Chapter 1

PREFERENCES AND UTILITY

1. Fundamental Assumptions

We suppose that there is a set of states, or alternatives, or bundles
of goods, or “things” in the world. At various times we’ll use various
symbols to denote those things, but for now, we use the letters x, v,
z, .... Later on we will be more explicit about the nature of our set of
things.

The first fundamental assumption that we make about people is that
they know that they like: they know their preferences among the set of
things. If a person is given a choice between x and y, he can say (one
and only one sentence is true):

1. He prefers z to y
2. He prefers y to x

3. He is indifferent between the two.

This is the axiom of completeness. It seems reasonable enough.

But some objections could be made to it. For a variety of reasons,
a reasonable person might not be able to choose. If you are given the
choice between shooting your dog and shooting your cat, you will balk.
If your don’t know what = and y really are; if, for example, both are
complicated machines like cars and you don’t know much about them,
you may be unwilling to choose. If you are used to having your choices
made for you; if you are dependent on your parents, your doctor, your re-
ligious guide, your government, you may be incapable of making choices
yourself. Moreover, it may be painful, time consuming, distasteful, and
nerve-wracking to make choices, and we will more or less ignore these
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costs of decision making. In spite of these objections, we make the as-
sumption.

The second fundamental assumption is the axiom of transitivity. The
assumption has four parts:

1. If a person prefers z to y and prefers y to z, then he prefers x to z.

2. If a person prefers = to y, and is indifferent between y and z, then he
prefers x to z.

3. If a person is indifferent between z and y and prefers y to z, then he
prefers x to z.

4. If a person is indifferent between x and y, and is indifferent between
y and z, then he is indifferent between x and z.

There are several possible objections to the transitivity assumption.
Parts (1), (2), and (3) may simply not be true for some people under
some circumstances. It might be the case that you prefer apple to cherry
pie, and cherry to peach pie, while you prefer peach to apple. In fact,
experiments with real subjects sometimes do reveal intransitivities of
this sort, although when they are brought to the subjects’ attention,
they typically change their minds. Part (4) is the least realistic, since
it can be applied repeatedly to get nonsense results: Let x; be a cup of
coffee with one grain of sugar in it; let x5 be a cup of coffee with two
grains of sugar in it; and so on. Now it’s almost certainly the case that
you can’t taste the difference between zj ad xxy1, for any whole number
k, and so you must be indifferent between them. Therefore, by repeated
applications of (4), you must be indifferent between z¢ and 21,000,000,
which is probably false. The problem here is evidently the existence of
psychological thresholds. It can be escaped by assuming those thresholds
away, or by assuming away the existence of finely divisible states of the
world.

It is possible for some purposes to do without parts (2)-(4) of the tran-
sitivity assumption, in which case we say preferences are quasi-transitive.
And quasi-transitivity itself can be further weakened, by assuming:

If a person prefers x; to x2, and prefers xs to zs, ..., and prefers
Tp_1 to zp, then he does not prefer z; to x;.

If preferences satisfy this assumption we say they are acyclic. In most
of what follows, however, we assume all of transitivity for individuals’
preferences.

The third and last fundamental assumption is that people always
choose an alternative which is preferred or indifferent to every alternative



PREFERENCES AND UTILITY 13

available to them. They choose “best” alternatives for themselves. In
short, they are rational.

2. Best Alternatives and Utility Functions

In the middle and late nineteenth century it was popular in some
philosophical circles to assume that pleasure and pain could be numeri-
cally measured. The measurement was in terms of wtils or utility units,
which were considered as scientifically real as units of length, mass, or
temperature. Now a unit of length is scientifically real for several rea-
sons: first, there is a standard object which everyone (at least everyone
outside the U.S.) agrees represents one unit (e.g., a platinum rod in a
vault in Paris); second, there is a natural zero for length; third, units of
length can be added, subtracted, and multiplied by numbers according
to the rules of arithmetic, and the results make sense: 2 meters + 2
meters = 4 meters.

Some of the nineteenth century advocates of utility calculus thought
utility could be standardized and measured, like length; they thought
the units could be used to measure everyone’s happiness; they thought
there was a natural zero between pleasure and pain; and they thought
units of utility could be added and subtracted in a reasonable way.

But no one has yet succeeded in defining an objective unit of utility.
Is it a level of electrical activity somewhere in the brain? Is it an index
constructed from pulse, blood pressure, glandular activity data? Is it a
rate of salivation, a degree of pupil dilation, or perspiration? We don’t
know. There is no way of comparing levels of satisfaction among different
people. For that matter, there is no objective way of measuring utility
at two different times for the same individual. This remains so despite
the interesting developments in experimental psychology and neuroeco-
nomics, although future research in these fields may shed important light
on these issues.

But there is a subjective way: Ask him. (If you don’t believe what
a person says, you might choose instead to observe him. See what he
chooses when he has what opportunities. If he chooses  when he might
have chosen y, he reveals his preference for z.)

The problem with asking about utility is this. If you ask “How many
units of happiness would you now get if I gave you a banana?” you will
be laughed at. The question must be more subtly put. Ask instead,
“Would you prefer a banana to an apple?” This is our fundamental
question.

