
2

Basic Principles of Numerical
Integration

Preview

In this chapter, we shall discuss some basic ideas behind the algorithms
that are used to numerically solve sets of ordinary differential equations
specified by means of a state–space model. Following a brief introduction
into the concept of numerical extrapolation that is at the heart of all nu-
merical integration techniques, and after analyzing the types of numerical
errors that all these algorithms are destined to exhibit, the two most basic
algorithms, Forward Euler (FE) and Backward Euler (BE), are introduced,
and the fundamental differences between explicit and implicit integration
schemes are demonstrated by means of these two algorithms.

The reader is then introduced to the concept of numerical stability as op-
posed to analytical stability. The numerical stability domain is introduced
as a tool to characterize an integration algorithm, and a general proce-
dure to find the numerical stability domain of any integration scheme is
presented. The numerical stability domain of an integration method is a
convenient tool to assess some of its most important numerical character-
istics.

2.1 Introduction

Given a state–space model of the form:

ẋ(t) = f(x(t),u(t), t) (2.1)

where x is the state vector, u is the input vector, and t represents time,
with a set of initial conditions:

x(t = t0) = x0 (2.2)

Let xi(t) represent the ith state trajectory as a function of simulated time,
t. As long as the state–space model does not contain any discontinuities in
either fi(x,u, t) or any of its derivatives, xi(t) is itself a continuous function
of time. Such function can be approximated with any desired precision by
a Taylor–Series expansion about any given point along its trajectory, as
long as the function does not exhibit a finite escape time, i.e., approaches

26 Chapter 2. Basic Principles of Numerical Integration

infinity for any finite value of time. Let t∗ denote the point in time, about
which we wish to approximate the trajectory using a Taylor Series, and let
t∗+h be the point in time, at which we wish to evaluate the approximation.
The value of the trajectory at that point can then be given as follows:

xi(t∗ + h) = xi(t∗) +
dxi(t∗)

dt
· h +

d2xi(t∗)
dt2

· h2

2!
+ . . . (2.3)

Plugging the state–space model into (2.3), we find:

xi(t∗ + h) = xi(t∗) + fi(t∗) · h +
dfi(t∗)

dt
· h2

2!
+ . . . (2.4)

Different integration algorithms vary in how they approximate the higher
state derivatives, and in the number of terms of the Taylor–Series expansion
that they consider in the approximation.

2.2 The Approximation Accuracy

Evidently, the accuracy with which the higher order derivatives are approx-
imated should match the number of terms of the Series that are considered.
If n + 1 terms of the Taylor Series are considered, the approximation accu-
racy of the second state derivative d2xi(t∗)/dt2 = dfi(t∗)/dt should be of
order n−2, since this factor is multiplied with h2. The accuracy of the third
state derivative should be of order n−3, since this factor is multiplied with
h3, etc. In this way, the approximation is correct up to hn. n is therefore
called the approximation order of the integration method, or, more simply,
the integration method is said to be of nth order.

The approximation error that is made because of the truncation of the
Taylor Series after a finite number of terms is called truncation error. The
truncation error contains terms in hn+1, hn+2, etc. It does not contain any
terms in powers of h smaller than n + 1. However, since the magnitude
of the remaining terms usually decreases rapidly with increasing powers
of h, the truncation error itself is often approximated by a single term,
namely the term in hn+1. In order to be able to assess the accuracy of the
numerical integration, it is essential to be aware of this term. Therefore,
many numerical integration codes actually estimate this term, and use this
information for such purposes as step–size control.

The higher the approximation order of a method, the more accurate will
be the estimation of xi(t∗ + h). Consequently, when using a high–order
method, we can afford to integrate with a large step size. On the other
hand, the smaller the step size that we employ, the faster decreases the
importance of the higher–order terms in the Taylor Series, and therefore,
when using a small step size, we can afford to truncate the Taylor Series
early.

2.2 The Approximation Accuracy 27

The cost of integrating a state–space model across a single integration
step depends heavily on the order of the method in use. High–order algo-
rithms are much more expensive than low–order methods in this respect.
However, this cost may be offset by the fact that we can use a much larger
step size, and therefore require a considerably smaller overall number of
integration steps to complete the simulation run. We have therefore always
a choice between employing a low–order algorithm with a small step size in-
tegrating the system over many such steps, or using a high–order algorithm
with a large step size integrating the system over much fewer steps.

Which of these choices is more economical in a given situation, depends
on various factors. However, for now, the following simple rule of thumb
may be used as an often quite decent indicator [2.4]:

If the local relative accuracy required by an application, i.e.,
the largest error tolerated within a single integration step, is
10−n, then it is best to choose at least a nth order algorithm
for the numerical integration.

For this reason, the simulation of problems from celestial dynamics requires
the highest–order algorithms. We usually apply eighth–order algorithms to
such problems. On the other hand, most simulations of economic systems
call for first– or second–order methods, since the parameters of the models
themselves are not more accurate than that. It makes no sense whatso-
ever to waste a superb integration algorithm on a garbage model. Garbage
integrated with high precision still remains garbage.

Many engineering simulation applications require a global relative accu-
racy of approximately 0.001. We usually make the following assumption:

If the local integration error, i.e., the error made during a sin-
gle integration step, is proportional to hn+1, then the global
integration error, i.e., the error of the results at the end of the
simulation run, is proportional to hn.

This assumption is correct for a sufficiently small step size, h, i.e., in the
so–called asymptotic region of the algorithm.

The above heuristic can be justified by the following observation. If the
local integration error is of size e�, then the per–unit–step integration error
assumes a value of ep.u.s = e�/h. The global integration error is proportional
to the per–unit–step integration error, as long as the integration error does
not accumulate excessively across multiple steps.

A global relative error of 0.001, as required by most engineering applica-
tions, calls for an algorithm with an approximation order of h3 for the global
error. In accordance with the previously made observation, this corresponds
to an algorithm with an approximation order of h4 for the local integration
error. Therefore, we should require a local accuracy of 0.0001. This means
that a fourth–order algorithm is about optimal, and, since engineers are

28 Chapter 2. Basic Principles of Numerical Integration

the most highly valued customers of continuous–system simulation soft-
ware designers, this is what most such simulation software systems offer as
their default integration algorithm, i.e., as the algorithm that is used by
the system if the user doesn’t specify explicitly, which technique he or she
wishes to be employed.

