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BASIC CONCEPTS 

Ye (Geoffrey) Li 

In this chapter, we first introduce the basic concepts of orthogonal frequency 
division multiplexing (OFDM), discuss the advantages and disadvantages 
compared single-carrier modulation, and present an implementation exam- 
ple. We then address various impairments of wireless channels on OFDM 
systems. Finally, we briefly describe other forms of multicarrier modulation. 

2.1 Basic OFDM 

High data-rate is desired in many applications. However, as the symbol 
duration reduces with the increase of data-rate, the systems using single- 
carrier modulation suffer from more severe intersymbol interference (ISI) 
caused by the dispersive fading of wireless channels, thereby needing more 
complex equalization. OFDM modulation divides the entire frequency selec- 
tive fading channel into many narrow band flat fading subchannelsl in which 
high-bit-rate data are transmitted in parallel and do not undergo IS1 due to 
the long symbol duration. Therefore, OFDM modulation has been chosen 
for many standards, including Digital Audio Broadcasting (DAB) and ter- 
restrial TV in Europe, and wireless local area network (WLAN). Moreover, 
it is also an important technique for high data-rate transmission over mobile 
wireless channels. Here we introduce the basic concepts of OFDM. 

OFDM was first introduced in [3], which is the form used in all present stan- 
dards. It can be regarded as a time-limited form of multicarrier modulation. 

Let {sk)fsl be the complex symbols to be transmitted by OFDM mod- 

'Subchannel is sometimes also called subcarrier or tone. 
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ulation; the OFDM (modulated) signal can be expressed as 

ej2"fkt if 0 < t < T,, 
otherwise, 

for k = 0, 1,. . . , N - 1. T, and A f are called the symbol duration and 
subchannel space of OFDM, respectively. In order for receiver to demodulate 
OFDM signal, the symbol duration must be long enough such that T,A f = 1, 
which is also called orthogonality condition. 

Because of the orthogonality condition, we have 

= b[k-11, 

where b[k - 11 is the delta function defined as 

if n = 0, 
6[n1 = { i: otherwise, 

Equation (2.1.3) shows that {cpk(t))rsl is a set of orthogonal functions. 
Using this property, the OFDM signal can be demodulated by 
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2.1.2 FFT Implementation 

From (2.1.4), an integral is used for demodulation of OFDM signals. Here 
we describe the relationship between OFDM and discrete Fourier transform 
(DFT), which can be implemented by low complexity fast Fourier transform 
(FFT), as briefly indicated in Section 1.4.1. 

From the previous discussion, an OFDM signal can be expressed as 

If s(t) is sampled at an interval of T,, = %, then 

Without loss of generality, setting f,, = 0 ,  then fkTs = k and (2.1.5) becomes 

where IDFT denotes the inverse discrete Fourier transform. Therefore, the 
OFDM transmitter can be implemented using the IDFT. For the same rea- 
son, the receiver can be also implemented using DFT. 

The FFT algorithm provides an efficient way to implement the DFT and 
the IDFT. It reduces the number of complex multiplications from N~ to 
$ log2 N for an N-point DFT or IDFT. Hence, with the help of the FFT 
algorithm, the implementation of OFDM is very simple, as shown in Figures 
1.3 and 1.4. 

2.1.3 Cyclic Extension, Power Spectrum, and Efficiency 

To deal with delay spread of wireless channels, a cyclic extension is usually 
used in OFDM systems. There are three different types of cyclic extensions, 
which are shown in Figure 2.1. Denote Tg the length of a cyclic extension 
that is inserted between OFDM blocks. From Fig. 2.1 (b), OFDM signal, 
s(t), can be extended into ~ ( t )  by 
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With the cyclic extension, the actual OFDM symbol duration is increased 
from T, to T = T,+Tg. In the following discussion, the cyclic suffix extension 
in Fig. 2.1 (b) is assumed. However, the results can be also applied to the 
other types of cyclic extension. 

0 r, 
(a) OFDM signal 
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(c) OFDM signal with cyclic prefix 
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T, T' + 'I 
(d) OFDM signal with cyclic prefix and sufflx 

Figure 2.1. OFDM signal with different cyclic extensions. 
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Because s(t) in (2.1.1) is a summation of truncated complex exponen- 
tial functions with different frequencies, the power density spectrum of s(t) 
consists of I sin(f)/ f 12-shaped spectra, as sketched in Fig. 2.2. 

