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Summary. Congestion or toll pricing problems in [HeR98] require a solution to 
the system problem (the traffic assignment problem that minimizes the total travel 
delay) to define the set of all valid tolls or the toll set. For practical problems, it may 
not be possible to obtain an exact solution to the system problem and the inaccuracy 
in an approximate system solution may render the toll set empty. When this occurs, 
this paper offers alternative toll sets based on relaxed optimality conditions. With 
carefully chosen parameters, tolls from the relaxed toll sets are shown theoretically 
and empirically (using four transportation networks in the literature) to induce route 
choices that are nearly system optimal. 
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1 Introduction 

To encourage each traveller to choose a route in a transportation network that 
would collectively benefit all travellers, Hearn and Ramana [HeR98] proposed 
in 1998 a framework for determining the prices and locations a t  which to 
toll the network. This framework requires solving a congestion or toll pricing 
problem, an optimization problem with linear constraints that describe the 
set of all valid tolls or the toll set. Coefficients for the constraints depend on 
an optimal solution to  the system problem, i.e., the traffic assignment problem 
(see, e.g., Florian and Hearn, [FlH95]) that minimizes the total travel delay 
among all travellers. 

For small transportation networks, it is possible to  compute an exact op- 
timal solution to  the system problem. However, obtaining such a solution for 
larger networks may be either impossible or impractical. When implemented 
on computers, algorithms for the system problem must perform all numerical 
computations using finite precision. This naturally induces small numerical 
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inaccuracies because to  perform some mathematical operations precisely re- 
quires infinite precision. Furthermore, the system problem is generally a non- 
linear program for which most algorithms require in theory an infinite number 
of iterations to reach an exact optimal solution. In practice, it is common to 
terminate these algorithms when they find a solution with a small optimality 
gap, e.g., 10E-4. 

On the other hand, using an approximate solution for the system prob- 
lem (or an approximate system solution) to determine the coefficients for the 
constraints defining the toll set may cause the toll pricing problem to become 
infeasible, numerically (e.g., because of finite precision) or otherwise. To over- 
come this infeasibility, Hearn and Ramana [HeR98] employ a penalty function 
approach and Hearn et al. [HYROl] relax one of the constraints defining the 
toll set. For the latter, the relaxation is based on a parameter defined by an 
optimal solution to the penalty problem in [HeR98]. 

This paper studies the viability of using an approximate system solution in 
defining the toll set. Specifically, when an approximate system solution makes 
the toll set empty, this paper alleviates this inconsistency by relaxing one or 
more constraints, some of which are similar to those used in [HYROl]. How- 
ever, our approach to relaxation does not require solving a penalty problem. 
Moreover, this paper also addresses three issues relating to the use of an ap- 
proximate system solution. The first issue is whether an approximate system 
solution yields a consistent set of constraints defining the toll set. When it does 
not, the second issue is to find practical methods for relaxing the constraints 
in order to generate tolls that causes travellers to  use the transportation net- 
work in nearly the most efficient manner. Finally, the last issue is to ascertain 
how well these methods work theoretically and empirically. 

The remainder of the paper assumes that the travel demands are fixed. 
Results for the elastic demand case are similar and given in the Appendix. 
Section 2 defines two types of toll sets, system and non-system, and discusses 
their properties. Section 3 derives a relaxed toll set using an approximate 
system solution and shows that the tolls from this set have the desirable 
property. Section 4 gives an alternate representation of the relaxed toll set. 
Section 5 reports encouraging results for four transportation networks from 
the literature and Section 6 concludes the paper. 

2 System and Non-System Toll Sets 

To define toll sets, consider the two traffic assignment problems in transporta- 
tion science literature, the system and user problems. (See, e.g., [FlH95].) Let 
6 = ( N ,  A) be a network with n/ and A denoting the set of nodes and arcs, 
respectively. Associated with 6, there are also a node-arc incidence matrix, A, 
and a set of commodities or origin-destination pairs, IC. For each commodity 
k E K ,  bk E ~ 1 ~ 1  and xk E RY' denote the corresponding (fixed) demand 
and arc flow vectors, respectively. Hence, v = Ck xk is the vector of the total 
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(or aggregate) flow on every arc and the set of feasible aggregate flow vectors 
can be described as follows: 

where xk  2 0 means xk > 0,Va. (More generally, x y means x, 2 y,,Va.) 
Without loss of generality, we can assume throughout the paper that V is 
bounded and, therefore, compact. (See, e.g., [FlH95].) 

Let s(v) be a travel cost vector in which each element, s,(v), is the cost 
to  traverse arc a.  This cost does not include any toll and can be measured in 
monetary or time units. For simplicity, we assume that s,(v) is differentiable 
for all a ,  i.e., v s (%) ,  the Jacobian of s(v),  exists for all v. Then, the system 
optimal (SOPT) problem (or, more simply, system problem) is to find a feasi- 
ble aggregate flow vector that minimizes the total travel cost or delay among 
all travellers. Mathematically, the system problem can be stated as follows: 

?? = a r g m i n { ~ ( v ) ~ v  : v E V). 