A second type of approximation error to be looked at is caused by the
finite word length of the computer, on which the simulation is performed.
On a digital computer, real numbers can only be represented with a finite
precision. This type of error is called the roundoff error. The roundoff error
is important since, in numerical integration, invariably very small numbers
are added to very large numbers.

For example, let us assume we employ a third-order algorithm:

x(t∗ + h) ≈ x(t∗) + f(t∗) · h +
df(t∗)

dt
· h2

2!
+

d2f(t∗)
dt2

· h3

3!
(2.5)

to integrate a scalar state–space model:

ẋ = f(x, u, t) (2.6)

across one second of simulated time. Let us assume for simplicity that the
magnitude of x and its first three time derivatives is in the order of 1.0,
thus:

‖x‖ ≈ ‖f‖ ≈ ‖ḟ‖ ≈ ‖f̈‖ ≈ 1.0 (2.7)

Let us further assume that a constant step size of h = 0.001 is employed
throughout the simulation. The simulation is performed on a computer
with a word length of 32 bits in single precision. Such machines usually
offer a mantissa length of 24 bits, and an exponent of eight bits. On such
a machine, the roundoff error is approximately:

εroundoff = 2−24 ≈ 10−6 (2.8)

Thus, a real number in single precision carries approximately six significant
decimals. Applying this information to the process of numerical integration,
we find:

‖x(t∗ + h)‖ ≈‖x(t∗)‖ + ‖f(t∗) · h‖ + ‖df(t∗)
dt

· h2

2!
‖ + ‖d2f(t∗)

dt2
· h3

3!
‖

≈1.0 + 0.001 + 10−6 + 10−9 (2.9)

Thus, while the constant term contributes six significant digits to the re-
sult of the addition, already the linear term contributes only three digits
to the result, and the second–order term does not contribute anything of
significance at all. We might just as well never have computed it in the first
place. This fact is illustrated in Fig.2.1.

2.2 The Approximation Accuracy 29

+

+

+

=

x(t∗)

f(t∗) · h

x(t∗ + h)

df(t∗)
dt · h2

2

d2f(t∗)
dt2 · h3

6

FIGURE 2.1. Effects of roundoff on numerical integration.

Consequently, using single precision on a 32 bit machine for numerical
integration algorithms of order higher than two may be quite problematic.
In reality, the effects of shiftout will not necessarily be as dramatic as shown
in the above example, since higher–order algorithms allow use of a larger
step size. Yet, double precision algorithms will be definitely more robust
due to their reduced risk of shiftout, and they can meanwhile be imple-
mented quite efficiently also. Therefore, there is no good reason anymore
to use single precision on any integration algorithm but Euler. In this con-
text, it is interesting to notice that many commercially available simulation
software systems, such as ACSL [2.20], use a single–precision fourth–order
variable–step Runge–Kutta algorithm as their default integration method,
integrating happily –and dangerously– along.

A double precision representation will take care of roundoff errors as
shown in Fig.2.2. A double precision representation on a 32 bit machine
provides about 14 significant digits, since double precision words usually
offer a 52 bit mantissa and a 12 bit exponent on such a machine.

+

+

+

=

x(t∗)

f(t∗) · h

x(t∗ + h)

df(t∗)
dt · h2

2

d2f(t∗)
dt2 · h3

6

FIGURE 2.2. Roundoff in double precision.

Unfortunately, double precision operations are more time–consuming and
therefore more expensive than single precision operations. This may still
cause a problem especially in real–time applications. For this reason, Korn

30 Chapter 2. Basic Principles of Numerical Integration

and Wait introduced the concept of 1.5–fold precision [2.18]. The idea
behind 1.5–fold precision is illustrated in Fig.2.3.

+

+

+

=

x(t∗)

f(t∗) · h

x(t∗ + h)

df(t∗)
dt · h2

2

d2f(t∗)
dt2 · h3

6

FIGURE 2.3. Roundoff in 1.5–fold precision.

It may not be necessary to store all real numbers in double precision. It
may suffice to store only the state vector itself in double precision. In par-
ticular, this makes it possible to evaluate the nonlinear state–space model
in single precision. Thereby, some of the accuracy of the state vector is
compromised. The lost digits are shaded in Fig.2.3. However, these errors
will not migrate to the left, i.e., a sufficiently large number of digits re-
mains significant. The accuracy of the state vector is indeed roughly half
way between that of single precision and that of double precision, but the
overall price of the computation is closer to that of single precision.

Simulations of celestial dynamics problems should be performed in full
double precision on a 64 bit machine, or, if only 32 bit machines are avail-
able, full four–fold precision should be used. It hardly ever makes sense
to employ an algorithm of order higher than eight, since otherwise, the
roundoff errors will dominate over the truncation errors even on the high-
est precision machines available.

For most engineering problems, double precision on a 32 bit machine is
sufficient. With the advent of modern high–speed personal computers, pro-
ducers of simulation software became less concerned with execution speed
and more concerned with accuracy. For this reason, MATLAB, and with it
also SIMULINK, perform routinely all numerical computations in double
precision. Hence the roundoff error is today of a lesser concern than it used
to be in the past.

A third type of error to be discussed is the accumulation error. Due to
roundoff and truncation, x(t∗ + h) cannot be known precisely. This error
will be inherited by the next integration step as an error in its initial con-
ditions. Thus, errors accumulate when numerical integration proceeds over
many steps. Fortunately, it can be observed that the effects of the initial
conditions will eventually die out in the analytical solution of an analyt-
ically stable system. Consequently, it can be expected that a numerically

2.3 Euler Integration 31

stable numerical integration (we shall present a proper definition of this
term in due course) will dampen out the effects of initial conditions as
well, and will thereby, as a side effect, also get rid of inaccuracies in the
initial conditions.

