. 

2.2 Generalized Hyperplane Tree 
The Generalized Hyperplane Tree (GHT) proposed in [Uhlmann, 1991] is 

very similar to the BST in that both partition the dataset recursively via the 
generalized hyperplane principle. The difference is that the GHT does not use 
covering radii as a pruning criterion during the search operation. Instead, the 
GHT uses the hyperplane between pivots pi and p2 to decide which subtrees 
to visit. Figure 2.7 depicts an example of the GHT. In (a), the partitioning is 
indicated and a range query specified. The corresponding tree structure can 
be seen in (b). At search time, we traverse the left subtree if d{q^pi) — r < 
d{q^P2) + ^' The right subtree is visited if d{q.,pi) + r > d{q^p2) — r holds. 
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Again, note that it is possible to enter both subtrees. Observe also that the first 
inequality comes from Lemma 1.4 (pg. 34) and from the fact that d{q^ o) < r, 
i.e., from the constraint given in the query specification. The second inequality 
is based on the same prerequisites, however. Lemma L4 is used in reverse, that 
is, the assumption about the position of o is (i(o,pi) > d(o,p2)- A modification 
of the GHT that adopts the idea of reusing one pivot from the parent node, 
applied in MBTs, is presented in [Bugnion et al., 1993]. 

The space complexity of GHTs is 0{n) and O(nlogn) distance computa­
tions are needed to construct the tree, the same as with BSTs. Unfortunately, 
search complexity was not analyzed by the authors. [Uhlmann, 1991] argues 
that GHTs should work better than VPTs in high-dimensional vector spaces, 
but no proof is provided. 

3. Exploiting Pre-Computed Distances 
When distance computations become expensive, a sound objective is to re­

duce their number to a minimum. To give efficient answers to similarity search 
queries, [Shasha and Wang, 1990] have suggested using pre-computed distances 
between data objects. For a datafile of n objects, a table of size n x n is used to 
store distances between data objects once computed. Pairwise distances which 
are not stored are estimated as intervals using the pre-computed distances. Dis­
tances unknown in advance will be, e.g., those from a query object to database 
objects. This technique of storing and using pre-computed distances may be 
effective for datasets of small cardinality. But space requirements and search 
complexity become overwhelming for larger files. 

In this section, we discuss other techniques based on a matrix of distances 
between objects in a metric space. Specifically, we present the Approximating 
and Eliminating Search Algorithm and its linear variant. We also briefly men­
tion other modifications or improvements, such as TLAESA, ROAESA, and 
Spaghettis. 

3.1 AESA 
The Approximating and Eliminating Search Algorithm (AESA), presented 

in [Vidal, 1986, Vidal, 1994], uses a matrix of distances between database 
objects which have been computed during the creation of the AESA structure. 
The structure is simply an n x n matrix holding the distances between all pairs 
of n database objects. Due to the symmetry property of metric functions only 
that half of the matrix lying below the diagonal need to be stored, resulting in 
n{n — l ) /2 distances. Unlike the methods of previous sections, every object 
in the AESA plays the role of pivot. 

The search operation for a range query R{q^ r) (and similarly for nearest 
neighbor queries) picks an object p at random and uses it as a pivot. The distance 
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from ^ to p is evaluated and used for pruning some objects. An object o can be 
pruned if \d{q^p) — d{p^ o)\ > r, i.e., if the lower bound from Lemma 1.1 on 
page 29 is greater than the query radius r. Note again that this pruning condition 
only utilizes distances which have already been evaluated. The algorithm then 
chooses another pivot from among the still remaining objects. The choice of 
pivot is influenced by the lower bound \d{q^p) — d{p^ o)\. Since we want to 
maximize the pruning effect, we must maximize the lower bound resulting 
in the choice of the closest object p to q [Vidal, 1986]. The new pivot is 
used in the pruning condition to further eliminate some non-discarded objects. 
The process is repeated until the set of non-discarded objects is small enough. 
Finally, the remaining objects are checked directly with q, i.e., distances d(q^ o) 
are evaluated and objects satisfying d{q^ o) < r are returned. 

According to experiments presented in [Vidal, 1994], AESA performs an 
order of magnitude better than competing methods and it is argued that it has a 
constant query time with respect to the size of database (0(1)). This superior 
performance is obtained at the expense of quadratic space complexity 0{n?) 
and quadratic construction complexity. The extra CPU time is spent scanning 
the matrix, and ranges from 0{n) up to O(n^). However, we should note 
that one distance computation is much more expensive than one scan through 
the matrix. Although its performance is promising, AESA is applicable only 
for small datasets. If, by contrast, range queries with large radii, or nearest 
neighbor queries with high k are specified, AESA tends to require 0{n) distance 
computations, the same as a trivial linear scan. 

3.2 Linear AESA 
The main drawback of the AESA approach being quadratic in space is solved 

in the Linear AESA (LAESA) structure [Mico et al., 1992, Mico et al., 1994]. 
This works around the problem by storing distances from objects to only a 
fixed number m of pivots. Thus, the distance matrix is n x m rather than the 
n(n — 1) entries used in the AESA. However, this has its price: a new problem 
arises in choosing appropriate pivots. In [Mico et al., 1994], the pivot selection 
algorithm attempts to choose pivots that are as far away from each other as 
possible, in keeping with the observations noted in Section 10.5 of Chapter 1. 

The search procedure is nearly the same as in the AESA, except for the fact 
that some objects will not be the pivots. Thus, we cannot choose the next pivot 
from non-discarded objects up to now, because we might have eliminated some 
pivots. First, the search algorithm eliminates objects using all pivots. Then, all 
remaining objects are directly compared with the query object q. More details 
can be found in [Hjaltason and Samet, 2000], which also provides a description 
of the nearest neighbor search algorithm. 

The space complexity and construction time of LAESA are 0{mn), while 
search complexity is m + 0(1). The extra CPU time can be reduced by a 
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modification called Tree LAESA (TLAESA), proposed in [Mico et al., 1996]. 
TLAESA builds a GHT-like structure using the same m pivots, with the ex­
tra CPU time being between (9(logn) and 0{mn). The AESA and LAESA 
approaches are compared in [Rico-Juan and Mico, 2003]. 