Instead of minimizing the total travel delay, an alternate traffic assign- 
ment problem, i.e., the user equilibrium problem (or, more simply, the user 
problem), assumes that each traveller tries to minimize his or her own travel 
time. The objective of the user problem is to find a solution for which no 
traveller can improve his or her travel time by unilaterally changing routes. In 
particular, v* solves the user problem (or UOPT) if it satisfies the following 
variational inequality: 

Alternately, we say that v* solves VI[s(v), V]. 
The travel delay at  the user solution, ~ ( v * ) ~ v * ,  is generally larger than the 

one at  the system solution, S ( U ) ~ V .  In this sense, the user solution does not 
utilize the network in the most efficient manner. Mathematically, we can im- 
pose tolls on arcs in order to  make travellers use the network more efficiently. 
For a given toll vector, p, let v*(p) solve VI[s(v) + p, V], i.e., v*(p) satisfies 
the following tolled user equilibrium condition: 

We refer to  v* (p)  as the solution to the tolled user equilibrium problem and it 
is the user equilibrium flow resulting from imposing the toll P on the network. 

Similar to  [HeR98], we assume herein that V is a unique solution to SOPT 
and v*(p) is a unique solution t o  VI[s(v) + p, V] for all /3 E R I * ~ .  Below, we 
refer to these two assumptions as [A] and [B], respectively. For example, both 
[A] and [B] hold when we use the Bureau of Public Road (BPR) function for 
travel costs, i.e., s,(v) = ~ ( 1 . 0  + B,(v, /~,)~)  and T,, B,, and y, are positive. 
More generally, both assumptions hold when s,(v) is a continuous convex 
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function for each a and the cost vector s(v) is strictly monotone on {v : v > 0). 
These two assumptions allow us to  define P as a valid or feasible toll vector if 
v*(p) = is, i.e., if the tolled user equilibrium solution associated with /3 equals 
the system solution. (See [HeR98] for a more general definition of a valid toll.) 
Then, the toll set is the set of all valid toll vectors, i.e., I ( E )  = {PJv* (P) = B). 
The following result from [HeR98] describes I ( E )  algebraically. 

Theorem 1. The toll set, I @ ) ,  is the set consisting of the /3 component of 
every pair (p, p) that satisfies the following linear system 

Observe that the above toll set is based on g ,  the optimal solution to  
SOPT. To distinguish this toll set from others (to be defined later), we refer 
to  I ( i s )  as the "(unrestricted) system toll set." As defined above, /3 in the 
system toll set is unrestricted. (In practice, positive tolls represent payment 
for road usage and negative tolls represent subsidies for the same purpose.) 
Moreover, the system toll set is nonempty. In fact, /3 = -s(E) belongs to the 
system toll set because p = -s(v) and pk = 0 for all k trivially satisfy (1) 
and (2).  In addition, the optimality condition for the system problem also 
implies that Pmscp = ~ s ( i s ) ~ E  E I (G) .  (See, e.g., [HeR98].) Transportation 
economists (see, e.g., Arnott and Small [ArS94]), generally refer to  Pmscp as 
the marginal social cost vector. Using -s(v) and V S ( U ) ~ E ,  Hearn and Ramana 
show in [HeR98] that I ( E )  is unbounded. Because an arbitrarily large toll is 
impractical, we assume that all toll vectors in I @ )  are bounded and, when 
not explicitly stated, the constraint jlpll 5 B, where B is a sufficiently large 
number, is included in all toll sets described herein. 

When P is required to  be nonnegative, we refer to the set I + @ )  = {P > 
Olv* (p) = a) as the "nonnegative system toll set." Algebraically, I + @ )  is the 
toll set described in Theorem 1 with an additional nonnegativity constraint 
on p. In practice, I + @ )  is nonempty. Practical traffic assignment models 
(see, e.g., [FGS87], [FlH95], [HLV87], and [LMP75]) typically use travel cost 
functions whose Jacobians, ~ s ( u ) ,  are both nonnegative and diagonal. This 
makes Bmscp nonnegative and I + ( F )  nonempty. Later, we provide a condition 
under which the latter holds without requiring the Jacobian to be nonnegative. 

Consider the case when it is not practical to  compute is exactly. Let G 
denote an approximate solution to SOPT. Without specifying the quality of 
the approximation, all that can be claimed is that G is a feasible aggregate 
flow vector and the toll set based on G, or the non-system toll set, is I ( 5 )  = 

{PIv*(,B) = G). In words, this is the set of toll vectors whose tolled user 
equilibrium solution equals the aggregate flow vector G. As shown below, the 
algebraic characterization of I ( G )  is essentially the same as that of I @ ) .  
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Theorem 2. The nonsystem toll set, T(q,  is the set consisting of the /3 com- 
ponent of every pair (p ,  p) that satisfies the following linear system: 

Proof. Because of assumption [B], Z must solve VI[s(v) + p, V] uniquely for 
every /3 E I @ ) .  From Proposition 1.2.1 in Facchinei and Pang [FaP03], Z 
solves VI[s(v) + p, V] if and only if there exist pk and ok that satisfy the 
following KKT conditions: 

The pair (/3, p), where p is determined by the above KKT conditions, sat- 
isfies (3) and (4). The first and third KKT conditions imply that (3) holds. 
Multiplying the first KKT conditions by Zk and summing the resulting equa- 
tions together yield 

Because Ck Zk = Z, AZ" bk and (Zk)"ok = 0, the above equation reduces 
to (4). 