Asking “Would you prefer z to y” will never get you a measure of
utility with well defined units, a zero, and other nice mathematical prop-
erties. But it will allow you to find alternatives that are at least as good



14 WELFARE ECONOMICS AND SOCIAL CHOICE THEORY, 2ND ED.

as all others, and, remarkably, it will allow you to construct a numerical
measure to reflect tastes. The determination of best alternatives and the
construction of a measure of satisfaction are both made possible by the
completeness and transitivity assumptions on preferences. Therefore,
the theory of preferences, with those two assumptions, is connected to,
and is a generalization of, the old-fashioned nineteenth century theory
of utility.

3. The Formal Model of Preferences

Before we can proceed, we need to introduce some notation. Let x and
y be two alternatives. We consider a group of people who are numbered
1, 2, 3, and so on. To symbolize the preferences of the i*" person we
write zR;y for “i thinks z is at least as good as y”; xFP;y for “i prefers
x to y”; and zl;y for “i is indifferent between x and y.”

The relation R; should be viewed as the logical primitive, the “given.”
The relations P; and I; can be derived from R; with these definitions:

x Py if zR;y and not yR;x

xly if xRy and yR;x

In words: Person ¢ prefers x to y if he thinks x is at least as good as
y but he does not think y is at least as good as x. And i is indifferent
between z and y if he thinks x is at least as good as y and he thinks y
is at least as good as .

Now our fundamental axioms of completeness and transitivity are
formally put this way:

Completeness. For any pair of alternatives x and y, either zR;y or
yRix.

Transitivity. For any three alternatives x,y, and z, if zR;y and yR;z,
then zR;z.

Notice that these definitions are in terms of the primary relation R;,
rather than in terms of the derived relations P, and I;. The verbal
definitions in the section above were in terms of P; and I;. The reader
can check that the verbal and the formal definitions are in fact logically
equivalent. That is, if R; is transitive in the sense that, for all z, y, and
z, tR;y and yR;z implies zR;z, then the following must also be true:

1. Py and yP;z implies zP;z. (See Proposition 1 below.)

2. zPyy and yl;z implies x P;z.
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3. zl;y and yP;z implies xF;z.
4. zl;y and yl;z implies x1;z.

The less fundamental (and weaker) assumptions of quasi-transitivity
and acyclicity are formally put this way:

Quasi-transitivity. For any three alternatives x, y, and z, if x Py and
yP;z, then zP;z.

Acyclicity. For any list of alternatives x1, xo,...,xk, if z1Pxo,
roP;xs, ..., and xp_1 Pixk, then not zpPxy.

Let us now prove that if a preference relation R; is transitive, it must
be quasi-transitive, and if it is quasi-transitive, it must be acyclic:

Proposition 1. If R; is transitive, then it is quasi-transitive. If R; is
quasi-transitive, then it is acyclic.

Proof. Suppose first that R; is transitive. We want to show it is
quasitransitive. Suppose zP;y and yFP;z. We need to show xF;z,
that is, xR;z and not zR;x. Now zP;y means xR;y and not yR;x
and yP;z means yR;z and not zR;y. Since xR;y and yR;z, tR;z
follows by R;’s transitivity. If zR;x were also true, then we would
have zR;z, xR;y and, by R;’s transitivity, zR;y, which contradicts
not zR;y. Consequently, zR;x cannot be true; that is, not zR;z. But
zR;z and not zR;x means xP;z, and R; is quasi-transitive.

Next suppose R; is quasi-transitive. We want to show it is acyclic.
Suppose 1Pz, xoPixs . .., xx_1 P;xr. We need to show not xyPixy.
Since x1Pjxy and x9P;x3, x1P;x3 by quasi-transitivity. Similarly,
since x1 P;xs and x3P;x4, x1Pjxy by quasi-transitivity. Repeated ap-
plications of this argument gives x1 Pz, and not z,P;x; follows im-
mediately. Q.E.D

We have already noted that preferences can be quasi-transitive with-
out being transitive: the grains-of-sugar-in-coffee example shows this.
Preferences can also be acyclic without being quasi-transitive or tran-
sitive. Suppose someone likes apples (A) better than bananas (B),
and bananas better than cherries (C), but is indifferent between ap-
ples and cherries. Then his preferences relation is AP;B, BP;C', and
AIL;C. This doesn’t violate acyclicity since there is no preferences cy-
cle. (If CP; A holds, there is a cycle.) But the preference relation is not
quasi-transitive, since quasi-transitivity would require AP;C.
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With the necessary tools in hand, we proceed to define what is meant
by an individual’s “best” choices. Suppose S is some collection of alter-
natives. Let x be an element of S. Then z is said to be best for person
i if ¢ thinks it is at least as good as every other element of S.

Formally, i’s best set in S or i’s choice set in S, denoted C(R;,S), is
defined as follows:

C(R;,S) = {zin S|z Ry for all y in S}.

This is read: “C(R;, S) is the set of all z’s in S, such that zR;y for all
y’sin §.” (Note that braces { } means “the set” and a slash | means
“such that.”)

Now to the next result. Proposition 2 answers the question “When
can we be sure best things exist?” One answer is: Whenever a preference
relation (defined on a finite set) is complete and transitive.

Proposition 2. Let S be a finite set of alternatives available to person
i. Suppose R; is complete and transitive. The C(R;,.S) is nonempty.
That is, best choices exist.