3.3 Other IMethods 

A structure similar to the LAESA is proposed in [Shapiro, 1977]. It also 
stores run distances in a matrix n x m. However, the search procedure for 
R{q^r) queries is slightly different. Database objects (o i , . . . On) are sorted 
according to their distance from the first pivot pi. The search starts with the 
object Oi such that |d(pi, ô ) — d{pi^q)\ is minimized, for i = 1 , . . . , n. Note 
that this is the lower bound on d{q^ oi) defined by Lemma 1.1. In other words, 
we start with an object potentially closest to q. The object Oi is checked against 
all pivots pj (j = 1 , . . . , m) and if \d{pj^Oi) — d{q^ pj)\ > r is true for any pj, 
then Oi cannot qualify for Ä(g, r). Observe that distances d{pj, Oi) are stored in 
the matrix and the distances d{q^pj) are computed only once at the beginning 
of the query evaluation. If Oi is not eliminated by this condition, the distance 
d{q^ Oi) must be computed to decide whether Oi qualifies or not. The search 
continues with objects 0^+1,0^-1,0^+2? 0^-2,... until the pruning conditions 
\d{pi, Oi+c) - d{q,pi)\ > r and \d(pi, Oi^c) - d{q,pi)\ > r are valid. 

Another improvement on LAESA is a method called Spaghettis, introduced 
in [Chavez et al., 1999a]. This approach also stores run distances, organized in 
m arrays of length n. Each array of distances to a pivot is sorted according to 
the distances it contains. The order of any two objects o ,̂ Oj may be inconsistent 
from one array to another, since distances to the corresponding pivots may differ 
e.g. d{pi^Oi) < d{pi^Oj) mid d{p2^0i) > d{p2^0j). Thus, permutations of 
objects must be stored with respect to the preceding array. During the range 
search, m intervals are defined on individual arrays, [d{q^pi) — r^d{q^pi) + 
r ] , . . . , [d{q^pm) — 5̂ d[q^pm) + v]. All objects that qualify for the query will 
belong to the intersection of all these intervals. Each object in the first interval 
is checked to see whether it is a member of all other intervals - the stored 
permutations are used for traversing through arrays of distances. Finally, the 
non-discarded objects are compared with the query object for qualification. The 
extra CPU time is reduced to 0{m log n). 

Both AESA and LAESA have an overhead of 0{n), measured in terms of 
computations other than distance evaluations (i.e., searching the matrix). The 
Reduced Overhead AESA (ROAESA) from [Vilar, 1995] applies heuristics to 
eliminate unneeded traversals of the matrix. However, this technique is only 
applicable to nearest neighbor queries, and the range search algorithm is not 
accelerated. A variant of LAESA, designated the Approximating fc-LAESA 
(Ak-LAESA), is presented in [Moreno-Seco et al., 2003]. This variant pro-
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vides a faster algorithm for kNN queries particularly designed for classification 
purposes. 

4. Hybrid Indexing Approaclies 
Indexing methods which employ pre-computed distances provide promising 

performance boosts in terms of computational costs. Their disadvantage lies in 
their enormous space requirements. A straightforward remedy is to combine 
both the partitioning principle and the pre-computed distances technique into 
a single index structure. Basically this entails having search algorithms take 
advantage of stored pre-computed distances while traversing a hierarchy-like 
structure built using partitioning principles. 

Such an approach is applied to Multi Vantage Point Trees, presented later 
in this section. We also tackle slightly different approaches based on Voronoi 
diagrams, namely the Geometric Near-neighbor Access Tree and the Spatial 
Approximation Tree. Finally, we also provide the reader with a short summary 
of the M-tree, a disk-based access structure which has become very popular. 
The M-tree and its variants are discussed in-depth in Chapter 3. In addition, we 
briefly mention the new concept of similarity hashing, which is again analyzed 
in greater depth in the next chapter. 

4.1 Multi Vantage Point Tree 
The Multi Vantage Point Tree (MVPT) [Bozkaya and Özsoyoglu, 1997, 

Bozkaya and Özsoyoglu, 1999] is an extension of the VPT. The motivation 
behind the MVPT is to cut down on the number of pivots used to construct a tree, 
since computing distances between a query object and pivots brings significant 
search costs. One source of motivation is the FQT described in Section 1.2. 
Another interesting approach to helping reduce distance computations is based 
on storing distances between pivots and objects in leaf nodes - such distances 
are computed in the course of tree construction. The extra information kept in 
leaves is then exploited by a sort of filtering algorithm, explained in detail in 
Section 7.6 of Chapter 1. The filtering algorithm dramatically decreases the 
number of distance computations needed to answer similarity queries. 

The MVPT uses two pivots in each internal node, instead of one as in the 
VPT. Thus, each internal node can be considered to be two VPT levels collapsed 
into one node. There is one significant difference. While VPTs use different 
pivots at lower levels, MVPTs apply only one. Thus all children at the lower 
level employ the same pivot. This allows for fewer pivots while still preserving 
the fanout, or degree of branching. Figure 2.8 depicts a situation where a VPT 
is collapsed into an MVPT. Observe that some sets are partitioned using pivots 
that are not members of the sets. This never occurs in VPTs. In Figure 2.8b, 
so is the set around pi which is divided using p2 and the radius dm^. In this 
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Figure 2.8. Comparison of the VPT and MVPT structures: (a) VPT with three pivots for 
partitioning to four sets, (b) MVPT using only two pivots. 

case, each pivot leads to two subsets, which implies that the fanout of an MVPT 
node is 2^. Since a pivot can generally partition data into m subsets, an internal 
node can root m? child nodes. In addition, MVPT can employ k pivots in each 
internal node, which implies a fanout of m^. Moreover, each object in the leaf 
node is associated with a list of distances to the first / pivots, which are used 
for additional pruning at search time. 

Since no objects are duplicated, space complexity is 0{n) - objects chosen as 
pivots appear only in internal nodes. However, MVPTs need some extra space 
to keep I pre-computed distances for each object in leaves. Construction time 
complexity is 0{nk log^k n), where log f̂c n is the height of the balanced tree. 
Search complexity is 0{k log^k n), but is valid only for very small query radii. 
In the worst case, search complexity will be 0{n). The authors of [Bozkaya and 
Özsoyoglu, 1999] show experimentally that MVPTs outperform VPTs, which 
they mainly attribute to the greater number of pivots in internal nodes rather 
than the increased fanout m. The largest performance boosts are achieved by 
storing more pre-computed distances in leaves. 

