Chapter 2

BASIC CONCEPTS

Ye (Geoffrey) Li

In this chapter, we first introduce the basic concepts of orthogonal frequency
division multiplexing (OFDM), discuss the advantages and disadvantages
compared single-carrier modulation, and present an implementation exam-
ple. We then address various impairments of wireless channels on OFDM
systems. Finally, we briefly describe other forms of multicarrier modulation.

2.1 Basic OFDM

High data-rate is desired in many applications. However, as the symbol
duration reduces with the increase of data-rate, the systems using single-
carrier modulation suffer from more severe intersymbol interference (ISI)
caused by the dispersive fading of wireless channels, thereby needing more
complex equalization. OFDM modulation divides the entire frequency selec-
tive fading channel into many narrow band flat fading subchannels! in which
high-bit-rate data are transmitted in parallel and do not undergo ISI due to
the long symbol duration. Therefore, OFDM modulation has been chosen
for many standards, including Digital Audio Broadcasting (DAB) and ter-
restrial TV in Europe, and wireless local area network (WLAN). Moreover,
it is also an important technique for high data-rate transmission over mobile
wireless channels. Here we introduce the basic concepts of OFDM.

2.1.1 OFDM

OFDM was first introduced in (3], which is the form used in all present stan-
dards. It can be regarded as a time-limited form of multicarrier modulation.
Let {Sk}ljgv:_ol be the complex symbols to be transmitted by OFDM mod-

1Subchannel is sometimes also called subcarrier or tone.
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ulation; the OFDM (modulated) signal can be expressed as
N-1 N-1
s(t) =Y sk =" spo(t), for 0<t < T, (2.1.1)
k=0 k=0
where fi = fo + kAf and
e??mfkt if 0 <t < Ty,
wﬁz{ - (2.1.2)

0 otherwise,

for k =0, 1,--- ,N — 1. T, and Af are called the symbol duration and
subchannel space of OFDM, respectively. In order for receiver to demodulate
OFDM signal, the symbol duration must be long enough such that T,Af =1,

which is also called orthogonality condition.
Because of the orthogonality condition, we have

1 T
7 [ et

1 (T
- / 27 (=)t gy
Ts Jo

1 %
— _/ e]?'/r(k—l)Aftdt
Ts Jo
= Ok —1],
where [k — 1] is the delta function defined as

1, ifn=0,
Oln] = { 0, otherwise,

(2.1.3)

Equation (2.1.3) shows that {apk(t)}ivgol is a set of orthogonal functions.

Using this property, the OFDM signal can be demodulated by

1 B 27 frt
— s(t)e TR ¢
Ts./o )

N-1

1 [T i}

= TS/O <; SlSDl(t)) er(t)dt
N-1

= > sl k]

1=0
= .

(2.1.4)
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2.1.2 FFT Implementation

From (2.1.4), an integral is used for demodulation of OFDM signals. Here
we describe the relationship between OFDM and discrete Fourier transform
(DFT), which can be implemented by low complexity fast Fourier transform
(FFT), as briefly indicated in Section 1.4.1.

From the previous discussion, an OFDM signal can be expressed as

N-1

s(t) = Z spel?T Ikt

k=0

If s(t) is sampled at an interval of T, = %, then

N-1
Sp=s(nAg) = 3 sy R (2.1.5)
k=0

Without loss of generality, setting f, = 0, then fiTs = k and (2.1.5) becomes
Nl 2nk
Sn=> sy’ 8 =IDFT {s;},
k=0

where IDFT denotes the inverse discrete Fourier transform. Therefore, the
OFDM transmitter can be implemented using the IDFT. For the same rea-
son, the receiver can be also implemented using DFT.

The FFT algorithm provides an efficient way to implement the DFT and
the IDFT. It reduces the number of complex multiplications from N? to
% logg N for an N-point DFT or IDFT. Hence, with the help of the FFT
algorithm, the implementation of OFDM is very simple, as shown in Figures
1.3 and 1.4.

2.1.3 Cyclic Extension, Power Spectrum, and Efficiency

To deal with delay spread of wireless channels, a cyclic extension is usually
used in OFDM systems. There are three different types of cyclic extensions,
which are shown in Figure 2.1. Denote T, the length of a cyclic extension
that is inserted between OFDM blocks. From Fig. 2.1 (b), OFDM signal,
s(t), can be extended into 5(t) by

oy ] s, fo<t<Ty,
s(t)_{ s(t—T,), Ty <t<T,+T,(=T). (2.1.6)
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With the cyclic extension, the actual OFDM symbol duration is increased
from Ty to T' = T,-+T},. In the following discussion, the cyclic suffix extension
in Fig. 2.1 (b) is assumed. However, the results can be also applied to the
other types of cyclic extension.