Conversely, let (p, p) satisfy (3) and (4) and set ok  equal to s(Z)+p-ATpk 
for all Ic.  Then, it follows from (3) and (4) that u k  2 0 and C k ( Z k ) T o k  = 0, 
respectively. The latter also implies that ( Z k ) " u h u s t  individually equal 
to  zero because Zk 2 0 and o k  2 0. Thus, the above KKT conditions are 
satisfied and, using the above result from [FaP03], Z solves VI[s(v) + /3, V], 
i.e., P E I @ ) .  

In the above proof, assumption [B] is essential. Without uniqueness, there 
may be alternate tolled user equilibrium solutions not equal to Z. In addition, 
the non-system toll set described above is always nonempty because, as in the 
system toll set, -s(Z) E T(q. 

Consider the nonnegative and non-system toll set, i.e., T+(Z) = {/3 2 
Olu*(p) = 5). The algebraic representation of I + @ )  is the same as described 
in the above theorem with the addition of the nonnegativity constraint on /3. 
However, the example below illustrates that T+(Z) can be empty. 

The network in Figure 1 represents a transportation system with three 
nodes and four arcs where the travel cost function for every arc is constant 
and equals 1. There are two OD pairs, (1,3) and (2,3), each with a travel 
demand of 2 units. Table 1 displays a set of feasible flow vectors for the 
transportation system. For OD pair (1,3), the flow vector Z('l3) corresponds 
to  sending one unit of flow along each of the two possible paths, 1 + 2 -+ 3 
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OD pairs Demands 
(1,3) 2 
(293) 2 
Travel Demands 

Travel Cost function: s,,(v,,) = 1, V arc (i, j )  

Fig. 1. A Counterexample 

and 1 -, 3. Similarly, z ( ~ > ~ )  corresponds to  send one unit of flow along paths 
2 + 1 + 3 and 2 + 3. Clearly, the aggregate flow vector 5 = + Z(2'3) 
is not system optimal because sending two units of flow along arcs (1,3) and 
(2,3) satisfies both travel demands and is less costly. 

Table 1. Feasible Flow Vectors for the Network in Figure 1 

Because the two OD pairs can be treated as one commodity, the nonneg- 
ative and nonsystem toll set, T+(i?), reduces to the following linear system: 

The equality constraint in the above system can be equivalently written as 

This equation implies that the four inequalities in the system must hold at  
equality, i.e., 
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Adding the first and third equations together yields 

However, this is impossible because Pij 2 O,V( i ,  j ) .  Thus, I + ( G )  = 8. 
The following theorem provides a necessary and sufficient condition under 

which I f  (5 )  is nonempty. Independently, Fleischer et al. [FJM04] provide a 
different, but equivalent, condition for the nonemptiness of the nonnegative 
and non-system toll set. The condition in the theorem below is related to an 
earlier work on bounded traffic assignment problem in [Hea80] that was later 
continued in [Berg51 and [BHR97] under the setting of congestion pricing. 

Theorem 3. For any G E V ,  the set T+(q  is nonempty if and only if G solves 
VI[s(v),V], where V = {vlv = Ck x k ,  Axk = bk,xk > 0 ,v  < G}. 

Proof. Using Proposition 1.2.1 in [FaP03], i? solve VI[s (v ) ,  V] if and only if 
there exist pk,  ak ,  and ,B that satisfies the following KKT conditions: 

In the above system, ,B is the multiplier vector corresponding to the upper 
bounds v < G in V and the complementarity condition pT(v - G) = 0 is 
not required because v = G satisfies every upper bound in V exactly. By an 
argument similar to  the one in Theorem 2, the above conditions are equivalent 
to  those that describe 'T+(G).  Thus, the theorem holds. 

The corollary below provides a similar condition for the nonnegative sys- 
tem toll set and follows immediately from the above theorem. 

Corollary 1. The nonnegative system toll set, I+(E), is nonempty if and only 
if 21 solves V I [ S ( ~ ) , ~ ] ,  where 7 = {vlv = Ck xk,  Axk = bk ,  xk 2 0, v 5 21). 

3 Relaxed Toll Set 

Consider the situation in which an algorithm terminates and produces G as an 
approximate solution to SOPT with some desired optimality gap. Using The- 
orem 3 from the previous section, it is possible to determine whether I+(q 
is nonempty. However, I + ( G )  is often empty in practice. This section resolves 
this difficulty by finding nonnegative tolls that satisfy the conditions in Theo- 
rem 2 approximately. Moreover, the focus is on defining a nonnegative relaxed 
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toll set based on G when v s ( 3  is nonnegative. (When /3 is unrestricted, the 
system and non-system toll sets are nonempty. As such, they require no relax- 
ation. When vs(U) is nonnegative, the same holds for the nonnegative system 
toll set.) 

The first condition in Theorem 2 is 

s(G) + /3 2 A ~ ~ ~ ,  Qk E IC. 