4,2 Geometric Near-neighbor Access Tree 
The Geometric Near-neighbor Access Tree (GNAT), proposed by [Brin, 

1995], uses m pivots in each internal node. Specifically, a set of pivots P = 
{pii • • • ?Pm} is chosen and the dataset X is split into S^i,..., Sm subsets, de­
pending on the shortest distance to a pivot in P. In other words, for any object 
o G X — P, o is a member of the set Si if and only if d{pi^ o) < d{pjjo) for 
all j = 1 , . . . , m. Thus, applying this procedure recursively we build an m-ary 
tree. Figure 2.9 shows a simple example of the first level of a GNAT structure. 
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Figure 2.9. The Geometric Near-neighbor Access Tree: (a) an example of partitioning, (b) the 
corresponding tree. 

Observe the close relationship between this idea and the Voronoi-like partition­
ing of vector spaces [Aurenhammer, 1991]. Each subset Si corresponds to a 
cell in the Voronoi diagram - GNAT calls this cell the Dirichlet domain. The 
parameter m is adjusted according to the level of the tree. In fact, the number 
of children (i.e., the value of m) should be proportional to the number of data 
objects allocated in the node. 

Besides applying the m-ary partitioning principle, the GNAT also retains 
objects' distances to their respective pivots. This enables additional pruning 
during the search, resulting in a range search algorithm quite different from the 
one used for the GHT. In each internal node, an m x m table consisting of 
distance ranges is stored. Specifically, the minimum and maximum distances 
between each pivot pi and the objects of each subset Sj are stored. Formally, 
the range [r\^, r^^], i^j = 1 , . . . , m, is defined as follows: 

^J _ min d{pi,o), 
oeSjU{pj} 

r^u = max d{pi^o). 
oeSjU{pj} 

Note that the lower bound r^ for pivot pi itself is equal to zero, since the 
minimum is at distance d{pi^pi) = 0. Figure 2.10 illustrates two ranges. The 
first [r̂ *-̂ , r^j^] is defined for pivot pi and set Sj around pivot pj, while the second 
is [rj-^, rj^^] for pivot pj itself. 
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Figure 2.10. An example of the pruning effect of ranges in GNAT for two queries R{qi,ri) 
andi?(^2,r2). 

The range search algorithm for query R{q^ r) proceeds depth-first. In each 
internal node N, the distances between q and the pivots of Â  are computed 
and subtrees not containing qualifying objects are eliminated. After all dis­
tances from q to pivots have been computed, the algorithm visits all subtrees 
that remain. Starting with the set of pivots P , the procedure applied in each 
internal node is described in the following steps: First, pick one pivot pi from 
P (repeatedly, but do not pick the same pivot twice) and compute the distance 
d{pijq). If d{pi,q) < r holds, the pivot pi is returned in the query result. 
Afterwards, for all pj E P we remove pj from P if d{q^pi) — r > r]^ or 
d{q^ Pi) + r < r\^. The inequalities are direct consequences of the lower bound 
max{d{qjPi) — r]^^rl'^—d{q^Pi)} < r of Lemma 1.2 (pg. 31) with d(g,o) < r. 
When all pivots in P are examined, the subtrees of the node N corresponding 
to the remaining pivots in P are visited. Note that a pivot pj can be discarded 
from P before its distance to q has been evaluated. Figure 2.10 depicts a sit­
uation in which two range queries P(gi , r i ) and ^(^2,^2) are given. In this 
example, only the range [r}^ ̂ r]^] is sufficient for the query Ä(gi, ri) to discard 
Pj. However, the other query requires the additional range[rĵ ,r;̂ *^] to prune 
the subtree around pj. 

The space complexity of the GNAT index structure is 0{nm'^), because 
tables consisting of m? elements are stored in each internal node. GNAT is 
built in 0{nm log^ n) time. The search complexity was not analyzed by the 
authors, but experiments in [Brin, 1995] reveal that the GNAT outperforms the 
GHT and VPT structures. 
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4.3 Spatial Approximation Tree 
The indexes which have been described so far all use a partitioning principle 

to recursively divide the data space into subsets. For example, the GHT and 
GNAT are inspired by the Voronoi-like partitioning. In the follov^ing, we intro­
duce the Spatial Approximation Tree, the sa-tree (SAT), proposed in [Navarro, 
1999, Navarro, 2002]. The SAT is also based on the Voronoi diagrams, but in 
contrast to the GHT and GNAT it tries to approximate the structure of the Delau-
nay graph. Given a Voronoi diagram, a Delaunay graph, defined in [Navarro, 
2002], is a graph where each node represents one cell of the Voronoi diagram 
and where nodes are connected with edges if the corresponding Voronoi cells 
are directly neighboring cells. In other words, the Delaunay graph is a repre­
sentation of relations between cells in the Voronoi diagram. In the following, 
we use the term object for a node of the Delaunay graph and vice versa. 

The search algorithm for the nearest neighbor of a query object q starts with 
an arbitrary object (node in the Delaunay graph) and proceeds to a neighboring 
object closer to q as long as it is possible. If we reach an object o where all 
neighbors of o are further from q than o, the object o is the nearest neighbor of q. 
The correctness of this simple algorithm is obvious. Unfortunately, it is possible 
to show that without more information about a given metric space M = (P^d), 
knowledge of the distances between objects in a finite set X C D does not 
uniquely determine the Delaunay graph for X (for further details see [Navarro, 
2002, Hjaltason and Samet, 2003a]). Thus, the only way to ensure the search 
procedure is correct is to use a complete graph, that is, the graph containing all 
edges between all pairs of objects in X. However, such a graph is not suitable 
for searching because the decision as to which edge should be traversed from 
the starting object requires computing distances from the query to all remaining 
objects in X. This boils down to a linear scan of all objects in the database and 
thus, from a searching point of view, is useless. 

For a dataset X, the SAT is defined as follows: An arbitrary object p is 
selected as the root of the tree and the smallest possible set N{p) of all its 
neighbors is determined so that: 

o e N{p) ^ Vo' G N{p) \ {o} : d(o,p) < d{o, o'). 