Proof. Choose one alternative, say z1, from S. If it is best, we are
done. If not, there is an alternative, say o, for which

1 R0

does not hold. By completeness x5 R;x1 must hold, and therefore, by
definition
ToPxy.

If x5 is best, we are done. If not, we can choose an x3 such that
3 Pxo

by the same argument as above.

This process can either terminate at a best choice (in which case
we are done), or it can go on indefinitely. Since S has only a finite
number of elements, if the choice process goes on forever, it must
repeat. Therefore, there must be a cycle:

r1 P Pirg 1 Py ... x3Pwe Pixy.

Repeated applications of the transitivity assumption implies z P;x1.
But this contradicts x1P;x,. Hence,the process cannot continue in-
definitely and the choice set is nonempty. Q.E.D.
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But Proposition 2 could clearly be strengthened by substituting the
assumption of quasi-transitivity, or of acyclicity, for our fundamental
assumption of transitivity, since the key to the proof is the possible ex-
istence of a cycle in the individual’s preferences. In fact, the following
proposition is also true. The proof is virtually the same as for Proposi-
tion 2, and is left to the reader.

Proposition 3. Let S be a finite set of alternatives available to person
i. Suppose R; is complete and acyclic. Then C(R;, S) is nonempty.
That is, best choices exist.

Proposition 3 can itself be strengthened to more clearly indicate the
connection between the existence of best or choice sets, and acyclicity
of the preference relation. The following proposition says that when R;
is complete, best sets are always nonempty if and only if R; is acyclic:

Proposition 4. Suppose R; is complete. Then C(R;,S) is nonempty
for every finite set of alternatives S available to person i, if and only
if R; is acyclic.

Proof: The “if” part of the proof follows from Proposition 3. To
prove the “only if” part, we assume C(R;, S) is nonempty for every
finite set of alternatives S. We want to show R; is acyclic.

Suppose to the contrary that R; is not acyclic. Then there exist al-
ternatives x1,xs. ..,z such that x1Pxo, xoPx3, . .., xp_1 Pz, and
xpPixy. Let S = {x1,x9,23,...,2;}. Then C(R;, S) is empty, since
every alternative in S is inferior to some other alternative in S. But
this is a contradiction. Consequently R; must be acyclic. Q.E.D.

The propositions above answer this question: Given particular as-
sumptions about a person’s preferences, can he always identify best al-
ternatives? The next proposition answers a different question: Is there a
numerical function, a utility function, which represents a person’s pref-
erences? If the answer is yes, then familiar mathematical tools can be
applied to the problem of identifying best alternatives, since the search
for a best alternative reduces to the problem of maximizing a utility func-
tion. If the answer is no, the use of utility functions, indifference curves,
and all the other common tools of economics, is very likely illegitimate.

It turns out that the answer is yes if preferences are complete and
transitive. (And in this case, acyclicity cannot substitute for transitiv-

ity.)

Proposition 5. Let S be a finite set of alternatives available to person
i. Suppose R; is complete and transitive.
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Then we can assign numerical values w;(x), u;(y), ui(2), etc., to the
alternatives in S so that

ui(x) > u;i(y) and only if zR;y.

In other words, there is a utility function u;, which places values on
the alternatives that exactly reflect i’s preferences. The proof is in the
appendix to this chapter.

We should note that u; could be transformed without altering its
preference representation property. For instance, if we define v; = u;+C,
where C' is any constant, then v;(z) > v;(y) if and only if u;(xz) >
u;i(y), if and only if zR;y. Therefore, v; represents R; as well as u;
does. And if u;(z) > 0 for all z’s, u? would represent R; as well as u;.
In fact, any transformation of u; that does not change relative values
leaves the representation property intact. These are called monotone
transformations. If a utility function represents a person’s preferences,
any monotone transformation of that utility function is another utility
function that represents the same preferences.

For this reason, u; is called an ordinal utility function and, unlike
the hypothesized utility functions of nineteenth century philosophers, it
does not behave like a cardinal measure such as length: For our utility
function, there exist no standard units, there are no natural zeros, and
it makes no sense to add u;(z) to u;(y). Nor does it make any sense to
add u;(x) + u;(y), if u; is another person’s utility function.

What then is the use of an ordinal utility function? In fact, it trans-
mits exactly the same information as the preference relation it repre-
sents: neither more, nor less. But a utility function allows us to analyze,
in a compact and easy way, the behavior of an individual in an economic
environment. It is quite correct to say that a consumer chooses a bundle
of goods to maximize his utility, and the utility approach is mathemat-
ically and graphically convenient. It allows us to use the standard tools
of the economist’s trade.

To be able to represent preferences by means of utility functions,
Proposition 5 has dealt with the case of finite sets of alternatives. How-
ever, in many applications in this book an individual will be choosing
from infinite sets of alternatives. For example, a consumer will choose
bundles of goods where the amount of each good is measured by a real
number. For such settings, if one wishes to represent preferences by
a utility function the assumption of continuous preferences is impor-
tant. Intuitively, continuity means that the preference relation has “no
jumps.” Here’s the definition.
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Continuity. For any bundle of goods z, the upper contour set of R;
at x and the lower contour set of R; at x are closed, i.e., they contain
their boundaries. (The upper contour set of R; at x is the set of
bundles {y|yR;z}. The lower contour set of R; at z is the set of
bundles {y|zR;y}).

