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Introduction

The claim, made on Gauss’s behalf, that he was a, or even the, dis-
coverer of non-Euclidean geometry is very hard to decide because the
evidence is so slight. It is nonetheless implicit in the excellent commen-
taries of Stéckel [23] and Dombrowski [7], as it is in Reichardt’s book
[21] and the broader but slighter survey by Coxeter [6]. Proponents of
this view, with Dunnington, are happy to tie documents written in the
late 1820s and 1830s to cryptic claims made by Gauss for early achieve-
ments, and to equally elusive passages from the 1810s. In fact, the
evidence points in another direction. It suggests that Gauss was aware
that much needed to be done to Euclid’s Elements to make them rig-
orous, and that the geometrical nature of physical Space was regarded
by Gauss as more and more likely to be an empirical matter, but in this
his instincts and insights on this occasion were those of a scientist, not
a mathematician.

I shall also argue that the whole question of what it is to discover a
new geometry of space requires much careful thought, and if definitive
agreement on the matter cannot be reached — and perhaps it cannot —
then at least positions can profitably be made explicit. This has not
usually been done when discussing the discovery of non-Fuclidean ge-
ometry.

1. The evidence

Gauss was 22 when he confided to Wolfgang Bolyai that he was doubt-
ful of the truth of geometry. He had already found too many mistakes
in other people’s arguments in defence of the parallel postulate to be so
confident any longer in their conclusion. He had begun to consider the
fundamental assumptions of geometry at least two years earlier, in July
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27, 1797, when he wrote in his Mathematical Diary only too cryptically
that he had ‘demonstrated the possibility of a plane’. It is tempting to
connect this with fragments of arguments dating from 1828 to 1832 in
which Gauss investigated whether the locus of a line perpendicular to
a fixed line and rotating about that fixed line has all the properties of
a plane, because, in a famous letter to Bessel of January 1829, where
Gauss claims to have harboured these thoughts for almost 40 years, he
wrote that

“apart from the well-known gap in Euclid’s geometry, there is another
that, to my knowledge no-one has noticed and which is in no way easy
to alleviate (although possible). This is the definition of a plane as a
surface that contains the line joining any two of its points. This definition
contains more than is necessary for the determination of the surface, and
tacitly involves a theorem which must first be proved...” [8, Gauss to
Bessel, VIII, p. 200].

One knows from the later history of geometry, most clearly from the
remarks of Pasch ([20]) that trying to spell out what exactly elementary
Fuclidean geometry is about is extremely difficult.

By 1808 Gauss was aware that in the hypothetical non-Euclidean ge-
ometry similar triangles are congruent, and therefore there is an absolute
measure of length. But at this stage, according to Schumacher, he found
this conclusion absurd, and therefore held that the matter was still un-
clear. As he put it in 1813: “In the theory of parallels we are no further
than Euclid was. This is the shameful part of mathematics, that sooner
or later must be put in quite another form”. Evidently he did not then
feel confident in a non-Euclidean geometry. By April 1816 he had shifted
his opinion

“It seems to be something of a paradox that a constant line can at
the same time be given a priori, but I find nothing self-contradictory in
this. It would be remarkable if Euclid’s geometry were not true, because
then we would have a general a priori measure [of length], for example
one could take as the spatial unit the length of the side of an equilateral
triangle with angle 59°; 59'59.99999” [8, Gauss to Gerling, VIII, pp. 168-
169].

As Dunnington correctly observed, being remarkable is consistent with
being attractive. But still there is no evidence that Gauss deduced
anything specific about the new geometry.

In 1816 we do get a glimpse of what Gauss knew as reported by his
former student Wachter. On a certain (unspecified) hypothesis, Wachter
wrote to Gauss, the opposite of Euclidean geometry would apparently be
true, which would involve us with an undetermined constant, a sphere
of infinite radius which nonetheless lacks some properties of the plane,
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and the use of a transcendent trigonometry that probably generalises or
underpins spherical trigonometry. Gauss now, as he wrote to Olbers in
April 1817, was coming

“ever more to the opinion that the necessity of our geometry cannot
be proved, at least not with human understanding. Perhaps in another
life. ...but for now geometry must stand, not with arithmetic which is
pure a priori, but with mechanics.” [8, Gauss to Olbers, VIII, pp. 177].

The ‘transcendent trigonometry’ is usually taken to be the hyperbolic
trigonometry appropriate to non-Euclidean geometry, but there is very
little evidence to support any interpretation. Accordingly, when Gauss
replied to Schweikart in March 1819 that he could “do all of astral ge-
ometry once the constant is given” we cannot be sure what precisely,
Gauss had formulae for. The only one dated to this period is the one
in his reply to Schweikart for the maximum area of a triangle in terms
of Schweikart’s Constant (the maximum altitude of an isosceles right-
angled triangle).