The intuition behind this definition is that for a valid set N{p) (not necessarily 
the smallest), each object of N{p) is closer to p than to any other object in N{p) 
and all objects in X\A/^(p) areclosertoanobjectin A/'(p) than top. Figure 2.11b 
shows an example of SAT built on a dataset depicted in Figure 2.11a. The 
object Ol has been selected as the root node. The set of neighbors for oi is 
N{oi) = {02,03,04,05}. Note that object 07 cannot be included in N{oi) 
since 07 is closer to 03 than to oi. 

To build the tree, a child node is defined for every neighbor and the objects 
nearest the child are structured in the same way as defined above. The distance 
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F/gwr^ 2.11. An example of SAT: (a) the dataset, (b) SAT structure with the root oi. 

to the furthest object o from p is also stored in each node, i.e., for the root node, 
maxoex{ci(p, o)}. In conventional terminology, it is the covering radius r^. 

As argued in [Navarro, 2002], the construction of N{p) is NP-complete, so 
a heuristics is proposed which builds the set N{p) in a way which may not be 
minimal. The method of selecting the set of neighbors influences the shape of 
the resulting tree. When the set is not minimal the fanout of the tree increases, 
which impacts upon search costs. The heuristics starts with an object p, a set 
S = X\ {p}, and initially empty set N{p). We first sort the members of S 
with respect to their distance to p. Next, we pick an object o from S and add 
it to N{p) if it is closer to p than any other object in N{p). In this fashion, we 
incrementally construct a suitable set of neighbors. 

The range search algorithm for the query Ä(g, r) starts at the root node and 
traverses the tree, visiting all non-discardable subtrees. Recall that at the node 
p, we have the set of all neighbors N{p). The algorithm first finds the closest 
object Oc G N{p) U {p} to q. Then, it discards all subtrees o^ 6 N{p) such that 

d{q,Od)>2r + d{q,Oc). (2.3) 

Such a pruning criterion is correct and is a consequence of Lemma 1.4 (pg. 34) 
with substitutions pi =• Od and p2 = o^ In particular, we get 

max{ ,0} < d{q,o). 

Providing that d{q, o) <r (the range query constraint) and q is closer to Oc than 
to Od we get {d{q^ Od) — d{q^ Oc))/2 < r. The branch Od can easily be pruned if 
{d{q, Od) — d{q^ Oc))/2 > r, which is exactly what we desired. 

The reason we select the closest object Oc to q is we want to maximize the 
lower bound of Lemma 1.4. When the current node is not the root of tree, 
we can even improve the pruning effect. Figure 2.12 depicts a sample SAT 



Survey of existing approaches 87 

Figure 2.12. A sample of the SAT structure. 

with root t, current node p (with neighbors pi, P2) Ps). and query object q. The 
dashed lines represent the boundaries between Voronoi cells of the first level of 
the SAT. The dotted lines depict the same for the second level. Assuming the 
current node is p, the algorithm presented above selects p among {p, ^1,^2,^3} 
as the closest object to q, even though the object 52 is closer. If we choose 
52 as the closest object, we further strengthen the pruning effect. However, 
this requires modifying the procedure for picking the closest object as follows: 
Select the closest object Oc from p's ancestor, including its neighbors and their 
associated neighbors, i.e., Oc G UOGA(P)(^(^) ^ i^})- Here, A{p) consists 
of the ancestors of p and its neighbors - in the figure, A{p) = {t, p, 5, u^ v}. 
Finally, the covering radius r^ of each node is used to further reduce search 
costs. We do not visit a node p if d{q^ p) > r^ + r. This expression is derived 
from the lower bound in Lemma 1.2 (pg. 31) with r/ = 0, r/̂  — r^ and from the 
fact that d{q^ 0) <r. The search algorithm is correct and returns all qualifying 
objects regardless of the strategy of selecting the closest object Oc. In other 
words, the strategy only influences the efficiency of pruning, see Equation 2.3. 

The tree is built in (!)(nlogn/loglogn) time, takes 0{n) space and its 
search complexity is e(n^-®(Viogiogn)^ jj^^ ^pj; jg designed as a static 
structure. More details can be found in [Navarro, 1999, Hjaltason and Samet, 
2003a, Navarro, 2002]. A dynamic version of SAT is presented in [Navarro and 
Reyes, 2002]. 

4.4 IVl-tree 
A dynamic structure called the Metric Tree (M-tree) is proposed in [Ciaccia 

et al., 1997b]. It can handle data files that change size dynamically, which 
becomes an advantage when insertions and deletions of objects are frequent. 
In contrast to other metric trees, the M-tree is built bottom-up by splitting its 
fixed-size nodes. Each node is constrained by sphere-like (ball) regions of the 
metric space. A leaf node entry contains an identification of the data object. 
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its feature value used as an argument for computing distances, and its distance 
from a routing object (pivot) that is kept in the parent node. Each internal node 
entry keeps a child node pointer, the covering radius of the ball region that 
bounds all objects indexed below, and its distance from the associated pivot. 
Obviously, the distance to the parent pivot has no meaning for the root. The 
pruning effect of search algorithms is achieved by using the covering radii and 
the distances from objects to their pivots in parent nodes. 

Dynamic properties in storage structures are highly desirable but typically 
have a negative effect on performance. Furthermore, the insertion algorithm of 
the M-tree is not deterministic, i.e., inserting objects in different order results 
in different trees. That is why the bulk-loading algorithm has been proposed 
in [Ciaccia and Patella, 1998]. Thebasicideaof this algorithm works as follows: 
Given a set of objects, the initial clustering produces k sets of relatively close 
objects. This is done by choosing k distant objects from the set and making 
them representative samples. The remaining objects get assigned to the nearest 
sample. Then, the bulk-loading algorithm is invoked for each of these k sets, 
resulting in an unbalanced tree. Special refinement steps are applied to make 
the tree balanced. 