With the aid of continuity, Proposition 5 can be extended as follows:

Proposition 6. Let S be a (possibly infinite) set of bundles of goods.
Suppose R; is complete, transitive and continuous over S. Then there
exists a utility function u; defined on S which exactly reflects i’s
preference relation R;.

This proposition will be used extensively in the following chapters.

4. Decisions under Uncertainty and Expected
Utility

In this section we present an important special case of decision the-
ory. It concerns problems involving uncertainty. Uncertainty has come
to be viewed in recent decades as an important factor in many economic
decisions. For example, an individual making investment decisions is
uncertain about the returns he will obtain. A sports team making play-
ers’ hiring decisions does not know for sure how these hires will trans-
late into victories. The government of a country, when implementing a
policy change, may not know exactly its consequences for society. For
these cases and many more, the decision makers are facing a problem in
which uncertainty and risk are essential components. It turns out that
the theory developed for these decision problems has a very interesting
mathematical structure, which we shall outline in this section.

Suppose that the set of pure alternatives (i.e., those not involving
uncertainty) is {z1,...,2zx}. Each of these pure alternatives could be
anything, but for simplicity and to fix ideas, let’s think of each of them
as a prize, a different amount of money that the individual could win.
Thus, for example, the individual could end up with a prize of x; = $0,
z9 = $10 or z3 = $100.

Let | = (q1,...,qx) be a lottery over the pure alternatives. That
is, [ is a probability distribution, whereby alternative z; occurs with
probability ¢;. Of course, ¢; > 0 for j = 1,...,k and Z;‘le g = 1.
Continuing with the example of three monetary prizes, one could think
of several lotteries: lottery I; = (0.5,0,0.5) is a fair coin toss that pays
$100 if heads, and nothing if tails. Lottery lo = (1/3,1/3,1/3) is a fair
die toss that pays $0 if faces 1 or 2 turn up, $10 if 3 or 4 do, and $100 if 5
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or 6 do. Lottery I3 = (0, 1, 0) is also a lottery, but it is called a degenerate
lottery, because it pays one of the prizes for sure (in this case, $10).

Suppose that now the individual is asked to choose among the lotter-
ies. Which should he choose? Note that two rational individuals may
choose differently. For instance, presented with the choice between [y
and l3, one individual may choose l3 because he is afraid of the high
probability (one half) of getting nothing in {;, while another person may
choose 1] because its expected prize (weighted average of prizes) is so
much higher than that in 3.

In any event, since individuals will be making decisions involving un-
certainty, we model these situations as individuals choosing over the set
of possible lotteries. Therefore, we assume that individuals have prefer-
ences over lotteries.

Given a set of pure alternatives {x1, ..., 2y}, the set of lotteries over
it is the set of all possible probability distributions. This is called the
probability simplex:

k
{(q1, - aw)lg; >0 forall j, Y g;=1}.
j=1

The preference relation R; over the probability simplex describes the
preferences of the decision maker. The statement “I1 R;ls” is read “lot-
tery l; is at least as good as lottery ls according to person i.” The
preference relation R; is used to define both the strict preference rela-
tion P; and the indifference relation I;, as before.

We shall assume that person i’s preference relation R; over the set
of lotteries satisfies completeness, transitivity and continuity. Before we
proceed, it is worth noting an important property of the set of lotteries:
for any pair of lotteries [; and lo and any nonnegative constant a no
greater than 1 (« € [0, 1]), the convex combination of the two lotteries,
that is, [aly + (1 — a)ly], is also a lottery. This is interpreted as first
playing a lottery over lotteries, leading to [; with probability a and to
lo with probability 1 — «, and then playing either [; or Iy, depending
on which was chosen in the first stage. We refer to this property as the
linearity of the set of lotteries.

Because of linearity, the assumption of continuity of preferences re-
duces to the following simple form:

Continuity. For any three lotteries [1 , ls and [, if {1 PjloP;ls, there
exists a number « € (0, 1) such that [al; + (1 — a)l3]L;ls.

That is, if an individual has a strict ranking among three lotteries,
so that he judges one “best” among the three, the second one “in the
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middle” and the third one “worst,” continuity of preferences means that
there must be a way to combine the best and the worst lotteries to get
something that is indifferent to the one that was judged in the middle.
Preference jumps are excluded.

Finally, we shall require another assumption on preferences over lot-
teries, also driven by the linearity of this set.

Independence. For any lotteries l1, lo and I3, [1R;lo if and only if
[aly + (1 — a)l3]R;[als + (1 — a)ls] for every number « € [0, 1].

Although one can construct violations of the independence assump-
tion, its content is very intuitive. Suppose an individual judges lottery
1 at least as good as ls. Then, this preference should persist, should
be independent, of mixing these lotteries with the same third lottery:
if the choices now are that: (a) with probability « lottery [, will be
played, and lottery I3 will happen with probability 1 — «, or (b) with
probability « lottery lo will be played, and lottery I3 will happen with
probability 1 — «, the same individual should prefer (a) over (b) or be
indifferent between the two. This is simply because with probability «
he is facing the choice between [ and s (and 13 R;l5), while with the rest
of probability he is offered the same thing, i.e., [s.