All that his correspondence with Taurinus reveals is that, by 1824,
Gauss was more comfortable than ever with the idea of a new geometry.
In November 1824, in the course of explaining his views about non-
Euclidean geometry, and his reluctance to be drawn in public, Gauss
wrote to Taurinus that

“...the assumption that the angle sum is less than 180° leads to a
geometry quite different from Euclid’s, logically coherent, and one that I
am entirely satisfied with. It depends on a constant, which is not given a
priori. The larger the constant, the closer the geometry to Euclid’s and
when the constant is infinite they agree. The theorems are paradoxical
but not self-contradictory or illogical. [...] All my efforts to find a
contradiction have failed, the only thing that our understanding finds
contradictory is that, if the geometry were to be true, there would be
an absolute (if unknown to us) measure of length [...] As a joke I've
even wished Euclidean geometry was not true, for then we would have
an absolute measure of length a priori.” [8, Gauss to Taurinus, VIII, pp.
187].

But, Gauss went on, to reject the geometry on that ground would be
to confuse the unnatural with the absolutely impossible.

There is very little evidence of Gaussian contributions to trigonome-
try in non-Euclidean geometry before the letter to Schumacher of 12
July 1831, where he says that the circumference of a semi-circle is
%ﬂ'k (eT/ k_ et/ k) where k is a very large constant that is infinite in
Euclidean geometry. In particular, there is no evidence that Gauss de-
rived the relevant trigonometric formulae from the profound study of
differential geometry that occupied him in the 1820s. What he did say
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in the Disquisitiones generales circa superficies curvas [1828] is summed
up in what he regarded as one of the most elegant theorems in the theory
of curved surfaces:

“The excess over 180° of the sum of the angles of a triangle formed by
shortest lines on a concavo-concave surface, or the deficit from 180° of
the sum of the angles of a triangle formed by shortest lines on a concavo-
convex surface, is measured by the area of the part of the sphere which
corresponds, through the direction of the normals, to that triangle, if
the whole surface of the sphere is set equal to 720 degrees.” [8, IV, p.
246]

What weight can two trigonometric formulae be made to carry? They
are not difficult to obtain and manipulate if, as for example Taurinus
did, one assumes that non-Euclidean geometry is described by the for-
mulae of hyperbolic trigonometry — a natural enough assumption. To
introduce hyperbolic trigonometry into the study of non-Euclidean ge-
ometry properly is, as Bolyai and Lobachevskii found, a considerable
labour of which no trace remains in Gauss’s work. It is more plausible
to imagine that he made the assumption, but did not derive it from
basic principles. So, perhaps by 1816, or, at the latest, 1824, Gauss was
convinced of ideas like these:

o there could be a non-Euclidean geometry, in which the angle sum
of triangles is less than 7,

e the area of triangles is proportional to their angular defect and is
bounded by a finite amount,

e the trigonometric formulae for this geometry are those of hyper-
bolic trigonometry, and the analogy with spherical geometry and
trigonometry extends to formulae for the circumference and area
of circles.

2, The question of the empirical test

Did Gauss, however, as a scientist, make an empirical test of the mat-
ter? This is one of the most discussed questions in the whole subject of
Gauss and non-Euclidean geometry. Those who believe that he did quote
Sartorius von Waltershausen’s reminiscence, where on p. 81, he states
that Gauss did check the truth of Euclidean geometry on measurements
of the triangle formed by the mountains Brocken, Hohenhagen, and In-
selsberg (BHI), and found it to be approximately true. This claim was
most recently advanced by Scholz [22], on the basis of a number, quoted
by von Waltershausen elsewhere in his reminiscence, relating to the very
close agreement between the measurements of this triangle and the pre-
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dictions of Euclidean geometry (once the mountain tops are treated as
three points on a sphere). Scholz concludes that “there is no longer any
reason to doubt that Gauss himself conducted such a test of the angle
sum theorem.” (Scholz [22, p. 644]).

Those who dispute that Gauss made such a test argue that the prob-
lem that occupied Gauss, and figures so prominently at the end of the
Disquisitiones generales circa superficies curvas, is the question of the
spheroidal or spherical shape of the Earth, and that von Waltershausen
was simply confused about the hypothesis that Gauss found to be ap-
proximately confirmed. This is the opinion of Miller [17].

The most thorough analysis of the question is Breitenberger [5]. He
confronts the question: ‘if von Waltershausen was not simply confused
in some way, what was he saying?’ and he gives it an elegant answer.
Surveying Hanover threw up many triangles and many numbers (a figure
of a million is sometimes mentioned). Conclusions were drawn (and
maps made) on numbers which are the result of many calculations, and
at every stage discrepancies between real and expected results lay within
expected error bounds (Gauss analysed the errors quire carefully). Not
only was Euclidean geometry never called into question, because the
errors were only what was to be expected, each calculation amounted
to a tacit defence of Fuclidean geometry. But the measurements of the
BHI triangle were not fed into such a mill. They show that, within
experimental error, Space is described by Euclidean geometry. To be
sure “as a single instance it proves very little, but it has been designed so
as to be transparent, and hence it will drive a point home” (Breitenberger
[5, p. 288]). Newton dropped an apple in conversation to similar purpose
and effect. The myth, Breitenberger concludes, is that the BHI triangle
was surveyed as part of a deliberate test of Euclidean geometry. But
it did incidentally show that Fuclidean geometry is true to within the
limits of the best observational error of the time. Put that way, the gap
between Scholz and Breitenberger may be quite small.