{a) OFDM signal

¥

{c} OFDM signal with cyclic prefix

T
1 ioT, +T‘
(dy OFDM signal wilh cyclic predix and sulfix B

Figure 2.1. OFDM signal with different cyclic extensions.
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Because s(t) in (2.1.1) is a summation of truncated complex exponen-
tial functions with different frequencies, the power density spectrum of s(t)
consists of |sin(f)/f|?-shaped spectra, as sketched in Fig. 2.2.

P(f)

Figure 2.2. Power spectrum of OFDM Signal.

Fig. 2.2 shows that, for an OFDM signal consisting of N subchannels,
the signal bandwidth is about (N + 1)Af. Since the transmission rate of
each subchannel is % symbols/sec., the total transmission rate of OFDM
signal is %,Y— symbol/sec. Therefore, the bandwidth efficiency of the OFDM
system is

. N/T
T T INEDAf
N/(Ts + T)
(N+1)/T;
SR S (2.1.7)
l+x1+ T

in symbols/sec/Hz. For most practical OFDM systems, N is much larger
than 1 and the guard interval or cyclic extension is much smaller than the
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OFDM symbol duration, so W = 1. If each symbol carries & bit information,
the bandwidth efficiency will be & bits/sec/Hz.

2.1.4 Comparison with Single-Carrier

As indicated in [33], the dispersive Rayleigh fading in wireless channels limits
the highest data rate of single-carrier systems. To reduce the effect of ISI
in unequalized systems, the symbol duration must be much larger than the
delay spread of wireless channels. In OFDM, the entire channel is divided
into many narrow subchannels, which are transmitted in parallel, thereby
increasing the symbol duration and reducing the ISI. Therefore, OFDM is
an effective technique for combating multipath fading and for high-bit-rate
transmission over mobile wireless channels.
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Figure 2.3. Transmission rate of OFDM and single-carrier systems for
AWGN channel.

Figure 2.3, from [23], compares the transmission rate of an OFDM system
with that of a single-carrier system using a decision-feedback equalizer (DFE)
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or a linear equalizer (LE). Note that the curve for the DFE in the figure is
obtained by assuming that the feedback symbols at the DFE are error free,
so it is in fact an upper bound for the transmission rate of the DFE. From
the figure, for the same overall SNR, the normalized transmission rate of the
OFDM system is much higher than that of the single-carrier system.

2.1.5 Design Example

Here, we present a simple example to demonstrate the design of an OFDM
system. Consider a sample system that is required to transmit 1.2 Mbits/sec
using quadrature PSK (QPSK) over an 800 kHz bandwidth in a wireless
environment with a maximum delay span up to 40 psec. Note that from
the results in [33], for a channel with a 40-usec delay span, the maximum
symbol rate is only 5 kbaud. It is obvious that the required transmit rate
can not be obtained by a single-carrier system. However, it can be easily
achieved using OFDM modulation.

To construct the OFDM signal, we assume the entire channel bandwidth,
800 kHz, is divided into N=128 subchannels or tones. Thus, the subchannel
or subchannel space is 6.25 kHz. Let the 4 subchannels on each end be
used as guard tones to facilitate filtering, and the rest (120 tones) are used
to transmit data. To make the tones orthogonal to each other, the symbol
duration is Ty = 160 usec. An additional Ty, = 40 psec cyclic extension
is used to provide protection from intersymbol interference due to channel
multipath delay spread. This results in a total block length T = 200 usec
and a subchannel symbol rate r, = 5 kbaud. For QPSK, each symbol carries
2 bit information; consequently, the data transmission rate of the OFDM
system is
_ 120X 2 bits _ 1.2 Mbits/sec.
200 psec

2.1.6 Baseband versus Passband

In Sections 2.1.1-2.1.5, the OFDM signals are complex baseband signals.
However, in wireless communication systems, complex baseband signals must
be converted into real passband signals. In this section, we briefly introduce
the baseband and passband representations.