These assumptions characterize the so-called von Neumann-Morgen-
stern or expected utility preferences. The four axioms on preferences
over lotteries lead to the von Neumann-Morgenstern expected utility
theorem, named after the great mathematician and physicist John von
Neumann and the economist Oskar Morgenstern:

von Neumann-Morgenstern Ezpected Utility Theorem. The prefer-
ence relation R; over lotteries satisfies completeness, transitivity, con-
tinuity and independence if and only if it can be represented by a
function that has the expected utility form. That is, there exist
numbers uy, . . ., ug such that for any pair of lotteries I = (qq, ..., qx)

and I’ = (q1, ..., q,), IR;l" if and only if Z?:l qju; > Z?:l qju;-

Proof: 1t is easy to see that, if preferences are representable by a
utility function that has the expected utility form, those preferences
must satisfy the four axioms required.

For the other direction, we provide a graphic proof for the case of
three pure alternatives x1, o and x3, which correspond to the de-
generate lotteries [, lo and [3, respectively. We deal with the nontriv-
ial case in which the individual has a strict preference among these
three. Let’s say that [1 P;l3P;lo. The probability simplex is depicted
in Figure 1.1.
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Figure 1.1.

A point in this triangle represents a lottery over the three pure alter-
natives (which are the degenerate lotteries Iy, ls and l3). Note how
the coordinates (g1, g2) of any point, measured from the usual origin,
tell us the probabilities that the given lottery assigns to the best and
to the worst alternatives (obviously, the probability that this lottery
assigns to the middle alternative 3 is simply 1 — g1 — ¢2).

Now, completeness, transitivity and continuity of R; guarantee the
existence of a utility function representing those preferences (Propo-
sition 6). Given such a utility function u, let u1 = u(ly), us = u(l2)
and uz = u(lg), with u; > usz > ug. What we shall show now is that
this function is linear in probabilities: for any lottery I = (q1, g2, g3),
the utility of lottery I is u(l) = qru1 + gauz + q3us.

Since 1} Pjl3P;la, by continuity, there exists o € (0, 1) such that I’ =
[al1+ (1 —a)lg] is indifferent to I3, i.e., I'[;l3, which implies that these
two lotteries, I’ and I3, lie on the same indifference curve (a locus of
points among which the individual is indifferent). Furthermore, by
independence, one has that for any « € [0, 1]:

lg = [Oélg + (1 — O()lg][i[al/ —+ (1 — Oé)lg],

which implies that the indifference curve passing through I’ and I3 is
a straight line (recall that the locus of points that are convex combi-
nations of two extreme points is the straight line segment connecting
them). See Figure 1.1.

Finally, also from independence, since I'I;l3, one also has that for any
a € [0,1], [’ + (1 —a)li]1;[als+ (1 —a)l1], and applying the previous
step, we construct a new indifference curve for each value of « that
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is parallel to the one through I’ and l3. Next, taking combinations
of I’ and I3 with I3, one concludes that the indifference map is one of
parallel straight lines. This corresponds to a function that is linear
in probabilities. See Figure 1.1 again. Q.E.D.

Thus, in the problems involving uncertainty that we shall cover, we
shall assume that agents have von Neumann-Morgenstern or expected
utility preferences.

P

I

& 41-02=0-1 ha 91
Figure 1.2.

As an illustration, Figures 1.2 and 1.3 depict two different preferences
over the probability simplex, where the three degenerate lotteries are
l1, ly, and l3. In Figure 1.2, let the corresponding utilities u;(l1) =
2, u;i(l3) = 1 and wu;(l2) = 0 according to preferences R;. For these
preferences, the indifference curve of level @ is the locus of points in the
simplex whose equation is 2g1 + (1 —¢1 —¢2) = w or ¢ —g2 = u— 1. Not
surprisingly, the top ranked point in the simplex is the degenerate lottery
l1, while the worst lottery is lo. Figure 1.3 shows an indifference map
with different expected utility preferences over lotteries. In it, u/(l;) = 4,
wi(l3) = 3 and u}(ly) = 0, and we call these preferences R;. For them,
the indifference curve of level @ has the equation 4¢; +3(1 —q1 —q2) =
or qg —3q2=1u—3.

Note that, despite the fact that v} is a monotone transformation of
uj, both utility functions do not represent the same preferences over
lotteries. This is true because, to preserve the expected utility fea-
ture, preferences can be represented only by functions that are positive
affine transformations of one another. That is, if u; and u} are two ex-
pected utility functions representing the same preferences over lotteries,
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q1-392=u-3

Figure 1.3.

there must exist a positive constant o and another constant 3 such that
/

wi(l;) = au;(lj) + B for each degenerate lottery [;.
To see that the preferences depicted in Figures 1.2 and 1.3 differ, note
that the indifference curves have different slopes, and so the indifference
maps are not the same. More clearly, let’s exhibit two lotteries I; and [y
such that [y is preferred to ls according to preferences R; (I1P;ls), while
I is preferred to [ according to Rg (ZQP{ l1). Such lotteries could be, for
example, 1 = (1/3,1/3,1/3) and I, = (0.1,0.7,0.2). Indeed, for this pair
of lotteries, u;(11) =1 > 0.9 = u;(l2), but uj(l;) = 7/3 < 2.5 = ul(l).

