
Chapter 2 

LOCAL INSTANT FORMULATION 

The singular characteristic of two-phase or of two immiscible mixtures is 
the presence of one or several interfaces separating the phases or 
components. Examples of such flow systems can be found in a large number 
of engineering systems as well as in a wide variety of natural phenomena. 
The understanding of the flow and heat transfer processes of two-phase 
systems has become increasingly important in nuclear, mechanical and 
chemical engineering, as well as in environmental and medical science. 

In analyzing two-phase flow, it is evident that we first follow the 
standard method of continuum mechanics. Thus, a two-phase flow is 
considered as a field that is subdivided into single-phase regions with 
moving boundaries between phases. The standard differential balance 
equations hold for each subregion with appropriate jump and boundary 
conditions to match the solutions of these differential equations at the 
interfaces. Hence, in theory, it is possible to formulate a two-phase flow 
problem in terms of the local instant variable, namely, F = F (x^t). This 
formulation is called a local instant formulation in order to distinguish it 
fi-om formulations based on various methods of averaging. 

Such a formulation would result in a multiboundary problem with the 
positions of the interface being unknown due to the coupling of the fields 
and the boundary conditions. Indeed, mathematical difficulties encountered 
by using this local instant formulation can be considerable and, in many 
cases, they may be insurmountable. However, there are two fundamental 
importances in the local instant formulation. The first importance is the 
direct application to study the separated flows such as film, stratified, 
annular and jet flow, see Table 1-1. The formulation can be used there to 
study pressure drops, heat transfer, phase changes, the dynamic and stability 
of an interface, and the critical heat flux. In addition to the above 
applications, important examples of when this formulation can be used 
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include: the problems of single or several bubble dynamics, the growth or 
collapse of a single bubble or a droplet, and ice formation and melting. 

The second importance of the local instant formulation is as a 
fundamental base of the macroscopic two-phase flow models using various 
averaging. When each subregion bounded by interfaces can be considered 
as a continuum, the local instant formulation is mathematically rigorous. 
Consequently, two-phase flow models should be derived from this 
formulation by proper averaging methods. In the following, the general 
formulation of two-phase flow systems based on the local instant variables is 
presented and discussed. It should be noted here that the balance equations 
for a single-phase one component flow were firmly estabUshed for some 
time (Truesdell and Toupin, 1960; Bird et al, 1960). However, the axiomatic 
construction of the general constitutive laws including the equations of state 
was put into mathematical rigor by specialists (Coleman, 1964; Bowen, 
1973; Truesdell, 1969). A similar approach was also used for a single-phase 
diffusive mixture by MuUer (1968). 

Before going into the detailed derivation and discussion of the local 
instant formulation, we review the method of mathematical physics in 
connection with the continuum mechanics. The next diagram shows the 
basic procedures used to obtain a mathematical model for a physical system. 

Physical System 

Physical Concepts 
Physical Laws 

Particular Class of 
Materials 

Mathematical System 

Mathematical Concepts 
General Axioms 

Constitutive Axioms 
(Determinism) 

Model 

Variables 
Field Equations 

Constitutive Equations 

, 

As it can be seen from the diagram, a physical system is first replaced by a 
mathematical system by introducing mathematical concepts, general axioms 
and constitutive axioms. In the continuum mechanics they correspond to 
variables, field equations and constitutive equations, whereas at the singular 
surface the mathematical system requires the interfacial conditions. The 
latter can be appUed not only at the interface between two phases, but also at 
the outer boundaries which limit the system. It is clear from the diagram that 
the continuum formulation consists of three essential parts, namely: the 
derivations of field equations, constitutive equations, and interfacial 
conditions. 

Now let us examine the basic procedure used to solve a particular 
problem. The following diagram summarizes the standard method. Using 
the continuum formulation, the physical problem is represented by idealized 
boundary geometries, boundary conditions, initial conditions, field and 
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constitutive equations. It is evident that in two-phase flow systems, we have 
interfaces within the system that can be represented by general interfacial 
conditions. The solutions can be obtained by solving these sets of 
differential equations together with some idealizing or simplifying 
assumptions. For most problems of practical importance, experimental data 
also play a key role. First, experimental data can be taken by accepting the 
model, indicating the possibility of measurements. The comparison of a 
solution to experimental data gives feedback to the model itself and to the 
various assumptions. This feedback will improve both the methods of the 
experiment and the solution. The validity of the model is shown in general 
by solving a number of simple physical problems. 

The continuum approach in single-phase thermo-fluid dynamics is widely 
accepted and its validity is well proved. Thus, if each subregion bounded by 
interfaces in two-phase systems can be considered as continuum, the validity 
of local instant formulation is evident. By accepting this assumption, we 
derive and discuss the field equations, the constitutive laws, and the 
interfacial conditions. Since an interface is a singular case of the continuous 
field, we have two different conditions at the interface. The balance at an 
interface that corresponds to the field equation is called a jump condition. 
Any additional information corresponding to the constitutive laws in space, 
which are also necessary at interface, is called an interfacial boundary 
condition. 

1.1 Single-phase flow conservation equations 

1.1.1 General balance equations 

The derivation of the differential balance equation is shown in the 
following diagram. The general integral balance can be written by 
introducing the fluid density p^, the efflux /^ and the body source (j)^ of 
any quantity ^jJy. defined for a unit mass. Thus we have 
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General Integral Balance 

Leibnitz Rule 

Green's Theorem 

Axiom of Continuum 

General Balance Equation 

dtJv, 
X PkAdV = -§ n, • J^dA + J^ p^dV (2-1) 

where V^ is a material volume with a material surface A^. It states that the 
time rate of change of p^ip^ in V^ is equal to the influx through A^ plus 
the body source. The subscript k denotes the ^-phase. If the functions 
appearing in the Eq.(2-1) are sufficiently smooth such that the Jacobian 
transformation between material and spatial coordinates exists, then the 
familiar differential form of the balance equation can be obtained. This is 
done by using the Rejoiolds transport theorem (Aris, 1962) expressed as 

d r „ ,.r r dR — f KdV = f ^^V + <£ F,v, • n dA (2-2) 

where v^. denotes the velocity of a fluid particle. The Green's theorem 
gives a transformation between a certain volume and surface integral, thus 

J V • F^dV = §n- F^dA. 

Hence, from Eqs.(2-2) and (2-3) we obtain 

\dF, 

(2-3) 

A. 
dt 

f FkdV= f 
dt + v-Ki^J dV. (2-4) 

Furthermore, we note that the Reynolds transport theorem is a special case of 
Leibnitz rule given by 

d r „ , „ r dFu 

dt' 
f F,dV= f^^dV+ f F,u-ndA 

Jv " Jv dt JA * 
(2-5) 
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where V\t) is an arbitrary volume bounded by A\f) and tt • n is the surface 
displacement velocity of A{t). 

In view of Eqs.(2-1), (2-3) and (2-4) we obtain a differential balance 
equation 

^ + V • {v,p,^,) = - V • / , + PA- (2-6) 

The first term of the above equation is the time rate of change of the quantity 
per unit volume, whereas the second term is the rate of convection per imit 
volume. The right-hand side terms represent the surface flux and the volume 
source. 

1.1.2 Conservation equation 

Continuity Equation 
The conservation of mass can be expressed in a differential form by 

setting 

V', = 1 , </'*=0, / , = 0 (2-7) 

since there is no surface and volume sources of mass with respect to a fixed 
mass volume. Hence from the general balance equation we obtain 

dt 
+ V-(p,t;,) = 0. (2-8) 

Momentum Equation 
The conservation of momentum can be obtained from Eq.(2-6) by 

introducing the surface stress tensor J^ and the body force g^^, thus we set 

h = -T, = ft/ - ^ (2-9) 

<\>k =9k 

where / is the unit tensor. Here we have split the stress tensor into the 
pressure term and the viscous stress ^ . In view of Eq.(2-6) we have 

^ + V • {p,v,v,) = - V p , + V• ^ -h p,g,. (2-10) 
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Conservation of Angular Momentum 
If we assume that there is no body torque or couple stress, then all 

torques arise from the surface stress and the body force. In this case, the 
conservation of angular momentum reduces to 

T, = T' (2-11) 

where T^ denotes the transposed stress tensor. The above result is correct 
for a non-polar fluid, however, for a polar fluid we should introduce an 
intrinsic angular momentum. In that case, we have a differential angular 
momentum equation (Aris, 1962). 