The idea of M-trees was later extended by [Traina, Jr. et al., 2000b] in 
a metric tree structure called the Slim-tree. In order to get control over the 
overlap between metric regions, the fat-factor is defined and systematically 
used. The concept of fat-factor has been described in detail in Section 10.4 of 
Chapter 1. Slim-trees also use new insertion and split algorithms which result 
in improved performance. Slim-trees and many other variants of M-trees are 
described in Chapter 3. 

4.5 Similarity Hashing 
Similarity Hashing (SH), as proposed in [Gennaro et al., 2001] is built upon a 

completely different principle. It is a multi-tier hashing structure, consisting of 
search-separable sets on each tier, organized in buckets. The structure supports 
easy insertion and bounded search costs, because at most one bucket need 
to be accessed at each level for range queries up to a pre-defined value of the 
search radius. At the same time, the number of distance computations is always 
significantly reduced by the use of pre-computed distances obtained at insertion 
time. Buckets of static files can be arranged in such a way that I/O costs never 
exceed the cost of scanning a compressed sequential file. Experimental results 
demonstrate the performance of SH is superior to other available tree-based 
structures. 

The similarity hashing approach is exploited in the so-called the D-index 
structure [Dohnal et al., 2003a]. The D-index applies excluded middle parti­
tioning to hashed organizations. In contradistinction to VPF, navigation along 
the tree branches is unnecessary, and each storage bucket is directly accessible. 
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In principle, the concept of similarity hashing is not necessarily restricted to 
the excluded middle partitioning principle. [Dohnal et al., 2001] define another 
three p-split functions that are able to achieve the same effect, i.e., to produce sets 
separable up to a pre-defined distance radius p. Based on well-known geometric 
concepts, these methods are called the elliptic, hyperbolic, and pseudo-elliptic 
p-split functions. The second section of Chapter 3 deals with the D-Index and 
its variants suitable for similarity joins, and further extends the description of 
similarity hashing. 

5. Approximate Similarity Search 
Some applications can benefit from a very fast response to similarity queries 

even when it is obtained at the expense of precision in results. The fundamental 
concepts have already been discussed in Section 9 of Chapter 1. In the following, 
we survey some interesting approaches that have been proposed in the literature. 

First, we briefly cover certain approximation techniques that exploit space 
transformations. Then we provide a more extensive presentation of techniques 
which reduce the subset of data that must be examined. Most of these techniques 
were originally applied to vector spaces, but some can also be used in generic 
metric spaces. 

5.1 Exploiting Space Transformations 

Space transformations are convenient to use for approximate similarity search. 
This has already been mentioned in Section 9 of Chapter 1. Obviously the trans­
formations must satisfy the constraints described in Section 8 of Chapter 1. The 
general strategy is as follows: First, the original space is transformed. Then 
all search requests are executed in the projected space. Some false hits may be 
returned - but approximate similarity search algorithms do not apply the final 
cleansing phase which is necessary for obtaining exact results. 

An approach to dimensionality reduction specifically designed for approxi­
mate similarity searching has been proposed in [Egecioglu and Ferhatosman-
oglu, 2000]. The authors propose a dimensionality reduction technique that 
offers an easy way to compute the inner product between vectors approxi­
mately. Given a vector z = (^ i , . . . , ^d), let ipp{z) denote Lp norm to the p-th 
power. Then ^p{z) - (|| z \\p)P = [Lp{z,6)]P, where 0 - (0 , . . . ,0). The 
inner product of two vectors < x,y > can be approximated with the estimate 
of its m-power as < f, y y"^^ bii;i{x)^i{y) + ... + hm'il^rn{x)i)m{y). where 
m < d and b i , . . . , 6^ are parameters that should be tuned to obtain a good 
approximation. This technique saves disk space by storing the m-dimensional 
vector (^ i (x ) , . . . , ipmi^)) instead of the d-dimensional vector x, given that 
the approximate inner product can be computed using it. It also allows the 
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Euclidean distance || f — y ||2 to be also approximated, given that 

II x-y\\2= \/'02(^) + ip2{y) -2<x,y>. 

In [Ogras and Ferhatosmanoglu, 2003], this approximation method is further 
refined as follows: The cJ-dimensional space is divided into orthogonal sub-
spaces 5 i , . . . , 55 each having / dimensions, / = d/s. Let xPi be the projection 
of vector x in the subspace Si. The Euclidean distance between x and y can be 
computed exactly as jj x—y \\2=\\ SPi—yPi II2 + • • • + || ^Ps — yPg ||2- Ifthe 
individual jj xPi — yPi II2 are separately approximated using the approximate 
inner product technique, the approximation of the entire Euclidean distance 
which results is more precise. The authors note that the basic inner product 
approximation retains information on the magnitude of vectors only. A refined 
technique, also based on the space decomposition, is able to additionally retain 
information about the shape of approximated vectors, i.e., their direction. 

A further approach to space transformation is presented in [Weber and 
Böhm, 2000], based on so-called Vector Approximation files, VA-files. The 
VA-file [Weber et al., 1998] reduces the size of multi-dimensional vectors by 
quantizing the original data objects. It demands a nearest neighbor search per­
formed in two steps. Initially, the approximated vectors are scanned to identify 
candidate vectors. Then, in the second step, the candidate vectors are visited 
in order to find the actual nearest neighbors. The approximate search vari­
ant on this algorithm basically omits the second step of the exact search. A 
modification of the VA-files approach has been proposed in [Ferhatosmanoglu 
et al., 2000] in which the VA-file building procedure is improved by initially 
transforming the data into a more suitable domain using the Karhunen-Loeve 
transform, KLT. An approximate search algorithm based on the modified VA-
file approach is proposed in [Ferhatosmanoglu et al, 2001]. The performance 
improvement offered by techniques based on VA-files is significant. However, 
they are applicable to vector spaces only. 

A final approach which falls into this category is FastMap [Faloutsos and Lin, 
1995]. This technique is also suitable for generic metric spaces, provided we 
have k feature-extraction functions which transform the metric space into a k-
dimensional space. A similar technique which is, however, applicable directly 
to metric spaces is called MetricMap [Wang et al., 2000] and has already been 
discussed in Section 8.3 of Chapter 1. 