The baseband signal, s(t), is usually a complex function of time. There-
fore, it can be written into rectangular form as

s(t) = s1(t) + 350(t),
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where the real part, sy(t), is called in-phase component of the baseband

signal; and the imaginary part, sg(t), is called quadrature component. For
the baseband OFDM signal in (2.1.1), we have

N-1
s(t) = > (R{sk}cos(2mfit) — S{sp}sin(2r fit))
kZON—1
+7 Z (3]s} cos(2m fit) + R{sg } sin(27 fit)) ,
k=0
and therefore,
N-1
(R{sk} cos(2m fit) — s} sin(27 fit)) ,
k=0
and
N-1
sq =Y ({sk}cos(2m fit) + R{sp} sin(2r fit)),
k=0

where R{s} and I{s} denote the real and imaginary parts of the complex
symbol s, respectively.

Figure 2.4 shows conversion between baseband and passband signals.
From the figure, the passband signal can be expressed as

sp(t) = R{s(t)e”™}
s1(t) cos(2m fet) — sg(t) sin(2m fet),

I

where f, is the carrier frequency of a communication system. It is assumed
that the variations of the signal are much slower than the carrier frequency.
For OFDM, the passband signal can be further simplified as

sp(t) = s1(t)cos(2mfet) — sg(t) sin(2n fet)
N-1

= Z (R{sp} cos(2m(fe + fa)t) — S{sp}sin(2n(fe + fu)t)) -

If we denote the magnitude and the phase of complex symbol, s, as di, and
6y, respectively, that is, s = de’%, then
N-—-1

= Z d cos(2m(fe + fu)t + Or).

k=0
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S](t)

s(t)

s(t) =
’ sI(tS + 350(t)

cos(2m f,t)

— sin(2w fe.t)
(a)
S](t)
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(b)

Figure 2.4. Baseband versus passband: (a) baseband to passband conver-
sion, and (b) passband to baseband conversion.

At the receiver, the baseband signal can be obtained from the pass-
band signal. Figure 2.4 (b) shows conversion from the baseband signal to
the passband signal, where JF7, represents a low-pass filter operation. From
Fig. 2.4 (b), we have

s(t) = 2Fp{sp(t) cos(2n fot) — jsp(t)sin(2m fet)}
= 2Fp{sp(t)e 2Tt}
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Similarly, the linear distortion of any physical channel can be also equiv-
alent to a baseband (complex) channel, h(t), so that the baseband channel
output is the convolution of the baseband signal and the baseband channel
impulse response, i.e.

+0o

2(t) = s(t) ® h(t) = / s(F)h(t — 7)dr.

—0o0

More detailed information about baseband and passband conversion can be
obtained from Proakis [34].

2.2 Impairments of Wireless Channels to OFDM Signals

In this section, we introduce the impairments in OFDM systems, includ-
ing Doppler shift, dispersive fading, timing and frequency offsets, sampling
clock offset, and nonlinear distortion due to large peak-to-average-power ratio

(PAPR) of the OFDM signal.

2.2.1 Time-Varying Impairments

Both Doppler shift and frequency offset can be modelled as time-varying
impairments. Here we first derive a general expression for the effect of the
time-varying impairments and then discuss the effect of Doppler shift and

frequency offset, respectively.
Consider an OFDM signal,

s(t) =) spe®™ 0<t < Ty,
k

where f, = f,+kAf and sy is the signal transmitted over the k-th subchan-
nel. If there is a multiplicative time-varying distortion, v(¢), that is caused
by either frequency offset or Doppler spread, the received signal will be

() = y(t)s(t). (2.2.1)
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The demodulated signal will be 2
1
Xm = —/ z(t)e 2 Imt gt
Ts Jo

Ts
— .l./ f)/(t) Z SkeJQWfkte_JQmetdt
Ts Jo p

I
_ Z{T/ ,Y(t)e‘ﬂ”(fm“fk)tdt} s
s JO

k
= agSm + Z Qo —k Sk, (2.2.2)
k#£m
—_——
IcI
where q; is defined as
a1l T
a = = / y(tye I Em A gy, (2.2.3)
Ts ¢}

ag is usually a complex number, whose magnitude and phase represent the
attenuation and the phase shift on the desired signal, respectively. a;’s, for
I # 0, are complex gains of the interchannel interference (ICI). If v(t) is not
a constant, then a; # 0 for some ! # 0, and ICI exists.