Conservation of Energy 
The balance of energy can be written by considering the total energy of 

the fluid. Thus we set 

A u,+-

Qk T,-v, (2-12) 

<t>k=9k-'0k + 
Qk_ 

Pk 

where Uf., q^ and q^ represent the internal energy, heat flux and the body 
heating, respectively. It can be seen here that both the flux and the body 
source consist of the thermal effect and the mechanical effect. By 
substituting Eq.(2-12) into Eq.(2-6) we have the total energy equation 

dpk % + 
dt 

+ V' Pk 
..2\ 

Uu+- V. (2-13) 

= -V-q,+V-{T,-v,) + p,g,-v,+q,. 

These four local equations, namely, Eqs.(2-8), (2-10), (2-11) and (2-13), 
express the four basic physical laws of the conservation of mass, momentum, 
angular momentum and energy. In order to solve these equations, it is 
necessary to specify the fluxes and the body sources as well as the 
fundamental equation of state. These are discussed under the constitutive 
laws. Apart from these constitutive laws, we note that there are several 
important transformations of above equations. A good review of 
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transformed equations can be found in Bird et al. (1960). The important 
ones are given below. 

The Transformation on Material Derivative 
In view of the continuity equation we have 

^PkA ^ , , . (dip, „ , 
Pk-

DA k'rk 

Dt 
(2-14) 

This special time derivative is called the material or substantial derivative, 
since it expresses the rate of change with respect to time when an observer 
moves with the fluid. 

Equation of Motion 
By using the above transformation the momentum equation becomes the 

equation of motion 

P k ^ = -'^Pk+'^-%+Pk9k- (2-15) 

Here it is noted that D^v^/Dt is the fluid acceleration, thus the equation of 
motion expresses Newton's Second Law of Motion. 

Mechanical Energy Equation 
By dotting the equation of motion by the velocity we obtain 

d_ 
dt 

, .2^ 

Pk + V' Pk-^^k 
(2-16) 

-Vk • VPfc +v,-{V-%) + p,v, • g,. 

For a symmetrical stress tensor 

&i:Wv,~{%-V)-v,=V-{%-v,)-v,-{V-%). (2-17) 

Thus, Eq.(2-16) may be written as 
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d_ 
dt 

( 2^ 

rk 2 
% 

Pk^% 
(2-18) 

This mechanical energy equation is a scalar equation, therefore it represents 
only some part of the physical law concerning the fluid motion governed by 
the momentum equation. 

Internal Energy Equation 
By subtracting the mechanical energy equation from the total energy 

equation, we obtain the internal energy equation 

^ + V • {p,u,v,) = - V • g, - p,V • V, + %:Vv, + q,. (2-19) 

Enthalpy Equation 
By introducing the enthalpy defined by 

%=%+— (2-20) 
Pk 

the enthalpy energy equation can be obtained as 

^ + V • {PM) = -V-q,+^ + %:Vv, + q,. (2-21) 

1.1.3 Entropy inequality and principle of constitutive law 

The constitutive laws are constructed on three different bases. The 
entropy inequality can be considered as a restriction on the constitutive laws, 
and it should be satisfied by the proper constitutive equations regardless of 
the material responses. Apart fi-om the entropy inequality there is an 
important group of constitutive axioms that idealize in general terms the 
responses and behaviors of all the materials included in the theory. The 
principles of determinism and local action are fi-equently used in the 
continuum mechanics. 

The above two bases of the constitutive laws define the general forms of 
the constitutive equations permitted in the theory. The third base of the 
constitutive laws is the mathematical modeling of material responses of a 
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certain group of fluids based on the experimental observations. Using these 
three bases, we obtain specific constitutive equations that can be used to 
solve the field equations. It is evident that the balance equations and the 
proper constitutive equations should form a mathematically closed set of 
equations. 

Now we proceed to the discussion of the entropy inequality. In order to 
state the second law of thermodynamics, it is necessary to introduce the 
concept of a temperature T̂  and of the specific entropy s^. With these 
variables the second law can be written as an inequality 

— f PkhdV + S ^'U^dA - f ^dV>0. (2-22) 
• k "^ -^ k 

Assuming the sufficient smoothness on the variables we obtain 

d / \ 
% 

Tkj 
- - ^ = Z\̂  > 0 (2-23) 

^ k 

where A^^ is the rate of entropy production per unit volume. In this form it 
appears that Eq.(2-23) yields no clear physical or mathematical meanings in 
relation to the conservation equations, since the relations of 5̂  and 7]. to the 
other dependent variables are not specified. In other words, the constitutive 
equations are not given yet. The inequality thus can be considered as a 
restriction on the constitutive laws rather than on the process itself. 

As it is evident firom the previous section, the number of dependent 
variables exceed that of the field equations, thus the balance equations of 
mass, momentum, angular momentum and total energy with proper 
boundary conditions are insufficient to yield any specific answers. 
Consequently, it is necessary to supplement them with various constitutive 
equations that define a certain type of ideal materials. Constitutive equations, 
thus, can be considered as a mathematical model of a particular group of 
materials. They are formulated on experimental data characterizing specific 
behaviors of materials together with postulated principles governing them. 

From their physical significances, it is possible to classify various 
constitutive equations into three groups: 

1. Mechanical constitutive equations; 
2. Energetic constitutive equations; 
3. Constitutive equation of state. 
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The first group specifies the stress tensor and the body force, whereas the 
second group suppHes the heat flux and the body heating. The last equation 
gives a relation between the thermodynamic properties such as the entropy, 
internal energy and density of the fluid with the particle coordinates as a 
parameter. If it does not depend on the particle, it is called 
thermodynamically homogenous. It implies that the field consists of same 
material. 

As it has been explained, the derivation of a general form of constitutive 
laws follows the postulated principles such as the entropy inequality, 
determinism, frame indifference and local action. The most important of 
them all is the principle of determinism that roughly states the predictability 
of a present state from a past history. The principle of material frame-
indifference is the realization of the idea that the response of a material is 
independent of the frame or the observer. And the entropy inequality 
requires that the constitutive equations should satisfy inequality (2-23) 
unconditionally. Further restrictions such as the equipresence of the 
variables are frequently introduced into the constitutive equations for flux, 
namely, ^ and g^. 

1.1.4 Constitutive equation 

We restrict our attention to particular type of materials and constitutive 
equations which are most important and widely used in the fluid mechanics. 

Fundamental Equation of State 
The standard form of the fundamental equation of state for 

thermodynamically homogeneous fluid is given by a function relating the 
internal energy to the entropy and the density, hence we have 

^ i k = ^ f c k . f t ) - (2-24) 

And the temperature and the thermodynamic pressure are given by 

T.-f̂ , -P.=-N- (2-25) 

Thus in a differential form, the ftmdamental equation of state becomes 

dUk = T^ds^ - p^d 
^\' 

ypk 
(2-26) 
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The Gibbs free energy, enthalpy and Helmholtz free energy function are 
defined by 

9k = % - TA + — (2-27) 
Pk 

4 = % + — (2-28) 
Pk 

fk = ^k- TA (2-29) 

respectively. These can be considered as a Legendre transformation* (Callen, 
1960) which changes independent variables from the original ones to the 
first derivatives. Thus in our case we have 

9k=9k{Tk,Pk) (2-30) 

* If we have 

then the Legendre transformation is given by 

and in this case Z becomes 

Z=Z {P„P„-,P.,x^^„-,x^). 