Figure 2.2. Power spectrum of OFDM Signal. 

Fig. 2.2 shows that, for an OFDM signal consisting of N subchannels, 
the signal bandwidth is about ( N  + l )A  f .  Since the transmission rate of 
each subchannel is symbols/sec., the total transmission rate of OFDM 
signal is $ symbol/sec. Therefore, the bandwidth efficiency of the OFDM 
system is 

in symbols/sec/Hz. For most practical OFDM systems, N is much larger 
than 1 and the guard interval or cyclic extension is much smaller than the 
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OFDM symbol duration, so W = 1. If each symbol carries k bit information, 
the bandwidth efficiency will be k bits/sec/Hz. 

2.1.4 Comparison with Single-Carrier 

As indicated in [33], the dispersive Rayleigh fading in wireless channels limits 
the highest data rate of single-carrier systems. To reduce the effect of IS1 
in unequalized systems, the symbol duration must be much larger than the 
delay spread of wireless channels. In OFDM, the entire channel is divided 
into many narrow subchannels, which are transmitted in parallel, thereby 
increasing the symbol duration and reducing the ISI. Therefore, OFDM is 
an effective technique for combating multipath fading and for high-bit-rate 
transmission over mobile wireless channels. 

Single-Carrier with DFE 

Overall SNR (dB) 

Figure 2.3. Transmission rate of OFDM and single-carrier systems for 
AWGN channel. 

Figure 2.3, from 1231, compares the transmission rate of an OFDM system 
with that of a single-carrier system using a decision-feedback equalizer (DFE) 
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or a linear equalizer (LE). Note that the curve for the DFE in the figure is 
obtained by assuming that the feedback symbols at the DFE are error free, 
so it is in fact an upper bound for the transmission rate of the DFE. From 
the figure, for the same overall SNR, the normalized transmission rate of the 
OFDM system is much higher than that of the single-carrier system. 

2.1.5 Design Example 

Here, we present a simple example to demonstrate the design of an OFDM 
system. Consider a sample system that is required to transmit 1.2 Mbitslsec 
using quadrature PSK (QPSK) over an 800 kHz bandwidth in a wireless 
environment with a maximum delay span up to 40 psec. Note that from 
the results in [33], for a channel with a 40-psec delay span, the maximum 
symbol rate is only 5 kbaud. It is obvious that the required transmit rate 
can not be obtained by a single-carrier system. However, it can be easily 
achieved using OFDM modulation. 

To construct the OFDM signal, we assume the entire channel bandwidth, 
800 kHz, is divided into N=128 subchannels or tones. Thus, the subchannel 
or subchannel space is 6.25 kHz. Let the 4 subchannels on each end be 
used as guard tones to facilitate filtering, and the rest (120 tones) are used 
to transmit data. To make the tones orthogonal to each other, the symbol 
duration is T, = 160 psec. An additional Tg = 40 psec cyclic extension 
is used to provide protection from intersymbol interference due to channel 
multipath delay spread. This results in a total block length T = 200 psec 
and a subchannel symbol rate rb = 5 kbaud. For QPSK, each symbol carries 
2 bit information; consequently, the data transmission rate of the OFDM 
system is 

120 x 2 bits 
Rb = = 1.2 Mbitslsec. 

200 psec 

2.1.6 Baseband versus Passband 

In Sections 2.1 .l-2.1.5, the OFDM signals are complex baseband signals. 
However, in wireless communication systems, complex baseband signals must 
be converted into real passband signals. In this section, we briefly introduce 
the baseband and passband representations. 

The baseband signal, s ( t ) ,  is usually a complex function of time. There- 
fore, it can be written into rectangular form as 
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where the real part, sI(t), is called in-phase component of the baseband 
signal; and the imaginary part, sQ(t), is called quadrature component. For 
the baseband OFDM signal in (2.1.1), we have 

and therefore, 

and 
N-1 

SQ = x (3{sx} cos(2nfkt) + Risk) sin(2afkt)) , 
k=O 

where 'R{sk) and S{sk) denote the real and imaginary parts of the complex 
symbol sk, respectively. 

