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Abstract We give a model for the description of an urban transportation net-
work and we consider the related optimization problem which consists
in finding the design of the network which has the best transportation
performances. This will be done by introducing, for every admissible
network, a suitable metric space with a distance that inserted into the
Monge-Kantorovich cost functional provides the criterion to be opti-
mized. Together with the optimal design of an urban transportation
network, other kinds of optimization problems related to mass trans-
portation can be considered. In particular we will illustrate some mod-
els for the optimal design of a city, and for the optimal pricing policy
on a given transportation network.
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1. Introduction
In this paper we present some models of optimization problems in

mass transportation theory; they are related to the optimal design of
urban structures or to the optimal management of structures that al-
ready exist. The models we present are very simple and do not pretend
to give a careful description of the urban realities; however, adding more
parameters to fit more realistic situations, will certainly increase the
computational difficulties but does not seem to modify the theoretical
scheme in an essential way. Thus we remain in the simplest framework,
since our goal is to stress the fact that mass transportation theory is the
right tool to attack this kind of problems.
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The problems we will present are of three kinds; all of them require
the use of the Wasserstein distances Wp between two probabilities f+

and f−, that we will introduce in the next section. Let us illustrate here
shortly the problems that we are going to study later in more details.

Optimal transportation networks. In a given urban area Ω, with
two given probabilities f+ and f−, which respectively represent the den-
sity of residents and the density of services, a transportation network has
to be designed in an optimal way. A cost functional has to be introduced
through a suitable Wasserstein distance between f+ and f−, which takes
into account the cost of residents to move outside the network (by their
own means) and on the network (for instance by paying a ticket). The
admissible class of networks where the minimization will be performed
consists of all closed connected one-dimensional subsets of Ω with pre-
scribed total length.

Optimal pricing policies. With the same framework as above (Ω,
f+, f− given) we also consider the network as prescribed. The unknown
is here the ticket pricing policy the manager of the network has to choose,
and the goal is to maximize the total income. Of course, a too low ticket
price policy will not be optimal, but also a too high ticket price policy
will push customers to use their own transportation means, decreasing
in this way the total income of the company.

Optimal design of an urban area. In this case the urban area Ω
is still considered as prescribed, whereas f+ and f− are the unknowns of
the problem that have to be determined in an optimal way taking into
account the following facts:

• there is a transportation cost for moving from the residential areas
to the services poles;

• people desire not to live in areas where the density of population
is too high;

• services need to be concentrated as much as possible, in order to
increase efficiency and decrease management costs.

2. The Wasserstein distances
Mass transportation theory goes back to Gaspard Monge (1781) when

he presented a model in a paper on Académie des Sciences de Paris. The
elementary work to move a particle x into T (x), as in Figure 2.1, is given
by |x− T (x)|, so that the total work is∫

remblais
|x− T (x)| dx .
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Figure 2.1. The Monge problem.

A map T is called admissible transport map if it maps “remblais” into
“déblais”. The Monge problem is then

min
{∫

remblais
|x− T (x)| dx : T admissible

}
.

It is convenient to consider the Monge problem in the framework of
metric spaces:

• (X, d) is a metric space;

• f+, f− are two probabilities on X (f+ represents the “remblais”,
f− the “déblais”);

• T is an admissible transport map if it maps f+ onto f−, that is
T#f+ = f−.

The Monge problem is then

min
{∫

X
d
(
x, T (x)

)
df+(x) : T admissible

}
.

The question about the existence of an optimal transport map Topt

for the Monge problem above is very delicate and does not belong to the
purposes of the present paper (we refer the interested reader to the sev-
eral papers available in the literature). Since we want to consider f+ and
f− as general probabilities, it is convenient to reformulate the problem
in a relaxed form (due to Kantorovich (Kantorovich, 1942, Kantorovich,
1948)): instead of transport maps we consider measures γ on X × X
(called transport plans); γ is said an admissible transport plan if

π#
1 γ = f+, π#

2 γ = f−
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where π1 and π2 respectively denote the projections of X × X on the
first and second factors. In this way, the Monge-Kantorovich problem
becomes:

min
{∫

X×X
d(x, y) dγ(x, y) : γ admissible

}
.

Theorem 2.1 There exists an optimal transport plan γopt; in the Eu-
clidean case γopt is actually a transport map Topt whenever f+ and f−

are in L1.