Thus, we have 

dZ =-^x4P, + J2 Pidx,-
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h=ik{h^Pk) (2-31) 

fk = k{T,.P>) (2-32) 

which are also a fundamental equation of state. 
Since the temperature and the pressure are the first order derivatives of 

Uj^ of the fundamental equation of state, Eq.(2-24) can be replaced by a 
combination of thermal and caloric equations of state (Bird et al., 1960; 
Callen, 1960) given by 

Pk = Pk{pk.T,) (2-33) 

% = % [PM. (2-34) 

The temperature and pressure are easily measurable quantities; therefore, it 
is more practical to obtain these two equations of state from experiments as 
well as to use them in the formulation. A simple example of these equations 
of state is for an incompressible fluid 

p^ = constant 
/ N (2-35) 

And in this case the pressure cannot be defined thermodynamically, thus we 
use the hydrodynamic pressure which is the average of the normal stress. 
Furthermore, an ideal gas has the equations of state 

Pk = Ru^kRv 
^rr.^ (2-36) 

where R^ is the ideal gas constant divided by a molecular weight. 

Mechanical Constitutive Equation 
The simplest rheological constitutive equation is the one for an inviscid 

fluid expressed as 

^ = 0. (2-37) 
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For most fluid, Newton's Law of Viscosity apples. The generalized linearly 
viscous fluid of Navier-Stokes has a constitutive equation (Bird et al., 1960) 

^ = t^k\'^'"H-^{^v,f\-\^li,-X,Y/-v,)l (2-38) 

where fi^ and Â  are the viscosity and the bulk viscosity of the A:̂ -phase, 
respectively. 

The body forces arise from external force fields and from mutual 
interaction forces with surrounding bodies or fluid particles. The origins of 
the forces are Newtonian gravitational, electrostatic, and electromagnetic 
forces. If the mutual interaction forces are important the body forces may 
not be considered as a function only of the independent variables x and t. 
In such a case, the principle of local actions cannot be applied. For most 
problems, however, these mutual interaction forces can be neglected in 
comparison with the gravitational field force g. Thus we have 

9k = 9 (2-39) 

Energetic Constitutive Equation 
The contact heat transfer is expressed by the heat flux vector g^, and its 

constitutive equation specifies the nature and mechanism of the contact 
energy transfer. Most fluids obey the generalized Fourier's Law of Heat 
Conduction having the form 

q,=-K,-VT,. (2-40) 

The second order tensor K^ is the conductivity tensor which takes account 
for the anisotropy of the material. For an isotropic fluid the constitutive law 
can be expressed by a single coefficient as 

<lk=-Kk{T,)VT,. (2-41) 

This is the standard form of Fourier's Law of Heat Conduction and the scalar 
K^ is called the thermal conductivity. 

The body heating q^^ arises from external energy sources and from 
mutual interactions. Energy can be generated by nuclear fission and can be 
transferred from distance by radiation, electric conduction and magnetic 
induction. The mutual interaction or transfer of energy is best exemplified 
by the mutual radiation between two parts of the fluid. In most cases these 
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interaction terms are negligibly small in comparison with the contact heating. 
The radiation heat transfer becomes increasingly important at elevated 
temperature and in that case the effects are not local If the radiation effects 
are negligible and the nuclear, electric or magnetic heating are absent, then 
the constitutive law for body heating is simply 

g, = 0 (2-42) 

which can be used in a wide range of practical problems. 
Finally, we note that the entropy inequality requires the transport 

coefficients //^, Â  and K^ to be non-negative. Thus, viscous stress works 
as a resistance of fluid motions and it does not give out work. Furthermore, 
the heat flows only in the direction of higher to lower temperatures. 

1.2 Interfacial balance and boundary condition 

1.2.1 Interfacial balance (Jump condition) 

The standard differential balance equations derived in the previous 
sections can be applied to each phase up to an interface, but not across it. A 
particular form of the balance equation should be used at an interface in 
order to take into account the singular characteristics, namely, the sharp 
changes (or discontinuities) in various variables. By considering the 
interface as a singular surface across which the fluid density, energy and 
velocity suffer jump discontinuities, the so-called jump conditions have been 
developed. These conditions specify the exchanges of mass, momentum, 
and energy through the interface and stand as matching conditions between 
two phases, thus they are indispensable in two-phase flow analyses. 
Furthermore since a solid boundary in a single-phase flow problem also 
constitutes an interface, various simplified forms of the jump conditions are 
in fi-equent use without much notice. Because of its importances, we discuss 
in detail the derivation and physical significance of the jump conditions. 

The interfacial jump conditions without any surface properties were first 
put into general form by Kotchine (1926) as the dynamical compatibility 
condition at shock discontinuities, though special cases had been developed 
earlier by various authors. It can be derived firom the integral balance 
equation by assuming that it holds for a material volume with a surface of 
discontinuity. Various authors (Scriven, 1960; Slattery, 1964; Standart, 
1964; Delhaye, 1968; Kelly, 1964) have attempted to extend the Kotchine's 
theorem. These include the introduction of interfacial line fluxes such as the 
surface tension, viscous stress and heat flux or of surface material properties. 
There are several approaches to the problem and the results of the above 



2. Local Instant Formulation 25 

authors are not in complete agreement. The detailed discussion on this 
subject as well as a comprehensive analysis which shows the origins of 
various discrepancies among previous studies have been presented by 
Delhaye (1974). A particular emphasis is directed there to the correct form 
of the energy jump condition and of the interfacial entropy production. 

Since it will be convenient to consider a finite thickness interface in 
applying time average to two-phase flow fields, we derive a general 
interfacial balance equation based on the control volume analyses. Suppose 
the position of an interface is given by a mathematical surface / (a;, t) = 0. 
The effect of the interface on the physical variables is limited only to the 
neighborhood of the surface, and the domain of influence is given by a thin 
layer of thickness 6 with 6^ and 8^ at each side of the surface. Let's denote 
the simple connected region on the surface by ^ , then the control volume is 
bounded by a surface E^ which is normal to A^ and the intersection of A^ 
and E. is a closed curve C^. Thus Z*. forms a ring with a width 8 , 
whereas the boundaries of the interfacial region at each side are denoted by 
A^ and A^. Our control volume V^ is formed by Z"̂ , ^ and A^. 

Since the magnitude of 8 is assumed to be much smaller than the 
characteristic dimension along the surface A^, we put 

rij = -n^ (2-43) 

where n^ and n2 are the outward unit normal vectors firom the bulk fluid of 
phase 1 and 2, respectively. The outward unit vector normal to E^ is 
denoted by N, then the extended general integral balance equation for the 
control volume V^ is given by 

A. 
dt 

J p N'[{v-v,)p^ + jY8dC + JpHV. 
(2-44) 

The first two integrals on the right-hand side take account for the fluxes firom 
the surface A^, A^ and E^. In order to reduce the volume integral balance 
to a surface integral balance over Ai, we should introduce surface properties 
defined below. 

The surface mean particle velocity v^ is given by 

P A ^ = f P ^ ^ ^ (2-45) 
ty —So 
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Figure 2-1. Interface (Ishii, 1975) 

where the mean density p^ and the mean density per unit surface area p„ 
are defined as 

p^ = pj= j^pd6. 

Then the weighted mean values of il> and </> are given by 

(2-46) 

(2-47) 

and 

Pa(t>s= \ P4>d^- (2-48) 

The notation here is such that a quantity per unit interface mass and per unit 
surface area is denoted by the subscript s and a, respectively. 

The control surface velocity can be split into the tangential and normal 
components, thus 

V̂  = ^ti + ^m (2-49) 
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where 

% (2-50) 

|v/| 

Hence the normal component is the surface displacement velocity and the 
tangential component is given by the mean tangential particle velocity v^g. 
Since the unit vector N is in the tangential plane and normal to C^, we 
have 

N'V,=N'V^. (2-51) 

Thus, from Eqs.(2-45) and (2-51) we obtain 

p pN • {v, - v)d6 = 0 (2-52) 

and 

r p^N • {v^ -v)d6= r^ p^N • {v^ - v) dd. (2-53) 

In view of Eqs.(2-44) and (2-53) we define the average line efflux along C^ 
by 

Using the above definitions the integral balance at the interfacial region 
becomes 

= E/."»-(K-' '>A+Al<M-rJV--'. 'iC (2-55) 
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As in the case for the derivation of the field equation, here we need two 
mathematical transformations, namely, the surface transport theorem and the 
surface Green's theorem (Weatherbum, 1927; McConnell, 1957; Aris 1962). 
The surface transport theorem is given by 

where djdt denotes the convective derivative with the surface velocity v^ 

defined by Eq.(2-50), and V^ denotes the surface divergence operator. The 
surface Green's theorem is given by 

J^N-JJC = J^A'''g,,(t:Jl%dA. (2-57) 

Here, A^^, g^^, t^ and [ ] ,̂  denote the surface metric tensor, the space 
metric tensor, the hybrid lensor, and the surface covariant derivative, 
respectively (Aris, 1962). 

