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Summary. Congestion or toll pricing problems in [HeR98] require a solution to
the system problem (the traffic assignment problem that minimizes the total travel
delay) to define the set of all valid tolls or the toll set. For practical problems, it may
not be possible to obtain an exact solution to the system problem and the inaccuracy
in an approximate system solution may render the toll set empty. When this occurs,
this paper offers alternative toll sets based on relaxed optimality conditions. With
carefully chosen parameters, tolls from the relaxed toll sets are shown theoretically
and empirically (using four transportation networks in the literature) to induce route
choices that are nearly system optimal.

Key words: Congestion Pricing, Traffic Equilibrium, Perturbation Analysis

1 Introduction

To encourage each traveller to choose a route in a transportation network that
would collectively benefit all travellers, Hearn and Ramana [HeR98] proposed
in 1998 a framework for determining the prices and locations at which to
toll the network. This framework requires solving a congestion or toll pricing
problem, an optimization problem with linear constraints that describe the
set of all valid tolls or the toll set. Coefficients for the constraints depend on
an optimal solution to the system problem, i.e., the traffic assignment problem
(see, e.g., Florian and Hearn, [FIH95]) that minimizes the total travel delay
among all travellers.

For small transportation networks, it is possible to compute an exact op-
timal solution to the system problem. However, obtaining such a solution for
larger networks may be either impossible or impractical. When implemented
on computers, algorithms for the system problem must perform all numerical
computations using finite precision. This naturally induces small numerical
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inaccuracies because to perform some mathematical operations precisely re-
quires infinite precision. Furthermore, the system problem is generally a non-
linear program for which most algorithms require in theory an infinite number
of iterations to reach an exact optimal solution. In practice, it is common to
terminate these algorithms when they find a solution with a small optimality
gap, e.g., 10E-4.

On the other hand, using an approximate solution for the system prob-
lem (or an approximate system solution) to determine the coefficients for the
constraints defining the toll set may cause the toll pricing problem to become
infeasible, numerically (e.g., because of finite precision) or otherwise. To over-
come this infeasibility, Hearn and Ramana [HeR98] employ a penalty function
approach and Hearn et al. [HYRO1] relax one of the constraints defining the
toll set. For the latter, the relaxation is based on a parameter defined by an
optimal solution to the penalty problem in [HeR98].

This paper studies the viability of using an approximate system solution in
defining the toll set. Specifically, when an approximate system solution makes
the toll set empty, this paper alleviates this inconsistency by relaxing one or
more constraints, some of which are similar to those used in [HYRO01]. How-
ever, our approach to relaxation does not require solving a penalty problem.
Moreover, this paper also addresses three issues relating to the use of an ap-
proximate system solution. The first issue is whether an approximate system
solution yields a consistent set of constraints defining the toll set. When it does
not, the second issue is to find practical methods for relaxing the constraints
in order to generate tolls that causes travellers to use the transportation net-
work in nearly the most efficient manner. Finally, the last issue is to ascertain
how well these methods work theoretically and empirically.

The remainder of the paper assumes that the travel demands are fixed.
Results for the elastic demand case are similar and given in the Appendix.
Section 2 defines two types of toll sets, system and non-system, and discusses
their properties. Section 3 derives a relaxed toll set using an approximate
system solution and shows that the tolls from this set have the desirable
property. Section 4 gives an alternate representation of the relaxed toll set.
Section 5 reports encouraging results for four transportation networks from
the literature and Section 6 concludes the paper.

2 System and Non-System Toll Sets

To define toll sets, consider the two traffic assignment problems in transporta-
tion science literature, the system and user problems. (See, e.g., [FIH95].) Let
g = (W, A) be a network with A and A denoting the set of nodes and arcs,
respectively. Associated with G, there are also a node-arc incidence matrix, A,
and a set of commodities or origin-destination pairs, K. For each commodity
k€K, by € RV and % ¢ lel denote the corresponding (fixed) demand
and arc flow vectors, respectively. Hence, v =", z* is the vector of the total
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(or aggregate) flow on every arc and the set of feasible aggregate flow vectors
can be described as follows:

V={vv= ka,Amk = by, z* > 0},
k

where z* > 0 means z* > 0,Ya. (More generally, z > y means x, > ya, Va.)
Without loss of generality, we can assume throughout the paper that V is
bounded and, therefore, compact. (See, e.g., [FIH95].)

Let s(v) be a travel cost vector in which each element, sq(v), is the cost
to traverse arc a. This cost does not include any toll and can be measured in
monetary or time units. For simplicity, we assume that s,(v) is differentiable
for all a, i.e., \7s(T), the Jacobian of s{v), exists for all v. Then, the system
optimal (SOPT) problem (or, more simply, system problem) is to find a feasi-
ble aggregate flow vector that minimizes the total travel cost or delay among
all travellers. Mathematically, the system problem can be stated as follows:

7 = argmin{s(v)Tv:v e V}.

Instead of minimizing the total travel delay, an alternate traffic assign-
ment problem, i.e., the user equilibrium problem (or, more simply, the user
problem), assumes that each traveller tries to minimize his or her own travel
time. The objective of the user problem is to find a solution for which no
traveller can improve his or her travel time by unilaterally changing routes. In
particular, v* solves the user problem (or UOPT) if it satisfies the following
variational inequality:

s()T(w—v*) >0, YweVW

Alternately, we say that v* solves VI[s(v), V1.