5.2 Approximate Nearest Neighbors with BBD Trees 
Suppose we have a query object q and a dataset X represented in a vector 

space whose distances are measured by Minkowski distance functions. Arya 
et al. [Arya et al., 1998] propose an approximate nearest neighbor algorithm 
which guarantees to find (1+e)-k-approximate-nearest-neighbors. Specifically, 
it retrieves k objects whose distances from the query are at most 1 + e times 
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Figure 2.13. Overview of the approximate nearest neighbors search algorithm using BBD trees. 

larger than that of the fc-th actual nearest neighbor of q. The time complexity 
of this algorithm is 0(/clogn), where n is the size of the dataset X. The 
parameter e is used to control the tradeoff between the efficiency and quality of 
the approximation. The higher the value of e, the higher the performance and 
error. 

As its underlying indexing structure, the algorithm uses the Balanced Box-
Decomposition tree (BBD) that is a variant of the Quad-tree [Samet, 1984] and 
is similar to other balanced structures based on box-decomposition [Bern et al., 
1993, Bespamyatnikh, 1995, Callahan and Kosaraju, 1995]. A property of the 
BBD tree is that regions associated with nodes which have the same parent do 
not overlap. Node regions are recursively repartitioned until they contain only 
one object, thus every region associated with a leaf node contains just a single 
object. The tree has 0{n) nodes and is built in 0{dn log n) time, where d is 
the number of dimensions of the vector space. 

The nearest neighbor algorithm associated with this data structure proceeds 
as follows: Given a query object q, the tree is traversed and the unique leaf node 
associated with the region containing the query is found in O(Iogn). At this 
point, a priority search is performed by enumerating leaf regions in increasing 
order of distance from the query object. The distance from an object o to a 
region is computed as the distance of a to the closest point that can be contained 
in the region. When a leaf region is visited, the distance of the associated object 
from q is measured and the k closest points seen so far are recorded. Let us call 
o^ the current A:-th closest point. The algorithm terminates when the distance 
from q to the region of current leaf is larger than d{q^ o^), that is, the current 
region cannot contain objects whose distance from the query object is shorter 
than that of o^. Since all remaining leaf regions are more distant from the 
current region, the k objects retrieved so far are the k nearest neighbors to q. 
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In contrast, the approximate nearest neighbor algorithm uses a stop condition 
to terminate the search prematurely. Specifically, the algorithm stops as soon 
as the distance to the current leaf region exceeds d{q^ o^)/(l + e). It is easy 
to show that under these circumstances, o^ is the (1 + e)-Ä;-th-approximate-
nearest-neighbor. To clarify the behavior of the precise versus approximate 
nearest neighbor search algorithms, look at Figure 2.13, in which data objects 
are represented as black spots and a query lNN{q) is posed. Each object is 
included in a rectangular region associated with a leaf node. Given a near­
est neighbor query lNN{q), every region is identified by a number assigned 
incrementally and based on the distance of the region to the query object q. 
Thus, the region containing q itself is assigned the value 1, while the region 
farthest away is labeled 10. The algorithm starts to search in Region 1 for a 
potential nearest object to q. The figure illustrates the situation in which Region 
3 has been accessed in the current stage of execution, and the object o^ found 
as the current closest object. The circumference is indicated as having radius 
d{q^ o"^). The precise algorithm will continue accessing regions that overlap 
the circumference and stop only after accessing Region 10, which contains 
the actual nearest neighbor. The approximate algorithm, by contrast, accesses 
only those regions which overlap the dotted circumference whose radius is 
d{q^ o^)/(l + e). Therefore, it terminates after accessing Region 8, missing 
the actual nearest neighbor. 

The priority search can be performed in O(mlogn), where m stands for 
the number of regions visited. The upper bound on m depends only on the 
dimensionality d, e of the space and the number of nearest neighbors k, for any 
Minkowski metric, and is defined as 2k + \1 + Gd/eY- Provided that d and 
€ are fixed, the algorithm finds the (1 + e)-fc-approximate-nearest-neighbors in 
O(fclogn) time. 

Note that upper bound on m is independent of the dataset size n. How­
ever, it depends exponentially on d, so this algorithm is feasible only in low-
dimensional vector spaces. 

5.3 Angle Property Technique 

Other two vector-space-only techniques for reducing the number of nodes 
accessed during nearest neighbor searches are proposed in [Pramanik et al., 
1999a, Pramanik et al., 1999b]. The chief novelty of these techniques lies in 
their exploitation of angles formed by objects contained in a ball region, the 
center of this region and a query object (see Figure 2.14). These techniques have 
been successfully applied to SS-trees [White and Jain, 1996]. However, they are 
generally applicable to any access method for vector spaces which partitions the 
data space, restricts groups of objects with ball regions, and organizes regions 
hierarchically. 
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Figure 2.14, An angle between objects contained in a ball region and a query object q with 
respect to the center p of the ball region. 

The heuristics employed in the search algorithm and proposed in [Pramanik 
et al., 1999a, Pramanik et al., 1999b] is justified by the following three properties 
of datasets in high-dimensional vector spaces: 

• As dimensionality rises, the points in a ball region become almost equidistant 
from the region's center. 

• With the increasing dimensionality, the radii of smaller child ball regions 
grow nearly as fast as the radius of the parent ball region, and thus their 
centers also tend to be close to each other. 

• Given a query point and a set of points covered by a ball region, the angle 
between the query point and any point in the ball region will fall into an 
interval of angles around 90 degrees. As dimensionality grows, this interval 
will decrease. 

Assuming regions are hierarchically structured, the algorithm uses an approx­
imate pruning condition to decide whether a region should be accessed or not. 
In [Pramanik et al., 1999a], it is suggested that a region be inspected if at least 
one of the following conditions holds: 

• The node corresponding to the region is an internal node. 

• The center of the region's parent is contained in the ball region defined by 
the query object and the current candidate set of nearest neighbors. 

• The region's center resides in the half of the parent's ball region closer to the 
query object, i.e., the angle between the center of the region and the query 
object with respect to the center of the parent's ball region is less than 90 
degrees. 
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Figure 2.15. If the query region does not intersect promising portions of the data region, the 
region is discarded. 

On reaching a leaf node, all objects of the leaf are examined and directly com­
pared to the query object. If an object is closer to the query object than the 
current candidate for the fc-th nearest neighbor, it is added to the response, 
superseding the k-th nearest neighbor. 