The surface flux, /^ in space coordinates is expressed by J^' which 
represents the space vector for mass and energy balance and the space tensor 
for momentum balance. The essential concepts of the tensor symbols are 
given below. First the Cartesian space coordinates are denoted by 
{VvVi'^y^) a^d a general coordinates by {x^^X2<,x>^), then the space metric 
tensor is defined by 

^'" fer dx' dx"" 

which relates the distance of the infinitesimal coordinate element between 
these two systems. As shown in Fig.2-2, if the Cartesian coordinates y 
give a point of a surface with the surface coordinates of \v}^u^] as 
y^ = y \v}^u^], then the surface metric tensor is defined by 

A^^ = ± ^ ^ (2-59) 

and the small distance ds is given by 
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y" 

o 
f 

Figure 2-2. Relationship between Cartesian coordinates and surface coordinates 

{dsf = (dy'f + (dy'f + (dy'f = A'-'du-du'. (2-60) 

By introducing the general space coordinates, the surface position is 
given by x' = x' («', w j . The hybrid tensor is then defined by 

t = 
dx' 

(2-61) 

The covariance surface derivative f ) ,̂  is similar to the space derivative 

but it also takes into account for the curved coordinate effects. Furthermore, 
if JV • /^ has only a tangential component as in the case of surface tension 

force, A^'^gJ^lf^ = t^jf. Hence, the surface flux contribution can be 

written as (C'^r^jj/? ^̂  V^a'^a^j^^ where t^ denotes the hybrid tensor in 

vector notation. It is noted that for the momentum transfer, the dominant 
interfacial momentum flux is the isotropic surface tension a . Then, 
/f^ = a A " ^ In this case, the surface flux contribution becomes as follows 

(t^aA''')„ = 2Han + t^A'''ia)„. (2-62) 
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The first term represents the net effect of the curved surface and gives the 
normal component force with the mean curvature H, whereas the second 
term represents the tangential force due to surface tension gradient. 

Since we assumed that 8 is sufficiently small, the surface A^ and A^ 
coincide with Ai geometrically. Thus, Eq.(2-55) reduces to 

= L \i2[pkAn, • {v, - V,) + n, • J,] (2-63) 
^ U=i 

This balance equation holds for any arbitrary portion of an interface with 
Ai » 6^, thus we obtain a differential balance equation 

= t^{pkArik' i'^k - ^i) + '^k • Jk) (2-64) 

We note here this result has exactly the same form as the one derived by 
Delhaye (1974), although the method used and the definition of the surface 
velocity v^ is different. Let's define a surface quantity and a source per 
surface area as 

(2-65) 

(2-66) 

i^a 

and 

0a 

= Pa^s 

= Pa^s-

Then the surface balance equation becomes 

d. 2 

dt^ fcf (2-67) 
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The left-hand side represents the time rate of change of ^^ from the 
observer moving at v., plus the effect of the surface dilatation. Whereas the 
three terms on the right-hand side are the fluxes from the bulk phases, the 
line flux along the surface, and the surface source respectively. We note that 
Eq.(2-6) and Eq.(2-67) govern the physical lav^s in the bulk phases and at an 
interface. 

In order to obtain a simpler expression for interfacial jump of quantities, 
we make fiirther assumptions which are consistent with our thin layer 
assumption given by 

8^ « 4. (2-68) 

First the mass density of interface p^ is negligibly small so that its 
momentum and mechanical energy can also be neglected. Secondly, all the 
molecular difftision fluxes along the line are neglected, namely, no surface 
viscous stress or surface heat flux. Furthermore all the surface sources are 
neglected, namely, no particular body force other than the gravity and no 
radiation effect. 

The thermodynamic tension and hence the interfacial energy are included 
in the following analysis, consequently from the principle of determinism we 
should postulate the existence of the surface equation of state. Under these 
assumptions we obtain 

Interfacial Mass Balance 

T.P,n,-{v,-v,) = (i. (2-69) 
fc=l 

By defining the interfacial mass efflux from the A:̂ -phase as 

^k ^Pfc^ fc -K-^^ i ) (2-70) 

we have from Eq.(2-69) 

E K = 0 . (2-71) 
k=\ 

This equation simply states that there is no capacity of mass at the interface, 
hence phase changes are pure exchanges of mass between the two phases. 
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Interfacial Momentum Balance 

E [P'^'^k •(v,-v,)v,-n,-T,} + (t„^"V) „ = 0. (2-72) 

Equation (2-72) is a balance between the momentum fluxes from the bulk 
fluids and the interfacial tension. 

Interfacial Energy Balance 
Substituting the interfacial energy u^ per unit surface area for ip^, we 

obtain from Eq.(2-67) 

du „ 

fc=i L \ •^) 

(2-73) 

The left-hand side represents the rate change of the surface energy, whereas 
the right-hand side accounts for the energy transfer from the bulk at each 
side and for the work done by the surface tension. 

1.2.2 Boundary conditions at interface 

As in the case of the three-dimensional field equations the surface 
balance equations should be supplemented by various constitutive laws. In 
order to establish the principle of determinism, first we introduce a simple 
equation of state. Since the mass of interface is negligible, we have 

"a=«a(5«) (2-74) 

where u^ and s^ are the specific internal energy and the specific entropy 
per unit surface area, respectively. 

The thermodynamic tension is given by 

a = -T^s^+u^ (2-75) 

where the temperature 7] is defined by 
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rp " 

ds„ 
(2-76) 

Thus, in a differential form, Eq.(2-74) becomes 

and the Gibbs-Duhem relation is given by 

sJT^+da = {i. 

The interfacial enthalpy is defined by 

K=%- ^' 

From Eq.(2-78) we have 

da 

dT, = -s„. 

(2-77) 

(2-78) 

(2-79) 

(2-80) 

Hence, fi-om Eqs.(2-77) and (2-80) we obtain 

JT,, 

By combining Eqs.(2-75), (2-79) and (2-80) we get 

(2-81) 

«a = -T, 
da 

\ J 

+ a;i=-T, da 

\ ^ J 

Thus the thermal equation of state 

^-^(T^ 

(2-82) 

(2-83) 

supplies all the necessary information to interrelate the thermodjmamic 
properties. By substituting Eq.(2-81) into Eq.(2-73) we obtain an energy 
jump condition in terms of the surface tension as 
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-T. 
da + da 

V.-t; ' 

= (t^A'''a)„.v, 

+Eh 
k=l 

Uu + + ri,-{-T,-v,+q,)\ 

(2-84) 

Interfacial Entropy Inequality 
Following the above discussion, we assume the existence of the surface 

temperature T. which enables us to write an entropy inequality at the 
interface. Thus, in the absence of surface heat flux and source terms, we 
have 

d^s„ 2 ( 

A = ^^^-^ + 5 V V ~Y^ 
k=\ 

^k\ + 
n . > 0 . (2-85) 

The entropy 5̂  in above inequality can be eliminated by using the energy 
balance equation, Eq.(2-73), and the equation of state, Eq.(2-77), hence we 
obtain 

T^i\ - E 
k=l 

rui. y'k-s,T,+ 

-w* • ^ • {Vk - %) + «* • 9fc 

h - -"i 
2 

\ k J 

r ^Pk 
pk_ 

>o. 
(2-86) 

We note here that this expression has the same form as the one obtained by 
Delhaye (1974). Also a similar result was derived by Standart (1968) 
without considering the surface properties and the surface tension term, but 
including the effect of chemical reactions. 