When multiplied by Zk and summed together, the above implies that (s(G) + 
p)TG > C k  b z p k  because AZk = bk and Ck Zk = G. Therefore, the equality 
in (4) can be replaced by an inequality '5.' This replacement motivates the 
definition of a relaxed toll set I + @ ,  E),  for some E > 0, as the set of all /? for 
which there exists a corresponding p satisfying the following conditions: 

Let -Emscp = min{(s(G) + V S ( G ) ~ G ) ~ ( U  - G) : u E V). In Hearn [Hea82], 
Emscp is the optimality gap for SOPT at i7 and the following theorem shows 
that I+(??, €mscP) is nonempty. 

Theorem 4. If vs(G) is nonnegative, then I+(:, tmscp) # 0, wh.ere Emscp > 
0 is as defined above. 

Proof. Note that 

Emscp = ( ~ ( 3  + V S ( G ) ~ G ) ~ G  - min{(s(q + V S ( G ) ~ G ) ~ U  : u E V) 
= (s(G) + ~ m s c p ) ~ G  - min( ( s (3  + Pmscp )T~  : u E V). 

From linear programming duality, the following holds 

Let ,Z denote an optimal solution to  the linear program in the last equation. 
Then, the pair (Pmscp, ,5) satisfies the relaxed toll condition with E = Emscp, 

Because vs(G) is nonnegative, Pmscp > 0. So, Pmscp E I + ( G ,  ~ m s ~ p )  and 
fmscp) # 0. 

As shown above, Emscp can be computed with little effort because many 
algorithms (see, e.g., [FGS87], [LMP75], and [HLV87]) for SOPT compute 
Emscp and terminate when they find a i7 E V such that the corresponding 
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Emscp < E, for some small E > 0. Instead of emsep, it is also possible to choose 
E by solving the following linear program: 

E* = min (s(G) + /?)TG - C b r p k  
(0,~) k 

s.t. s(G) + ,B > ATpk, Vk, 

Because I + ( G ,  Emscp) # 8, the above optimization is feasible. In addition, 
c* < Emscp. 

One important property of the system toll sets (unrestricted or otherwise) 
is that,  for any /3 in I(??) (or I + @ ) ) ,  ?? solves VI[s(v) + P,V], i.e., the system 
solution also solves the user equilibrium problem with the toll vector P. How- 
ever, this property only holds approximately for the relaxed toll set. Assume 
that G solves SOPT approximately, i.e., 

Then, for any P E I + @ ,  &mscp), the following must hold 

I t  follows from the above that 

where the first equality holds because of the strong duality theorem in linear 
programming. Observe that the last inequality implies that G solves VI[s(v) + 
P,V] approximately. Thus, Z approximately solves both SOPT and the tolled 
user equilibrium problem. 

For a slightly stronger statement, Theorem 5 below demonstrates that,  
for any 7 > 0, there exists a 6 > 0 such that jlv*(pl) - all < 7 when P1 E 
I + ( Z ,  Ernscp) and 115 - E /  I < S. (Here, 1 / . I I represents the Euclidean norm.) 
In words, the theorem states that a toll vector from the relaxed toll set yields 
a tolled user equilibrium solution that is approximately system optimal. To 
establish this theorem, the following lemmas are necessary. 

Lemma 1. Let P be a compact set, cl(.) be continuous and strongly monotone 
with modulus a (i, e., (el (q) - cl ( 7 1 ~ ) ) ~  (vl - 712) 2 allvl - v2 1 1 2 ) ,  and c2(.) be 
continuous. If pl and pz solve VAcl (.), PI and V4c2 (.), PI, respectively, then 
llpz - Plll < ;llcz(Pd - ~l(P2)Il .  
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Proof. See Dafermos and Nagurney [DaN84]. 

Lemma 2. For i = 1 and 2, let Fi = { x / U i x  < r i ,  W i x  = t i ) ,  where Ui and 
Wi are ( 1  x n)  and (m x n) matrices, respectively, and ri and t i  are vectors 
i n  R' and R m ,  respectively. If x2 E F2, then there exists a x l  E F such that 

11x1 - ~ 2 1 1  5 ff(U1, Wl )  , where g(ul,  W l )  is a 

finite real number associated with U1 and W I .  

Proof. See Robinson [Rob73]. 

Lemma 3. Let s ( v )  be continuously differentiable and 115 - 511 5 6 for some 
6 > 0 .  For any p' E I + @ ,  E ) ,  there must exist a p E I f  ( E )  and constants 
K1 and K2 such that lip' - 5 K I S  + K 2 c  

Proof. The conditions defining I + @ )  and I + @ ,  E )  can be written more com- 
pactly as follows: 

-P 5 0,  
A~~ - I P  5 I s @ ) ,  ( 5 )  

p + BT,8 - < - s ( v ) ~ F ,  

and 
-P 5 0, 

ATp' - I/?' < Is( - ,  ) ( 6 )  
-bTp' + T P 1  < - s ( V ) ~ ~ ?  + E .  