We denote by MK(f+, f−, d) the minimum value in the Monge-
Kantorovich problem above. This defines the Wasserstein distance (of
exponent 1) by

W1(f+, f−, d) = MK(f+, f−, d)

where the metric space (X, d) is considered as fixed. The Wasserstein
distances of exponent p > 1 are defined in a similar way:

Wp(f+, f−, d) = min
{(∫

X×X
dp(x, y) dγ(x, y)

)1/p
: γ admissible

}
.

When X is a compact metric space all the distances Wp are topologically
equivalent, and the topology generated by them coincides with the weak∗

topology on the probabilities on X.

3. Optimal transportation networks
We consider here a model for the optimal planning of an urban trans-

portation network, see (Brancolini and Buttazzo, 2003). Suppose that
the following objects are given:

• a compact regular domain Ω of RN (N ≥ 2); it represents the
geographical region or urban area we are dealing with;

• a nonnegative measure f+ on Ω; it represents the density of resi-
dents in the urban area Ω;

• a nonnegative measure f− on Ω; it represents the density of ser-
vices in the urban area Ω.

We assume that f+ and f− have the same mass, that we normalize
to 1; so f+ and f− are supposed to be probability measures. The main
unknown of the problem is the transportation network Σ that has to
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be designed in an optimal way to transport the residents f+ into the
services f−. The goal is to introduce a cost functional F (Σ) and to
minimize it on a class of admissible choices. We assume that Σ varies
among all closed connected 1-dimensional subsets of Ω with total length
bounded by a given constant L. Thus the admissible class where Σ varies
is

AL =
{
Σ ⊂ Ω, closed, connected, H1(Σ) ≤ L

}
. (2.1)

In order to introduce the optimization problem we associate to every
“admissible urban network” Σ a suitable “point-to-point cost function”
dΣ which takes into account the costs for residents to move by their own
means as well as by using the network. The cost functional will be then

F (Σ) = Wp(f+, f−, dΣ) (2.2)

for some fixed p ≥ 1, so that the optimization problem we deal with is

min{F (Σ) : Σ ∈ AL}. (2.3)

It remains to introduce the function dΣ (that in the realistic situations
will be a semi-distance on Ω). To do that, we consider:

• a continuous and nondecreasing function A : [0, +∞[→ [0,+∞[
with A(0) = 0, which measures the cost for residents of traveling
by their own means;

• a lower semicontinuous and nondecreasing function B : [0,+∞[→
[0,+∞[ with B(0) = 0, which measures the cost for residents of
traveling by using the network.

More precisely, A(t) represents the cost for a resident to cover a length
t by his own means (walking, time consumption, car fuel, . . . ), whereas
B(t) represents the cost to cover a length t by using the transportation
network (ticket, time consumption, . . . ). The assumptions made on the
pricing policy function B allow us to consider the usual cases below: the
flat rate policy of Figure 2.2 (a) as well as the multiple-zones policy of
Figure 2.2 (b).

Therefore, the function dΣ is defined by:

dΣ(x, y) = inf
{
A
(
H1(φ \ Σ)

)
+ B

(
H1(φ ∩ Σ)

)
: φ ∈ Cx,y

}
, (2.4)

where Cx,y denotes the class of all curves in Ω connecting x to y.

Theorem 2.2 The optimization problem (2.3) admits at least a solution
Σopt.
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• •

Figure 2.2. (a) flat rate policy (b) multiple-zones policy.

Once the existence of Σopt is established, several interesting questions
arise:

• study the regularity properties of Σopt, under reasonable regularity
assumptions on the data f+ and f−;

• study the geometrical necessary conditions of optimality that Σopt

has to fulfill (nonexistence of closed loops, bifurcation points, dis-
tance from the boundary ∂Ω, . . . );

• perform an asymptotic analysis of the optimization problem (2.3)
as L→ 0 and as L→ +∞.

Most of the questions above are still open in the general framework cov-
ered by the existence Theorem 2.2 above. However, some partial results
are available in particular situations; we refer the interested reader to
the several recent papers on the subject, see for instance (Brancolini and
Buttazzo, 2003, Buttazzo et al., 2002, Buttazzo and Stepanov, Mosconi
and Tilli, 2003).

4. Optimal pricing policies
With the notation above, we consider the urban area Ω and the mea-

sures f+, f− as fixed, as well as the transportation network Σ. The
unknown is in this case the pricing policy function B that the manager
of the network has to choose among all lower semicontinuous monotone
nondecreasing functions B, with B(0) = 0. The goal is to maximize the
total income, which of course depends on the policy B chosen, so it can
be seen as a functional F (B).