In general, the interfacial jump conditions, Eqs.(2-69), (2-72) and (2-84), 
do not constitute sufficient matching conditions which are necessary to 
define the problem uniquely. Consequently, they should be supplemented 
by various boundary conditions that restrict the kinematical, dynamical and 
thermal relations between two phases. These relations can also be 
considered as interfacial constitutive laws, satisfying the restriction imposed 
by the entropy inequality (2-86). They may be obtained from the standard 
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argument of the irreversible thermodynamics. In order to do so, first suitable 
combinations of fluxes and potentials should be postulated in the inequality 
(2-86), and then the fluxes were expanded linearly in terms of the potentials. 
Here, the principle of equipresence and the symmetric relations between the 
expansion coefficients are normally used. The standard procedure for a 
general system is discussed in detail by De Groot and Mazur (1962) among 
others, and it has been applied to an interface by Standart (1968), and 
Bomhorst and Hatsopoulos (1967). Standart based his argument on the 
correct jump conditions and the entropy inequality and obtained the 
interfacial constitutive laws with great care, though he neglected fi^om the 
beginning all the surface properties and the surface tension that are generally 
important in a two-phase system. The results of Bomhorst are limited to 
particular cases and the argument is based on the classical thermodynamic 
tools of piston, reservoir, homogeneous system, etc. 

The analysis based on the constitutive laws of the interface may be 
important for a detailed study of a two-phase system. However, they are 
generally too complicated to apply as boundary conditions. Furthermore, the 
effects of the potentials, namely, the discontinuities of temperature, chemical 
potential, tangential velocity, etc., as driving forces of transfer of quantities, 
or resulting interfacial resistances to heat, momentum and mass transfer are 
relatively insignificant in the total system. 

Consequently a much simpler theory for providing the necessary 
boundary conditions is desirable. As a limiting case, it is possible to 
consider the case when entropy production of the interface A^ becomes zero. 
This means that there are no resistances to interfacial transfer of quantities. 
Hence, the exchanges between two phases are governed by the conditions of 
the bulk fluid at each side, but not by the interface itself. Furthermore, fi^om 
the classical thermodynamic point of view, the transfer at the interface is 
said to be reversible. This is not so for a shock discontinuity in a single-
phase flow. 

By setting the entropy production of Eq.(2-86) to be zero we obtain 

1 ' ( \ |2 
ruu 

b ̂ rT, E^k*+^^V^-^-E^-K--«) 
2 Pk T.. 

+J2{'n'k-Qk+m,s,T,) 
ifc=i 

1 1 

yT, Tk, 

k 

= 0 

(2-87) 

Moreover, we assume that the three terms in Eq.(2-87) are independently 
zero for all combinations of the mass flux, the tangential stresses and the 
heat fluxes. 
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Thermal Boundary Condition 
Thus, from the last term of Eq.(2-87), we obtain a thermal equilibrium 

condition at the interface 

Tu = T,, = T, (2-88) 

that is consistent with the assumption of the existence of the equation of state 
at the interface, Eqs.(2-74) and (2-83). In view of Eqs.(2-82) and (2-84) this 
thermal boundary condition sets the energy level of the interface. In contrast 
to the above equation, the energy jump condition, Eq.(2-73), specifies the 
relation between the energy transfers to the interface. Furthermore, the 
thermal equilibrium condition, Eq.(2-88), eliminates a variable T., and it 
stands as a matching condition for the temperature of each phase at the 
interface. We note here that, in reality, the discontinuity of the temperature 
at the interface exists and can be estimated from the kinetic theories 
(Hirschfelder et al, 1954). However, its value in comparison with the 
absolute temperature is very small for most materials with few exceptions, 
such as for liquid metals (Brodkey, 1971). Thus, the influence on the 
interfacial transfer is negligible under the standard conditions. 

No-Slip Condition 
In view of the definition of the interfacial surface velocity v^, Eq.(2-50), 

the tangential velocity v^^ is an unknown parameter, whereas the normal 
component is directly related to the position of the interface. Furthermore, it 
appears in the dissipation term in the entropy inequality (2-86) and Eq.(2-87). 
Thus, it is natural to supply a constitutive relation between the tangential 
stress T̂ ^ and the tangential relative velocity v̂ ^ ~'^u^ ^^ ^^ ^^^ httn 
discussed previously. However, in the present analysis we have assumed 
that the interfacial entropy production is identically zero. By taking the 
second term of Eq.(2-87) to be zero independently, we obtain a no-slip 
condition 

^n = ^t2 = ^^ti' (2-89) 

The no-slip condition for a moving viscous fluid in contact with a solid wall 
is well established (Goldstein, 1938; Serrin, 1959). It is called a classical 
adherence condition and it has been verified experimentally and also 
analytically from kinetic theories. The relation given by Eq.(2-89) can be 
used to eliminate the interfacial tangential particle velocity and then it can be 
utilized as a velocity boundary condition at an interface. 
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However, it should be noted here that for an inviscid fluid the no-slip 
condition (2-89) is not necessary and cannot be satisfied generally, due to the 
tangential component of the momentum jump condition, Eq.(2-72). This is 
in complete agreement with our analysis, since the viscous dissipation term 
in Eq.(2-87) is identically zero for an inviscid fluid and does not appear in 
the entropy inequality. Consequently, Eq.(2-89) cannot be obtained. 
Furthermore, under the condition of no-slip, the momentum jump condition, 
Eq.(2-72), in the tangential and the normal directions becomes 

^ T ^ = ^ " % ( a ) 
k=\ 

5a (2-90) 

and 

E 
k=\ Pk 

= - 2 ^ 2 1 ^ 1 ^ (2-91) 

where the normal and the tangential viscous stress is given by 

(2-92) 

And the mean curvature H^i is taken from phase 2 to 1, namely, i?2i > 0 if 
the interface makes a convex surface in phase 1. 

Chemical (Phase Change) Boundary Condition 
In analogy with the preceding discussion, the chemical (or phase change) 

boundary condition can be obtained by setting the first term of Eq.(2-87) to 
be independently zero for all values of m^. This implies that the entropy 
production due to a phase transition is zero, and hence the phase change is 
considered not as a transfer due to non-equilibrium forces, but rather as an 
equilibrium transformation of state. 

Substituting the thermal equilibrium condition, Eq.(2-88), into the first 
term of Eq.(2-87) and equating it to zero, we obtain 

{91-92) = 
^ 2 - '^i ^-%\ 

i2\ 
T, nnl r. nn\ 

[ Pi Px 
(2-93) 

The phase change condition given by the above equation shows that the 
difference in the chemical potential compensates for the mechanical effects 
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of the relative kinetic energy difference and of the normal stresses. Here it 
should be noted that this phase change condition is only applicable to the 
case when the transfer of mass across the interface is possible. In other 
words, if the transfer of mass is identically zero for all conditions as in the 
case of two immiscible non-reacting liquids, the boundary condition should 
be 

m, = 0 (2-94) 

which replaces the condition on the chemical potentials. 

1.2.3 Simplified boundary condition 

In the preceding sections the interfacial jump conditions and 
supplementary boundary conditions have been given. It is important to 
reaUze that the thermal equilibrium condition, Eq.(2-88), normal component 
of the momentum jump condition, Eq.(2-91), and the phase change boundary 
condition, Eq.(2-93), correspond to the standard thermal, mechanical and 
chemical equilibrium conditions of the thermostatics (Gibbs, 1948). The 
difference is that the present analysis takes into account the dynamic effects 
of mass transfer and of the normal stresses in the mechanical and phase 
change boundary conditions. These interesting properties between the 
results of dynamical analysis and of the thermostatic theory can be 
summarized in the following table. 

It can be seen from the table that except the thermal condition these 
interfacial relations are still very complicated for many practical applications. 
This is mainly due to the terms arisen from the mass transfer and from the 
normal stresses. The former contributes as a thrust force due to the density 
change in the mechanical boundary condition and also as an impact kinetic 
energy change in the chemical (phase) boundary condition. The latter 
introduces complicated coupling effects of the flow fields with the 
thermodynamic properties at the interface. Under standard conditions, 
however, the normal stresses may be neglected with respect to the pressure 
terms, which greatly simplify the mechanical boxmdary condition, Eq.(2-91). 
The same argument can be applied to the chemical boundary condition, since 
the order of magnitude of the term p^g^ is p^, thus the normal stress terms 
can be neglected also in Eq.(2-93). Similarly the mass transfer terms are 
negUgibly small in most practical problems, though they can be important 
for problems with large mass transfer rate or with vapor fihn boiling. 