3. Interpretations

What then is it to discover — or, if you prefer, invent — non-Euclidean
geometry? One way of thinking about this question must be ruled out
straight away. Had it just been a question of exhibiting an axiom sys-
tem for something fairly geometrical, then spherical geometry would
have done. One needs, of course, to strike out two of Euclid’s axioms:
the parallel postulate and the indefinite extendibility of the straight line.
That this was not done suggests that the question in 1800 was not one
about ‘axioms for geometry’. It makes it clear that what was to be in-
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vestigated was the geometry of physical space. The ongoing question
was not ‘Is the parallel postulate independent of the other axioms of
geometry’ 7, but ’Is the parallel postulate independent of the other ax-
ioms of geometry when giving an account of space?’. This is a different
enterprise from the much more overtly logical one in fashion around
1900. But in 1900 axioms were very fashionable, Hilbert’s Grundlagen
der Geometrie was not the only book to exemplify the merits of think-
ing axiomatically, and from first to last, Bonola’s account of the origin
and development of non-Euclidean geometry is rooted in an analysis of
axioms; their equivalence and their independence. It was published in
Italian in 1906 and has become the standard account of the subject in
English (into which it was translated in 1912), and it has many merits.
Indeed, an Italian geometer, and a pupil of Enriques, writing between
1900 and 1911, would naturally see geometry as a matter of axioms, and
so see history as a history of axioms.

It will bring the question into sharper focus if we ask a seemingly
absurd other question: Why do we not simply say that non-Euclidean
geometry was discovered by Ferdinand Karl Schweikart, the professor of
Jurisprudence at Marburg, and communicated to Gauss in 18187 If the
answer is simply that Gauss already knew what Schweikart told him,
then what Gauss knew in 1818 counts as a discovery, and Bolyai and
Lobachevskii are condemned to come second. They have only the honour
of being the first to publish — and much good did it do them. A better
reply would be that what Schweikart did is too flimsy, that it had no
chance of convincing anyone, and does not amount to the sort of activity
that counts as a discovery. It is validated only after the event, by the
subsequent discovery of a system of geometry that is, in all its glory and
detail, what Schweikart had merely glimpsed. Nothing in his account
should have swayed the prudent sceptic, unwilling to abandon Euclid
for a wish list of new figures.

Any one seriously interested in the question of non-Euclidean geome-
try by the 1810s could have found out quite a lot just by asking around
and reading in a decent library. Certainly, people were interested. ‘Not
a year goes by’, Gauss himself wrote in a book review, ‘without a book
being published on the parallel postulate’ [8, VIII, p. 170]. The prob-
lem had a striking degree of visibility. Even if one assumes, as is likely,
that German authors only read Germans, and the French only French,
that leaves the many attempts of Legendre and the open-ended specula-
tions of Lambert. Both of these were major authors, and one supposes
that Legendre’s repeated attempts hinted clearly enough that he was
not convinced of any but his most recent version. Lambert, even more
clearly, knew that his attempts had not led to the defence of the parallel
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postulate that he sought, and that the matter remained unresolved. If
one concluded that all this failure was in the nature of the problem, that
indeed a specific non-Euclidean geometry was possible, one could copy
out quite a number of oddities and simply proclaim them, not as steps
on the way to the final refutation, but as fine new theorems. One could
be courageous in so doing, or simply giving up too soon from a failure
to see deeply enough into the problem.

The fairest answer is surely that to discover non-Euclidean geometry
is to describe a system of geometry that is convincing and persuasive
(even if it did not, in its day, persuade, and even if by the much higher
standards of a later time it was in fact imperfect). Applied to Schweikart
and his memorandum, this leads to what is indeed the charitable consen-
sus, which is to grant Schweikart the courage, and the freshness of mind
to see what too many had not been willing to see (and what, indeed, his
nephew Taurinus was to avert his gaze from some six years later). But
one cannot find in his work that persuasive character required in a true
discoverer.

But if a mere memorandum does not clinch it, did Gauss know so
much more that he could claim the prize? Does his ability to draw
together Schweikart’s ideas better than Schweikart had done rest on
sufficiently more than the lawyer already possessed? If we recall that
Gauss’s reply to Schweikart is only too close to the famous reply he
was to send the Bolyais in its assertion that he knew the ideas already,
then we might conclude there was a chance that sending good ideas to
Gauss was, at the very least, likely to stimulate him to add to what
he already knew, and quite innocently assume that he was simply re-
stating what he had known for some time. The point is worth noting,
because as we have seen, there is no other evidence to corroborate his
agsertions that at these dates he had a coherent theory drawing together
the consequences of assuming some standard definition of an alternative
geometry to Euclid’s.

We have to ask: What kind of knowledge, at what time, is Gauss to
have before he can be regarded as a true discoverer of non-Euclidean
geometry? Is it a worked-out theory that looks consistent and has some
chance of being true of Space? Is it a deep empirical dissatisfaction with
Euclidean geometry as an account of Space? What degree of conviction
should it impart to all but the most logically, even legalistically, minded?
In what ways should it surpass Schweikart’s level of knowledge or belief?
How much should it resemble what Bolyai and Lobachevskii were to do?
Or was it, perhaps, significantly different?