Figure 2.4 shows conversion between baseband and passband signals. 
From the figure, the passband signal can be expressed as 

sp(t) = R { s ( t ) e ~ ~ ~ f ~ ~ )  

= SI (t) cos(2nfct) - sQ (t) sin(2n f,t), 

where f, is the carrier frequency of a communication system. It is assumed 
that the variations of the signal are much slower than the carrier frequency. 
For OFDM, the passband signal can be further simplified as 

If we denote the magnitude and the phase of complex symbol, sk, as dk and 
Ok, respectively, that is, sk = dkeJ0k, then 



Section 2.1. Basic OFDM 2 7 

Figure 2.4. Baseband versus passband: (a) baseband to passband conver- 
sion, and (b) passband to baseband conversion. 

At the receiver, the baseband signal can be obtained from the pass- 
band signal. Figure 2.4 (b) shows conversion from the baseband signal to 
the passband signal, where FL represents a low-pass filter operation. From 
Fig. 2.4 (b), we have 
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Similarly, the linear distortion of any physical channel can be also equiv- 
alent to a baseband (complex) channel, h(t), so that the baseband channel 
output is the convolution of the baseband signal and the baseband channel 
impulse response, i. e. 

More detailed information about baseband and passband conversion can be 
obtained from Proakis [34]. 

2.2 lmpairments of Wireless Channels to OFDM Signals 

In this section, we introduce the impairments in OFDM systems, includ- 
ing Doppler shift, dispersive fading, timing and frequency offsets, sampling 
clock offset, and nonlinear distortion due to large peak-to-average-power ratio 
(PAPR) of the OFDM signal. 

2.2.1 Time-Varying lmpairments 

Both Doppler shift and frequency offset can be modelled as time-varying 
impairments. Here we first derive a general expression for the effect of the 
time-varying impairments and then discuss the effect of Doppler shift and 
frequency offset, respectively. 

Consider an OFDM signal, 

where fa = f, + kA f and sa is the signal transmitted over the k-th subchan- 
nel. If there is a multiplicative time-varying distortion, y(t), that is caused 
by either frequency offset or Doppler spread, the received signal will be 
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The demodulated signal will be 

where a1 is defined as 

a0 is usually a complex number, whose magnitude and phase represent the 
attenuation and the phase shift on the desired signal, respectively. alls, for 
1 # 0, are complex gains of the interchannel interference (ICI). If y(t) is not 
a constant, then a1 # 0 for some 1 # 0, and ICI exists. 

Effect of Frequency Offset 

If there is a frequency offset, 6 f ,  between the transmitter and the receiver, 
then y(t) in (2.2.1) is a deterministic function and can be expressed as 

where a = 8. From (2.2.3), we have 

2For simplicity, an integral is used here instead of the DFT. However, the integration 
is almost the same as the DFT for systems with a large number of carriers. 
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Let a! = k, + 6 ,  where k, is an integer and c is a fractional number with 
€ 1  < 112, then I - 

When a! 5 112 (k, = 0 and E = a), 0 < lall < lao[. The desired signal 
is the dominant component in the demodulated signal. However, there is 
also ICI since a1 # 0 for 1 # 0. When a is an integer (k, = a and E = O), 
aka = 1, a1 = 0 for 1 # k,, and Xl = sl-ko. Therefore, the frequency offset 
causes a simple tone shift and there is no ICI. In general, neither k, nor E 

is zero; consequently, tone shift, attenuation, phase shift, and ICI all exist. 
However, the signal distortion caused by frequency offset is deterministic. 
Furthermore, once the frequency offset is known, its effect can be corrected. 
Chapter 4 will present techniques for frequency offset estimation and cor- 
rection in OFDM systems, where coarse and fine synchronization is used to 
cancel the effects of 5, and E ,  respectively. 