The travel delay at the user solution, s(v*)Tv*, is generally larger than the
one at the system solution, s(7)7%. In this sense, the user solution does not
utilize the network in the most efficient manner. Mathematically, we can im-
pose tolls on arcs in order to make travellers use the network more efficiently.
For a given toll vector, 3, let v*(8) solve VI[s(v) -+ 3, V], i.e., v*(5) satisfies
the following tolled user equilibrium condition:

(s @)+ BT (v —v"(8) 20, VveV.

We refer to v* () as the solution to the tolled user equilibrium problem and it
is the user equilibrium flow resulting from imposing the toll 3 on the network.

Similar to [HeR98], we assume herein that 7 is a unique solution to SOPT
and v*(8) is a unique solution to VI[s(v) + 8, V] for all 3 € R, Below, we
refer to these two assumptions as [A] and [B], respectively. For example, both
[A] and [B] hold when we use the Bureau of Public Road (BPR) function for
travel costs, i.e., 84(v) = 74 (1.0 + 84 (ve/74)?) and 7, 6., and v, are positive.
More generally, both assumptions hold when s,(v) is a continuous convex
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function for each a and the cost vector s(v) is strictly monotone on {v : v > 0}.
These two assumptions allow us to define 3 as a valid or feasible toll vector if
v*(8) =7, L.e., if the tolled user equilibrium solution associated with 5 equals
the system solution. (See [HeR98] for a more general definition of a valid toll.)
Then, the toll set is the set of all valid toll vectors, i.e., T7(7) = {Bjv*(3) =7}
The following result from [HeR98] describes 7 (T) algebraically.

Theorem 1. The toll set, T(D), is the set consisting of the 5 component of
every pair (B, p) that satisfies the following linear system

s(T)+ 08> ATp*, VEkeKk, (1)
(s@)+8)Tv=> bTp" (2)
k

Observe that the above toll set is based on T, the optimal solution to
SOPT. To distinguish this toll set from others (to be defined later), we refer
to 7(7) as the “(unrestricted) system toll set.” As defined above, £ in the
system toll set is unrestricted. (In practice, positive tolls represent payment
for road usage and negative tolls represent subsidies for the same purpose.)
Moreover, the system toll set is nonempty. In fact, 8 = —s(7) belongs to the
system toll set because 8 = —s(7) and p* = 0 for all k trivially satisfy (1)
and (2). In addition, the optimality condition for the system problem also
implies that Bmscp = Vs(@)?T € T (7). (See, e.g., [HeR98|.) Transportation
economists (see, e.g., Arnott and Small [ArS94]), generally refer to Smscp as
the marginal social cost vector. Using —s(T) and v7s(7)7 7, Hearn and Ramana
show in [HeR98] that 7 (7) is unbounded. Because an arbitrarily large toll is
impractical, we assume that all toll vectors in 7 (7) are bounded and, when
not explicitly stated, the constraint ||| < B, where B is a sufficiently large
number, is included in all toll sets described herein.

When £ is required to be nonnegative, we refer to the set 77(7) = {8 >
0lv*(8) = T} as the “nonnegative system toll set.” Algebraically, 7+ (7) is the
toll set described in Theorem 1 with an additional nonnegativity constraint
on 8. In practice, 77 (7) is nonempty. Practical traffic assignment models
(see, e.g., [FGS87], [FIH95], [HLV87], and [LMP75]) typically use travel cost
functions whose Jacobians, 7s(7), are both nonnegative and diagonal. This
makes Smscp nonnegative and 7+ (7) nonempty. Later, we provide a condition
under which the latter holds without requiring the Jacobian to be nonnegative.

Consider the case when it is not practical to compute T exactly. Let ¥
denote an approximate solution to SOPT. Without specifying the quality of
the approximation, all that can be claimed is that v is a feasible aggregate
flow vector and the toll set based on ¥, or the non-system toll set, is 7 (7) =
{Bjv*(B) = v}. In words, this is the set of toll vectors whose tolled user
equilibrium solution equals the aggregate flow vector ¥. As shown below, the
algebraic characterization of 7(7) is essentially the same as that of 7(7).
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Theorem 2. The nonsystem toll set, T (V), is the set consisting of the § com-
ponent of every pair (3, p) that satisfies the following linear system:

s +8>ATp*, Vvikek, (3)
(s(@) +8)TT=>_bTp" (4)
k

Proof. Because of assumption [B], ¥ must solve VI[s(v) + 3, V] uniquely for
every 3 € 7 (¥). From Proposition 1.2.1 in Facchinei and Pang [FaP03], v
solves V1[s(v) + 8, V] if and only if there exist p* and o* that satisfy the
following KKT conditions:

s(W)+B— ATpF —ok =0, VEkeKk,
(@)Tok =0, Vkck,
ok >0, Vkek

The pair (5, p), where p is determined by the above KKT conditions, sat-
isfies (3) and (4). The first and third KKT conditions imply that (3) holds.
Multiplying the first KKT conditions by ¥ and summing the resulting equa-
tions together yield

(@ + BT 3" = (AF)Tp" + > (@F)7o".
k k k

Because Y, T% =7, AZ" = bj, and (Z%)To* = 0, the above equation reduces
to (4).

Conversely, let (3, p) satisfy (3) and (4) and set o* equal to s(7)+8— AT p*
for all k. Then, it follows from (3) and (4) that ¢* > 0 and }_, (z¥)To* =0,
respectively. The latter also implies that (Z%)7o* must individually equal
to zero because ¥ > 0 and ¢* > 0. Thus, the above KKT conditions are
satisfied and, using the above result from [FaP03], v solves VI[s(v) + 3, V],
ie., e T(v). ]

In the above proof, assumption [B] is essential. Without uniqueness, there
may be alternate tolled user equilibrium solutions not equal to ¥. In addition,
the non-system toll set described above is always nonempty because, as in the
system toll set, —s(¥) € 7 (7).