When, in 1808, Gauss was aware that in the hypothetical non-
Euclidean geometry similar triangles are congruent, and therefore there
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is an absolute measure of length, he found this conclusion absurd, and
therefore held that the matter was still unclear. This is a long way from
believing that there is indeed a meaningful non-Euclidean geometry.
The historical sources then go quiet until 1816, and there is no evi-
dence at all. In 1816 Gauss wrote to Gerling that the idea of an absolute
measure of length is somewhat paradoxical but not self-contradictory,
and that it would be remarkable if Euclid’s geometry was not true, be-
cause then we would have an a priori measure of length. As Dunnington
correctly observed, being remarkable is consistent with being attractive.
Also in 1816 there is a glimpse of what Gauss knew as seen through
Wachter’s eyes. But it is less convincing than is often thought. It is
hard to know precisely what Gauss’s letter to Olbers (quoted above)
actually means. ‘Our geometry’ is surely Euclidean geometry. Gauss
was a devout man, not given to presuming to understand the mind of
the Divinity. Human understanding would inevitably fall short of God’s.
But what would a proof — of a kind that surpasses human understanding
— be that establishes the necessity of our (Euclidean) geometry? How
would it differ from a proof that does not surpass human understand-
ing? Would it be some argument, compelling even to God, that made
Fuclidean geometry the right geometry for Space? Would Gauss under-
stand it in the afterlife, or is merely a further century of this mortal life
going to be enough for somebody to resolve the matter? Arithmetic, it
seems, has an apodictic status. It is pure a priori. Whatever that might
mean, whether Kantian or Friesian terminology should be imputed here
or some equation of arithmetic with logic, the truth of arithmetic is be-
ing said to be of a higher kind than the truth of geometry, which is down
with mechanics. The problem is the twist of thought conveyed in the
two words ‘for now’. The sense of the passage is that the status of the
truth claims of Euclidean geometry is unclear, and might remain so ei-
ther forever, or only for a while. The passage does not say that there are
two geometries at some logical level and some experiment must choose
between them. That would be the meaning of a remark like this: “...the
necessity of our geometry cannot be proved. Geometry stands, not with
arithmetic which is pure a priori, but with mechanics.” The passage is
agnostic, not heretical. Knowledge is lacking, says Gauss; he does not
claim to possess new knowledge, of a new geometry. In the context,
that surely means that even the ideas he was discussing with Wachter
he considered to be hypothetical, and capable of proving to be false.
The ‘transcendent trigonometry’ is usually taken to be the hyperbolic
trigonometry appropriate to non-Euclidean geometry, but there is very
little evidence to support any interpretation. The geometry apparently
depends on an undetermined constant, which indeed non-FEuclidean ge-
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ometry does, but the implication that this constant was unproblematic
is unwarranted. Why should it not yield to two incompatible determi-
nations, and thus the contradiction most previous writers on the subject
had hoped to find?

On 25 January 1819 Gerling passed Schweikart’s note on to Gauss,
who replied in March that he was “uncommonly pleased with the note,
and can do all of astral geometry once the constant is given.” The angle
sum of a triangle is proportional to its angular defect, and there is a max-
imum area for triangles which is attained by trebly asymptotic triangles.
This does not make clear if Gauss now possessed formulae from which
all the elementary mensuration of a non-Euclidean geometry can be de-
rived, or if he knew only that part which resembles Euclidean geometry.
What, precisely, was covered by the phrase ‘all of astral geometry’? And
whatever Gauss was claiming, it leaves the time of his discoveries vague.
Should it be part of the transcendent trigonometry that he discussed in
1816 with Wachter? Could it be something that only came to him in the
year between receiving Schweikart’s note and replying to it? The first
alternative is the more likely, but even if it is true the trigonometry per
se does not seem to have clarified everything in Gauss’s mind.

In November 1824, writing to Taurinus, Gauss said that “...the as-
sumption that the angle sum is less than 180° leads to a geometry quite
different from Euclid’s, logically coherent, and one that I am entirely
satisfied with.” Taurinus, of course, was looking for reasons to deny
the possibility of non-Euclidean geometry, and Gauss did not want to
lend his name in any way to that enterprise. But even if we allow that
by 1824 Gauss was comfortable with a novel geometry for space, we
learn nothing from this letter about what theorems the new geometry
might contain, and what its implications might be for science, geodesy,
or astronomy.

There is an unfortunate disparity throughout this part of Gauss’s
work between the material that can be precisely dated, and his claims
in letters to his friends that he has known this or that fact for 30, even
40 years. These claims may well be true, in the sense that the teen-age
Gauss could well have found some arguments in elementary geometry
inconclusive and begun to harbour suspicions about them. They are
harder to square with interpretations that impute specific knowledge to
the young man, especially when they contradict later, datable, evidence.
For example, there is a proof which Gauss himself noted he found on
18 November 1828 that the angle sum of a triangle cannot exceed 180°.
This may mark the occasion on which Gauss discovered what, for him,
was a new and particularly perspicacious proof of a result he already
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knew. Equally well, it may mark the discovery of a proof of something
he had hitherto only suspected.