Effects of Doppler Shift 

For channels with Doppler spread, y(t) is can be modelled as a zero-mean 
and narrow-band wide-sense stationary (WSS) stochastic process. For the 
classical Doppler spectrum [35], the spectral density of y(t) is 

if If 1 < fd ,  
pdf) = (Classical) 

otherwise, 

where fd is the maximum Doppler frequency. Two extreme cases of the 
Doppler spectrum are the uniform and the two-path models, which have 
been studied in [36]. For these two models, the spectral densities are 

ij; if I f  1 < fd. (Uniform) 
Pu(f) = { 0, otherwise, 

and 
1 

pt(f) = [ 6 ( f  + f d )  + 6(f - fd)], (Two-path) 

respectively. The correlation function of y(t), defined as r(r) = E{y(t + 
r)y*(t)), is easily obtained as 
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The correlation functions for the three models given above are 

rJ(r) = J0(27r fd7), (Classical) 

r, (7) = sin,( fd7), (Uniform) 

and 
rt ( r )  = cos(2n fdr), (Two-path) 

respectively, where Jo(x) is the zero-order Bessel function of the first kind 
and 

a sin(7rx) 
sinc(x) = - . 

7rx 
It should be noted that the two-path model corresponds to an OFDM system 
with a fixed frequency offset of fd Hz. 

Since y( t )  is a stochastic process, from (2.2.3), a1 is a random variable. 
Furthermore, it is proved in [37] that a1 is zero mean and with variance 

and the total ICI power due to Doppler spread is 

Once the time-domain correlation or the Doppler spectral density of the 
time-varying channel is known, the ICI power can be calculated. For the 
classical model, we have 

which was first derived by Russell and Stiiber [38]. For the uniform and 
two-path models, we have 
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Table 2.1. a l ' s  and a2's for different time-varying models 

and 
P I ~ I  = 1 - sinc2(fdTs), 

model 

Classical 

respectively, where 

The expressions in (2.2.8) and (2.2.9) were first derived by Robertson and 
Kaiser [36]. 

Using the expressions derived above, the ICI power can be exactly calcu- 
lated. However, the exact expressions are complicated and do not easily pro- 
vide much insight. Furthermore, in many instances, the exact time-domain 
correlation or power spectrum is not available. Here, we introduce several 
bounds on the ICI power, which are derived in [37]. These bounds are less 
complicated and the insight is more readily obtained. 

It has been proved in [37] that the ICI power has the following lower and 
upper bounds: 

a1 a 2  
PIC1 > z(2nfd~s)2 - -(2afdT~)*, 360 (2.2.10) 

a1 

112 

and 
a 1 

PICI 5 E ( 2 ~ f d ~ . ) 2 ,  

where ails, for i = 1, 2, are defined as 

a 2  

318 

The constants a1 and a 2  are easy to calculate and are given in Table 2.1 for 
the three models introduced before. 

It should, be indicated that without knowing the Doppler spectrum, a1 

and a 2  can be also evaluated using other approaches. For example, it can 
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be proved that 

k 
where --y("(t) = 9. Then, a k  can be evaluated by 

which is much simpler than obtaining by the Doppler spectrum. 
From the definition of al, it is clear that a1 5 1. Using this fact, together 

with (2.2.11), we can obtain a universal upper bound on the ICI power, which 
depends only on fdTs, 

This universal upper bound can be used in OFDM systems with any Doppler 
spectra, including with frequency offset. Since a1 is no more than 1, the 
above bound is looser than the bound in (2.2.11). However, (2.2.12) is much 
easier to calculate since it only depends on fdTs. For the two-path model, 
cxl = 1, and the universal bound is also the tight bound. 

In the above discussions, we have introduced tight and universal bounds 
for time-varying flat fading channels. For OFDM systems with a proper 
cyclic extension, the exact expressions for the ICI power and the various 
bounds are also applicable to time-varying dispersive channels. 

In Figure 2.5, we compare the upper and the lower tight bounds and 
the universal bound with the exact value of the ICI power for the classical 
Doppler spectrum. From Fig. 2.5, the tight bounds are very close to the 
exact ICI power. When designing OFDM systems, if symbol duration, T,, 
is chosen so that fdTs is very small, then the ICI due to Doppler spread will 
be negligible. In the design example in Section 2.1.1, T, = 160 psec, then 
PIcI < 0.168%(-27.7 dB) when fd = 200 Hz. Therefore, the PIcI is much 
less than the noise or co-channel interference level. 