Effect of Frequency Offset

If there is a frequency offset, § f, between the transmitter and the receiver,
then (t) in (2.2.1) is a deterministic function and can be expressed as

"y(t) — e]27r6ft — ej27TOZAft,

where o = %ff. From (2.2.3), we have

I
a = ___/ ey?waAfte—j%rlAftdt
Ts Jo
. Sin[ﬂ'(l — a)]e—ﬁr(l—a)
m(l — @)

__sin(ma) e,
Sl L (2.2.4)

2For simplicity, an integral is used here instead of the DF'T. However, the integration
is almost the same as the DFT for systems with a large number of carriers.



30 BASIC CONCEPTS  Chapter 2

Let o = k, + €, where &, is an integer and ¢ is a fractional number with
le] <1/2, then

sin(me)
S w(l— ko —€)

When o < 1/2 (ko = 0 and € = @), 0 < |a] < |ao|. The desired signal
is the dominant component in the demodulated signal. However, there is
also ICI since a; # 0 for I # 0. When « is an integer (k, = o and € = 0),
ar, =1, oy = 0 for [ # k,, and X = s;_k,. Therefore, the frequency offset
causes a simple tone shift and there is no ICIL In general, neither £, nor €
is zero; consequently, tone shift, attenuation, phase shift, and ICI all exist.
However, the signal distortion caused by frequency offset is deterministic.
Furthermore, once the frequency offset is known, its effect can be corrected.
Chapter 4 will present techniques for frequency offset estimation and cor-
rection in OFDM systems, where coarse and fine synchronization is used to
cancel the effects of k, and €, respectively.

a = etIme, (2.2.5)

Effects of Doppler Shift

For channels with Doppler spread, «(¢) is can be modelled as a zero-mean
and narrow-band wide-sense stationary (WSS) stochastic process. For the
classical Doppler spectrum [35], the spectral density of ~(¢) is

7_{1——__‘1_——) lf |f| < fda
Pr(f) = { e V1) (Classical)

0, otherwise,

where f; is the maximum Doppler frequency. Two extreme cases of the
Doppler spectrum are the uniform and the two-path models, which have
been studied in [36]. For these two models, the spectral densities are

o i< fa,

_J 2 :
Pu(f) = { 0, otherwise, (Uniform)

and

PAS) = 318(F + f) + 6(7 ~ fal, (Two-path)

respectively. The correlation function of ~(¢), defined as r(7) = E{y(t +
T)v*(t)}, is easily obtained as

r(r) = FH{P(f)}-
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The correlation functions for the three models given above are
rj(1) = Jo(2m far), (Classical)

ro(7) = sinc(fqr), (Uniform)

and
ri(r) = cos(2m fu7), (Two-path)

respectively, where Jo(z) is the zero-order Bessel function of the first kind
and
sine(z) £ sin(7r:(:).
T
It should be noted that the two-path model corresponds to an OFDM system
with a fixed frequency offset of f; Hz.
Since «y(t) is a stochastic process, from (2.2.3), q; is a random variable.

Furthermore, it is proved in [37] that a; is zero mean and with variance

1
o? 2 B{juf?} = / (D)1~ a)e s,

and the total ICI power due to Doppler spread is
2

A
Prer = F Za18m~z
140
1

_ / (1 - |2]) (1 - r(Tya)) do

- fa
= 1- / P(f)sinc®(fT,)df. (2.2.6)
~fd

Once the time-domain correlation or the Doppler spectral density of the
time-varying channel is known, the ICI power can be calculated. For the
classical model, we have

1
Prer=1- / (1—|zp)Jo(2m fqTsx)dzx, (2.2.7)
-1
which was first derived by Russell and Stiiber [38]. For the uniform and
two-path models, we have
1 —cos(2m fqTs) — 2m f4TsSi(2f4Ts)
2(71‘.)(‘de)2 ’

Pior=1-— (2.2.8)
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Table 2.1. «ay’s and ag’s for different time-varying models

{ model ” o l g l
Classical || 1/2 | 3/8
Uniform | 1/3|1/5
Two-path 1 1

and
Prer =1~ sinc?(f4T%), (2.2.9)

respectively, where

b X
Si(x) = 7T/ —Sli(zu—)du = 7T/ sinc(u)du.
0 U 0

The expressions in (2.2.8) and (2.2.9) were first derived by Robertson and
Kaiser [36].