This is very fortunate, since it indicates that errors in initial conditions
of an integration step don’t usually affect the overall simulation too much.
However, this assumption holds only for analytically stable systems. This
is the reason why numerical integration algorithms have a tendency to
stall when confronted with analytically unstable systems even before any
trajectory of the analytical solution has grown alarmingly large. While sim-
ulating an analytically unstable system, it can no longer be assumed that
the global integration error is proportional to the per–unit–step integration
error, since the integration error can accumulate excessively across multiple
steps. In such a case, it may be better to start from the end, and integrate
the system backward through simulated time.

On top of all these errors, the simulation practitioner is confronted with
inaccuracies of the model itself. These can be decomposed into parametric
model errors, i.e., errors that reflect inaccurately estimated model param-
eters, and structural model errors, i.e., unmodeled dynamics.

To summarize the above, the modeler and the simulation practitioner
must deal with five different types of errors. Modeling errors can be subdi-
vided into structural and parametric errors. The modeler must verify that
his model reflects reality sufficiently well for the purpose of the study at
hand. This process is commonly referred to as model validation. Techniques
for model validation are discussed in detail in the companion book to this
text: Continuous System Modeling [2.5]. Once it has been asserted that
the model reflects reality sufficiently well, the simulation practitioner must
now verify that the numerical trajectories obtained by means of a numerical
simulation of the model decently replicate the analytical trajectories that
would result if the model were computed with infinite precision. This pro-
cess is referred to as simulation verification. Simulation verification plays a
central role in this textbook. Simulation errors can be classified into trunca-
tion errors, roundoff errors, and accumulation errors. It is the conglomerate
of all of these errors that makes the life of an applied mathematician inter-
esting indeed.

2.3 Euler Integration

Let us now look at some actual numerical integration algorithms.
The simplest integration algorithm is obtained by truncating the Taylor

Series after the linear term.

x(t∗ + h) ≈ x(t∗) + ẋ(t∗) · h (2.10a)

32 Chapter 2. Basic Principles of Numerical Integration

or:

x(t∗ + h) ≈ x(t∗) + f(x(t∗), t∗) · h (2.10b)

It is obviously possible to write the integration algorithm in vector form,
i.e., the entire state vector can be integrated in parallel. The above scheme
is particularly simple, since it doesn’t require the approximation of any
higher–order derivatives. The linear term is readily available from the state–
space model. This integration scheme is called Forward Euler algorithm,
and will, from now on, be abbreviated as FE algorithm. Figure 2.4 depicts
graphically how the FE integration method approximates a state trajectory.

Approximated
Value

True
Value

t + ht

Time

V

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

15

10

5

0

FIGURE 2.4. Numerical integration using Forward Euler.

Simulation using the FE algorithm is straightforward. Since the initial
conditions, x(t = t0) = x0 are given, we can proceed as follows:

step 1a: ẋ(t0) = f(x(t0), t0)
step 1b: x(t0 + h) = x(t0) + h · ẋ(t0)

step 2a: ẋ(t0 + h) = f(x(t0 + h), t0 + h)
step 2b: x(t0 + 2h) = x(t0 + h) + h · ẋ(t0 + h)

step 3a: ẋ(t0 + 2h) = f(x(t0 + 2h), t0 + 2h)
step 3b: x(t0 + 3h) = x(t0 + 2h) + h · ẋ(t0 + 2h)

etc.

Simulation becomes a straightforward and quite procedural matter, since
the numerical integration algorithm depends only on past values of state
variables and state derivatives. An integration scheme that exhibits this
property is called explicit integration algorithm. Most integration algo-
rithms employed in today’s general–purpose continuous–system simulation

2.3 Euler Integration 33

languages, such as ACSL [2.20], are of this nature. However, this state-
ment does not hold for special–purpose simulation software, such as electric
circuit simulators.

Let us now introduce a different integration algorithm. Figure 2.5 depicts
a slightly modified scheme.

Approximated
Value

True
Value

t + ht

Time

V

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

15

10

5

0

FIGURE 2.5. Numerical integration using Backward Euler.

In this scheme, the solution x(t∗ + h) is approximated using the values
of x(t∗) and f(x(t∗ + h), t∗ + h) using the formula:

x(t∗ + h) ≈ x(t∗) + f(x(t∗ + h), t∗ + h) · h (2.11)

This scheme is commonly referred to as the Backward Euler integration
rule. It will, from now on, be abbreviated as BE algorithm.

As can be seen, this integration formula depends on current as well as
past values of variables. This fact causes problems. In order to compute
x(t∗ + h) from Eq.(2.11), we need to know f(x(t∗ + h), t∗ + h)), however,
in order to compute f(x(t∗ + h), t∗ + h)) from Eq.(2.1), we need to know
x(t∗ + h). Thus, we are confronted with a nonlinear algebraic loop. Algo-
rithms that are of this type are referred to as implicit integration techniques.
The integration algorithms that are employed in electronic circuit simula-
tors, such as PSpice [2.21], are of this type. Although implicit integration
techniques are advantageous from a numerical point of view (as we shall
learn later), the additional computational load created by the necessity to
solve simultaneously a set of nonlinear algebraic equations at least once ev-
ery integration step may make them undesirable for use in general–purpose
simulation software except for specific applications, such as stiff systems.

34 Chapter 2. Basic Principles of Numerical Integration

2.4 The Domain of Numerical Stability

Let us now turn to the solution of autonomous, time–invariant linear sys-
tems of the type:

ẋ = A · x (2.12)

with initial conditions as specified in Eq.(2.2). The solution of such a system
can be analytically given:

x(t) = exp(A · t) · x0 (2.13)

The solution is called analytically stable if all trajectories remain bounded
as time goes to infinity. The system of Eq.(2.12) is analytically stable if
and only if all eigenvalues of A have negative real parts:

Re{Eig(A)} = Re{λ} < 0.0 (2.14)

The domain of analytical stability in the complex λ–plane is shown in
Fig.2.6.

Re{λ}

Im{λ}

FIGURE 2.6. Domain of analytical stability.