Since in the standard formulation of field equations the Gibbs free energy 
Qy^ does not appear explicitly, it is desirable to transform the variable p̂  in 
the chemical boundary condition, Eq.(2-93), into other variables which have 
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Table 2-1. Interfacial relations of thermodynamic potentials (Ishii, 1975) 
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^^""^•^^^^ Analysis 

Condition ^"^^^^^^ 

Thermal 

Mechanical 

Chemical 
(phase change) 

Thermostatics 

T,-7;=0 

P l - P 2 = 0 

P l - P 2 = 0 

Present Dynamical Analysis 

^ 1 - ^ 2 = 0 

p^-p^ = ~2H^^a-'m^ 1_1 
.Pi Pi 

' \ 1 

IA Pi] 
+ 

"T V'̂ nnl '^nn2 j 

T 7" nnl nnl 

Px Pi > 

already been used in the field equations. For this purpose, we recall here 
that the Gibbs fi:ee energy expressed as a function of the temperature and 
pressure is a fundamental equation of state, Eq.(2-30), thus we have 

9k =9k{Tk,Pk) 

and 

d9k =-^dTj^+—dPk* 
Pk 

The thermostatic phase equilibrium condition is then given by 

T,^T, = T'o*; p,=p, = f"'-, and g, = g,. 

Hence from Eqs.(2-95) and (2-97) we obtain 

g,{r^\f^') = g,(r''\f^') 

which reduces to the classical saturation condition 

sat sat frpsat\ 

(2-95) 

(2-96) 

(2-97) 

(2-98) 

(2-99) 

This relation shows that the thermostatic equilibrium condition uniquely 
relates the thermodynamic potentials of each phase. Furthermore, the 
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differential form of Eq.(2-99) known as the Clausius-Clapeyron equation can 
be obtained from Eqs.(2-27) and (2-28) and Eqs.(2-96) and (2-97) 

dp sat 
\ - h 

dT sat 
isat 

IA Pi) 

(2-100) 

where all values of the right-hand side are calculated on the saturation line 
given by Eq.(2-99). 

If we assume that the deviations of the interface pressures of each phase 
from the saturation pressure corresponding to the interfacial temperature T. 
are sufficiently small in comparison with the pressure level, the Gibbs free 
energy fiinction can be expanded around the static saturation point. Thus we 
have 

Pk(pr\T,) 

where 6pj^ is defined by 

Since we have 

9r(p""{T,),T;) = g,(p-^{T,),T^. 

Equation (2-93) can be reduced to 

(2-101) 

(2-102) 

(2-103) 

SPi SP2 

Pi P2 

f 1 
2 

\Px 

11 
2 

Pz J 

/ 

+ v 

7~ T 
nn\ nnl 

\ A P2 
(2-104) 

whereas the mechanical boundary condition, Eq.(2-91), with the definition 
of 6pf^ becomes 

8p^ — 6p2 = —IHj^a — ?nf 
\Pi Pi 

+ {rnnr-rnn2)- (2-105) 
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These above two equations can be solved for the pressure deviation from the 
saturation pressure as 

\ + T, 6p^ = -

and 

6p2 = 

A 1 K)' 
2 

1 

. ^ 2 

-IH^.a 
( ^ 

Pi 

A - Pi, 

1 (^)' 
1 2 A 

A J 

--1 

nn\ 

+ T. nn2* 

(2-106) 

This result shows that neither phase is in the saturation condition given 
byEq.(2-99). The amount of deviation of pressure from p̂ '** depends on the 
mean curvature, the surface tension, the mass transfer rate and the normal 
stress. An interesting result follows if we take into accoimt only the effect of 
the surface tension and drop the other terms which are generally negligibly 
small. In this case, we can approximate 

^V, = 2H^^a 
[Pf 

and 6pf = ^^fg^ Pf 

[Pf 
(2-107) 

Since the mean curvature of the liquid phase H^^ is positive for a droplet 
and negative for a bubble, the phase pressures at the interface are both over 
the saturation pressure for a droplet flow, and they are both under it for a 
bubbly flow. 

Now we recall the existence of the limits on heating of liquid or cooling 
of vapor beyond the saturation condition in terms of the pressure deviation at 
fixed temperature, namely, the instability points of the equation of state in 
the thermostatics. Thus, we write 

SPf>SPf^{T,) 
(2-108) 

which are shown in Fig.2-3. 
Figure 2-3 shows the saturation line corresponding to the Clausius-

Clapeyron equation or Eq.(2-99) and the limits of the metastable liquid and 
vapor phases. These two limits can be obtained from the van der Waals 
equation of state given by 



42 Chapter 2 

Critical Point 

Vapor Phase 

Eq.(2-99); Saturation Line 

Figure 2-3. p-J diagram (Ishii, 1975) 

P 
a 

[MI,) 
= RT (2-109) 

where R and M are the gas constant and the molecular weight, 
respectively, a and 6 are empirical constants. The thermodynamic theory 
states that the intrinsic thermodynamic stability requires 

dp 

9(yp) 
<0 . (2-110) 

Therefore, by using the van der Waals equation, the loci of dp/d (l/p) = 0 

can be found. These loci actually represent two limits, namely the 
superheated liquid limit and subcooled vapor limit. These two loci are 
shown by the broken curves in Fig.2-3. 

It is interesting to note that Eq.(2-107) with the limiting condition of 
Eq.(2-108) gives the smallest droplet and the bubble sizes. In other words, 
these sizes are the lowest natural level of the disturbances in the statistical 
sense. Beyond these limits the liquid or the vapor phase cannot stay without 
changing the phase, because the statistical fluctuations create a core which 
can grow to a bubble or a droplet. 

The relations given by Eqs.(2-107) and (2-108) at a temperature T^ are 
exhibited in Fig.2-4. The widely used interfacial condition that the vapor 
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Slope is/?g//Of 

Figure 2-4. 6pg-8pf relation (Ishii, 1975) 

interfacial pressure equals the saturation pressure p^^ ai a temperature T. 
can be derived as a further approximation to Eq.(2-107). Since the density 
ratio between phases is very large at a small reduce pressure, namely, 
P/Pc < < 1 where p^ is the critical pressure, Eq.(2-107) can be 
approximated by 

Sp.^O, p.^p'^'iT,) 

8p^ ^ IH^^a, pf ^ p-' [T,) + IH^^a. 
(2-111) 

1.2.4 External boundary condition and contact angle 

The external boundary condition is a special case of the jump and the 
supplemental interfacial boundary conditions which have been discussed in 
the previous section. For a standard single-phase flow problem, these 
conditions become particularly simple because the mass transfer rate m^, 
the effect of the surface tension and the velocity of the solid-wall interface 
are all set to be zero. Similar simplifications could also be applied to a two-
phase flow system, however, two exceptional characteristics should be taken 
into account here. These are: 

1. The wall microstructure effect on bubble nucleations; 
2. The intersection of a phase interface with the external boundary. 
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g 

' ;^5^^^^5^^5S^ 

Figure 2-5. Contact angle (Ishii, 1975) 

The first effect characterizes the necessity to consider the existence of 
surface nucleation sites which have irregular geometries deviating firom the 
standard idealized wall boundary. These microstructures and the gas content 
in these sites often decide the bubble nucleation conditions and the degree of 
thermodynamic non-equilibrium. The second case is the singularity created 
by meeting of two different interfaces, see Fig.2-5. As a bubble or a droplet 
comes in contact with the external boundary, the vapor-liquid interface 
attaches to the wall and forms a singular curve at the intersection. When 
such a contact line is formed, the angle of contact 6 measured though the 
liquid characterizes the condition along the curve. An analysis similar to the 
one for the interface can be developed also for this singular line. In this case, 
since the area of transport from the bulk fluids is the thickness of the 
interface 8, the effects of the mass transfers and of the fluxes of the fluids 
can be neglected. Hence, only the surface fluxes and possibly the properties 
associated with the curve, namely, energy of the contact line, are important. 
By considering only the surface fluxes, we have firom the force balance in 
the normal plane to the singular curve 

cos 6 = 
0"_ — Gf 

(2-112) 
'fg 

where a. , a and a. denote the surface tension between vapor-liquid. 
gs 'fs 

vapor-solid, and liquid-solid respectively. 
We note here that Eq.(2-112) is consistent with the jump conditions, if 

we neglect the tension tangent to the singular curve and thus the thermal 
energy of the curve. If these effects are neglected, Eq.(2-112) is the only 
condition obtainable in parallel with the jump conditions. Hence, as it has 
been mentioned, the contact angle 9 characterizes the phenomenon and an 
appropriate constitutive law should be supplied if â ^ and a^^ are not 
available. The static contact angle 6 is well measured and tabulated for 
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various interfaces: in reality however it is greatly influenced by the surface 
roughness, the deposit of foreign materials and the purity of fluid itself. 