Though Doppler shift has only minor effect on the ICI of OFDM signals 
when fdTs is very small. It does make the channel parameters to vary from 
one OFDM block to another. Therefore, when channel parameters are used 
for coherent detection or adaptive'antenna arrays in mobile wireless systems, 
channel tracking is still essential in most environments. In Chapter 5, we 
describe different channel parameter estimation approaches. 
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- exact 
- --  upper bound 
.. .. .. . .. .. . lower bound 
--- universal bound 

10 - 

0 
0.0 0.1 0.2 0.3 0.4 

Figure 2.5. Comparison of exact PIcI, its upper and lower bounds, and 
universal bound for the classical model. 

2.2.2 Effect of Sampling Clock Offset 

In practice, the sampling clock at the receiver is often different from that at 
the transmitter. The sampling clock difference will degrade the performance 
of the systems. As discussed in Section 2.1.2, OFDM signal can be simply 
demodulated by performing DFT to the samples if the continuous signal 

N-l ~ ~ e ~ ~ ~ f k ~  is sampled at a sampling interval of T,, = % at the s ( t )  = C k = O  
receiver. However, if the sampling interval at  the receiver is T;, = T,, +PT,,, 
other than T,,, then the samples will be { s ( n ~ , ' , ) ) z .  If DFT is still used 
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for OFDM demodulation [39], then we will have 

where 

From (2.2.13), the demodulated signal, Xm, consists of the desired symbol 
component, sm, and ICI. The desired symbol is modified by 

which is a subchannel-dependent phase rotation. In the above approxima- 
tion, we have assumed that N >> 1 and PN << 1, which is usually true in 
practice. It can be also shown in [39] that the average ICI power at  the m-th 
subchannel is 

which is also subchannel-dependent. 
In Section 4.4, we will briefly discuss sampling clock offset estimation 

and correction. 

2.2.3 Effect of Timing Offset 

In Figure 2.6, the effect of timing offset on an OFDM signal is shown. When 
there is a timing offset, r > 03, between the transmitter and the receiver, 
the observed signal will be 

3Even through we assume that T > 0 here, the derived result can be also used t o  the 
case with T < 0 
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where e(t) denotes interference due to the timing offset. For OFDM systems 
without a guard interval or cyclic extension, e(t) is a part of next OFDM 
block, as shown in Fig. 2.6 (a). For OFDM systems with a guard interval 
larger than T,  e(t) = 0, as shown in Fig. 2.6 (b). For OFDM systems with a 
cyclic extension period larger than T,  e(t) = s(t) ,  as shown in Fig. 2.6 (c). 
For OFDM systems with a cyclic extension period or guard interval less than 
T, e(t) is a mixture of the above two or three signals. 

0 T Ts Ts + T 

(a) e(t) is a part of the next block 

0 T Ts Ts + T 

(b) e(t) is a part of guard interval 

0 T Ts Ts + T 

(c) e(t) is a part of cyclic extension 

Figure 2.6. Effect of timing offset on OFDM signal. 
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When there is a timing offset, the demodulated signal at the receiver is 

From (2.2.14), timing offset introduces a phase shift to the desired symbol 
component and an additive interferer depending on whether a cyclic exten- 
sion or a null interval is used. When the system has no guard interval or 
cyclic extension, then as shown in Fig. 2.6, e(t) is a part of the next OFDM 
block, which is independent of s(t). Therefore, the resulting average inter- 
ference power is the summation of the powers & So7 s(t)e~~"fm(~-')dt and 

2 T, ST 0 e(t)e32"fm(t-')dt. When the system has a guard interval that is larger 
than 7, then e(t) = 0, only single term remains. However, if a proper cyclic 
extension is used as in Fig. 2.6 (c), then e(t) = s(t) and there is no inter- 
ference. Therefore, a proper cyclic extension can effectively cancel additive 
interference caused by timing offset. 

In Chapter 4, timing offset estimation is introduced. With estimated 
timing offset, the sampling time and integration region can be adjusted to 
reduce the induced phase shift on the desired symbol and to mitigate additive 
interference. 

2.2.4 Effect of Delay Spread 

For a channel with multipath delay spread, the received signal is a summa- 
tion of the transmitted signal with different (complex) gains and delays, as 
shown in Fig. 2.7. Here we assume that the transmitted signal has a proper 
cyclic suffix extension and the length of the cyclic extension, Tg, is larger 
than the delay span or channel length, Th, of the multipath fading channel. 
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Furthermore, we assume that the starting time of integration/observation is 
between Th and Tg, that is, Th 5 r < Tg. 