Let us now apply the FE algorithm to the numerical solution of this
problem. Plugging the system of Eq.(2.12) into the algorithm of Eq.(2.10),
we obtain:

x(t∗ + h) = x(t∗) + A · h · x(t∗) (2.15)

which can be written in a more compact form as:

x(k + 1) = [I(n) + A · h] · x(k) (2.16)

2.4 The Domain of Numerical Stability 35

I(n) is an identity matrix of the same dimensions as A, i.e., n× n. Instead
of referring to the simulation time explicitly, we simply index the time, i.e.,
k refers to the kth integration step.

By plugging the state equations into the integration algorithm, we have
converted the former continuous–time system into an “equivalent” discrete–
time system:

xk+1 = F · xk (2.17)

where the discrete state matrix, F, can be computed from the continuous
state matrix, A, and the step size, h, as:

F = I(n) + A · h (2.18)

The term “equivalence” is defined in the sense of the employed numerical
integration algorithm. It does not mean that the converted discrete–time
system behaves identically to the original continuous–time system. The two
systems are “equivalent” in the same sense as the numerical trajectory is
“equivalent” to its analytical counterpart.

For simplicity, we shall consistently employ the following notation in this
book:

ẋ = A · x + B · u (2.19a)
y = C · x + D · u (2.19b)

denotes the continuous–time linear system, where A is the state matrix,
B is the input matrix, C is the output matrix, and D is the input/output
matrix. x denotes the state vector. It is of length n (x ∈ R

n). u is the input
vector, u ∈ R

m, and y is the output vector, y ∈ R
p.

The equivalent discrete–time linear system is written as:

xk+1 = F · xk + G · uk (2.20a)
yk = H · xk + I · uk (2.20b)

where F now denotes the state matrix, G is the input matrix, H is the
output matrix, and I is the input/output matrix.

The discrete–time system of Eq.(2.17) is analytically stable if and only
if all its eigenvalues are located inside a circle of radius 1.0 about the
origin, the so–called unit circle. From Eq.(2.18), we can conclude that all
eigenvalues of A multiplied by the step size, h, must lie inside a circle of
radius 1.0 about the point −1.0.

We define that the linear time–invariant continuous–time system inte-
grated using a given fixed–step integration algorithm is numerically stable
if and only if the “equivalent” linear time–invariant discrete–time system

36 Chapter 2. Basic Principles of Numerical Integration

(the term equivalence meant in the sense of the same integration algorithm)
is analytically stable.

Figure 2.7 shows the domain of numerical stability of the FE algorithm.

-1

stable

unstable

-2

λ · h

Re{λ · h}

Im{λ · h}

FIGURE 2.7. Domain of numerical stability of Forward Euler.

Notice that the numerical stability domain is, in a rigorous sense, only
defined for linear time–invariant continuous–time systems, and applies only
to fixed–step algorithms. Nevertheless, it is appealing that the numerical
stability domain of an integration algorithm can be computed and drawn
once and for all, and does not depend on any system properties other than
the location of its eigenvalues.

The numerical stability domain of the FE algorithm tries to approximate
the analytical stability domain, but evidently does a quite poor job at that.

Let us now try the following experiment. We simulate the scalar system
ẋ = a · x with initial condition x0 = 1.0 and a fixed step size of h = 1.0
over ten steps, i.e., from time t = 0.0 to time t = 10.0 using the FE
algorithm. We repeat the experiment four times with different values of the
parameter a. The results of this experiment are shown in Fig.2.8 The solid
lines represent the analytical solutions, whereas the dashed lines represent
the numerically found solutions. In the first case with a = −0.1, there exists
a good correspondence between the two solutions. In the second case with
a = −1.0, the numerical solution is still stable but bears little resemblance
with the analytical solution, i.e., is very inaccurate. In the third case with
a = −2.0, the numerical solution is marginally stable, and in the fourth
case with a = −3.0, the numerical solution is unstable.

This result is in agreement with the numerical stability domain shown
in Fig.2.7. We would have had to multiply the eigenvalue λ = a = −3.0
with a step size of h = 2/3, in order to obtain an even marginally stable
solution, i.e., in order to get the eigenvalue into the stable region of the λ·h–
plane. In order to obtain an accurate result, a considerably smaller step size
would have been needed. A 10% integration accuracy requires a step size
of approximately h = 0.1 when applied to the system with a = −3.0, a 1%

2.4 The Domain of Numerical Stability 37

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

0 2 4 6 8 10
−2

−1

0

1

2

0 2 4 6 8 10
−1000

−500

0

500

1000

1500

a = -0.1 a = -1.0

a = -2.0 a = -3.0

FIGURE 2.8. Numerical experiment using Forward Euler.

accuracy forces us to reduce the step size to h = 0.01, and a 0.1% accuracy
calls for a step size of h = 0.001. In this case, we need already 10,000 steps
to integrate this trivial system across 10 seconds. Quite obviously, the FE
algorithm is not suitable if such high an accuracy is desired.

Moreover, the above experiment tested the FE algorithm on a very be-
nign example. Systems with pairs of conjugate complex stable eigenvalues
close to the imaginary axis are much worse. This fact is demonstrated in
Fig.2.9.

-1

stable

unstable

-2

x

x

λ · h

Re{λ · h}

Im{λ · h}λ1

λ2

|λ1|

d

FIGURE 2.9. Determination of maximum step size with Forward Euler.

38 Chapter 2. Basic Principles of Numerical Integration

The location of the eigenvalues of the λ–plane are superimposed on the
stability domain of the λ · h–plane. A maximum step size of:

hmax =
d

|λ1| (2.21)

must be used in order to guarantee a numerically stable solution. In the
case, where the eigenvalues are on the imaginary axis itself, no step size can
be found that will make the numerical solution exhibit the true undamped
oscillation. The FE algorithm is not at all suited to integrate such models.
Systems with their dominant eigenvalues on or close to the imaginary axis
are quite common. They are either highly oscillatory systems with very
little damping, or hyperbolic partial differential equation (PDE) systems
converted to ordinary differential equation (ODE) form by means of the
method–of–lines approximation.