Furthermore, the dynamic contact angle of a moving interface can be 
significantly different jfrom the static values. However, in the absence of a 
well estabUshed constitutive law for 0 under dynamic condition, the static 
values are frequently used in practical problems. We only note here that it is 
generally accepted that the apparent difference between the static and the 
dynamic contact angle is a function of a surface tension a^^ and the normal 
slipping velocity of the singular curve (Schwartz and Tejada, 1972; Phillips 
and Raddiford, 1972). 

In summarizing this section we list standard external boundary conditions 
at the soUd wall: 

The position of an external boundary 

/.(aJ) = 0 (2-113) 

No-mass transfer condition 

« n . = « „ » = 0 (2-114) 

No-slip condition for a viscous fluid 

% = ' " * » = 0 (2-115) 

The force balance from the momentum jump condition 

n , - r , + n „ . r „ = 0 (2-116) 

The energy balance from the energy jump condition 

n , - g , + n ^ - g , = 0 (2-117) 

The thermal equilibrium condition 

T,=T^ (2-118) 

These above conditions can be applied where a fluid is in contact with 
the wall. It cannot be applied however at an intersection of an interface with 
the solid boundary. On such a singular curve the constitutive equation for 
the contact angle 6 should be given. Finally, we summarize the local 
instant formulation of a two-phase flow system in the following diagram. 
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EXTERNAL BOUNDARY CONDITIONS 

Position of the Wall Jump Conditions 
Constraints Interfacial B. C. 

—7 1 
PHASE 1 

Field Equations 
Continuity Eq. 
Momentum Eq. 
Energy Eq. 

Constitutive Equations 
Equation of State 
Mechanical C. E. 

1 Energetic C. E. 

\ 

Contact Angle 

INTERFACE 
Jump Conditions 

Mass J. C. 
Momentum J. C. 
Energy J. C. 

Interfacial B. C. 
Thermal B. C. 
(No-sUp B. C.) 
(Chemical B. C.) 

PHASE 2 
Field Equations 

C.E. 
M.E. 
E.E. 

Constitutive Equations 
E. S. 
M. C. E, 
E. C. E. 

INITIAL CONDITIONS 

1.3 Application of local instant formulation to two-phase 
flow problems 

1.3.1 Drag force acting on a spherical particle in a very slow stream 

As an example of applying local instant formulation to two-phase flow 
problems, let us study the drag constitutive equation of a solid sphere of 
radius r^ in a very slow stream of speed U^ (creeping flow) (Stokes, 1851; 
Schlichting, 1979). In order to analyze this problem analytically, we assume 
(1) Newtonian viscous fluid with constant viscosity, (2) incompressible flow 
(fluid density is constant), and (3) very small Reynolds number 
(i?e(= IV^PJJQ/IJL] < < 1) where viscous effects dominate the flow and 
the inertia term can be neglected in the momentum equation. Then, the 
continuity equation, Eq.(2-8), and the momentum equation, Eq.(2-10), can 
be linearized as 

V t ; , = 0 (2-119) 

Vf), = fiX'^c- (2-120) 

The gravity term is dropped by considering the pressure field which 
excludes the hydrostatic effect. The velocity components and the pressure in 
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spherical coordinates {vfi) with ^ = 0 in the direction of U^ can be 
derived under the boundary condition of no-slip on the soHd sphere as 

UQCOSO 

^ 1 3 \ 

2 r 2r^ 
(2-121) 

% = -Uocose 
4 r 4 r^ 

(2-122) 

Pc = I'oo -
2 r ' 

(2-123) 

where p^ is the uniform freestream pressure. The shear stress acting on the 
solid sphere, r^g^, is given by 

r. r9c \r=a = /^c 
(1 dv.. _^dVr,] 

[r dO dr ) 
_ 3 f^cUo . 

lr=r, 2 r̂  
sin6>. (2-124) 

Thus, the total drag force, F^ , acting on the solid sphere is given by 
integrating the pressure and the shear stress around the surface as 

^D = I ^r9c s in 0dA - j Pc COS 9dA 
(2-125) 

where A is the surface area. This indicates that the drag consists of the 
pressure and shear forces even in this viscosity dominated flow. Then, we 
define the drag coefficient, (7^, by 

Co^ 
\pcUlA, 

(2-126) 

where A^ is the projected area of a particle. Thus, we have 
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C n -
Re' 

Chapter 2 

(2-127) 

This analysis was extended by Rybczynski (1911) and Hadamard (1911) to 
creeping motion of a spherical fluid particle in an infinite Navier-Stokes 
fluid (Brodkey, 1967; Soo, 1967). Thus, the total force acting on a fluid 
particle is given by 

FD =67rr,//eKoo-^d) 
2^0 + 3)Urf 

Hf^c+f^d) 

Then, we define the drag coefficient, C^^, by 

(2-128) 

^£>oo — J 

Pc{Vcoo-Vi)A^ 

(2-129) 

and the particle Rej^olds number by 

^g _2r^PcKoo-^d) 

^^c 

(2-130) 

It is evident here that v^^ and v^ are the undisturbed flow velocity and the 
particle velocity. Thus, we have 

^Doc — 

24 

Re, 

In, + 3/̂ rf 

'^[^^c + ^^d) 
;i?e, < 1 . (2-131) 

The drag law given by Rybczynski and Hadamard is good up to a Reynolds 
number of about 1. 

1.3.2 KeMn-Helmholtz instability 

As another example of application of local instant formulation to two-
phase flow problems, let us study the Kelvin-Helmholtz instability 
(Hehnholtz, 1868; Kelvin; 1871; Lamb, 1945). The Kelvin-Helmholtz 
instability arises at the interface of two fluid layers of different densities p^ 
and P2 flowing with average velocities Vj and Uj in a horizontal duct. In 
order to analyze this problem analytically, we assume: (1) inviscid flow 
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(viscous force is negligible); (2) incompressible flow (fluid density is 
constant); and (3) irrotational flow. It is convenient to use rectangular 
coordinates (x^y) where x and y indicate the coordinate in the horizontal 
direction and the coordinate in the vertical direction measured from the 
average interface of the two fluid layers, respectively. Then, the velocity 
components are given in terms of the velocity potential, (/)ŷ , as 

dx ' ^̂  dy 
v., = - ^ , v , , = - ^ . (2-132) 

Thus, the continuity equation, Eq.(2-8), is given in terms of the velocity 
potential as 

^ + ^ = 0 (2-133) 

and the momentum equation, Eq.(2-10), is given by 

^ + ^vl+gy = ^ + F(t) (2-134) 
Pk 2 dt 

where F (t) is the function of t, respectively. The shape of the interface 
between two phases are approximated by a sinusoidal wave as 

77 = r]Qsm{k{x - Ct)] (2-135) 

where T/Q, k, and C are the amplitude, the wave number, and the wave 
velocity, respectively. Then, the velocity potentials of the upper fluid 
(fc = 1) and lower fluid {k = 2) are derived under the boundary condition 
of no fluid penetration on the upper and lower duct surfaces and the 
assumption of small perturbation. 