5. Introduction to Social Preferences

Interest in quasi-transitivity and acyclicity arises largely from the
analysis of social preferences, rather than of individual preferences. It
is hard to imagine, for instance, that a person could have preferences
which are acyclic but not quasi-transitive. But society’s preferences are
not, as we shall explain at length in later chapters, nearly so sensible as
a person’s.

A few examples will clarify the idea of social preferences, and the
possibilities of nontransitivities for them. Suppose a group is making
choices between alternatives, by using some voting rule. If x defeats y
in a vote, let us say z is socially preferred to y, which we now write
xPy. If z and y tie, let us say x and y are socially indifferent, which
we now write xly. If x is socially preferred to y or socially indifferent
to y, we now write zRy. Where we had R;, P;, and I; for individual
i’s preference, strict preference, and indifference relations, we now have
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R, P, and I for society’s preference, strict preference, and indifference
relations.

Let us be more specific about the voting rules. Assume for simplicity
that there are only three people in the group that is making the choices,
and assume there are only three alternatives, x, y, and z.

Our first example is an instance of Condorcet’s voting paradox, to
which we shall return in Chapter 9 below. The voting rule is simple
majority rule: a vote is taken between a pair of alternatives, and if al-
ternative A gets more votes than alternative B, then A wins. Suppose
the individuals’ preferences are as follows: Person 1 prefers z to y to z.
Person 2 prefers y to z to x. Person 3 prefers z to z to y. Each indi-
vidual has sensible transitive preferences, but they evidently disagree on
the relative merits of the three alternatives. We can indicate these pref-
erences diagrammatically by listing the alternatives from top to bottom
in the order of each person’s preferences:

Ny =
8 N
QR 8w |w

Consider a vote between x and y. Evidently, if the individuals vote
according to their preferences, which we assume they do, person 1 votes
for x; person 2 votes for y; and person 3 votes for z. Consequently, xPy.
Next, consider a vote between y and z. Now person 1 votes for y; person
2 votes for y; and person 3 votes for z. Consequently, yPz. Finally,
consider a vote between z and z. Now person 1 votes for x; person 2
votes for z; and person 3 votes for z. Consequently, zPx. We have a
cycle here, since x Py, yPz, and zPx. These social preferences are not
even acyclic.

The moral is social preferences might be very odd indeed — they need
not share the sensible rational qualities of individual preferences. What
about best sets in this example? We do have C(R, {z,y}) = {z}: = is
best if the choice is limited to = and y. Similarly, C(R,{y, z}) = {y},
and C(R, {x, z}) = {z}. But R has a cycle. So Proposition 4 warns us
that there is some set of available alternatives S for which C(R,S) is
empty. And, in fact, C(R,{z,y, z}) is empty: if all three alternatives
are available, none is best according to majority rule. Each alternative
is worse than one of the others.

Now we turn to a slightly different example. Suppose the people, alter-
natives, and preferences are as above, but the majority rule mechanism
is modified as follows: A vote is taken between a pair of alternatives,
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and if alternative A gets more votes than alternative B, then A wins
— unless person 1 prefers B to A. If 1 prefers B to A, and A wins a
majority over B, then A and B are declared tied, or socially indifferent.
We call this rule simple majority rule with a vetoer. Person 1 has a veto,
in the sense that he can prevent any alternative from actually beating
another alternative he prefers. What are the voting results for this rule?
Consider a vote between x and y. Alternative x gets two votes to one
for y, and person 1, who prefers x anyway, does not exercise his veto.
Consequently, xPy. Next, consider a vote between y and z. Alternative
y gets two votes to one for z, and person 1 again does not exercise his
veto. Consequently, yPz. Finally, consider a vote between = and z.
Alternative z gets two votes to one for x, but now person 1 does exer-
cise his veto, since he prefers x to z. Consequently, xIz. In sum, z Py,
yPz and x1z. These social preferences are acyclic, although they are not
quasi-transitive. Since they are acyclic, Proposition 4 tells us that best
sets are always nonempty. In fact, C(R{z,y, z}) = {z} in this case; the
alternative x is socially best. (It is no accident, of course, that z is also
person 1’s favorite.)

For the third example, we again continue with the people, alternatives
and preferences above, but majority rule is now discarded. The new
rule is an oligarchy of persons 1 and 2, and it works like this: A is
socially preferred to B if and only if both persons 1 and 2 prefer A
to B. Otherwise, A and B are socially indifferent. Now consider a
“vote” between x and y. Person 1 prefers x to y, but 2 prefers y to .
Consequently, zly. Next, consider a vote between y and z. Person 1
prefers y to z and person 2 prefers y to z. Consequently, yPz. Finally,
consider a vote between x and z. Person 1 prefers z to z but person 2
prefers z to x. Consequently, xIz. In sum, zly, yPz, and xlz. Here
there are no cycles, so the social preference relation is acyclic. Moreover,
the definition of quasi-transitivity is (vacuously) satisfied. (It would not
be satisfied if Py and y Pz, and 21z, as in the former example.) But the
social preference relation is not transitive, because transitivity requires
that if Iy and yPz, then x Pz must follow. So this is an example of a
quasi-transitive, but not transitive, social preference relation. Note that
C(R,{z,vy, z}) = {z, y}, the favorite alternatives of the two oligarchs.