Let us now look at the BE algorithm. We shall plug the state–space
model of Eq.(2.12) into the algorithm of Eq.(2.10). We obtain:

x(t∗ + h) = x(t∗) + A · h · x(t∗ + h) (2.22)

which can be rewritten as:

[I(n) − A · h] · x(t∗ + h) = x(t∗) (2.23)

or:

x(k + 1) = [I(n) − A · h]−1 · x(k) (2.24)

Thus:

F = [I(n) − A · h]−1 (2.25)

Figure 2.10 shows the stability domain of this technique.

2.4 The Domain of Numerical Stability 39

As in the case of the FE algorithm, BE tries to approximate the analytical
stability domain, and does an equally poor job.

Let us repeat our previous experiment, this time with values of a = −3.0,
and a = +3.0. It is of interest to us to simulate the system also in an
analytically unstable configuration. Figure 2.11 shows the results of our
efforts.

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

0 2 4 6 8 10
−5

0

5

10

15
x 10

12

a = -3.0 a = +3.0

FIGURE 2.11. Numerical experiment using Backward Euler.

The results could have been predicted easily from the stability domain
shown in Fig.2.10.

The BE algorithm does a fairly decent job on the problem with a = −3.0.
The results are not very accurate with h = 1.0, but, at least, they bear
some resemblance with reality. This type of algorithm is therefore better
suited than the FE type to solve problems with eigenvalues far out on the
negative real axis of the λ–plane. Systems with eigenvalues whose real parts
are widespread along the negative real axis are called stiff systems. Stiff
systems are quite common. In particular, they often result from converting
parabolic PDEs to sets of ODEs using the method–of–lines approximation.
Contrary to the situation when the FE algorithm is used, the step size will,
in the case of the BE algorithm, be dictated solely by accuracy requirements
of the system, and not by the numerical stability domain of the method.

The problem with a = +3.0 reveals yet a different type of problem.
The analytical solution is unstable, but the numerical simulation suggests
that the system is perfectly stable. This can be quite dangerous. Imagine
that a nuclear reactor has been designed and simulated using the BE algo-
rithm. The simulation makes the engineers believe that everything is fine,
but in reality, the reactor will blow up on the first occasion. Traditionally,
researchers have focused more on the simulation of analytically stable sys-
tems, and therefore, many simulation practitioners aren’t fully aware of the
dangers that might result from using implicit algorithms, such as BE, to
simulate systems that are potentially unstable in the analytical sense.

The lesson to be learnt is the following: When it really matters, it may
be a good idea to simulate the system twice, once with an algorithm that

40 Chapter 2. Basic Principles of Numerical Integration

exhibits a stability domain comparable to that of the FE algorithm, and
once with an algorithm that behaves like the BE algorithm. If both simula-
tions produce similar trajectories, the engineer may assume that the results
are true to the model, though not necessarily to the physical plant. This
is the most valuable simulation verification technique that exists, and the
importance of this recommendation cannot be overestimated.

As in the case of the FE algorithm, BE has not much luck with marginally
stable systems, i.e., with systems whose dominant eigenvalues are located
on the imaginary axis. As before, no step size will predict the undamped
oscillation of the true system.

How has the stability domain for the BE algorithm been found? Although
there exist analytical techniques to determine the domain of numerical
stability, they are somewhat cumbersome and error prone. Therefore, we
prefer to go another route and devise a general–purpose computer program
that can determine the domain of numerical stability of any integration
algorithm.

We start out with a scalar problem with |λ| = 1.0, i.e., with its eigenvalue
anywhere along the unit circle. In order to avoid complex numbers, we may
alternatively use a second–order system with a complex conjugate pair of
eigenvalues on the unit circle.

A =
(

0 1
−1 2 cos(α)

)
(2.26)

is a matrix with a pair of conjugate complex eigenvalues on the unit cir-
cle, where α denotes the angle of one of the two eigenvalues counted in
the mathematically positive (i.e., counterclockwise) sense away from the
positive real axis.

The following MATLAB routine computes A for any given value of α.

function [A] = aa (alpha)
radalpha = alpha ∗ pi/180;
x = cos(radalpha);
A = [0 , 1 ; −1 , 2 ∗ x];

return

We then compute the F–matrix for this system. The ff–function accepts
the A–matrix, the step size, h, and a number representing the integration
algorithm, algor, as input arguments, and returns the respective F–matrix
as output argument. The routine is here only shown with the code for the
first two algorithms, the FE and BE algorithms.

2.4 The Domain of Numerical Stability 41

function [F] = ff(A, h, algor)
Ah = A ∗ h;
[n, n] = size(Ah);
I = eye(n);
%
% algor = 1 : Forward Euler
%
if algor == 1,

F = I + Ah;
end
%
% algor = 2 : Backward Euler

%
if algor == 2,

F = inv(I − Ah);
end

return

Now, we compute the largest possible value of h, for which all eigenvalues
of F are inside the unit circle. The hh–function calls upon the aa– and ff–
functions internally. It accepts α and algor as input arguments. It also
requires lower and upper bounds for the step size, hlower and hupper, such
that the solution of the discretized problem is stable for one of them, and
unstable for the other. The function returns the value of the step size, hmax,
for which the discretized problem is marginally stable.

function [hmax] = hh(alpha, algor, hlower, hupper)
A = aa(alpha);
maxerr = 1.0e-6;
err = 100;
while err > maxerr,

h = (hlower + hupper)/2;
F = ff(A, h, algor);
lmax = max(abs(eig(F)));
err = lmax − 1;
if err > 0,

hupper = h;
else

hlower = h;
end,
err = abs(err);

end
hmax = h;

return

The hh–function, as shown above, works only for algorithms with stability
domains similar to that of the FE algorithm. The logic of the if–statement
must be reversed for algorithms of the BE type, but we didn’t want to make
the code poorly readable by including too many implementational details.

42 Chapter 2. Basic Principles of Numerical Integration

Finally, we need to sweep over a selected range of α values, and plot
hmax as a function of α in polar coordinates. There certainly exist more
efficient curve tracking algorithms than the one outlined above, but for the
time being, this algorithm will suffice.

2.5 The Newton Iteration

One additional problem needs to be discussed. In the above example, it was
easy to perform the simulation using the BE algorithm. Since the system
to be simulated is linear, we were able to compute the F–matrix explicitly
by means of matrix inversion.