Consider the nonnegative and non-system toll set, i.e., 7H(V) = {8 >
0lv*(8) = ¥}. The algebraic representation of 71 (7) is the same as described
in the above theorem with the addition of the nonnegativity constraint on 5.
However, the example below illustrates that 7 ¥ (7) can be empty.

The network in Figure 1 represents a transportation system with three
nodes and four arcs where the travel cost function for every arc is constant
and equals 1. There are two OD pairs, (1,3) and (2,3), each with a travel
demand of 2 units. Table 1 displays a set of feasible flow vectors for the
transportation system. For OD pair (1,3), the flow vector 2(1:3) corresponds
to sending one unit of flow along each of the two possible paths, 1 — 2 — 3
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OD pairs  Demands
(1,3) 2
(2,3) 2

Travel Demands

Travel Cost function: s;(vy) = 1, V arc (i, )
Fig. 1. A Counterexample
and 1 — 3. Similarly, #(23) corresponds to send one unit of flow along paths
2 — 1 — 3 and 2 — 3. Clearly, the aggregate flow vector 7 = Z(1:3) 4 F(2:3)

is not system optimal because sending two units of flow along arcs (1,3) and
(2,3) satisfies both travel demands and is less costly.

Table 1. Feasible Flow Vectors for the Network in Figure 1

Arc B3 7(23)

7
(1,2) 1 0o 1
(13) 1 12
(21) 0 1 1
(23) 1 1 2

Because the two OD pairs can be treated as one commodity, the nonneg-
ative and nonsystem toll set, 77 (7), reduces to the following linear system:

14+ B12 2 p1 — p2
14813 > p1 — p3
1+ Ba1 > p2 — p1
1+ 823 > pa — p3
(1+ Br2) +2(1 + B13) + (1 + B21) +2(1 + Ba3) = 2p1 + 2p2 — 4p3
ﬁijzo, V<7‘,])

The equality constraint in the above system can be equivalently written as

(1+ Bz = [p1 — p2])+ 2(1 + B13 — [p1 — p3))
+ (1+ Par — [p2 — p1]) +2(1 + Boz — [p2 — p3]) = 0.

This equation implies that the four inequalities in the system must hold at
equality, i.e.,
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14 B2 = p1 — p2
1+ Bi3=p1—p3
1+ 8o =p2—p1
1+ fa3 = p2 — p3

Adding the first and third equations together yields

2+ P2+ B =0.

However, this is impossible because §;; > 0,V(%, ). Thus, 7T (7) = 0.

The following theorem provides a necessary and sufficient condition under
which 7% (7) is nonempty. Independently, Fleischer et al. [FIM04] provide a
different, but equivalent, condition for the nonemptiness of the nonnegative
and non-system toll set. The condition in the theorem below is related to an
earlier work on bounded traffic assignment problem in [Hea80] that was later
continued in [Ber95] and [BHR97] under the setting of congestion pricing.

Theorem 3. For any ¥ € V, the set T (V) is nonempty if and only if U solves
VIjs(v),V], where V = {vjv = ¥, ¥, Az* = by, 2% > 0,0 <7}

Proof. Using Proposition 1.2.1 in [FaP03], v solve VI[s(v), V] if and only if
there exist p*, o, and § that satisfies the following KKT conditions:

s(0) — ATpF —o* + 3 =0, VE,
(@*)Tok =0, Vk,
ok >0, Vk,

8 =>0.

In the above system, 3 is the multiplier vector corresponding to the upper
bounds v < ¥ in V and the complementarity condition 87 (v —7) = 0 is
not, required because v = U satisfles every upper bound in V exactly. By an
argument similar to the one in Theorem 2, the above conditions are equivalent
to those that describe 7 (7). Thus, the theorem holds. n

The corollary below provides a similar condition for the nonnegative sys-
tem toll set and follows immediately from the above theorem.

Corollary 1. The nonnegative system toll set, T+ (v), is nonempty if and only
if U solves VIfs(v),V], where V = {vjv = Y, o, Az* = by, 2% > 0,v < ¥}

3 Relaxed Toll Set

Consider the situation in which an algorithm terminates and produces v as an
approximate solution to SOPT with some desired optimality gap. Using The-
orem 3 from the previous section, it is possible to determine whether 7+ (7)
is nonempty. However, 77 (%) is often empty in practice. This section resolves
this difficulty by finding nonnegative tolls that satisfy the conditions in Theo-
rem 2 approximately. Moreover, the focus is on defining a nonnegative relaxed
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toll set based on ¥ when 7s(7) is nonnegative. (When [ is unrestricted, the
system and non-system toll sets are nonempty. As such, they require no relax-
ation. When s(7) is nonnegative, the same holds for the nonnegative system
toll set.)

The first condition in Theorem 2 is

s(@)+ 0> ATpF, vkek.

When multiplied by Z* and summed together, the above implies that (s(7) +
B)TT > 3, bT p* because AZ* = by, and ), % = . Therefore, the equality
in (4) can be replaced by an inequality ‘<.’ This replacement motivates the
definition of a relaxed toll set 71 (7, €), for some € > 0, as the set of all § for
which there exists a corresponding p satisfying the following conditions:

S(B) + 8 > ATpF, k€ K,
(s@+8)TT< 3 bk +e
kek
B> 0.
Let —emscp = min{(s(?) + Vs(@)T9)T(u — ¥) : u € V'}. In Hearn [Hea82],
€mscp is the optimality gap for SOPT at v and the following theorem shows
that 77 (7, emscp) is nonempty.