0, = -v,x + rio {vr ~ C) }^\\'^Uos{k{x - Ct)} (2-136) 
smh[kl\) 

^coshlkih. +y)\ , , ,. 
-v,x - 77o K - C) g. A^^/-^cos{A;(a: - Ct)) (2-137) 
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where /i, and h^ are the average thickness of the upper and lower fluid 
layers, respectively. Substituting Eqs.(2-136) and (2-137) into Eq.(2-134) 
and assuming v^j. « v ^ yield the pressure of each phase at the interface as 

Pii — —Pi ]{vi — C) Acoth{kJ\) + g\ijosin[k{x — Ct)} 
(2-138) 

Pi2 — Pili'^i"^) ^oth(A;/i2) — 5[?7oSin{k{x — Ct)} 

+Pi 

(2-139) 

where p^ is the pressure at a smooth interface. The interfacial pressure 
difference between two fluid layers is due to the surface tension, and can be 
approximated by 

Pi2 - Pn = -(^ dx 2 • (2-140) 

Then, the wave velocity can be obtained from Eq.(2-135) and Eqs.(2-138)-
to-(2-140) as 

_ pjv, + p',v, cTk + {p,-p,)g/k 

P1+P2 V A + P2 

^ 1 - ^ 2 

[Pi + P'ij 
(2-141) 

whe re pj. = p^.coth.[kh^.). U n d e r the deep w a t e r a s s u m p t i o n of 

> 0 . 25 , PI can be approximated to be p^.. In this 

case, Eq.(2-141) can be simplified as 

^ ^ PlVl + P2^2 ^ I(j2 

P1+P2 
P1P2 

^ 1 - ^ 2 

[P1+P2) 
(2-142) 

where 

9P2-Pi_^, ^^ 

k P1+P2 A + P2 
(2-143) 
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When the root in the expression for the wave velocity C has a nonzero 
imaginary part, then the interfacial disturbance can grow exponentially. 
Hence, the flow is unstable if 

'"''-^'+^^<p,p/ 
k P1+P2 Pi+ Pi 

v,-v^ 

[Pi+Pij 
(2-144) 

There are several important points to be recognized in this stability 
criterion. First, the viscous effects of the fluids are neglected; therefore, the 
Reynolds number plays no role in this type of interfacial instability. The 
stability of the system then is governed by three effects, namely, the gravity 
force, surface-tension force, and relative motion. The relative-motion term 
is always destabilizing due to the inertia force from Bernoulli effect. The 
surface-tension force is always stabilizing, since the flat interface has the 
minimum surface area, and the surface-tension force acts to resist any 
deformation from the equilibrium configuration. The gravity term is 
stabilizing only if the upper fluid is lighter than the lower fluid (P2 > Pi )• 

The propagation velocity C^ in the absence of the flows (or the left-
hand side of the stability criterion) is a fiznction of the wave number k. 
Therefore, as the wavelength A = lir/k changes from zero to infinite, the 
wave velocity decreases to the minimum value and then increases. This 

minimum value of C^ is given by d, = 2^ag{p2 - p,)l[p^ - p,)^J\ 

which occurs at k^ = gi^p^ — p^)j(J . This corresponds to the critical 
wavelength of Â  = lulk^. This is known as Taylor wave length that is 
one of the most important internal length scales in two-phase flow. Then the 
system is stable for small disturbances of all wavelengths if the relative 
velocity is sufficiently small to satisfy 

[v, - V,)' < ^^''^''^^Pi-Pi). (2-145) 
P1P2 

For a relative velocity larger than this limit, the system is only 
conditionally stable for a certain range of the wavelength. When the 
wavelength is large, the value of C^ in Eq.(2-143) is mainly determined by 
the gravity term. Conversely, if A is sufficiently small, the capillary force 
governs the wave motion. 

Furthermore, it is possible to develop a similar stability criterion based on 
the one-dimensional two-phase flow equations (Wallis, 1969; 
KocamustafaoguUari, 1971). It is noted (Miles, 1957) that the Kelvin-
Helmholtz instability theory tends to overpredict the critical relative velocity 
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for the initial generation of surface waves, except in the case of highly 
viscous fluids. However, the Kelvin-Helmholtz instability mechanism is 
important in wave-propagation phenomena, particularly for flows in a 
confined channel (Kordyban, 1977). Based on the analysis, Kelvin proposed 
the word "Ripples" to describe waves having a wavelength of less than 

\ = 2 7 r ^ a / g ( p 2 - P i ) -

For a gravity dominated flow with a relatively large wave length 
A > > A ,̂ the surface tension effect can be neglected. By considering the 
finite channel flow, Eq.(2-141) can give a criterion for instability as 

" " ' - " ' < « > ; • 

k p[ + P2 
v,-v^ 
p'l+p'i 

(2-146) 

By taking a Taylor expansion and retaining only the first order term for the 
hyperbolic functions, a following simplified but usefiil criterion can be 
obtained. 

(,^^„^f^9_(hzfM±^^sklZflK. (2.147) 
k p^P2 Pi 

When this criterion is compared to experimental data for slug formation in a 
channel, the critical relative velocity is overpredicted by a factor close to two. 
This discrepancy can be explained by a theoretical analysis introducing a 
finite amplitude or wave fi"ont propagation method (Mishima and Ishii, 1980; 
Wu and Ishii, 1996). 

1.3.3 Rayleigh-Taylor instability 

The Rayleigh-Taylor instability is the interfacial instability between two 
fluids of different densities that are stratified in the gravity field or 
accelerated normal to the interface. It is commonly observed that the 
boundary between two stratified fluid layers at rest is not stable if the upper-
fluid density p^ is larger than the lower-fluid density P2 . Since the 
Rayleigh-Taylor instability can lead to the destruction of the single common 
interface, it is important in the formation of bubbles or droplets. In 
particular, the critical wavelength predicted by the related stability analysis 
is one of the most significant length scales for two-phase flow. 

The Rayleigh-Taylor instability can be considered as a special case of the 
Kelvin-Helmholtz instability with zero flows and Pi> P2 - Hence, the 
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propagation velocity can be obtained from Eq.(2-142) by setting 

Qi ^ 9 Pi- Px _̂  ^fe 

k P2+P1 Pi+ Pi 
(2-148) 

The system is unstable if the root of the propagation velocity has a nonzero 
imaginary part. Therefore, Eq.(2-148) shows that the gravitational force is 
destabilizing for p^ > P2» whereas the surface-tension force is stabilizing. 
There is a critical wavelength A below which C^ is always positive. This 

is given by Â  = 2TT la I g[p^ ~ p^). If the wavelength of a disturbance is 

larger than the critical wave length (A > A^), then C^ becomes negative 
and the interface is unstable. For fluids that are unlimited laterally, the 
wavelength of the disturbance can be as large as desired; therefore such a 
system is always unstable. However, if the fluids are confined laterally, the 
maximum wavelength is limited to twice the system dimension. This 
implies that a system is stable if the lateral characteristic dimension is less 
than half the critical wavelength Â  . For an air-water system, this 
characteristic dimension is 0.86 cm. A similar dimension can be obtained 
from fluids contained in a vertical cylinder by using polar coordinates in the 
stability analysis. 

For an unstable system, any disturbance having a wavelength greater than 
Â  can grow in time. However, the dominant waves are those having the 
maximum growth factor. Since the wave amplitude grows with 
exp [AkCt), the predominant wavelength should be 

K = 27r — - ^ ^ . (2-149) 
\9{pi-p2) 

These unstable waves can be observed as water droplets dripping from a 
wire in a rainy day, or condensed water droplets falling from a horizontal 
downward-facing surface. Quite regular waveforms and generation of 
bubbles due to the Rayleigh-Taylor instability can also be observed in film 
boiling. Note that this instability is not limited to the gravitational field. 
Any interface, and fluids that are accelerated normal to the interface, can 
exhibit the same instability. This can occur for example in nuclear explosion 
and inertia confinement of a fiision pellet. In such a case the acceleration 
should replace the gravity field g in the analysis. 
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