This cannot be done in a nonlinear case. We need to somehow solve the
implicit set of nonlinear algebraic equations that are formed by the state–
space model and the implicit integration algorithm. To this end, we need
an iteration procedure.

The first idea that comes to mind is to employ a predictor–corrector tech-
nique. The idea is quite simple. We start out with an explicit FE step, and
use the result of that step (the predictor) for the unknown state derivative
of the implicit BE step. We repeat by iterating on the BE step.

predictor: ẋk = f(xk, tk)
xP

k+1 = xk + h · ẋk

1st corrector: ẋP
k+1 = f(xP

k+1, tk+1)
xC1

k+1 = xk + h · ẋP
k+1

2nd corrector: ẋC1
k+1 = f(xC1

k+1, tk+1)
xC2

k+1 = xk + h · ẋC1
k+1

3rd corrector: ẋC2
k+1 = f(xC2

k+1, tk+1)
xC3

k+1 = xk + h · ẋC2
k+1

etc.

The iteration is terminated when two consecutive approximations of
xk+1 differ less than a prescribed tolerance. Since the predictor step is
explicit, the overall algorithm is explicit as well. This iteration scheme is
called fixed–point iteration.

If we apply the linear system of Eq.(2.12) to this algorithm, and insert
all the equations into each other, we find:

FP = I(n) + A · h
FC1 = I(n) + A · h + (A · h)2

FC2 = I(n) + A · h + (A · h)2 + (A · h)3

FC3 = I(n) + A · h + (A · h)2 + (A · h)3 + (A · h)4

2.5 The Newton Iteration 43

For infinitely many iterations, we obtain:

F = I(n) + A · h + (A · h)2 + (A · h)3 + . . . (2.27)

Thus:

(A · h) · F = A · h + (A · h)2 + (A · h)3 + (A · h)4 + . . . (2.28)

and subtracting Eq.(2.28) from Eq.(2.27), we find:

[I(n) − A · h] · F = I(n) (2.29)

or:

F = [I(n) − A · h]−1 (2.30)

Thus, we are hopeful that we just found a (very expensive) explicit inte-
gration algorithm that behaves like the BE method. Unfortunately, nothing
could be farther from the truth. Figure 2.12 depicts the resulting stability
domain when plugging the F–matrix of Eq.(2.27) into the algorithm that
generates stability domains.

+1

unstable

-2 -1 +2
stable

λ · h

Re{λ · h}

Im{λ · h}

FIGURE 2.12. Stability domain of predictor–corrector FE–BE technique.

The reason for the half–moon domain obtained in this way is that the
infinite series of Eq.(2.27) converges only if all eigenvalues of A · h are
inside the unit circle. The subtraction of the two infinite series of Eq.(2.27)
and Eq.(2.28) is only legal if this is the case. Thus, the stability domain
approaches that of BE only for sufficiently small values of |Eig(A · h)|.

Let us try something else. Figure 2.13 shows how a zero–crossing of a
function can be found using Newton iteration.

Given an arbitrary function F(x). We want to assume that we know the
value of the function and its derivative ∂F/∂x at some point x�. We notice

44 Chapter 2. Basic Principles of Numerical Integration

F (x)

x

α

α

x� x�+1

x�+2

FIGURE 2.13. Newton iteration.

that:

tan α =
∂F �

∂x
=

F�

x� − x�+1
(2.31)

Thus:

x�+1 = x� − F�

∂F�/∂x
(2.32)

Let us apply this technique to the problem of iterating the nonlinear alge-
braic equation system at hand. Let us plug the scalar nonlinear state–space
model evaluated at time tk+1:

ẋk+1 = f(xk+1, tk+1) (2.33)

into the scalar BE algorithm:

xk+1 = xk + h · ẋk+1 (2.34)

We find:

xk+1 = xk + h · f(xk+1, tk+1) (2.35)

or:

xk + h · f(xk+1, tk+1) − xk+1 = 0.0 (2.36)

Equation (2.36) is in the desired form to apply Newton iteration. It de-
scribes a nonlinear algebraic equation in the unknown variable xk+1, the
zero–crossing of which we wish to determine. Thus:

x�+1
k+1 = x�

k+1 −
xk + h · f(x�

k+1, tk+1) − x�
k+1

h · ∂f(x�
k+1, tk+1)/∂x − 1.0

(2.37)

where k is the integration step count, and � is the Newton iteration count.
The matrix extension of the Newton iteration algorithm looks as follows:

2.5 The Newton Iteration 45

x�+1 = x� − (H�)
−1 · F� (2.38)

where:

H =
∂F
∂x

=

⎛
⎜⎜⎜⎝

∂F1/∂x1 ∂F1/∂x2 . . . ∂F1/∂xn

∂F2/∂x1 ∂F2/∂x2 . . . ∂F2/∂xn

...
...

. . .
...

∂Fn/∂x1 ∂Fn/∂x2 . . . ∂Fn/∂xn

⎞
⎟⎟⎟⎠ (2.39)

is the Hessian matrix of the iteration problem.
Applying this iteration scheme to the vector state–space model and the

vector BE algorithm, we obtain:

x�+1
k+1 = x�

k+1 − [h · J �
k+1 − I(n)]−1 · [xk + h · f(x�

k+1, tk+1)− x�
k+1] (2.40)

where:

J =
∂f
∂x

=

⎛
⎜⎜⎜⎝

∂f1/∂x1 ∂f1/∂x2 . . . ∂f1/∂xn

∂f2/∂x1 ∂f2/∂x2 . . . ∂f2/∂xn

...
...

. . .
...

∂fn/∂x1 ∂fn/∂x2 . . . ∂fn/∂xn

⎞
⎟⎟⎟⎠ (2.41)

is the Jacobian matrix of the dynamic system.
Any implementation of this iteration scheme requires, in general, the

computation of at least an approximation of the Jacobian matrix, as well
as an inversion (refactorization) of the Hessian matrix. Since both oper-
ations are quite expensive, different implementations vary in how often
they recompute the Jacobian (so–called modified Newton iteration). The
more nonlinear the problem, the more frequently the Jacobian must be
recomputed. Notice further that a modification of the step size does not
require the computation of a new Jacobian, but it forces us to refactorize
the Hessian.