This algorithm is, however, unable to trade performance with quality of 
results. In [Pramanik et al., 1999b], the algorithm is further improved by intro­
ducing a threshold angle 6 to allow such a trade-off. Here is a brief sketch of 
how the improvement comes about: 

According to the properties listed above, the area where qualifying objects 
are most likely to be found is close to the border of the ball region, forming an 
angle of about 90 degrees with the query object. Assume 9 indicates the value 
of such an angle and the angle a is obtained by considering the query object 
q, the region's center p and the intersection of the query region and the region 
being examined (see Figure 2.15). If the angle a is greater than Ö, the region is 
accessed, otherwise it is excluded - this is the situation depicted in the figure. 
Notice that if 6 = 0 all regions overlapping the query region are accessed and 
the query response-set is determined exactly. 

5.4 Clustering for Indexing 
The Clindex technique (Clustering for indexing) performs approximate sim­

ilarity searches in high-dimensional vector spaces using an index structure sup­
ported by a clustering technique [Li et al., 2002]. The Clindex partitions the 
dataset into similar clusters, i.e., into clusters containing elements close to each 
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Other in the space. Each cluster is represented by a separate file and all files are 
sequentially stored on a disk. 

The Clindex technique uses a new algorithm for building clusters of objects. 
The algorithm starts by dividing each dimension of the d-dimensional vector 
space into 2^ segments, so every segment can be identified using an n-bit 
number. This process forms (2^)^ cells in the data space. The clustering 
algorithm aggregates these cells into clusters as follows: Each cell is associated 
with the number of objects it contains. The algorithm starts with the cells 
containing the largest number of objects and checks to see if they are adjacent 
to other clusters. If a cell is not adjacent to any cluster it is used as the seed 
for a new cluster. If a cell is adjacent to just one cluster, it is attached to that 
cluster. Finally, if the cell neighbors more than one cluster a special heuristics 
is applied to decide whether the clusters should be merged or to which cluster 
the cell belongs. This process is iterated until the remaining cells contain fewer 
objects than a specified threshold. Underfilled or empty cells are grouped in an 
outlier cluster and stored separately. 

Once the clusters are obtained, an indexing structure is built for speeding 
access to them. The index is a simple encoding scheme which maps an object 
to a cell and a cell to its corresponding cluster. The associations between clusters 
and disk files are also kept. 

Approximate similarity search is processed by first identifying the cluster 
to which the query object belongs. This is obtained by determining the cell 
which covers the query object and then identifying the corresponding cluster. 
If the query's cell is empty, a cluster cannot be obtained, so a cluster having the 
centroid closest to the query object is located. Once a cluster is identified, the 
file corresponding to it is sequentially searched, and objects qualifying for the 
query are returned. Of course, this search algorithm is approximate, because 
only one cluster is examined. In fact, it might happen that objects in non-
selected clusters might also qualify for the query, so these objects are falsely 
dismissed by the algorithm. 

5,5 Vector Quantization Index 
Another approach that uses a clustering technique to organize data and pro­

cess similarity queries approximately is the Vector Quantization Index (VQ-
index) [Tuncel et al., 2002]. The VQ-index is based on reducing both the 
dataset and the size of data objects at the same time. The basic idea is to orga­
nize the dataset into subsets which are not necessarily disjoint, and then reduce 
the size of data by compression. The approximate search algorithm first iden­
tifies the subset to be searched. Next, it goes through its compressed content 
and qualifying objects are reported. 

The dataset is grouped into subsets by exploiting a query history in the 
following way: Queries from the record of requests posed in the past are divided 



96 SIMILARITY SEARCH 

into m clusters Ci {i = 1 , . . . , m) using the k-means algorithm [MacQueen, 
1967, Duda and Hart, 1973, Kaufman and Rousseeuw, 1990]. If the query 
history is too long, a sample is used instead. A subset Si of the entire dataset 
corresponding to each cluster Ci is defined as follows: 

Si= [j kNN{q), 
qeCi 

where kNN(q) obviously represents the k objects of the dataset nearest to q. 
Each subset Si contains elements of the dataset close to queries in the cluster 
Ci. Thus an element may belong to several different subsets. The overlap of 
subsets Si versus index performance can be tuned by the choice of m and k. 

The reduction in object size is obtained using the vector quantization tech­
nique [Gresho and Gray, 1992]. The objective of the vector quantization is 
to map an arbitrary vector from the original d-dimensional space into a repro­
duction vector. Reproduction vectors form a set of n representatives from the 
original space. The process of mapping can be decomposed into two modules -
an encoder Enc and a decoder Dec. The encoder transforms the original space 
R^ into a set { 1 , . . . , n} of numbers, thus each vector x G M^ gets assigned 
an integer Enc{x) — c {1 < c < n). The decoder, by contrast, maps the set 
{ 1 , . . . , n} to the set of n reproduction vectors, so-called code-vectors, which 
in fact, approximate all possible vectors from M ,̂ i.e., Dec{c) = x, x E R^. 
For each subset Si, a separate encoder Enci and decoder Deci is defined. Si 
is compressed by representing it with the set Sf^^ = {Enc^(x)|Vx e Si}. The 
decoder function Deci is used to obtain the reproduction vectors corresponding 
to the elements in Sf^^, i.e., the approximation of the original elements in Si. 

Here is an example: Having a fixed encoder Enc, several vectors can be 
mapped to a single number c. The best value for the corresponding code-
vector is one minimizing its average distance to all vectors mapped to c. In 
this way, a suitable decoder function can be obtained. An approximate nearest 
neighbors query is processed by locating the cluster Ci nearest the query. Next, 
by applying the decoder function Deci on 5f ̂ ,̂ the set Si is reconstructed and 
sequentially searched for k nearest neighbors. A certain level of imprecision is 
present at both stages. In the first stage, it cannot be guaranteed that the selected 
subset Si contains all objects which qualify for the given query. In the second 
stage, the vectors contained in the re-created set Si might have distances to the 
query object significantly different from the distances of the original vectors. 
The approximation quality of the vector quantization technique depends on the 
number n of code-vectors. In practice, the number n is much smaller than the 
total number of vectors. Initially, the set of code-vectors is very small and huge 
collisions are solved by replacing the code-vector in question with two new 
vectors, improving the quality of the quantization. However, the experiments 
presented in [Tuncel et al., 2002] reveal the VQ-index is very competitive and 
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outperforms other techniques based on linear quantization by factor of ten to 
twenty, while retaining the same precision in the response. 