Using the expressions derived above, the ICI power can be exactly calcu-
lated. However, the exact expressions are complicated and do not easily pro-
vide much insight. Furthermore, in many instances, the exact time-domain
correlation or power spectrum is not available. Here, we introduce several
bounds on the ICI power, which are derived in [37]. These bounds are less
complicated and the insight is more readily obtained.

It has been proved in [37] that the ICI power has the following lower and
upper bounds:

(0%} 9 a9 4
> — - — 2.
Pror > B (QWdeS) 360 (27deTs) , (2 2 10)
and a
Pror < E—(?Wdes)z, (2.2.11)
where o;’s, for ¢ = 1, 2, are defined as
1 fa 2 fd
a2 o [P = o [ PP
f& =1 fa& Jo

The constants a1 and ag are easy to calculate and are given in Table 2.1 for
the three models introduced before.

It should be indicated that without knowing the Doppler spectrum, o
and ag can be also evaluated using other approaches. For example, it can
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be proved that
2 fa
E {W (t)| } = (2m)* / FEP(f)df,
—fa
where v (t) = d—’;%é@. Then, ag can be evaluated by
2
E{® )’}

(2mfq)%k 7

which is much simpler than obtaining by the Doppler spectrum.

From the definition of &, it is clear that a; < 1. Using this fact, together
with (2.2.11), we can obtain a universal upper bound on the ICI power, which
depends only on f;1%,

o =

Pror < 11—2(27rdeS)2. (2.2.12)

This universal upper bound can be used in OFDM systems with any Doppler
spectra, including with frequency offset. Since «y is no more than 1, the
above bound is looser than the bound in (2.2.11). However, (2.2.12) is much
easier to calculate since it only depends on f;T;. For the two-path model,
a1 = 1, and the universal bound is also the tight bound.

In the above discussions, we have introduced tight and universal bounds
for time-varying flat fading channels. For OFDM systems with a proper
cyclic extension, the exact expressions for the ICI power and the various
bounds are also applicable to time-varying dispersive channels.

In Figure 2.5, we compare the upper and the lower tight bounds and
the universal bound with the exact value of the ICI power for the classical
Doppler spectrum. From Fig. 2.5, the tight bounds are very close to the
exact ICI power. When designing OFDM systems, if symbol duration, T,
is chosen so that f;7 is very small, then the ICI due to Doppler spread will
be negligible. In the design example in Section 2.1.1, Ty = 160 psec, then
Prer < 0.168%(-27.7 dB) when f; = 200 Hz. Therefore, the Proy is much
less than the noise or co-channel interference level.

Though Doppler shift has only minor effect on the ICI of OFDM signals
when f;T, is very small. It does make the channel parameters to vary from
one OFDM block to another. Therefore, when channel parameters are used
for coherent detection or adaptive antenna arrays in mobile wireless systems,
channel tracking is still essential in most environments. In Chapter 5, we
describe different channel parameter estimation approaches.
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Figure 2.5. Comparison of exact Pjor, its upper and lower bounds, and
universal bound for the classical model.

2.2.2 Effect of Sampling Clock Offset

In practice, the sampling clock at the receiver is often different from that at
the transmitter. The sampling clock difference will degrade the performance
of the systems. As discussed in Section 2.1.2, OFDM signal can be simply
demodulated by performing DEFT to the samples if the continuous signal
s(t) = kN:—Ol spe??™ et is sampled at a sampling interval of Ty, = % at the
receiver. However, if the sampling interval at the receiver is 7%, = T+ 37T 5q,
other than Ty, then the samples will be {s(nT7,)}N=1. If DFT is still used
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for OFDM demodulation [39], then we will have
1 N-1
Xm = i Z s(nT.,)e 2™
n=0

= GmmSm + Z U,k Sk (2.2.13)
k#£m

where _
_ sin[r(k —m + Bk)] o N2 (k—m+ k)
N sin[f (k —m + Bk)]
From (2.2.13), the demodulated signal, X,,, consists of the desired symbol
component, s,,, and ICI. The desired symbol is modified by

O k

; _ sin(mfBm) L pm
i N sin(%;8m)

~ eﬂrﬂm,

which is a subchannel-dependent phase rotation. In the above approxima-
tion, we have assumed that N > 1 and SN <« 1, which is usually true in
practice. It can be also shown in [39] that the average ICI power at the m-th
subchannel is

Pigrim] = FE Zam,ksk
k#m

2,2
~ —?;—/Bm’

which is also subchannel-dependent.
In Section 4.4, we will briefly discuss sampling clock offset estimation
and correction.