where A = diag(A, A , .  . . , A ) ,  and bT = ( b l T ,  bzT, s ,  , b , K i T ) .  To further 
simplify our notation, let (U1, r l )  and (U2, r2) denote the pairs of matrix and 
right-hand-side vector for (5) and ( 6 ) ,  respectively. Because P' E I + @ ,  E ) ,  

there must exists a p' such that (PI ,  p') solves ( 6 ) .  From Lemma 2 ,  there must 
exist a pair ( p ,  p) satisfying ( 5 )  for which the following hold 
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where the first inequality follows from Lemma 2, the second from the fact 
that 11[x]+11 5 IIxli, the third from the definition of Ui and ri and the tri- 
angle inequality and the fourth from Cauchy-Schwarz inequality. In the fifth 
inequality, u l  and u2 are some points between v and ii and the gradient 
of S ( V ) ~ V  is s(v) + V S ( U ) ~ U .  Furthermore, the inequality holds because of 
Cauchy-Schwarz inequality, the differentiability of s(v) ,  and the mean value 
theorem. Finally, the last inequality is true because we assume earlier that 
IIPll 5 B and the continuous functions ~ s ( v )  and s(v) + ~ s ( v ) ~ v  are bounded 
on the compact set V by some constants L1 and L2, respectively. By let- 
ting K1 = (B + L1 + L2)a(U1) and K2  = cr(Ul), the above reduces to 

w 

Theorem 5. Let s(.)  be strongly monotone with modulus a .  For any 7 > 0, 
there exists a 6 > 0 such that Ilv*(P1) - Gll < rl whenever P1 E I + @ ,  Emsq) 
and /lG-vll 5 8. 

Proof. For any p' E T+(ii ,  Emscp), Lemma 3 implies that there exists a P E 
I + @ )  such that lIP1 -PI1 5 K16+ K z ~ m s c p .  As defined earlier, Emscp depends 
on ii. In particular, Emscp -4 0 as 6 + 0. When combining the latter with the 
fact that a, K1, and K2  are constant and independent of 7 it must be possible 
to  choose S SO that ( l /a)(K16 + K2Emscp) < 7.  

Let p1 E I + ( i i , ~ ~ ~ ~ ~ )  and /3 E I + @ ) .  Then Lemma 1 implies that the 
solutions v*(P1) and U to VI[s(v) + p', V] and VI[s(v) + p, V], respectively, 
must satisfy 

Therefore, the above choice of 6 implies the theorem holds. W 
Because E* < Emscp, the above theorem also holds when E* replaces Emscp. 

4 Disaggregate Representation of Relaxed Toll Sets 

The second condition (2) in Theorem 1 is an aggregation of a number of 
complementarity conditions as shown in the proof of Theorem 2. When (2) is 
relaxed, the resulting relaxed toll set T+(ii ,  E)  may be larger than necessary. 
To define smaller relaxed toll sets, (2)  can be disaggregated into its original 
form. 

Using the argument in, e.g., Theorem 2, it is possible to show that I + @ )  
is equivalent to  the set consisting of the P component of every vector (P, p, a) 
that satisfies the following linear system 
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S(D) + /3 - ATpk = o k l  'dk E K, 
(:lT ak = 0, 'dk E IC, 

ak 2 0, 'dk E IC, 
P 2 0. 

The second equation is an aggregation of the complementarity condition for 
each arc (i ,  j )  E A, i.e., x$utj = 0. Thus, the above system is equivalent to 
the following: 

~ i j  (5) + Pij 2 pf - pk , 'dk E IC, (i, j )  E A, 
i sij(E) + Pij 5 pj ,  'dk E IC, (i, j) E A : ?Efj > 0, 

Pij 2 0 'd(i , j)  E A. 

As before, let Z = Ck Zk denote an approximate SOPT solution. Then, a 
relaxed toll set in the disaggregate form, 17+(Z, 0 ,  is the set consisting of the 
/3 component of every vector (p,  p) that satisfies the following linear system 

k s i j ( ~ )  + hj 2 p" pi, 'dk E IC, ( i ,  j) E A, 
sij(G)+Pij 5 p f - p j  + ~ ~ , ~ k E ~ , ( i , j )  E A : Z &  > 0 ,  

Pij 2 0 'd(i , j)  E A. 

Unlike E ( a  constant) in I + ( Z ,  E), < is a nonnegative vector in the relaxed toll 
set IT+@, <). Below are two properties of this (disaggregate) toll set. 

Theorem 6. For any Z E V, let Pmscp = V s ( G ) T ~  and, for all k E IC and - 
(i, j )  E A such that Zfj > 0, let = sij  (5) + [Pmscp]. . -pt +p i ,  where is an 

23 

optimal solution to the linear program in Theorem 4. If vs(Z)  is nonnegative, 
then IT+ (Z, F) # 0. 