Theorem 4. If \7s(V) is nonnegative, then T+ (U, emscp) # 0, where emscp >
0 is as defined above.

Proof. Note that

emsep = (8(0) + Vs(T)T0)T0 — min{(s(?) + Vs(®)T0)Tu:u € V}
= (s(v) + ﬂmscp)T’27 — min{(s(¥) + ﬁmscp)Tu rueVh

From linear programming duality, the following holds
fmscp = (8("{)’) + ﬁmscp)T:J — ml;ax{zk bgl[)k . 8(17) + ,Bmscp Z ATpk,Vk}
= mgn{(s(?]) + Bmsep) TV — 25, b 0* : 5(0) + Brmscp > AT p*, Yk}
Let p denote an optimal solution to the linear program in the last equation.

Then, the pair (Bmscp, /) satisfies the relaxed toll condition with € = emscp,
ie.,

5(V) + Bmscp = ATH, vk € K,
(s(T) + /Bmscp)Tfﬁ = > b{ﬁ’“ + €mscp-
ke

Because /s(V) is nonnegative, Smscp > 0. S0, Bmscp € T+ (¥, emscp) and
T (v, 6mscp) # 0. u

As shown above, emscp can be computed with little effort because many
algorithms (see, e.g., [FGS87], [LMP75], and [HLV87]) for SOPT compute
emscp and terminate when they find a ¥ € V such that the corresponding
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emscp < €, for some small € > 0. Instead of emscp, it is also possible to choose
€ by solving the following linear program:
€ = min (s(7) + B)To - by ot
bl }C
st. (D) + 8> ATk, Yk,
g>0.

Because 77 (T, emscp) # 0, the above optimization is feasible. In addition,
e < €mscp-

One important property of the system toll sets (unrestricted or otherwise)
is that, for any 8 in 7(%) (or 7+ (7)), U solves VI[s(v) + 3,V], i.e., the system
solution also solves the user equilibrium problem with the toll vector 8. How-
ever, this property only holds approximately for the relaxed toll set. Assume
that 7 solves SOPT approximately, i.e.,

min{(s(?) + Vs(0)0)" (u - 7) 1 u € V} = —emsep > —e.
Then, for any 3 € 77 (7, emscp), the following must hold

s(0) + 8 > ATp*, Vk e K,
(s(¥) + 5)T:5 < 3 bfpk + €mscp-
kek
It follows from the above that
"5§*€mscp§Zka (()—!—,@)vaG{p ATk<5()+ﬁvk}
< max{ z bEp* o ATpk < s(D) + B,Vk} — (s(v) + B)TT,

—mln{( +B8)Tu:ueV}—(s@)+B8)T7,
—m;n{m BT (u=7) i ue V)
< (8(®) +B8)T(u—7),Vu eV,

where the first equality holds because of the strong duality theorem in linear
programming. Observe that the last inequality implies that ¥ solves VI[s(v) +
8,V] approximately. Thus, ¥ approximately solves both SOPT and the tolled
user equilibrium problem.

For a slightly stronger statement, Theorem 5 below demonstrates that,
for any n > 0, there exists a § > 0 such that |[v*(8") — 7|| < 1 when §' €
T (¥, emscp) and [|U ~ Tf| < 4. (Here, || - || represents the Euclidean norm.)
In words, the theorem states that a toll vector from the relaxed toll set yields
a tolled user equilibrium solution that is approximately system optimal. To
establish this theorem, the following lemmas are necessary.

Lemma 1. Let P be a compact set, ¢1(-) be continuous and strongly monotone
with modulus o (i.e., (c1(v1) — c1(v2))T (v1 — v2) > allvr — v2]|2), and ca(:) be
continuous. If py and py solve Vilei(+), P and Vijea(+), P), respectively, then
Ip2 = p1ll < 5 llea(p2) — er(p2)l.
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Proof. See Dafermos and Nagurney [DaN84]. [ ]

Lemma 2. Fori = 1 and 2, let F; = {z|U;z < r;, Wiz = ¢;}, where U; and
W; are (I x n) and (m x n) matrices, respectively, and v; and t; are vectors
in R' and R™, respectively. If xzo € Fy, then there exists a 1 € Fy such that

|21 — 22| < o(Up, Wy) {[((%1—_U;22$)2x;_(r(1tI—_TQt)Q];]L ’ where a(Uy, W1) is a

finite real number associated with Uy and W.

Proof. See Robinson [Rob73]. [ |

Lemma 3. Let s(v) be continuously differentiable and ||v —T|| < & for some
§ > 0. For any 3 € T*(¥,¢), there must exist a 8 € TT() and constants
K and Ky such that |5' — 8|l < K16 + Kae.