Figure 2.7. Effect of delay spread on OFDM signal. 

Let the gain and delay of each path be yi and ri, respectively. As shown 
in Figure 2.7, the received signal can be expressed as 

Therefore, the demodulated signal at the receiver is 

When rm,, < T 5 Tg, from (2.2.14), we have 
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Hence, 

where H ( f )  is the frequency response of the multipath channel defined as 

From (2.2.15), the received symbol is the original symbol with a phase 
shift determined by the timing offset, and multiplicative distortion deter- 
mined by the frequency response at each subchannel, which makes signal 
detection very simple and is also a crucial difference between OFDM and 
single-carrier modulation. For single-carrier modulation, delay spread or 
frequency selectivity of wireless channels will cause ISI, which makes signal 
detection very complicated. 

In Chapters 4 and 5, we will introduce various timing offset estimation 
and channel estimation approaches, respectively. Once the timing offset and 
channel parameters are estimated, the phase shift and the multiplicative 
distortion can be corrected. 

2.2.5 System Nonlinearity 

Nonlinear devices in wireless systems will distort OFDM signals. In this 
section, we will briefly discuss the impact of system nonlinearity on OFDM 
signals. 

In Chapter 1.6, the PAPR of OFDM signals has been discussed. It can 
be easily checked that for an OFDM signal with N  subchannels the peak 
power can be as large as N~ while the average power is N  when ~ ( 1 ~ ~ 1 ~ )  = 1; 
consequently, the largest PAPR will be 

PAPR = N.  

For an OFDM signal with 128 subchannels, PAPR=21 dB, while it is about 
6 dB for single carrier modulation. It should be noted that the probability 
for an OFDM signal to have a large PAPR is very small even though the 
largest possible PAPR is very large. 
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Figure 2.8. (a) Spectral spread and (b) inband distortion caused by clip- 
ping. 

When an OFDM signal is passed through a nonlinear device, such as 
a transmitter power amplifier, it will suffer significant nonlinear distortion, 
which generates spectral spreading and in-band noise. Figure 2.8 demon- 
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strates inband distortion and spectral spread due to the nonlinearity of an 
amplifier. If the amplifier is modeled as a 3-dB clipper, then it will cause 
about 14 dB inband noise, about 22 dB adjacent channel interference. As 
indicated in [40], adjacent channel interference or spectral spread can be 
mitigated by a clipping-and-filtering algorithm. However, inband noise still 
degrades the system performance. In Chapter 6, we will present different 
PAPR reduction techniques for OFDM systems. 

2.3 Other Multicarrier Modulation 

In the previous sections, we have introduced OFDM modulation, which be- 
longs to a more general group of multicarrier modulation,. In this section, 
we briefly present two band-limited multicarrier approaches: orthogonal and 
filter modulation. 

2.3.1 Orthogonal Approach 

The orthogonal approach was proposed by Chang in [9]. It is shown in Fig- 
ure 2.9, where sn,k and Xn,k are the transmitted and demodulated symbols, 
respectively, at  the k-th subchannel of the n-th OFDM block. The filters 
in the figure are band-limited and with overlap in the frequency domain. 
Therefore, their frequency responses must satisfy certain conditions so that 
the transmitted signal can be demodulated at the receiver. 

Denote ak(f) = Iak(f)l exp{jOk(f)) the frequency response of the k-th 
filter in Fig. 2.9. The receiver can recover the transmitted signal without any 
IS1 and ICI at the receiver if the amplitude and the phase of the frequency 
response satisfy the following conditions [9]. 

Amplitude condition: The amplitudes for different subchannels have 
the same shape, i.e., 

fork = 0, 1, . . .  ,N-1, where fk = f,+kAf is thecenter frequencyof 
the k-th subchannel. Furthermore, Q(f)  is a symmetric real function 
that is zero outside [-A f ,  A f ]  and satisfies 

and 
Q(f) = -Q(Af - f )  for all 0 5 f 5 A f ,  
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(a) transmitter (b) receiver 

Figure 2.9. An orthogonal approach based band-limited multicarrier 
scheme. 

and C in the above is a constant such that C + Q(f)  is nonnegative 
for I f 1  5 Af. 

0 Phase condition: The phases for different subchannels also have the 
same shape, i.e., 

The 0( f )  in the above equation satisfies 

where m is any odd integer and an's for all integer n's are arbitrary 
(real) numbers. 