The next examples are not hypothetical as the three preceding ones.
They were first discussed, in the 1970s, by Donald Brown:

We now consider two voting rules used by the United Nations Security
Council. The first was in force prior to August 31, 1965. At that time
there were five permanent and six nonpermanent members of the Secu-
rity Council. To be passed, a motion needed seven affirmative votes, and
the concurrence of all five permanent members. That is, each perma-
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nent member had to vote aye on a motion, or to abstain, or that motion
would be defeated. Each permanent member had a veto. Now assuming
that each nation’s Ambassador had transitive (i.e., sensible) preferences,
the procedure could not cycle. To see this, suppose there were a series
of motions, or amendments to motions, or amendments to amendments,
such that z1 defeated zo, xo defeated 3, x3 defeated x4, ..., and zp_1
defeated xj. Since xq defeated xo, x1 got seven affirmative votes from
the eleven members of the Council. Consequently, one of the permanent
members must have voted affirmatively for z; over x3. Say the United
States voted affirmatively for ;. Then the United States presumably
preferred x1 to xo. Now xo was passed over x3. Consequently, zo had
seven affirmative votes over x3, and the concurrence of all five permanent
members. That means every permanent member either preferred zs to
x3, or was indifferent between the two In particular, the United States
either preferred zs to x3, or was indifferent between the two. Similar
reasoning shows the United States either preferred z, to xp4+1, or was
indifferent between the two, for n = 3,4, ..., k— 1. Consequently, by re-
peated applications of transitivity, the United States preferred z; to x.
Therefore, the United States would have used its veto power to prevent
x)’s winning over x1: so x could not possibly defeat x1. A cycle could
not occur: the voting rule was acyclic. From Proposition 4 we know that
no matter what set of alternatives was available, the voting procedure
would sensibly identify at least one best alternative.

The second United Nations Security Council voting rule was put in
force on September 1, 1965. At that time, the nonpermanent mem-
bership of the Council was increased from six to ten. The permanent
membership remained at five. To be passed, a motion now needs nine
affirmative votes, and the concurrence of all five permanent members.
(This rule remains in effect in 2005.) This procedure can cycle. To
see this, we construct an example. There are ten alternatives, labeled
T1,T9,...,T10. Assume for the sake of argument that the five perma-
nent members are all indifferent about all these alternatives: None feels
strongly enough about any of the alternatives to veto it. Assume that
the preferences of the nonpermanent members are as follows: (Under
member 1, we list the alternatives, from top to bottom, in that Ambas-
sador’s order of preference; similarly for 2, 3, and so on.)

The table is formidable, but the analysis is perfectly simple: Con-
sider a vote between 1 and zs. Everyone except the Ambassador from
Country 10 prefers z1 to xs. (The permanent members are indifferent.)
Consequently, x1 defeats xo. Consider a vote between xs and x3. Ev-
eryone except the Ambassador from Country 9 prefers xo to z3. (The
permanent members are indifferent.) Consequently, xo defeats x3. Sim-
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1 2 3 4 5 6 1 8 9 10
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ilarly, 3 defeats x4, x4 defeats x5, and so on, until xg defeats x19. Now
consider a vote between z; and x19. Everyone except the Ambassador
from Country 1 prefers 19 to x1. (The permanent members are indif-
ferent.) Consequently, x19 defeats z1, and there is a voting cycle!

To briefly summarize the observations of this section, the question
of transitivity for a preference ordering, which hardly arises for an in-
dividual’s ordering, does arise with a vengeance for a social preference
ordering. In our discussion of individuals, where it is comfortable to
assume completeness and transitivity for preferences, we shall largely
use Proposition 5 and the utility functions that proposition guarantees
exist. But when we return to social preferences, we shall have to re-
turn to the concepts of this chapter, and pay careful attention to ideas
like completeness, transitivity, and transitivity’s weaker cousins, quasi-
transitivity and acyclicity.

6. Exercises

1 Show that if a preference relation R; is transitive in the sense that
xR;y and yR;z implies xR;z for all x, y, and z, then (i) Py and
yl;z implies x Pz, and (ii) l;y and yI;z implies z[;z.

2 Hockey team A defeats hockey team B. Hockey team B defeats
hockey team C. Hockey team A ties hockey team C.

(a) Is this preference order complete? Is it transitive? Quasi-transitive?
Acyclic?

(b) Can you identify a best hockey team?

(¢) Can you construct a “quality” function u for hockey teams, with

the property that u(z) > u(y) if and only if = defeats y? Show
with numbers why you can or cannot do this.

(d) Can you construct a pseudo quality function v for hockey teams,
which only satisfies this property: if x defeats y then v(z) > v(y)?
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3 Show that if preferences over lotteries satisfy independence, then for
all lotteries l1, lo and I3, one has that {1/;l5 if and only if [ady + (1 —
a)ls)Li[aly + (1 — a)l3] for every a € [0, 1].

4 Show that if preferences over lotteries are representable by an ex-
pected utility function, they must satisfy completeness, transitivity,
continuity and independence.