Proof. The conditions defining 7+ (¥) and 7 (7, €) can be written more com-
pactly as follows:

-8 <0,
ATp— 18 < Is(v), (5)
—bTp+778 < —s(T)7T,
and
-8<0,
ATy — I8 < Is(3)) (6)

b7 +778 < —s(0)TT +e

where A = diag(4, 4, .-, 4), and bl = (blT,bgT,--- ,me). To further
simplify our notation, let (Uy,71) and (Us,73) denote the pairs of matrix and
right-hand-side vector for (5) and (6), respectively. Because 8/ € T1(v,¢),
there must exists a p’ such that (3, p) solves (6). From Lemma 2, there must
exist a pair (53, p) satisfying (5) for which the following hold

() (5)

<o(Uy)
_+_

0 0
SU(Ul)({( 0 ) ( I(s(v) - s(7)) )
@978/ |, —s@Tv+s(@)7T—¢/ |,

o (U (11827 = Bll2 + 1s(B) — s(@){l2 + [|s(B) 0 — s(T)7 D) +€)
o (UN)([18']|2115 = ]2 + || 7 s(ur)]2][7 = Bl|2

+[s(uz) + 7s(u2)" s(ug)|l2/[T — Tll2 + €)
< o(U)(Bl[v — D2 + Lri|[T = 9|2 + La|[7 — Tlf2 +¢),

2

)

<
<
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where the first inequality follows from Lemma 2, the second from the fact
that |[[z]T|| < ||z||, the third from the definition of U; and r; and the tri-
angle inequality and the fourth from Cauchy-Schwarz inequality. In the fifth
inequality, u; and us are some points between ¥ and U and the gradient
of s(v)Tv is s(v) 4 ws(v)Tv. Furthermore, the inequality holds because of
Cauchy-Schwarz inequality, the differentiability of s(v), and the mean value
theorem. Finally, the last inequality is true because we assume earlier that
3] < B and the continuous functions 7s(v) and s(v)+5/s(v)Tv are bounded
on the compact set V by some constants Ly and Lo, respectively. By let-
ting K1 = (B + Ly + L3)o(Uy) and Ky = o(Uy), the above reduces to

/ p—
- < (5 25)| < #io+ e .
3-8/,
Theorem 5. Let s(-) be strongly monotone with modulus a. For any n > 0,

there exists a § > 0 such that |[v*(8') —v|| < n whenever 8 € TH (T, emsep)
and ||7—1]| < 6.

Proof. For any 3’ € T+ (U, emscp), Lemma 3 implies that there exists a § &
7+ (T) such that ||’ —8]] < K16+ Kaemscp. As defined earlier, emscp depends
on v. In particular, emscp — 0 as § — 0. When combining the latter with the
fact that o, K1, and K5 are constant and independent of 5 it must be possible
to choose & so that (1/a)(K16 -+ Kaemsep) < 7.

Let 8 € T*(7, émsep) and 3 € 77 (v). Then Lemma 1 implies that the
solutions v*(8’) and ¥ to VI[s(v) + £/,V] and VI[s(v) + B, V], respectively,
must satisfy

[7—v* (8 < (1/a)|ls(@®) + 8 — s(7) - &'
< (1/e)| 8 =4
S (1/&)([{16 -+ KQEmscp).
Therefore, the above choice of § implies the theorem holds. |

Because €* < emscp, the above theorem also holds when €* replaces emscp-

4 Disaggregate Representation of Relaxed Toll Sets

The second condition (2) in Theorem 1 is an aggregation of a number of
complementarity conditions as shown in the proof of Theorem 2. When (2) is
relaxed, the resulting relaxed toll set 7 (7, €) may be larger than necessary.
To define smaller relaxed toll sets, (2) can be disaggregated into its original
form.

Using the argument in, e.g., Theorem 2, it is possible to show that 7 (%)
is equivalent to the set consisting of the 3 component of every vector (3, p, o)
that satisfies the following linear system
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s(T) + B~ ATpk = 0% Vk € K,
@7 ok =0, Vkek,
o >0, Vkek,

8>0.

The second equation is an aggregation of the complementarity condition for
each arc (¢,7) € A4, e, xfj fj = 0. Thus, the above system is equivalent to
the following:

$45(0) + Bij = pf —pz Vk € K, (3,5) € A,
$i(T) + Bi; < pf p],VkEIC,(, e ATk >0,
Bij >0 v(i,j) € A

As before, let T = Y, ¥ denote an approximate SOPT solution. Then, a
relaxed toll set in the disaggregate form, IT7(7, &), is the set consisting of the
[ component of every vector (3, p} that satisfies the following linear system

545 (0) + Bi; > pf —P'Z, Yk e K, (i,7) € A,
$ij(0) + By < pf —pf + €5, VE e K, (4,5) € A: Z5, > 0,
B8i; 20 v(s,7) € A.

Unlike € (a constant) in 7% (¥, €), € is a nonnegative vector in the relaxed toll
set IT1(7,€). Below are two properties of this (disaggregate) toll set.

Theorem 6. For any v eV, let Bmsep = vs(®)77 and, for all k € K and
(i,7) € A such that T, > 0, let flj = si;(V)+ [ﬂmscp] —pF+7k, where §is an
optimal solution to the linear program in Theorem 4. If vs(v) is nonnegative,
then IT+(T,€) # 0.

Proof. Recall from Theorem 4 that
Emst = m/}n{(s(f}) + ﬁmscp)T’i), - Zk bz/)k : S(:J) + ,Bms(;p Z ATpk,Vk}.

For all k € K and (i,7) € A such that Zj; > 0, let 5” = 5i;(V) + [Bmscplij —
;7;? + 7%, where 7 is an optimal solution to the above linear program. Moreover,

its constraints also ensure that & ¢k > 0 and, when combined with the definition

of E the following must hold

845(0) + [Bmscplis = PF — pj, Vi€ K, (i,5) € A,
5ij(0) + [Bmscplij = AF — 7% + €5, Yk € K, (i,5) € A: T& > 0.