The function B can be seen as a control variable and the correspond-
ing Kantorovich transport plan γB as a state variable, which solves the
minimum problem

min
{∫

Ω×Ω
dp

B(x, y) dγ(x, y) : γ admissible
}

(2.5)



Three optimization problems in mass transportation theory 19

where p is the Wasserstein exponent and dB is the cost function

dB(x, y) = inf
{
A
(
H1(φ \ Σ)

)
+ B

(
H1(φ ∩ Σ)

)
: φ ∈ Cx,y

}
. (2.6)

The quantity dB(x, y) can be seen as the total minimal cost a customer
has to pay to go from a point x to a point y, using the best path φ. This
cost is divided in two parts: a part A

(
H1(φ \ Σ)

)
due to the use of his

own means, and a part iB(x, y) = B
(
H1(φ ∩ Σ)

)
due to the ticket to

pay for using the transportation network. The only condition we assume
to make the problem well posed is that, in case several paths φ realize
the minimum in (2.6), the customer chooses the one with minimal own
means cost (and so with maximal network cost). The total income is
then

F (B) =
∫

Ω×Ω
iB(x, y) dγB(x, y), (2.7)

so that the optimization problem we consider is:

max
{
F (B) : B l.s.c., nondecreasing, B(0) = 0

}
. (2.8)

The following result has been proved in (Buttazzo et al.).

Theorem 2.3 There exists an optimal pricing policy Bopt solving the
maximal income problem (2.8).

Also in this case some necessary conditions of optimality can be ob-
tained. It may happen that several functions Bopt solve the maximal
income problem (2.8); in this case, as a canonical representative, we
choose the smallest one, with respect to the usual order between func-
tions. It is possible to show that it is still a solution of problem (2.8).
In particular, the function Bopt turns out to be continuous, and its Lip-
schitz constant can be bounded by the one of A. We refer to (Buttazzo
et al.) for all details as well as for the proofs above.

5. Optimal design of an urban area
We consider the following model for the optimal planning of an urban

area, see (Buttazzo and Santambrogio, 2003).

• The domain Ω (the geographical region or urban area), a regular
compact subset of RN , is prescribed;

• the probability measure f+ on Ω (the density of residents) is un-
known;

• the probability measure f− on Ω (the density of services) is un-
known.
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Here the distance d in Ω is taken for simplicity as the Euclidean one,
but with a similar procedure one could also study the cases in which the
distance is induced by a transportation network Σ, as in the previous
sections. The unknowns of the problem are f+ and f−, that have to be
determined in an optimal way taking into account the following facts:

• residents have to pay a transportation cost for moving from the
residential areas to the services poles;

• residents like to live in areas where the density of population is not
too high;

• services need to be concentrated as much as possible, in order to
increase efficiency and decrease management costs.

The transportation cost will be described through a Monge-Kantoro-
vich mass transportation model; it is indeed given by a p-Wasserstein
distance (p ≥ 1) Wp(f+, f−).

The total unhappiness of residents due to high density of population
will be described by a penalization functional, of the form

H(f+) =
{ ∫

Ω h(u) dx if f+ = u dx
+∞ otherwise,

where h is assumed to be convex and superlinear (i.e. h(t)/t→ +∞ as
t→ +∞). The increasing and diverging function h(t)/t then represents
the unhappiness to live in an area with population density t.

Finally, there is a third term G(f−) which penalizes sparse services.
We force f− to be a sum of Dirac masses and we consider G(f−) as a
functional defined on measures, of the form studied by Bouchitté and
Buttazzo in (Bouchitté and Buttazzo, 1990, Bouchitté and Buttazzo,
1992, Bouchitté and Buttazzo, 1992):

G(f−) =
{ ∑

n g(an) if f− =
∑

n anδxn

+∞ otherwise,

where g is concave and with infinite slope at the origin ((i.e. g(t)/t →
+∞ as t→ 0+). Every single term g(an) in the sum above represents the
cost for building and managing a service pole of dimension an, located
at the point xn ∈ Ω.

We have then the optimization problem

min
{
Wp(f+, f−)+H(f+)+G(f−) : f+, f− probabilities on Ω

}
. (2.9)

Theorem 2.4 There exists an optimal pair (f+, f−) solving the problem
above.
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Also in this case we obtain some necessary conditions of optimality.
In particular, if Ω is sufficiently large, the optimal structure of the city
consists of a finite number of disjoint subcities: circular residential areas
with a service pole at their center.
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