Let us now analyze how this iteration scheme will affect the solution
of linear problems, and, in particular, how it will influence the stability
domain of the method.

The Jacobian of the linear state–space model is simply its state matrix:

J = A (2.42)

Consequently, the Jacobian of a linear time–invariant model never needs
to be updated, although a new inverse Hessian will still be required when-
ever the step size of the algorithm is modified.

Plugging the linear system into Eq.(2.40), we find:

x�+1
k+1 = x�

k+1 − [A · h − I(n)]−1 · [(A · h − I(n)) · x�
k+1 + xk] (2.43)

46 Chapter 2. Basic Principles of Numerical Integration

or:

x�+1
k+1 = [I(n) − A · h]−1 · xk (2.44)

Evidently, Newton iteration does not influence the stability properties of
the linear system. This is generally true for all integration algorithms, not
only when the Newton iteration is applied to the BE algorithm.

2.6 Semi–analytic Algorithms

As we have seen, numerical integration algorithms call at various places for
the computation of derivatives. Time derivatives of f are needed for the
higher–order terms of the Taylor–Series expansion. Spatial derivatives of f
are required by the Newton iteration algorithm. More uses of derivatives
will be met in due course.

However, the numerical computation of derivatives by explicit algorithms
is notoriously ill–conditioned. An inaccurate evaluation of the Jacobian is
relatively harmless. This will simply slow down the convergence of the
Newton iteration. However, numerical errors in the higher–order terms of
the Taylor Series are devastating. Therefore, numerical analysts have learnt
to reformulate the problem so that a direct computation of the higher-order
Taylor–Series terms can be avoided. We shall talk about this more in the
following chapters of this book.

However, for now, we shall explore another avenue. The Taylor Series
could easily be evaluated directly if only we had available analytical ex-
pressions for the higher derivatives. While analytical expressions for the
higher derivatives can be derived fairly easily, it is painful for the user
to have to manually derive those expressions. If the model is even only
modestly complex, the user will probably make mistakes on the way.

However, techniques for algorithmic formulae manipulation have mean-
while been developed. In fact, this branch of computer science has been met
with quite remarkable success over the past few years. Algorithmic differen-
tiation of formulae has become a standard feature offered by many symbolic
processing programs. However, many of these systems generate derivative
formulae that expand, i.e., are much longer than the original formulae. This
pitfall can be avoided. Joss developed a technique that avoids formulae ex-
pansion in symbolic differentiation [2.16]. The idea behind his technique
is surprisingly simple. The original formulae are decomposed into primi-
tives, each of which can be differentiated separately. The example shown
below illustrates how the algorithm works in practice. Given the following
function:

ẋ = sin2(
√

x +
x2 · t

2
) (2.45)

2.6 Semi–analytic Algorithms 47

Its algebraic differentiation can be computed in the following way:

ẋ = c2
1 ⇒ ẍ = 2 · c1 · ċ1

c1 = sin(c2) ⇒ ċ1 = cos(c2) · ċ2

c2 = c3 + c4 ⇒ ċ2 = ċ3 + ċ4

c3 =
√

x ⇒ ċ3 = ẋ/(2 · √x)
c4 = 0.5 · c5 · c6 ⇒ ċ4 = 0.5 · (c5 · ċ6 + ċ5 · c6)
c5 = x2 ⇒ ċ5 = 2 · x · ẋ
c6 = t ⇒ ċ6 = 1.0

It can easily be verified that equations are available to compute all the un-
known variables. The equations only need to be sorted into an executable
sequence. The second time derivative of x is indeed being evaluated cor-
rectly. Since all possible primitive expressions can be tabulated together
with their derivatives, the process of algorithmically generating derivatives
is a fairly simple task. No formulae expansion takes place when differenti-
ation is implemented in this fashion.

Joss also discovered that it is possible to compute derivatives not only of
formulae, but even of entire programs. He developed an ALGOL program
that can differentiate any ALGOL procedure or set of ALGOL procedures
with respect to any variable or set of variables, generating new ALGOL
procedures for the derivatives. Unfortunately, his dissertation was never
translated into English. However, there exist newer references in English
that can be consulted [2.17, 2.19, 2.22]. Kurz [2.19] used the algorithm
of Joss for developing a PASCAL program that computes the derivative of
any FORTRAN subroutine or set of FORTRAN subroutines with respect
to any variable or set of variables, generating new FORTRAN subroutines
for the derivatives. A treatise of these issues can be found in [2.11, 2.12].

In the context of simulation, symbolic differentiation was first employed
by Halin [2.14, 2.15]. Halin was mostly concerned with real–time simula-
tion, and therefore automatically generated code for a parallel multiproces-
sor. The run–time performance of his system was amazingly fast taking into
account the primitive nature of the individual processors that he employed
in his multiprocessor system. Moreover, his architecture is still valid. All
that needs to be done is to replace the individual processors of his system by
more modern architectures. One disadvantage of his approach to real–time
simulation is that real–time simulators should be able to process external
inputs, i.e., signals produced from a real plant by real–time sensors. Quite
obviously, symbolic differentiation cannot find analytical expressions for
time derivatives of such signals, since no formulae for the original signals
are provided.

Modern modeling software, such as Dymola [2.5, 2.3], is able to choose
from a rich palette of formulae manipulation algorithms when preprocessing
the model in preparation of a simulation run. Algebraic differentiation is
one of the tools that is being offered, and it is being used for a variety of
different purposes.

48 Chapter 2. Basic Principles of Numerical Integration

This is clearly the current trend. Symbolic and numeric processing have
both their strengths and weaknesses. A well–engineered combination of
the two types of processing can preserve the best of both worlds, and can
provide us with faster, more robust, and more user–friendly modeling and
simulation environments.