YR

Then, the nonnegativity of 7s(7)” ¥ implies that [Bmscpli; = 0 for all (4,4) €
A. Therefore, fmscp € IT*(7,€) and H+(U,§) £ (. ]

Theorem 7. If [T (T,€) # 0, then IIT(V,£) C T+(V,¢€), where
€= Z(i,j)eA 5?352
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Proof. Multiplying the second equation in the definition of II't(7,€) by ffj
vields

(845(0) + 51’;‘)5% < (of - P?)ﬁj + &fjifjv V(i, 4, k) 55@ > 0.
Then, summing the above equations together and recognizing that AZ* = by,
yield that (s(7) + 8)70 < 3 bf pF + ¢, where € = 37, 30, e 4 T5;€8. Thus,
kek

B8 e IT*(v,€) implies that 8 € TT(V,¢€), i.e., IT(T,£) C T (T,¢). [ |
Instead of choosing & as in Theorem 6, it is also possible to choose £ that
solves one of the following two problems:

min >, Z(i,j):i§j>0 3

(8.0,6)
) VE € K, (i, ) € A
ﬁij 2 0 V(Z,j) € A,
or
min z
(8,0,€,2)

st s;(0) + By = pF — pF + €5, Vk € K, (i,)) € A,

k<, Vke K, (i,j) € A: T >0,
>0 Yk € K,(i,7) € A,

Both problems yield a ¢ that makes ITT(7, £) nonempty.

5 Numerical Results

To illustrate the effectiveness of the relaxed toll sets, II1(7,€) and 77 (7, ¢€),
we solved the MINSYS problem originally introduced in [Ber95] and [BHR97]
and later referred to as the minimum toll revenue problem in [Dia99]. Using
the (aggregate) relaxed toll set 7 (7, €), the (aggregate) minimum toll revenue
(AMR) problem can be stated as follows:

min{t78: 8 TH({T, e}

The objective function in AMR is simply the sum of the product of the flow
and the toll amount on each arc, i.e., the toll revenue. Using 1717 (7, ) instead
of T7(7,¢), the disaggregate minimum toll revenue (DMR) problem can be
defined as follows:

min{?73: 8 € I7(7,€)}.

Data for our experiments are from four transportation networks whose
attributes are listed in Table 2. For each network, we used the restricted sim-
plicial decomposition or RSD (see, Hearn et al. [HLV87]) to obtain a solution
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Table 2. Network Attributes

Network Links Nodes Commodities
Sioux FallsfLMP75] 76 24 528
Hull [FGS87] 798 501 138
Stockholm [HeR98] 962 416 1,623
Winnipeg [FGS87] 2836 1052 4,344

to SOPT with a relative optimality gap of 10~% Because they are readily
available from RSD, we set € = emscp and 5{“]- = 8;5(0) + [Bmscplij — pF + p;?
in AMR and DMR, respectively. Both problems, AMR and DMR, were im-
plemented in GAMS [GAMS0] and solved using CPLEX 8.1 [CPL96].

Table 3 reports the results for the four networks. For Sioux Falls, the
SOPT solution from RSD provides a consistent toll set and e can be set to
zero. The same does not hold for the remaining three networks. The values of
their emgcp are listed in the table along with the ratio emscp/s(ﬂ)T?f to provide
the magnitude of emgcp relative to the total travel delay at the approximate
SOPT solution. The last two sets of columns compare the tolled user equi-

Table 3. Numerical Results

Total Delay Error  Link Flow Error
Networks  €mscp msee. (AMR)  (DMR)  (AMR) (DMR)

s(Ty
Sioux Falls 0 0 0% 0% 0% 0%
Hull 485 9.59E-5 0.07% 0.07% 2.6% 1.3%
Stockholm 1,134.12 9.74E-5 0.06% 0.01% 0% 0%

Winnipeg 107.82 9.22E-5 0.05% 0.04% 0.1% 0.3%

librium solutions, v*(3), using toll vectors from AMR and DMR against the
approximate SOPT solution, v, from RSD. The two columns under the head-
ing “Total Delay Error” reports (s(v*(8))v*(8) — s(@)7%)/(s(?)T7), i.e., the
error in travel delay relative to the delay at the approximate system solution,
U. The remaining two columns (under the heading “Link Flow Error”) reports
the percentage of arcs with relatively large link flow errors. In calculating this
percentage, we only consider arcs with a moderately large amount of flow, i.e.,
we consider arcs in the set A" = {a|v}(5) > 0.25C, or ¥, > 0.25C,}, where
C, is the capacity of arc a. Then, the link flow error is the percentage of arcs
in A’ such that ML" > 0.10. Observe that results in the last two columns
indicate that the relaxatlon based on the marginal social costs produces good
toll vectors for they yield tolled user equilibrium solutions that are approxi-
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mately optimal to SOPT. However, DMR on average yields tolls with slightly
less error.

6 Conclusions

Congestion or toll pricing problems in [HeR98] require a solution to the system
problem (the traffic assignment problem that minimizes the total travel delay)
to define a toll set, i.e., a set of all valid tolls. Instead of an exact solution, it
is more practical to obtain an approximate solution to the system problem for
large networks. In this paper, we provide necessary and sufficient conditions
to determine whether the toll set constructed from an approximate solution is
empty. When it is so, we derive alternative toll sets based on relaxed optimality
conditions. With carefully chosen parameters, tolls from the relaxed toll sets
possess the desirable property, i.e., they induce travellers to choose routes
that are nearly system optimal. Numerical solutions from four transportation
networks in the literature also verify empirically the previous statement.
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Appendix

Relaxed Toll Sets for the Elastic Demand Case

This appendix describes the results concerning the toll sets when demands
are elastic. Many results for the fixed demand case naturally extend to the
case with elastic demands. The presentation below follows the same outline
as in the main part of the paper.