One of example in this category of multicarrier modulation is to choose 
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Figure 2.10. An example of amplitude shaping 

and C = 112. Then 

and 
f - f k  

l @ k ( f ) l  = CO~T-), 
2Af 

which is shown in Figure 2.10 

2.3.2 Filter Approach 

Filter bank based multicarrier modulation was proposed by Saltzberg in [lo]. 
The modulator and demodulator of this scheme are shown in Figure 2.11. All 
filters F(f) ' s  in the transmitter and receiver are identical and are assumed 
to be real. It is demonstrated in [lo] that the use of the same filtering 
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at transmitter and receiver assures optimum performance for the AWGN 
channels. In order to eliminate the possibility of interference between any 
channels that are not immediately adjacent, the filters are bandlimited to 
the subchannel space, A f ,  that is 

F(f)=O, Ifl 2 A f ,  

and the transmit and receive filters in tandem have a Nyquist roll-off, 

~ ~ ( f ) + ~ ~ ( ~ f - f ) = l ,  O S ~ S A ~ .  (2.3.1) 

cos(2x f l  t )  
sin(2x f i t )  

(a) transmitter 

COS(2;rflt) 

sin(2x f i t )  

x:h 

I 
I 

(b) receiver 

Figure 2.11. A filtering based multicarrier scheme. 

The symbol duration for each stream is T, = l / A  f ,  and the timing of 
the two streams for the same subchannel are staggered by T,/2. Adjacent 
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channels are staggered oppositely so that the data streams that modulate the 
cosine carriers of the even numbered channels and the sine carriers of the odd 
numbered channels are in phase. Consequently, the pass-band expression of 
the modulated signal from the transmitter is the following: 

s(t) = x x s$ f (t - nT,) cos (%fkt) 
k odd n=-co 

+ x siQi f (t - nTs - Ts/2) sin (2a fkt) 
k odd n=-co 

+ x s:! f (t - nTs - T,/2) cos (27r fkt)  
k even n=-co 

+co 

+ x x siQi f (t - nT,) sin (2afkt) , 
k even n=-co 

where f (t) is the inverse Fourier transform of F(f), fk = f, + kA f ,  and s$ 

and sLQi are the information-bearing real random variables. 
It can be shown that for the ideal channel (distortionless and noiseless), 

the demodulator can recover the transmitted sequences an,k and bn,k without 
the IS1 and ICI, if F( f )  satisfies (2.3.1). 

For channels with linear distortion, the IS1 and ICI are analyzed in [lo]. 
The equalization for the filter based approach to reduce IS1 and ICI is studied 
in [41]. 

2.3.3 General Multicarrier Modulation 

We have discussed two special multicarrier modulations: time-limited form 
(OFDM) and band-limited form. Here we describe general multicarrier mod- 
ulations. 

To facilitate the basic concept of orthogonal multicarrier modulations, we 
first introduce (T,-shijl) orthogonal complex functions. A set of N complex 
functions, cpk(t) for k = 0, 1,. . . , N - 1, are called Ts-shift orthogonal if for 
any k, 1 and n ,  m,  

pk(t  - nTs)cpl* (t - mTs)dt = cS[k - 1]6[n - m], (2.3.2) 

where c is a positive constant. For simplicity, we may assume that the set 
is normalized, i. e. c = 1. 
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Based on a Ts-shift orthogonal complex function set, a general multicar- 
rier transmitter and receiver can be designed. Let sn,k represent the infor- 
mation to be transmitted at the k-th subchannel of the n-th block. Then, 
the complex baseband signal transmitted over the channel can be expressed 
as 

-Coo N-1 

In an AWGN channel, the received signal is 

where n(t) is additive white complex Gaussian noise with zero mean and 
variance No. The transmitted sequence can be detected by 

x (t) cpi (t - nT,) dt 

Because of the orthogonality of {cpk(t - nT,)), (2.3.5) reduces to 

where 

Since {cpk(t-nT,))'s are orthonormal for different n's or k's, the noise Nn,k is 
zero-mean and with variance No, and is uncorrelated (therefore independent) 
for different n's and k's. 

OFDM introduced in Section 2.1 is clearly a special case when cpk(t) = 
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