Proof. Recall from Theorem 4 that 

For all k E IC and ( i , j )  E A such that Z,k, > 0, let = sZj(2i) + [PmscpIij - 
p: +pf, where p i s  an optimal solution to  the above linear program. Moreover, 

its constraints also ensure that z$ 2 0 and, when combined with the definition 

of $, the following must hold 

Then, the nonnegativity of vs(Z)TZ implies that [Pmscplij > 0 for all ( i ,  j )  E 

A. Therefore, Pmscp E 17+(Z, F) and 17+(5, r) # 0. 
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Proof. Multiplying the second equation in the definition of 1T+(G,<) by Ztj 
yields 

Then, summing the above equations together and recognizing that AZk = bk 
yield that (s(G) + p)TG 5 E b r p k  + E,  where E = Ek C(i,j)EA Ztj<&. Thus, 

k € K  
,B E Df(G,J)  implies that P E I f ( i ? , e ) ,  i.e., 17+(G,E)  C I + @ , € ) .  W 

Instead of choosing < as in Theorem 6, it is also possible to  choose < that 
solves one of the following two problems: 

min z 
(PAEJ )  

s.t. sij(G) +Pij = p>p; +<&, 'dk E K, ( 2 ,  j )  E A, 
<,"j 5 2, 'dk E K, (2 ,  j )  E A : Ztj > 0, 
E&, L 0 'dk E K, (i, j )  E A, 
Pij L 0 'd(i, j )  E A. 

Both problems yield a < that makes lTf (5, <) nonempty. 

5 Numerical Results 

To illustrate the effectiveness of the relaxed toll sets, 17+ (G, <) and I+ (C, E) , 
we solved the MINSYS problem originally introduced in [Berg51 and [BHR97] 
and later referred to as the minimum toll revenue problem in [Dia99]. Using 
the (aggregate) relaxed toll set I + ( G ,  E ) ,  the (aggregate) minimum toll revenue 
(AMR) problem can be stated as follows: 

m i n { F p  : p E If (G, E)).  

The objective function in AMR is simply the sum of the product of the flow 
and the toll amount on each arc, i.e., the toll revenue. Using U+(G, <) instead 
of I+ (G ,  E ) ,  the disaggregate minimum toll revenue (DMR) problem can be 
defined as follows: 

m i n { $ ~  : P E 1T+(G, 5)). 

Data for our experiments are from four transportation networks whose 
attributes are listed in Table 2. For each network, we used the restricted sim- 
plicial decomposition or RSD (see, Hearn et al. [HLV87]) to obtain a solution 
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Table 2. Network Attributes 

Network Links Nodes Commodities 

Sioux Falls[LMP75] 76 24 528 

Hull [FGS87] 798 501 138 

Stockholm [HeR98] 962 416 1,623 

Winnipeg [FGS87] 2836 1052 4,344 

to SOPT with a relative optimality gap of Because they are readily 
k k available from RSD, we set E = Emscp and <& = sij(i?) + [Pmscp]i3 - pi + pj 

in AMR and DMR, respectively. Both problems, AMR and DMR, were im- 
plemented in GAMS [GAM80] and solved using CPLEX 8.1 [CPL96]. 

Table 3 reports the results for the four networks. For Sioux Falls, the 
SOPT solution from RSD provides a consistent toll set and E can be set to 
zero. The same does not hold for the remaining three networks. The values of 
their Emscp are listed in the table along with the ratio ~,,,,/s(iT)~i? to provide 
the magnitude of emscp relative to the total travel delay a t  the approximate 
SOPT solution. The last two sets of columns compare the tolled user equi- 

Table 3. Numerical Results 

Total Delay Error Link Flow Error 

Networks E,,,, (AMR) (DMR) (AMR) (DMR) 

Sioux Falls 0 0 0% 0% 0% 0% 

Hull 4.85 9.593-5 0.07% 0.07% 2.6% 1.3% 

Stockholm 1,134.12 9.743-5 0.06% 0.01% 0% 0% 
Winnipeg 107.82 9.223-5 0.05% 0.04% 0.1% 0.3% 

librium solutions, v*(P), using toll vectors from AMR and DMR against the 
approximate SOPT solution, i7, from RSD. The two columns under the head- 
ing "Total Delay Error" reports ( ~ ( v * ( P ) ) ~ v * ( / ? )  - s(i?)Ti?)/(s(iT)Ti7), i.e., the 
error in travel delay relative to the delay a t  the approximate system solution, 
6. The remaining two columns (under the heading "Link Flow Error") reports 
the percentage of arcs with relatively large link flow errors. In calculating this 
percentage, we only consider arcs with a moderately large amount of flow, i.e., 
we consider arcs in the set A' = {alu:(P) > 0.25C, or iT, > 0.25Ca), where 
C, is the capacity of arc a .  Then, the link flow error is the percentage of arcs 
in A' such that  'v:(e)-'ai > 0.10. Observe that results in the last two columns 

Y a  

indicate that  the relaxation based on the marginal social costs produces good 
toll vectors for they yield tolled user equilibrium solutions that  are approxi- 
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mately optimal t o  SOPT.  However, DMR on average yields tolls with slightly 
less error. 