A Elastic Demand System and User Problems

To state the traffic assignment problems with elastic demands, let ¢, and
wg(tr) denote the travel demand and the inverse demand function for com-
modity k, respectively. For each k, Ey is a vector in RWI with exactly two
nonzero elements, one equals 1 at the origin node and the other equals —1 at
the destination node. Then, the set of feasible flow-demand vectors is

Veo = {(v,0)[v = _ ¥, Azk = Eyty, 2" > 0,8, > 0}
k

Without loss of generality, we assume Vi is bounded, thus, compact. (See,
e.g., [FIH95].)

Among several alternatives (see, e.g., [Gar80], [YaB97] and [ZhG97]), one
system problem with elastic demands maximizes the net user benefit, i.e., the
difference between the user benefit as measured by >, o« fotk wi(z)dz and the
total delay (or cost) s(v)?v. In its minimization form, this system problem
can be written as

(7,%) = argmin{s(v)Tv - Z / ’ wi(2)dz : (v,t) € Vap.}
ke /O

As in the fixed demand case, the corresponding user problem with elastic
demand is a variational inequality. In particular, (v*,t*) is a solution to the
user equilibrium problem if the pair satisfies the following:

s()T(w—v*) —wt) Tt —t*) >0, VY (v,t) € Vip.

For a given toll vector G, (v*(6),t*(8)) is a solution to the tolled user
equilibrium problem if the pair satisfies the following:

(s(v(8)) + B)F (v = v*(8)) —w(t*(B))T(t = t°()) 20, ¥ (v,1) € Vo.

As in the fixed demand case, we assume throughout this appendix that
the system, user, and tolled user equilibrium problems have unique solutions.
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B System and Non-system Toll Sets

Analogous to the fixed demand case, the system toll set when demands are
elastic is 7(7,t) = {B]v*(8) = 1,t*(8) = t}. Under the uniqueness assump-
tions stated earlier, Hearn and Yildirim [HeYO01] prove that 7 (7,f) consists
of the 8 component of every pair (3, p) that satisfies the following system:

s(@) + 6> ATp*, VEkek,
wp(ty) < ETp*, VEkeKk,
(s(0) + 8)'7 = w(®)Z.
In [HeY01], Hearn and Yildirim show that both 7(7,%) and 77 (7,1) are
nonempty. The latter assumes that vs(T) is nonnegative.
Let (v,?) denote a flow-demand vector feasible to Vip. Then, the non-
system toll set is 7 (v, t) = {B|v*(8) = 7,t*(8) = t} and, using an argument
similar to the one in Theorem 2, the following holds.

Theorem 8. The toll set T(7,t), where (U,1) € Vyp, is the set consisting of
the 8 component of every pair (3, p) that satisfies the following linear system:

s@+6>ATp* VEkek,
wi(tr) < Bip*, Vkek,
(s(@) +8)77 = w(t)"t.

The theorem below shows that the non-system toll set is nonempty for
any non-trivial (7,¢) € Vip.

Theorem 9. For any (3,1) € Vap such that T # 0, 8 = Vs(7)Tv—a¥ € T(3,1)
when o = ((s(@) + Vs(@)T3)" & — w@T#/077

Proof. Consider the following direction finding problem associated with VI(s(v)+
B, Ven) at (’775?) :

~ T ~
DIR-ED(f) : min (s(ﬁ) + ﬁ) Sk —w(t)td

keK
st AzF — E.d, =0, vk,
zF >0, Vk,
di > 0, Vk.
The dual of DIR-ED(f) is
max 0

sit. ATpk < s(T) + B, Vk,
E}?pk Zwk(tk)v Vk?
p® unrestricted, Vk.
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The relationships between the primal and dual problems in linear pro-
gramming imply that the objective value of the direction finding problem is
bounded below by zero. Thus, (u, d) = (0, 0), where u = z¥ is an optimal
solution because its objective value equals the lower bound. Furthermore, the
dual of DIR-ED has a feasible solution, say p. Then the pair (£, ) satisfies
the linear system in Theorem 1. The first two conditions of the linear system
in Theorem 8 follow from the first two constraints of the dual problem and
our choice of 3 ensures that the following holds

T

(s +5) 5= (s@) + Vs(@)"D)" 5 -t T = w(®).

Thus, the last condition in the linear system is also satisfied and B € T(i7,~).
|
As defined above, a is zero and 8 = Vs(7)7%, when (7,%) solves the

system problem. Moreover, other choices for o and [ exist. For example,

B = V()77 — as(®), where o = [(s(¥) + Vs(@)T3)" 7 — w@TH/s(®)77, is
also valid when s(7)T% # 0.

The following theorem provides a necessary and sufficient condition under
which the nonnegative and non-system toll set is nonempty. The proof is
omitted because it is similar to that of Theorem 3 in the main part of the

paper.

Theorem 10. For any @,1) € Vi, T+(T,1) is nonempty if and only if
(©,7) solves VIf(s(v), —w(t)),Ven/, where Ve = {(v,t)jv = 3, %, Az* =
Epty, 2% > 0,t, > 0,v <7}

C Relaxed Toll Set

In this and the following sections, we focus on the relaxations of the (unre-
stricted) non-system toll set. However, similar results also hold for the non-
system toll set requiring tolls to be nonnegative.

For a given € > 0, the relaxed toll set 7(7,1,¢) is the set consisting of the
B component of the pair (3, p) that satisfies the following:

s(T) + 8 > AT p*, Yk e K,
wk(’tvk) < E]Z;pkzv vk e K,
(s(@) +B)T0 < wt)Tt +e.

Then, the following results are analogous to those in Section 3.