The same is true of the passages on the theory of the line and the
plane, which Stackel very plausibly dated to the years 1828-1832. Here
Gauss noted that many of the statements mathematicians make about
the plane conceal theorems which, if not difficult, are not entirely trivial
either. The assumption that Gauss had thought his way through this
tangle in the 1790s is unwarranted; what then was he doing writing it
down in the late 182087 The same is true of the notes on the theory
of parallel lines, which Stéckel dated to 1831. Stéckel connected them
to letters that Gauss wrote to Schumacher in May of that year, where
Gauss explained that he had had these ideas for 40 years but never
written them down. It is hard to believe that Gauss could write down,
after such a long period of time, exactly what he had had in mind when
he was 14. If one takes 40 as a round number, even if one replaces it
with 32 (because in 1799 Gauss was involved with the elder Bolyai on
the question of the foundations of geometry), it is still implausible that
Gauss was just writing down ideas from memory. It is not what good
mathematicians do. They polish the ideas even as they recall them, and
writing for themselves alone, as they are, they are under no obligation to
prevent subsequent historians from becoming a little confused. We can
grant that Gauss, as he said, was already concerned in the 1790s about
the foundations of geometry, without supposing that the notes of 1831
are a true and faithful record of what he had believed so many years
before.

On the other hand, it is worth noting that these pages are firmly in a
style which may be called classical, with the implication that adherence
to a classical formulation denies trigonometric methods a fundamental
role. A ‘classical style’ or ‘classical formulation’ is an approach to geom-
etry that regards terms such as point, line, plane, distance, and angle as
undefinable, primitive terms. The relationship between them, the prop-
erties of these objects and of figures composed of them, may be obscure
and in need of elucidation, an author in this style may feel that basic
questions may have been begged by all previous writers, but the funda-
mental terms are not to be reduced to others (for example, numbers).
The disentangling of the ideas will be done by patient combing, not by
radically new definitions. Gauss’s surviving early notes are very much
in this classical style.

Of course, the problem of parallels is prominent among these diffi-
culties. But the famous letter to Bessel of January 1829, where Gauss
claims to have harboured these thoughts for almost 40 years, does not
give parallels pride of place. There Gauss wrote that he hadn’t writ-
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ten up his extensive researches, and perhaps he never would, because
he feared the howl of the Boetians, however “my opinion that we can-
not ground geometry completely a priori has become, if anything, even
stronger.”

Would it be fair to point out that, to someone of Gauss’s high stan-
dards, a strong opinion becoming even stronger is still an opinion that
falls short of certainty? And while the well-known gap is that staple of
the literature, the problem of parallels, but it is firmly situated here, as
it is throughout the years 1828 to 1832, in the context of a number of
other problems in the foundations of geometry. Bessel’s reply encour-
aged Gauss to state that geometry has a reality outside our minds whose
laws we cannot completely prescribe a priori. This is entirely consistent
with the classical formulation. The concepts of point, line, plane and so
forth are formed in whatever way concepts are generated (by abstrac-
tion, through experience, introspection, it doesn’t matter) and whatever
problems there might be in saying how this is done belong to philosophy,
not mathematics. The tacit implication is that forming these concepts
is among the simpler pieces of concept formation people do, and can
be treated, for mathematical purposes, as entirely unproblematic. The
task of the mathematician is to get them truly clear in the mind, which,
Gauss suggested, is liable to involve one in two kinds of activity. One
is teasing out tacit assumptions and fitting them up with proofs (Gauss
did not suggest there were likely to be any erroneous beliefs). The other,
which concerns parallels, is the elaboration of new ideas about a hitherto
unsuspected species of geometry, which might nonetheless turn out to
be (for some value of an unknown constant) the true geometry of Space.

4. Evidence in geodesy

Can one then connect transcendent trigonometry with Gauss’s work
on differential geometry and geodesy? The famous Hanover survey kept
Gauss occupied for most of the three years from 1822 to 1825 (too much
of it, he complained to Olbers in October 1825) and in the last three
months of that year he wrote the Disquisitiones. The book is famous for
the discovery that Gaussian curvature is intrinsic, which, in the Disquisi-
tiones, has a very computational proof, giving the (Gaussian) curvature
in terms of the coefficients of the first fundamental form and their deriva-
tives with respect to the coordinates. He then went on to deduce the
elegant theorem already quoted:

“The excess over 180° of the sum of the angles of a triangle formed by
shortest lines on a concavo-concave surface, or the deficit from 180° of
the sum of the angles of a triangle formed by shortest lines on a concavo-
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convex surface, is measured by the area of the part of the sphere which
corresponds, through the direction of the normals, to that triangle, if
the whole surface of the sphere is set equal to 720 degrees.”

Now Gauss knew very well that the area of a non-Euclidean triangle
is proportional to the deficit from 180° of the sum of the angles of the
triangle. It would therefore be tempting to suppose that Gauss would
connect this elegant theorem with the study of non-Euclidean geome-
try, by considering a concavo-convex surface of constant negative Gaus-
sian curvature. But such a conclusion is highly speculative; Minding
in 1839, produced just such a surface without making that connection,
and Codazzi in 1859 even showed that on such a surface the appropri-
ate trigonometric formulae are the hyperbolic analogues of the formulae
in spherical trigonometry. Neither man observed the connection with
non-Euclidean geometry.

If we grant that Gauss might have suspected that non-Euclidean ge-
ometry was the geometry on a surface of constant negative curvature,
we must none the less note that Gauss did not develop the trigonome-
try of triangles on surfaces of constant (positive or negative) curvature
until after 1840, when he had read Lobachevskii’s Geometrische Unter-
suchungen. Moreover, he did not have such a surface to hand; there is
every reason to suppose that Minding was the first to discover it. Mind-
ing’s example, moreover, is a surface of revolution, and therefore has a
number of topological properties that rule it out as a model of space,
notably self-intersecting geodesics and pairs of geodesics that meet in
more than one point. Minding’s example also has singular points, at
which the surface comes to a halt, which marks a significant difference
from the sphere.