5 Suppose a committee has five rational members, and, for motion z
to defeat motion y, x needs four affirmative votes out of the five.

(a) Show that if there are five alternatives available, there can be a
voting cycle.

(b) Show that if there are only four alternatives available, there can-
not be a voting cycle.

7. Appendix

Proof of Proposition 5. For notational convenience in this proof, we
will drop the subscript ¢ wherever it appears.

Suppose S is finite and R is complete and transitive. We want to
show that there exists a utility function u such that

u(z) > u(y) if and only if zRy.

First, we subdivide S into “indifference classes.”

Let C; = C(R, S). Cy is nonempty by Proposition 2.

The alternatives in S which are not in C; we call S — C;.

Let Cy = C(R,S — C1). Cy is nonempty by Proposition 2.

The alternatives in .S which are not in Cy or in Cy we call §—Cp —Cs.
Let C3 = C(R,S — Cy — C5). C3 is nonempty by Proposition 2.

We continue in this fashion until we have exhausted S. This we must
be able to do because S is finite. Let C}, be the last class so constructed.

hif x is in C}
h—1if zisin Cy

Now define u(z) =

([ lif zisin C)
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Next we show that u(z) > u(y) implies x Ry. Suppose u(x) > u(y).
Then z is in the same class as y, or in a class constructed before the
class containing y. Let Cj be the class containing x. Then x is in
C(R,S—C1—Cy—...—Cg—q) whileyisin S—Cy, —Cy — ... — Cg_1.
Therefore, x Ry.

Finally, we will establish that xRy implies u(x) > u(y). We will
argue that u(z) < u(y) implies not zRy. Suppose u(z) < u(y). Let Cy
be the indifference class containing x, and C; be the indifference class
containing vy.

Since u(z) < u(y), z’s class C was constructed after y’s class Cj.

Therefore, y isin C(R,S—C1—...—Cj_1),zisin S —C1 —...— Cj_q,
but x is not in C(R, S — Cy — ... — Cj_1). Therefore, yRx and there is
some alternative z in S —C; —...—Cj_; such that yRz (because y is in
the best set C(R,S —Ci —...— Cj_1)) but not xRz (because x is not).

By completeness, if not xRz, then zPz.
Now by transitivity, if yRz and zPzx, then yPxz. Hence, not xRy,
which is what we wanted to establish. Q.E.D.

8. Selected References

(Items marked with an asterisk (*) are mathematically difficult.)

1. K. Arrow, Social Choice and Individual Values, 2nd Edition, John
Wiley and Sons, Inc., New York, 1963, Chapter II.

This is an easy to read chapter of the classic monograph by Ken-
neth Arrow. It has short but useful observations on older literature.
Arrow’s notation and formalization of preferences and best or choice
sets are the ones followed in this book.

2. D.J. Brown, “Aggregation of Preferences,” Quarterly Journal of Eco-
nomics, V. 89, 1975, pp. 456-469.

This relatively nontechnical piece by Donald Brown is meant to in-
troduce the nonspecialist to modern variants of Arrow’s Impossibility
Theorem. In these variants oligarchies and what Brown calls collegial
polities take the place of dictators in Arrow’s original theorem. Our
example above of a majority rule mechanism with a vetoer is a Brown
collegial polity. Our observations about the Security Council of the
United Nations are taken from this Brown article.

*3. G. Debreu, Theory of Value, John Wiley and Sons, Inc., New York,
1959, Chapter 4.

Chapter 4 of Gerard Debreu’s classic monograph has a rigorous proof
for existence of continuous utility functions. The mathematics is
rather sophisticated.



PREFERENCES AND UTILITY 31

*4. R.D. Luce, “Semiorders and a Theory of Utility Discrimination,”
Econometrica, V. 24, 1956, pp. 178-191.

This article deals with individual preferences that are complete, but
not transitive. Instead of transitivity, quasi-transitivity, or acyclicity,
Luce assumes the following intuitive property: It is possible to “string
out all the elements of S [the set of available alternatives] on a line in
such a fashion that an indifference interval never spans a preference
interval.” For such preferences, there is a theorem similar to, but
slightly different than our Proposition 5.

5. AK. Sen, Collective Choice and Social Welfare, Holden-Day, Inc.,
San Francisco, 1970, Chapter 1*.

Amartya Sen’s book provides an extremely clear treatment of most
topics in social choice. Chapter 1%, on preferences relations, is formal
but not difficult. Sen’s Lemma 1*1 is the original version of our
Proposition 4 above.

6. J. von Neumann and O. Morgenstern Theory of Games and Economic
Behavior, Princeton University Press, 1st edition, 1944.

In its first part, this fundamental book provides the model of deci-
sion making under uncertainty, and derives expected utility from as-
sumptions on preferences over lotteries. The rest of the book studies
problems involving more than one individual, in which the decisions
made by each one influence the others. These problems are called
games. Although one could cite some previous contributions, this
book constitutes the formal birth of game theory.



2 Springer
http://www.springer.com/978-0-387-29367-7

Welfare Economics and Social Choice Theary
Feldman, A.M.; Serrano, R.

2008, Xll, 404 p., Hardcover

ISBN: @78-0-387-20367-7