Theorem 11. For any (3,) € Vip, let emscp = (s(0) +7s(0)T0) 77 ~w(t)Te.
Then, T(:J,’tv, Gmscp) —’/é @
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Proof. From the discussion in Section B, the optimal objective value of DIR-
ED (Bmscp) is zero, where Bmgscp = 7s(¥)T7 as before. Thus €mscp can be
equivalently expressed as follows:

emsep = ($(V) + Bmsep) ¥ — w(t)TE
—min{(s(®) 4 Bmscp)Tu — w(t) Tt : (u,t) € Van}.

As in Theorem 4 in the main part of the paper, the vector Smscp and an
optimal solution, g, to the dual of DIR-ED(8mscp) form a pair of (3, p) that
belongs to 'T('ﬁ,tN7 €mscp)- [ ]

Theorem 12. Let s(v) and w(t) be strongly monotone with modula « and v,
respectively. For any n > 0, there exists a § > 0 such that ||(v*(8) —,t"(8) —
D2 < n whenever 8 € T(V,t, emsep) and |(T—7,t — 1)} < 6.

Proof. Because both s(v) and w(t) are strong monotone, (s(v}, —w(t)) is also
strongly monotone with modulus min{«,~}. The rest of the proof requires
lemmas and uses an argument similar to the one in Theorem 5. ]

The following linear program also provides an e for which 7(9,¢,¢€) is
nonempty.

P

sts()+[3>ATk, Yk e K,
wk(tk)SET , Vkek.

¢ = min (s(0) + 87 - w(®TT

D Disaggregate Representation of Relaxed Toll Sets

Let (T,%) be an approximate system solution. For a given pair of (£, u) such
that &, 4 > 0, the following are three possible disaggregate representations of
a relaxed toll set, all of which are analogous to the one presented in Section
4.

1. ITY(,%,€, 1) = the set of the 3 component of every pair (3, p) that satisfies
the following:

Szj(v)+/613>pl ,ch VkE’C( )EA

sii(0) + Big < pf — P+ &5, VREK, (1,5) € A: T >0,
wi(tx) < Ef p~, Vkek,

wy(tr) > BF p* — py, VkeK:f >0.

2. H2(5,ﬁ§) = the set of the 8 component of every pair (3, p) that satisfies
the following:

Szj(%')“'ﬁmzpz”_p% VEeK, (i,7) €A,
Sz](v)+ﬁzj.<_pz_p3+€zgrVkEK( J)eA: :12 >0,
wi(ty) < ELp", Vikeck.
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3. IT3(¥,t, 1) = the set of the § component of every pair (3, p) that satisfies
the following:

Sl](~) +182_7 sz _p;":a VkEK,(l,]) €A>
wk( )<E,{k, Vkek,
(tk)>EkP —py, YkeK:ty>0.

Because the last two sets contain subsets of the constraints appeared in
the first, I72(3,1,€) and II%(%,%, 1) are relaxations of IY(T,t,&, ). Thus,
IT'(3,1, €, 1) must be a subset of both I%(9,t,€) and IT3(3,1, ).

The following theorem shows that I71(7, ¢, €, ) is nonempty. This in turn
implies that both IT2(7,%,¢) and IT3(%,%, 1) are also nonempty.

Theorem 13. For any (ﬁ,tN) € Vip, let

L fl] = 545(0) + [Bmscpl;; ~ 4%, for all k and arc (i, 5) such that T > 0,
and B ~
2. ik = ETP* — wi(tx), for all k such that £, > 0,

where p is an optimal solution to the dual of GAP-ED(Bmscp). Then,
I1'@,5,8,7) 0.
Proof. Because p solves the dual of GAP-ED(Bmscp), it satisfies

8(51:*- Bmscp = ATGR Vke K,
wy(ty) < EEA'IC, Vk € K.

The above implies that both {NZ and [y defined above are nonegative and
satisfy the following:

$i5(V) + [Bmscpli; > o~ ﬁ;c, Yk, (4,7) € .A
8i(0) + [Bmscplis = P —p] + &L, Yk, (1,) : T > 0,
wi () < EFp*, Yk,
wi(tk) = Elp* —fik, Vk:tx > 0.

Thus, (Bmscp, E{g,ﬁ ) satisfies the conditions defining IT%(%, 7, €, i), i
I (G,8,€,10) # 0. [ |

Corollary 2. For any (U,1) € Vyp, let E{; = 54(0) +Bmscpl;; — P¥ + 7y, where
7 is an optimal solution to the dual of GAP-ED(Bmscp). Then, ITI*(3,7,€) # 0.

Corollary 3. For any (U,1) € Vi, let fix, = ELB* — wy (tNk),Nwhere p is an
optimal solution to the dual of GAP-ED(Bmscp). Then, II3(U,¢, 1) # 0.

Furthermore, if IT%(7, t,&, {£) is nonempty, then multiplying the second and
fourth conditions in the relaxed toll set by ﬁfj and t; yields the following:
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(545 (0) + BT (pL:pJ)xlﬁiz’ﬂykaG’C( J) T >0,

(ETPk)tk < wy(tr)te + prte, VEk: >0

Because 7= 3", i* and AZ* = E.ty, the above equations imply that (s(7) +
B)TT < w(t)Tt+ ¢, where € = 3, Y, iyen ThiEl + Zk?kﬂk Thus, if 8 €
'@, t, &, 1), B must be in 7(7, t,€) as well, i.e., 7(, t&u) C T(@,te).
Similarly, IT2(7,1,€) € T(%,%,¢) and IT3(37, t, u) C 73,1, e) when € is chosen
in a similar manner.
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