It is not at all obvious that these properties of Minding’s surface do
not suggest that there can, after all, be no surface obeying the rules of
non-Euclidean geometry. Why should there not be local models of parts
of a ‘non-Euclidean’ space, but no global model? But even if a surface
had been known to Gauss, and even if (in contradiction to Hilbert’s later
theorem about surfaces of constant negative curvature) it had not had
any unfortunate properties, what would it establish? Only that there is
a surface in Space whose intrinsic geometry is non-Euclidean. It would
not establish that Space could be non-Euclidean, because Space is three-
dimensional. There is no sign that Gauss had any of the concepts needed
to formulate a theory of differential geometry in three-dimensions.

While it is always dangerous to speculate on what Gauss could not
do, it is worth noticing that adherence to the classical formulation makes
thinking of novel three-dimensional geometries very difficult indeed, if
not impossible. According to the classical formulation, Space is our
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source of knowledge of all primitive geometric terms. It is difficult
enough to follow out the implications of this for surfaces in Space, to
find formulae for geodesics on surfaces and so forth. At the end of such
an analysis, Gauss discovered that although all geometric concepts are
impressed on the surface from the ambient Space, some, such as cur-
vature, are after all intrinsic. To imagine that there is another type of
Space altogether with any chance of proving theorems about it, it would
be best to take a big step backwards and consider how to do geome-
try at all. One cannot (easily, at least) think one’s way from Euclidean
three-dimensional Space to another three-dimensional Space. What, in
the end, Riemann did, was to step back and create new ways of thinking
about geometry that made it possible to think of many, many kinds of
Space.

Riemann also produced the first pieces of essential mathematical ma-
chinery for doing differential geometry in three or more dimensions.
There is no sign that Gauss did that, but without it almost nothing
useful can be said.

To conclude: Gauss’s work on differential geometry in the 1820s,
remarkable as it is, does not connect with any kind of transcendent
trigonometry. Nowhere in the work on differential geometry did Gauss
even hypothesise, much less study, a surface of constant negative curva-
ture. He did not do that until he had read Lobachevskii’'s Geometrische
Untersuchungen, and even then the connection between the differential
geometry and the trigonometry rests on the choice of the same sym-
bol for a constant of integration as for the (Gaussian) curvature. This
symbol, k, is real for spherical trigonometry, and purely imaginary for
non-Fuclidean trigonometry.

We are returned, empty-handed, to where we began. In 1816 Gauss
possessed a form of trigonometry applicable to more than just spherical
geometry. He had proposed a surface which was a sphere of infinite ra-
dius and was not a plane. By 1831 he knew that the circumference of
a semi-circle of radius r is %wk (er/k — e'“r/k). This formula, dropped
so casually in a letter to Schumacher, together with the one in his re-
ply to Schweikart in 1818 for the maximum area of a triangle in terms
of Schweikart’s Constant (the maximum altitude of an isosceles right-
angled triangle), are the only evidence we have that Gauss knew any-
thing about non-Euclidean geometry in detail.

As has already been remarked, these formulae are not difficult to ob-
tain if one simply assumes that non-Euclidean geometry is described by
the formulae of hyperbolic trigonometry. Could Gauss have defended
that assumption? There is no evidence either way. Given Gauss’s very
high standards, he might have felt confident of the validity of such an
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assumption but not been able to defend it to his own satisfaction. To
introduce hyperbolic trigonometry into the study of non-Fuclidean ge-
ometry properly is, as Bolyai and Lobachevskii found, a considerable
labour of which no trace remains in Gauss’s work. It would seem rea-
sonable to assume that he made the assumption, but not the derivation
from basic principles.

Another factor that must be considered is Gauss’s aversion to the new
geometry, expressed in the references to howling Boetians, wasp’s nests,
and the like. The absence of evidence is consistent with Gauss not giving
this truly difficult topic sufficient attention. There are many occasions
when Gauss worked, over a period of years, to bring topics to his satis-
faction, and others, the theory of elliptic functions, for example, when
he pushed hard to achieve the right levels of insight and of generality,
to obtain the most appropriate proofs. In these cases the result is of-
ten books, book length memoirs, and many pages of nearly publishable
notes. When we turn to the problem of parallels, there is nothing like
so much material, and one is driven to wonder if it ever existed.

5. The need to study three-dimensional space

Let us grant that, perhaps by 1816, Gauss was convinced that there
could be a non-Euclidean geometry, a geometry in which the angle sum
of triangles is less than 7, and the area of triangles is proportional to
their angular defect and is bounded by a finite amount. The trigono-
metric formulae for this geometry are those of hyperbolic trigonometry,
and the analogy with spherical geometry and trigonometry extends to
formulae for the circumference and area of circles. Such a position is
unsatisfactory, to Gauss and to us, because it is purely and simply an
analogy. What is lacking is any argument that starts from an idea of
geometry and derives the formulae according to convincing rules. In the
case of spherical geometry, there is a basis: the Euclidean geometry of
three-dimensional Space. Ordinary arguments about how geodesics and
angles may be defined on a sphere (a surface sitting in three-dimensional
Space) then lead to the familiar formulae. In the non-Euclidean case,
the basis of Euclidean three-dimensional geometry is in question, and
there is no surface.