5.6 Buoy Indexing 
Another approach to approximate nearest neighbor search which is based on 

clustering is presented in [Volmer, 2002]. In this proposal, the dataset is parti­
tioned into disjoint clusters bounded by ball regions. A cluster is represented 
by an element called a buoy. Clusters are gradually built by assigning objects 
to the cluster with the closest buoy. Radii of ball regions are defined as the 
distance between the buoy of a cluster and the furthest element in that cluster. 
This iterative optimization procedure attempts to find buoys of clusters so that 
radii of ball regions of these clusters are minimized. However, any other clus­
tering algorithm that organizes the space into disjoint clusters bounded by ball 
regions can be used with the approximate search algorithm described below. 

Imagine a dataset X with clusters C i , . . . , C^ C X, where each Ci is 
bounded by a ball region TZi = (Pi^n) and pi denotes the cluster's buoy. 
A precise fc-nearest neighbors search algorithm accesses the clusters in the 
order determined by the distance between the query and the cluster's center, 
starting with the closest. The qualifying objects from every cluster visited are 
determined. This process is repeated until no better objects can be found in 
remaining clusters. The stop condition can be formalized as 

stop if d{q, Ok ) + rj < d{q, pj), (2.4) 

where q is the query object of a kNN(q) query, o^ is the current k-th nearest 
neighbor, and pj and TJ form a ball region TZj = {Pjif^j) of ^ cluster to be 
accessed in the next step. 

The proposed approximation strategy is to reduce the amount of data accessed 
by limiting the number of accessed clusters, i.e., modifying the stop condition. 
A parameter / (0 < / < 1) is introduced which specifies the clusters to be 
accessed. Specifically, the approximate kNN search algorithm stops when 
either Equation 2.4 holds, or the ratio of clusters accessed exceeds / . This 
technique guarantees [/ • n] clusters will be accessed at a maximum, where n 
stands for the total number of clusters. 

The results of experiments reported in [Volmer, 2002] imply query execution 
may be about four times faster than a linear scan, with about 95% recall ratio. 
The advantage of this method is that it is not limited to vector spaces only but 
can be applied to metric spaces as well. 

5.7 Hierarchical Decomposition of IMetric Spaces 
There are other techniques beyond those mentioned for approximate similar­

ity searching which have been especially designed for metric spaces. In what 
follows, we briefly introduce the basics of these techniques. However, in view 
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of their prominent role in the field of approximate similarity search, they are 
more extensively discussed in Chapter 4. 

5.7.1 Relative Error Approximation 

A technique employing a user-defined parameter as an upper bound on ap­
proximation error is presented in [Zezula et al., 1998a, Amato, 2002]. In par­
ticular, the parameter limits the relative error on distances from the query object 
to objects in the approximate result-set with respect to the precise results. The 
proposed technique can be used for both approximate nearest neighbor and 
range searches in generic metric spaces. Assuming a dataset organized in a tree 
structure, the approximate similarity search algorithm decides which nodes of 
the tree can be pruned even if they overlap with the query region. At the same 
time, it guarantees the relative error obtained on distances does not exceed 
the specified threshold. On a similar basis, nearest neighbor queries retrieve 
(l+€)-/c-approximate-nearest-neighbors. Details of this technique are given in 
Section 1 of Chapter 4. 

5.7.2 Good Fraction Approximation 

The technique presented in [Zezula et al., 1998a, Amato, 2002] retrieves k 
approximate nearest neighbors of a query object by returning k objects that 
statistically belong to the set of / (Z > k) actual nearest neighbors of the query 
object. The value / is specified by the user as a fraction of the whole dataset. 
By using the overall distance distribution, the approximate similarity search 
algorithm stops when it determines that k objects currently retrieved belong to 
the specified fraction of objects nearest to the query. This method is discussed 
in detail in Section 2 of Chapter 4. 

5.7.3 Small Chance Improvement Approximation 

An approximate nearest neighbor search strategy proposed in [Zezula et al., 
1998a] and later refined in [Amato, 2002] is based upon the pragmatic observa­
tion that similarity search algorithms for tree structures are defined as iterative 
processes where the result-set is improved in each iteration until no further im­
provement can be made. As for fc-nearest neighbors queries, algorithms refine 
the response, which means that k objects retrieved in the current iteration will 
be nearer than those in the previous one. This can be explicitly measured by the 
distance between the current fc-th object and the query object. Such a distance 
decreases rapidly in first iterations and it gradually slows down and remains 
almost stable for several iterations before the similarity search algorithm stops. 
The approximate similarity search algorithm exploits this behavior and stops 
the search algorithm when the reduction of distance to the current fc-th object 
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slows down. A detailed description of this approach is given in Section 3 of 
Chapter 4. 

5.7.4 Proximity-Based Approximation 

A technique that uses a proximity measure to decide which tree nodes can 
be pruned even if their bounding regions overlap the query region is proposed 
in [Amato et al., 2003, Amato, 2002]. This has already been discussed in 
Section 10.2 of Chapter 1 from a theoretical point of view. When the proximity 
of a node's bounding region and the query region is small, the probability that 
qualifying objects will be found in their intersection is also small. A user-
specified parameter is employed as a threshold to decide whether a node should 
be accessed or not. If the proximity value is below the specified threshold, the 
node is not promising from a search point of view, and thus not accessed. This 
method is defined for both nearest neighbor and range queries and is discussed 
in detail in Section 4 of Chapter 4. 

5.7.5 PAC Nearest Neighbor Search 

A technique called Probably Approximately Correct (PAC) nearest neighbor 
search in metric spaces is proposed in [Ciaccia and Patella, 2000b]. The ap­
proach searches for a (l-i-e)-approximate-nearest-neighbor with a user-specified 
confidence interval. The proposed algorithm stops execution prematurely when 
the probability that the current approximate nearest neighbor is not the (1+e)-
approximate-nearest-neighbor falls below a user-defined threshold 6. Details 
of the approach are given in Section 5 of Chapter 4. 
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