6 Conclusions 

Congestion or toll pricing problems in [HeR98] require a solution t o  the  system 
problem (the traffic assignment problem tha t  minimizes the  total travel delay) 
t o  define a toll set, i.e., a set of all valid tolls. Instead of an  exact solution, it 
is more practical t o  obtain an  approximate solution to  the  system problem for 
large networks. In  this paper, we provide necessary and sufficient conditions 
to  determine whether the  toll set constructed from an approximate solution is 
empty. When i t  is so, we derive alternative toll sets based on relaxed optimality 
conditions. With  carefully chosen parameters, tolls from the  relaxed toll sets 
possess the  desirable property, i.e., they induce travellers t o  choose routes 
tha t  are nearly system optimal. Numerical solutions from four transportation 
networks in the  literature also verify empirically the  previous statement. 
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Appendix 

Relaxed Toll Sets for the Elastic Demand Case 

This appendix describes the results concerning the toll sets when demands 
are elastic. Many results for the fixed demand case naturally extend to the 
case with elastic demands. The presentation below follows the same outline 
as in the main part of the paper. 

A Elastic Demand System and User Problems 

To state the traffic assignment problems with elastic demands, let tk  and 
wk(tk) denote the travel demand and the inverse demand function for com- 
modity k, respectively. For each k, Ek is a vector in ~ 1 ~ 1  with exactly two 
nonzero elements, one equals 1 at  the origin node and the other equals -1 at  
the destination node. Then, the set of feasible flow-demand vectors is 

Without loss of generality, we assume V,, is bounded, thus, compact. (See, 
e.g., [FlH95].) 

Among several alternatives (see, e.g., [Gar80], [YaB97] and [ZhG97]), one 
system problem with elastic demands maximizes the net user benefit, i.e., the 
difference between the user benefit as measured by CkEK /ik wk(z)dz and the 
total delay (or cost) s ( v ) ~ v .  In its minimization form, this system problem 
can be written as 

As in the fixed demand case, the corresponding user problem with elastic 
demand is a variational inequality. In particular, (v*, t*)  is a solution to the 
user equilibrium problem if the pair satisfies the following: 

s ( v * ) ~ ( v  - v*) - ~ ( t * ) ~ ( t  - t*) > 0, 'd (v,  t )  E VED. 

For a given toll vector p, (v*(,B),t*(P)) is a solution to  the tolled user 
equilibrium problem if the pair satisfies the following: 

As in the fixed demand case, we assume throughout this appendix that 
the system, user, and tolled user equilibrium problems have unique solutions. 
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B System and Non-system Toll Sets 

Analogous to  the fixed demand case, the system toll set when demands are 
elastic is T(i7,i) = {PIv*(P) = i7,t*(P) = t). Under the uniqueness assump- 
tions stated earlier, Hearn and Yildirim [HeYOl] prove that T(5,t) consists 
of the p component of every pair (p, p) that satisfies the following system: 

In [HeYOl], Hearn and Yildirim show that both T(U,i)  and 7 + ( ~ , ~ )  are 
nonempty. The latter assumes that vs (E)  is nonnegative. 

Let (i?,i) denote a flow-demand vector feasible to V,,. Then, the non- - 
system toll set is 7(i?,i) = { ~ I L J * ( / ~ )  = v, t*(P) = F} and, using an argument 
similar to  the one in Theorem 2, the following holds. 

Theorem 8. The toll set T(i?,i), where (Z ,q  E V,,, is the set consisting of 
the p component of every pair (p, p) that satisfies the following linear system: 

The theorem below shows that the non-system toll set is nonempty for 
any non-trivial (i?, i) E VED. 

Theorem 9. For any (i?,i) E V,, such that i? # 0, P = ~ s ( q ~ i ? - c u Z  E 7( i? ,q  

when a = [(s(Z) + ~ s ( G ) ' i ? ) ~  i? - w(qTfl/G%. 

Proof. Consider the following direction finding problem associated with VI(s(v)+ 
Fl V,,) at (i?, i) : 

DIFL-ED(~) : min (s(i?) + j?)T c xk - w(qTd 
k E K  

The dual of DIR-ED@) is 

'dk 1 

Vk. 

max 0 
s.t. ATpk < s ( q  + P, Vk, 

E z p k  2 WZD~(&) ,  Vk, 
pk unrestricted, Vk. 
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The relationships between the primal and dual problems in linear pro- 
gramming imply that the objective value of the direction finding problem is 
bounded below by zero. Thus, (u, d) = (0, 0),  where u = Ck zk,  is an optimal 
solution because its objective value equals the lower bound. Furt_hermore, the 
dual of DIR-ED has a feasible solution, say Then the pair (P, satisfies 
the linear system in Theorem 1. The first two conditions of the linear system 
in Theorem 8 follow from the first two constraints of the dual problem and 
our choice of p ensures that the following holds 

Thus, the last condition in the linear system is also satisfied and p E T(G, g .  

As defined above, CY is zero and p = vs (qTG,  when (G,g solves the - 
system problem. Moreover, other choices for a and p exist. For example, 

= Vs(qTG - os(ii), where a = [(s(G) + VS(G)TG)~ G - ~(?)~f l / s (G) 'G,  is 
also valid when s (qTG # 0. 

The following theorem provides a necessary and sufficient condition under 
which the nonnegative and non-system toll set is nonempty. The proof is 
omitted because it is similar to  that of Theorem 3 in the main part of the 
paper. 

Theorem 10. For any ( 5 , g  E V,,, T+(G,T) is nonempty if and only if 
( 5 , g  solves VI[(s(v), -w(t)),VED], where V,, = {(v,t)lv = C k z k , A z k  = 

~ ~ t ~ , 2 ~  > O,tk > 0 , ~  < G}. 