Why, after all, does talk of two-dimensional geometry matter when the
nature of three-dimensional Space is at stake? Because one believes that
there is no essential obstacle to going up one dimension. In the Euclidean
case, there seems to be no reason to suspect a problem, and there is an
abundance of results about three dimensions even in Euclid’s Elements.
The methods of Cartesian coordinate geometry seem adaptable. Plus,
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if you believe that Space is actually Euclidean, you know there is no
obstacle. But in the non-Euclidean case, there may be no reason to
suspect a problem but equally there is no reason to believe success is
guaranteed. There are no pre-existing results about three-dimensional
non-Euclidean geometry, no coordinate methods to adapt. Even if one
found a surface in three-dimensional Euclidean space with non-Euclidean
geometry as its induced geometry, that would not licence the inference
that three-dimensional Space was non-Euclidean, any more than the
existence of spheres in three-dimensional Space forces the conclusion
that Space is a three-dimensional sphere.

A more plausible way forward would be to start with non-Euclidean
three-dimensional Space, and to derive a rich theory of non-Euclidean
two-dimensional space from it. This would be better evidence that the
assumption that there could be a non-Euclidean three-dimensional space
made sense (although not convincing, to be sure). This is what Bolyai
and Lobachevskii did, but not Gauss. Gauss did believe that such an
assumption made sense, but he equivocated about it. Its consequences
were paradoxical, but not self-contradictory; as a joke he might even
wish it were true; its existence implies that the laws of geometry cannot
be prescribed a priori.

The only hint that Gauss explored the non-Fuclidean three-
dimensional case in order to obtain new, suggestive, results about non-
EBuclidean two-dimensional geometry is the remark by Wachter about
the sphere of infinite radius. This is a remark by Wachter, a mathe-
matician of whom Gauss had a good opinion, and one must therefore
wonder what Wachter himself brought to the discussion. There is no
other reference to it at all in the surviving Gaussian Nachlass. What
Wachter says is not encouraging: “Now the inconvenience arises that
the parts of this surface are merely symmetrical, not, as in the plane,
congruent; or, that the radius on one side is infinite and on the other
imaginary[.]” and more of the same. This is a long way from saying,
what enthusiasts for Gauss’s grasp of non-Euclidean geometry suggest,
that this is the Lobachevskian horosphere, a surface in non-Euclidean
three-dimensional Space on which the induced geometry is Euclidean.

If the conclusion is that Gauss possessed tantalising hints of a new,
non-Euclidean, geometry, but never worked his ideas up into a system-
atic theory, then his conviction is no less, and no greater, than that of
Schweikart or Bessel. The grounds for his conviction are greater, but still
insubstantial (we should not be too swayed by the fact that he turned
out to be right). He did not possess almost all the substantial body of
argument that gives Bolyai and Lobachevskii their genuine claim to be
the discoverers of non-Euclidean geometry.
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6. Another question about geometry

There is, however, a way of looking at what Gauss did that makes
more sense of the available evidence. Our access to it starts with the let-
ter to Bessel of January 1829, the problem of the definition of a plane as
a surface that contains the line joining any two of its points, a definition,
Gauss said, that contains more than is necessary for the determination
of the surface, and tacitly involves a theorem which must first be proved.
That this was a concern of Gauss’s as early as 1797 is documented in his
mathematical diary, indeed it is the only entry on a geometrical topic
in the entire diary. Gauss’s insight is that at one or another time in
elementary geometry different properties of the plane are being used,
and if one is taken as basic the others must be deduced as theorems.
Moreover, it might be that unsuspected properties are being used, and
these novelties should also be made explicit.

The plane has a problematic relationship to three-dimensional Space
because it need not be a primitive given term but can be defined (Gauss
proposed to obtain it by rotating a line about a perpendicular axis, other
definitions are possible). In the same way, ‘parallel’ might be a primitive
term, or a reducible one, and if primitive, capable of generating only one
geometry, or more than one. Good housekeeping requires that one sort
through these possibilities, and perhaps there will be no surprises, per-
haps there will be. This locates the problem of parallels in the family
of problems about the classical formulation of geometry, which is over-
whelmingly how authors treated it. Only Legendre, among those who
sought to defend the parallel postulate, used methods lying outside the
classical formulation.

When Gauss wrote up his ideas about parallels in 1831, which Stéckel
implied might be the ideas Gauss regarded as almost 40 years old, they
were of this classical kind. One might argue that they had, for Gauss,
a biographical aspect, but he could have gone on to say that these were
the ideas of his youth and now he thinks something else. He did not,
most likely because he thought these were the still good ideas. Even
when he writes to Wolfgang Bolyai to praise Johann for knowing what
he has known for some time, what he said by way of mathematical
detail is about the area of triangles, a matter belonging to the classical
formulation. He did not engage with the trigonometric aspect of Bolyai’s
work.