2.2.3 Effect of Timing Offset

In Figure 2.6, the effect of timing offset on an OFDM signal is shown. When
there is a timing offset, 7 > 0%, between the transmitter and the receiver,
the observed signal will be

(¢, 7) = st + 1), fo<t<Ty—r,
SHT)= e(t—Ts+71), ifTy—7<t<Ti.

3Even through we assume that 7 > O here, the derived result can be also used to the
case with 7 < 0
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where e(t) denotes interference due to the timing offset. For OFDM systems
without a guard interval or cyclic extension, e(t) is a part of next OFDM
block, as shown in Fig. 2.6 (a). For OFDM systems with a guard interval
larger than 7, e(t) = 0, as shown in Fig. 2.6 (b). For OFDM systems with a
cyclic extension period larger than 7, e(t) = s(t), as shown in Fig. 2.6 (¢).
For OFDM systems with a cyclic extension period or guard interval less than
7, e(t) is a mixture of the above two or three signals.

| | | ! -
0 T Ts Ts+7'

(a) e(t) is a part of the next block

AN

s To+T

(b) e(t) is a part of guard interval

| 1 | I -
o r T, T,+7

(c) e(t) is a part of cyclic extension

Figure 2.6. Effect of timing offset on OFDM signal.
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When there is a timing offset, the demodulated signal at the receiver is

Xm = TT/ 5(t,7)e —2mfmt gy

= i s(t+Te —2mfmt gy 4 L e(t — T, —I—T)e“mfmtdt
T T Ts—7 °
1 / t) — 927 fn (t— T)dt+ 1 /T (t) —727f, (t—T)dt

= P e m — e m
T, T, )y ©
1 /Ts t) — 927 fn (t—7) dt 1 /T (t) —727 f, (t—T)dt

= = ™ - = s(t)e ™
T, ¢ T Jo
+_ / —327rfm (t—7) dt

= smeﬂ"fmT+T1— / [e(t) — s(t)]e= 2" mE=T) gy, (2.2.14)

s JO

From (2.2.14), timing offset introduces a phase shift to the desired symbol
component and an additive interferer depending on whether a cyclic exten-
sion or a null interval is used. When the system has no guard interval or
cyclic extension, then as shown in Fig. 2.6, e(t) is a part of the next OFDM
block, which is independent of s(t). Therefore, the resulting average inter-

ference power is the summation of the powers 7 fy s@®)er? = (t=7)dt and

—%s- fOT e(t)eﬂ”fm(t_ﬂdt. When the system has a guard interval that is larger
than 7, then e(t) = 0, only single term remains. However, if a proper cyclic
extension is used as in Fig. 2.6 (c), then e(t) = s(¢) and there is no inter-
ference. Therefore, a proper cyclic extension can effectively cancel additive
interference caused by timing offset.

In Chapter 4, timing offset estimation is introduced. With estimated
timing offset, the sampling time and integration region can be adjusted to
reduce the induced phase shift on the desired symbol and to mitigate additive
interference.

2.2.4 Effect of Delay Spread

For a channel with multipath delay spread, the received signal is a summa-
tion of the transmitted signal with different (complex) gains and delays, as
shown in Fig. 2.7. Here we assume that the transmitted signal has a proper
cyclic suffix extension and the length of the cyclic extension, T}, is larger
than the delay span or channel length, T3, of the multipath fading channel.
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Furthermore, we assume that the starting time of integration/observation is
between T}, and T}, that is, Tj, <7 < Tj,.

yOE(t,T—10)+ylE(t,r~r,)

Figure 2.7. Effect of delay spread on OFDM signal.

Let the gain and delay of each path be «y; and 7;, respectively. As shown
in Figure 2.7, the received signal can be expressed as

z(t) = Z%-E(t,T —Ti).
Therefore, the demodulated signal at the receiver is

Xm

I O fint
— r(t)e 7" Imt g
= [
1
= ;%Ts/o E(t,T—Ti)e_ﬂ”fmtdt.
When Tpaz < 7 <71}, from (2.2.14), we have

1 [T
T /0 5(t, T — Ti)e_ﬂ“fmtdt = 8y @27 Fm(T=Ti)



Section 2.2. Impairments of Wireless Channels to OFDM Signals 39

Hence,

Xm = Z%smeﬁ”fm(T_”)
B

= smeﬂ’rfmTE :%,e—J%fmn

2

= H(fm)e!™Im7s,,, (2.2.15)

where H(f) is the frequency response of the multipath channel defined as
H(f)=> ye*Im,

From (2.2.15), the received symbol is the original symbol with a phase
shift determined by the timing offset, and multiplicative distortion deter-
mined by the frequency response at each subchannel, which makes signal
detection very simple and is also a crucial difference between OFDM and
single-carrier modulation. For single-carrier modulation, delay spread or
frequency selectivity of wireless channels will cause ISI, which makes signal
detection very complicated.