C Relaxed Toll Set 

In this and the following sections, we focus on the relaxations of the (unre- 
stricted) non-system toll set. However, similar results also hold for the non- 
system toll set requiring tolls to  be nonnegative. 

For a given E > 0, the relaxed toll set T(G, E )  is the set consisting of the 
p component of the pair (p, p) that satisfies the following: 

s ( q  + p > A~~~~ 'dk E K, 
wk(Tk) < E T P ~ ,  'dk E K, 

( s ( q  + p)TG < w(ijTT+ E. 

Then, the following results are analogous to those in Section 3. 

Theorem 11. For any (5, g E V,,, let E,,,~ = (s(5) + vs(G)T5)TG- w(qTC 
Then, I(G, ~mscp) # 0. 
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Proof. From the discussion in Section B, the optimal objective value of DIR- 
ED (Pmscp) is zero, where Pmscp = v s ( q T Z  as before. Thus Emscp can be 
equivalently expressed as follows: 

As in Theorem 4 in the main part of the paper, the vector Pmscp and an 
optimal solution, ,5, to the dual of DIR-ED(Pmscp) form a pair of (P, p) that 
belongs to T(G, K E ~ ~ ~ ~ ) .  

Theorem 12. Let s(v) and w(t) be strongly monotone with modula ct and y, 
respectively. For any q > 0, there exists a 6 > 0 such that jl (v* (P) - C, t* (P) - 
i ) / j2  I q whenever /3 E 'T(i7, < emscp) and jl(Z - v , t -  i)// < 6. 

Proof. Because both s(v) and w(t) are strong monotone, (s(v), -w(t)) is also 
strongly monotone with modulus min{a, 7). The rest of the proof requires 
lemmas and uses an argument similar to the one in Theorem 5 .  

The following linear program also provides an E for which 7 ( 5 , <  E) is 
nonempty. 

E* = min ( s ( q  + p)TZ - w(qTT 
(L3.0) 

D Disaggregate Representation of Relaxed Toll Sets 

Let (C, q be an approximate system solution. For a given pair of (J, p )  such 
that J, p 2 0 , the following are three possible disaggregate representations of 
a relaxed toll set, all of which are analogous to the one presented in Section 
4. 

1. 111 (5, K [, p )  = the set of the /3 component of every pair (P, p) that satisfies 
the following: 

2. D2(Z, < J) = the set of the P component of every pair (P, p) that satisfies 
the following: 
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3. 113 (5, < p)  = the set of the P component of every pair ( P ,  p) that satisfies 
the following: 

Because the last two sets contain subsets of the constraints appeared in 
the first, I12(G,< J )  and II3(G,<p) are relaxations of II1(G,< <,,!A). Thus, 
II1(GIK J ,  p) must be a subset of both I12(G,< t )  and I13(G, < p).  

The following theorem shows that I I1(Z,  J ,  p) is nonempty. This in turn 
implies that both 112 ( 5 ,  < [) and D 3  (G, < p) are also nonempty. 

Theorem 13. For any (5,i) E V,,, let 
- 

1. J&, = sij(G) + [/3mscv]ij -pf S F $ ,  for all k and arc (i, j) such that f t j  > 0,  
and 

2. p k  = E T F ~  - wk(Tk), for all k such that & > 0,  

where is an optimal solution to the dual of GAP-ED(Pmscp). Then, 
I I1(Gl<Flp)  # 0 .  

Proof. Because j5 solves the dual of GAP-ED(Pmscp),  it satisfies 

The above implies that both and pi, defined above are nonegative and 
satisfy the following: 

Thus, (Pmscp, $, , ,Ek)  satisfies the conditions defining D 1 ( 2 ,  < r, jli), i.e., 

nl(z,tlFlp) # 0 .  rn 
- 

Corollary 2. For any (8,i) E V,,, let J / ;  = s,(G)+ [pmscp],  z + $ ,  where 

p i s  an optimal solution to the dual of GAP-ED(PmScp).  Then, I12(G,<f) # 0 .  

Corollary 3. For any (G,T) E V,,, let pi, = E:Fk - w k ( & ) ,  where p is an 
optimal solution to the dual of GAP-ED(Pmscp).  Then, I13(G,K ,E) # 8. 

Furthermore, if D1(Z,  5 c ,  p) is nonernpty, then multiplying the second and 
fourth conditions in the relaxed toll set by Efj and rk yields the following: 
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Because i? = Ck Zk and A ~ Z ~  = EkTk, the above equations imply that ( ~ ( i ? )  3. 
-k k 

- 
' i ?  < w ( q T t +  E, where t = Ck C(i,j)Eaxij<ij + C k t k p k .  Thus, if P C P) - 

D1(i?, i; ,F, p) ,  P must be in I ( 5 ,  i; t) as well, i.e., D1(i?, t ,  p)  C I(i?, < E ) .  

Similarly, IT2 (i?, () 2 I @ ,  E) and D3 (Z, i; p)  2 I @ ,  < E)  when t is chosen 
in a similar manner. 
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