Gauss’s investigations into the classical formulation of geometry were
inconclusive. They remind us, as every attempt before and after
Hilbert’s does, of how slippery some elementary geometry is, and how
hard it is to get it into a rigorous order. They do not put matters right,
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and they do not, in themselves, merit an account here (Stackel’s suffices).
They are, however, the context for almost all of Gauss’s investigations
of the parallel postulate and non-Euclidean geometry. In this context,
he concluded that there is more to the concept of the plane than meets
the eye, but it could, with some effort, be spelled out properly. On the
other hand, there was a lot more to parallelism than meets the eye. The
fundamental intuition of lines that never meet no matter how far they
are extended is literally ambiguous; it can be made to yield two theories.
How much confidence Gauss placed in the new theory has been discussed
already, but the bulk of the evidence is of the psychological kind: re-
peated failure to defend the parallel postulate gave way steadily to a
feeling that the parallel postulate was indefensible and an alternative
geometry therefore possible.

7. Gauss’s letter to Janos Bolyai

If indeed Jdnos Bolyai’s analysis of non-Euclidean geometry and the
nature of space was more profound and wide-ranging than Gauss’s, then
the question of why Gauss answered as he did is raised with a new force.
There is no evidence to suggest that Gauss was lying. On the contrary,
everything we know about Gauss suggests that he was scrupulously hon-
est, honest, indeed, to a fault. His own stated reason for writing as he
did was that he ‘could do no other’. He was not one to dissemble, and
people who knew found him straight-forward and plain-speaking. But
there is a wide gulf between saying something that is false, and telling
the truth. One can be sincere, but mistaken, or wrong but innocent of
any attempt to deceive.

In Gauss’s case, several possibilities suggest themselves. To someone
like Gauss, to return to a topic was surely to see it afresh. He need
not have noticed what ideas were occurring to him for the first time,
and which were recalled from earlier investigations (still less did he have
to leave an accurate paper trail for subsequent historians). The facts
of non-Euclidean geometry, as Bolyai presented them, could have been
absorbed quickly by Gauss, much as if he had thought of them himself.
The best mathematicians often have the habit, on hearing of a new
result, of thinking how they could prove it themselves (Poincaré was
said to have read a paper only if a proof of its results did not quickly
occur to him). If Gauss was like that, he may not have read Bolyai’s
Appendiz at all carefully.

It is not certain, for that matter, that Gauss read the Appendiz prop-
erly at all. To this day there are stories (always apocryphal, to protect
the people involved) of referees not reading papers carefully. Since Janos
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Bolyai was a particularly concise writer, even Gauss may have taken the
easy route of working his own way through the material by dipping in
and out of the text. It is impossible to interpret the disparity between
Gauss’s stout claim that he knew all this already, and the two points
he then discussed at length in his letter. These were Jadnos’s unappeal-
ing choice of names for what are nowadays called, using Lobachevskii’s
terms, the horocycle and the horosphere; and an elementary proof of the
relationship between area and angle sum of a triangle. But this response
provides no evidence that Gauss engaged with the genuine novelties of
the work: the systematic introduction of hyperbolic trigonometry, and
the fact that the new geometry was introduced in three dimensions.

If Gauss read the Appendiz his way, assimilating some of it to what he
already knew and discarding the rest, then his reply is sincere, but not,
without further corroboration, evidence that Gauss already new what
Bolyai had published. And, as this paper has noted, such confirmatory
evidence is lacking. What it is evidence for, of course, is what no-one who
knows about Gauss can doubt, that he was not a charmer or a flatterer.
Throughout his life he formed few friendships. His closest relationships
were with astronomers such as Bessel, Olbers, Schumacher and others,
with whom he enjoyed a long correspondence, but with whom he was
not in daily contact. Such people could treat Gauss more nearly as an
equal, something which most mathematicians, even Janos Bolyai, could
not. OQOutside this limited circle, Gauss lacked the ability to respond
warmly, to come over in the right way, to win people to his side. What
he undoubtedly saw as the only honest way to proceed, if he was not to
lapse into vanity, inevitably came over as arrogance, and permanently
damaged Janos’s enthusiasm for publishing.

8. Conclusion

It becomes clear that a mathematician persuaded of the truth of non-
Euclidean geometry and seeking to convince others is almost driven to
start by looking for, or creating, non-Euclidean three-dimensional Space,
and to derive a rich theory of non-Euclidean two-dimensional Space from
it — as Bolyai and Lobachevskii did, but not Gauss. The only hint that
he explored the non-Fuclidean three-dimensional case is the remark by
Wachter, but what Wachter said was not encouraging: “Now the incon-
venience arises that the parts of this surface are merely symmetrical,
not, as in the plane, congruent; or, that the radius on one side is infi-
nite and on the other imaginary” and more of the same. This is a long
way from saying, what enthusiasts for Gauss’s grasp of non-Euclidean
geometry suggest, that this is the Lobachevskian horosphere, a surface
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in non-Euclidean three-dimensional Space on which the induced geome-
try is Euclidean. In particular, there is no three-dimensional differential
geometry leading to an account of non-Euclidean space.

Gauss, by contrast, possessed a scientist’s conviction in the possibility
of a non-Euclidean geometry which was no less, and no greater, than that
of Schweikart or Bessel. The grounds for his conviction are greater, but
still insubstantial, because he lacks almost entirely the substantial body
of argument that gives Bolyai and Lobachevskii their genuine claim to
be the discoverers of non-Euclidean geometry.
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