In Chapters 4 and 5, we will introduce various timing offset estimation
and channel estimation approaches, respectively. Once the timing offset and
channel parameters are estimated, the phase shift and the multiplicative
distortion can be corrected.

2.2.5 System Nonlinearity

Nonlinear devices in wireless systems will distort OFDM signals. In this
section, we will briefly discuss the impact of system nonlinearity on OFDM
signals.

In Chapter 1.6, the PAPR of OFDM signals has been discussed. It can
be easily checked that for an OFDM signal with N subchannels the peak
power can be as large as N2 while the average power is N when E{|s;|?} = 1;
consequently, the largest PAPR will be

PAPR = N.

For an OFDM signal with 128 subchannels, PAPR=21 dB, while it is about
6 dB for single carrier modulation. It should be noted that the probability
for an OFDM signal to have a large PAPR is very small even though the
largest possible PAPR is very large.
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Figure 2.8. (a) Spectral spread and (b) inband distortion caused by clip-
ping.

When an OFDM signal is passed through a nonlinear device, such as
a transmitter power amplifier, it will suffer significant nonlinear distortion,
which generates spectral spreading and in-band noise. Figure 2.8 demon-
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strates inband distortion and spectral spread due to the nonlinearity of an
amplifier. If the amplifier is modeled as a 3-dB clipper, then it will cause
about 14 dB inband noise, about 22 dB adjacent channel interference. As
indicated in [40], adjacent channel interference or spectral spread can be
mitigated by a clipping-and-filtering algorithm. However, inband noise still
degrades the system performance. In Chapter 6, we will present different
PAPR reduction techniques for OFDM systems.

2.3 Other Multicarrier Modulation

In the previous sections, we have introduced OFDM modulation, which be-
longs to a more general group of multicarrier modulation,. In this section,
we briefly present two band-limited multicarrier approaches: orthogonal and
filter modulation.

2.3.1 Orthogonal Approach

The orthogonal approach was proposed by Chang in [9]. It is shown in Fig-
ure 2.9, where s, ;, and X, ; are the transmitted and demodulated symbols,
respectively, at the k-th subchannel of the n-th OFDM block. The filters
in the figure are band-limited and with overlap in the frequency domain.
Therefore, their frequency responses must satisfy certain conditions so that
the transmitted signal can be demodulated at the receiver.

Denote i (f) = |Pr(f)| exp{s0x(f)} the frequency response of the k-th
filter in Fig. 2.9. The receiver can recover the transmitted signal without any
ISI and ICI at the receiver if the amplitude and the phase of the frequency
respounse satisfy the following conditions [9].

o Amplitude condition: The amplitudes for different subchannels have
the same shape, i.e.,

D(f)I? = C+QUf = f), for [f — fiul < Af,

fork=0,1, ---,N—1, where fi = fo-+kA[ is the center frequency of
the k-th subchannel. Furthermore, Q(f) is a symmetric real function
that is zero outside [-Af, Af] and satisfies

Q) =Q(=f), for all |[f| <AF,

and

QUf) =—Q(Af - f) forall 0 < f < A,
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Figure 2.9. An orthogonal approach based band-limited multicarrier
scheme.

and C in the above is a constant such that C 4+ Q(f) is nonnegative
for [f| < Af.

e Phase condition: The phases for different subchannels also have the
same shape, i.e.,

Oc(f) = 0(f — fr), for [f — fi] <AF.

The 0(f) in the above equation satisfies
0(f) = m7rL + g + Z agn+1cos | (2n + 1)7r—f—
2Af ~ Af

+ zn: Q9 sin(QnWAif),

where m is any odd integer and «,,’s for all integer n’s are arbitrary
(real) numbers.

One of example in this category of multicarrier modulation is to choose

Q) = geos (v ).
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Figure 2.10. An example of amplitude shaping

and C = 1/2. Then

B4 () = —;— + —;-cos (wf;ffk>

and
f—fk)
2Af 77

|8 (f)| = cos(m

which is shown in Figure 2.10

2.3.2 Filter Approach

Filter bank based multicarrier modulation was proposed by Saltzberg in [10].
The modulator and demodulator of this scheme are shown in Figure 2.11. All
filters F'(f)’s in the transmitter and receiver are identical and are assumed
to be real. It is demonstrated in [10] that the use of the same filtering
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at transmitter and receiver assures optimum performance for the AWGN
channels. In order to eliminate the possibility of interference between any
channels that are not immediately adjacent, the filters are bandlimited to
the subchannel space, Af, that is

F(f):07 |f’ZAf7

and the transmit and receive filters in tandem have a Nyquist roll-off,

FA+F(Af—f)=1, 0<f<AF (2.3.1)
sin(2x f1t) : sin (27 f1t)
Zn 35?15@ —nTy) t=nT; x Ii
= P [HX rppN—

X 355,21)5@ —nls —
— F(5) X

o

t=nTs+Ts/2
/ Xr(le)

| F(F) e

<

cos(27 f1t)
sin(27 fat)
I )
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—{ X Pl
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Figure 2.11. A filtering based multicarrier scheme.

The symbol duration for each stream is T, = 1/Af, and the timing of
the two streams for the same subchannel are staggered by Ts/2. Adjacent
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channels are staggered oppositely so that the data streams that modulate the
cosine carriers of the even numbered channels and the sine carriers of the odd
numbered channels are in phase. Consequently, the pass-band expression of
the modulated signal from the transmitter is the following;:

+oo
SN st - Ty cos (2 fit)

k odd n=—o00
+ 3 Z D f(t —nTy — Tu/2) sin (27 fit)
k odd n=—o00

+ Z Z ft—nTs —Ts/2) cos (27 fit)

k even n=—00

—+00
+ Z Z sT(LC?k)f(t — nTy)sin (27 fi 1),

k even n=—00

where f(t) is the inverse Fourier transform of F\(f), fx = fo+kAf, and ng)c

and s(Q) are the information-bearing real random variables.

It can be shown that for the ideal channel (distortionless and noiseless),
the demodulator can recover the transmitted sequences a, x and by, j without
the IST and ICI, if F(f) satisfies (2.3.1).

For channels with linear distortion, the ISI and ICI are analyzed in [10].
The equalization for the filter based approach to reduce ISI and ICI is studied
in [41].

2.3.3 General Multicarrier Modulation

We have discussed two special multicarrier modulations: time-limited form
(OFDM) and band-limited form. Here we describe general multicarrier mod-
ulations.

To facilitate the basic concept of orthogonal multicarrier modulations, we
first introduce (Ts-shift) orthogonal complex functions. A set of N complex
functions, @i (t) for k=0, 1,---, N —1, are called T§-shift orthogonal if for
any k, [ and n, m,

/+OO ot — nTy)p; (t — mTy)dt = cdlk — l]d[n — m], (2.3.2)

—00

where c¢ is a positive constant. For simplicity, we may assume that the set
is normalized, i.e. ¢ = 1.
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Based on a Ts-shift orthogonal complex function set, a general multicar-
rier transmitter and receiver can be designed. Let s, ; represent the infor-
mation to be transmitted at the k-th subchannel of the n-th block. Then,
the complex baseband signal transmitted over the channel can be expressed

as
+oo N-1

s(t) = Z Z Sn ek (t — ). (2.3.3)

In an AWGN channel, the received signal is
z(t) = s(t) + n(t), (2.3.4)

where n(t) is additive white complex Gaussian noise with zero mean and
variance N,. The transmitted sequence can be detected by

You = [ atwei - nT)as
+00
:/_ (s(t) + n()) el (t — nTy).dt (2.3.5)

Because of the orthogonality of {¢r(t —nT%)}, (2.3.5) reduces to

Xnjg = Snk + Nn, (2.3.6)
where
40
Npk = / n(t)pr(t — nT)dt. (2.3.7)
—00

Since {pr(t—nTs)}'s are orthonormal for different n’s or k’s, the noise IV, 1 is
zero-mean and with variance N,, and is uncorrelated (therefore independent)
for different n’s and k’s.

OFDM introduced in Section 2.1 is clearly a special case when ¢y (t) =
1 o2
e
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