2.7 Spectral Algorithms

Obviously, a Taylor–Series expansion is not the only way to approximate
an analytic trajectory. Alternatively, the trajectory could be decomposed
into a Fourier Series, and, at least in the case of marginally stable models,
as they result from highly oscillatory systems and method–of–lines approx-
imations to hyperbolic PDEs, this might even make a lot of sense.

Such techniques were investigated quite early by Brock and Murray
[2.2]. However, at that time, no efficient techniques were known that would
have allowed to generate algorithms that could compete with Taylor–Series
methods in terms of run–time efficiency. However, the advent of the Fast
Fourier Transform (FFT) and newly available FFT chips gave rise to a re-
newed interest in such techniques [2.10, 2.24]. New theoretical results were
also reported by Bales et al. [2.1] and Tal–Ezer [2.23].

However, it is a fact that all numerical integration algorithms that are
employed in today’s commercially available simulation software make use
of Taylor Series as a basis for their approximations, and therefore, we shall
ignore other techniques in this book.

2.8 Summary

In this chapter, we have introduced the basic concepts of accuracy and
stability as they relate to differential equation solvers. It turns out that,
whenever we dealt with questions of accuracy, we were looking at nonlinear
state–space models, whereas, whenever we were discussing stability, we were
looking at linear state–space models. This is somewhat unsatisfactory. After
all, accuracy is a local property of the algorithm, whereas stability is a more
global facet of it. The reason for this inconsistency is simple. We dealt
with accuracy in nonlinear terms, because it was easy to do, whereas we
restricted our discussion of stability to the linear problem, since a general
nonlinear treatise of stability issues is a very difficult subject indeed.

Linear stability considerations cannot always be extended to the nonlin-
ear case, or, if they are, they may yield misleading answers. In fact, even
linear time–variant systems may behave in surprising ways. To demonstrate
this fact, let us look at the linear time–variant autonomous continuous–time
system:

2.8 Summary 49

ẋ = A(t) · x =
(−2.5 1.5 · exp(8t)
−0.5 · exp(−8t) −0.5

)
· x (2.46a)

with initial conditions:

x0 =
(

23
11

)
(2.46b)

The eigenvalues of the A–matrix are −1.0 and −2.0, i.e., they are constant
and negative real.

Eig(A(t)) = Root(det(λ · I(n) − A))
= Root((λ + 2.5) · (λ + 0.5) + 0.75) = Root(λ2 + 3 · λ + 2)

Yet, the analytical solution is:

x1(t) = 5 · exp(7t) + 18 · exp(6t) (2.47a)
x2(t) = 5 · exp(−t) + 6 · exp(−2t) (2.47b)

Evidently, x1(t) is unstable, although both eigenvalues of the system are
in the left half λ–plane.

A similar discrete–time example can easily be constructed also. Let us
look at the linear time–variant autonomous discrete–time system:

xk+1 = F(t) · xk =
(−1 1.5 · 8k

−0.5 · 8−k 1

)
· xk (2.48a)

with initial conditions:

x0 =
(

11
5

)
(2.48b)

The eigenvalues of the F–matrix are +0.5 and −0.5, i.e., they are constant
and within the unit circle.

Eig(F(t)) = Root(det(λ · I(n) − F))
= Root((λ + 1) · (λ − 1) + 0.75) = Root(λ2 − 0.25)

Yet, the analytical solution is:

x1(k) = 2 · 4k + 9 · (−4)k (2.49a)
x2(k) = 2 · 0.5k + 3 · (−0.5)k (2.49b)

Evidently, x1(k) is unstable, although both eigenvalues of the system are
within the unit circle of the λ–plane.

This is bad news. In fact, let us assume that an analytically stable linear
time–invariant continuous–time system is being integrated with an obscure

50 Chapter 2. Basic Principles of Numerical Integration

variable–step integration algorithm, whose stability region contains the en-
tire left half (λ · h)–plane (such a method is called A–stable.) Since the
F–matrix is a function of the step size, h, it is entirely feasible that a se-
quence of h values can be chosen such that the numerical solution will blow
up anyway. Such anomalies were reported in [2.6].

A general discussion of numerical stability in the nonlinear sense does ex-
ist. A major breakthrough in this research area was achieved by Dahlquist
in two seminal papers published in the mid seventies [2.8, 2.7]. A mature
discussion of the topic can be found in [2.9, 2.13]. The main idea behind
Dahlquist’s approach to nonlinear stability was to focus on a side effect of
stability. In a stable system, trajectories that start out from neighboring
initial conditions contract with time. Dahlquist focused on formulating con-
ditions for when trajectories contract. Therefore, it has become customary
to refer to nonlinear stability as contractivity. However, the theory is too
involved to be dealt with in this book. The (linear) stability domain, that
was introduced in this chapter, serves our purposes perfectly well, since our
major goals are to help the simulation practitioner with this book to attain
a feel for when which technique might have a decent chance of success, and
if a technique fails to succeed, why this is, and what can be done about it.

2.9 References

[2.1] Laurence A. Bales. Cosine Methods for Second–Order Hyperbolic
Equations with Time–Dependent Coefficients. Mathematics of Com-
putation, 45(171):65–89, 1985.

[2.2] Paul Brock and Francis J. Murray. The Use of Exponential Sums in
Step–by–Step Integration. Math. Tables Aids Comput., 6:63–78, 1952.

[2.3] François E. Cellier and Hilding Elmqvist. Automated Formula Ma-
nipulation Supports Object–Oriented Continuous–System Modeling.
IEEE Control Systems, 13(2):28–38, 1993.

[2.4] François E. Cellier and Peter J. Möbius. Toward Robust General Pur-
pose Simulation Software. In Robert D. Skeel, editor, Proceedings of
the 1979 SIGNUM Meeting on Numerical Ordinary Differential Equa-
tions, pages 18:1–5, Urbana, Ill., 1979. Dept. of Computer Science,
University of Illinois at Urbana–Champaign.

[2.5] François E. Cellier. Continuous System Modeling. Springer Verlag,
New York, 1991. 755p.

[2.6] Germund G. Dahlquist, Werner Liniger, and Olavi Nevanlinna. Sta-
bility of Two–Step Methods for Variable Integration Steps. SIAM J.
Numerical Analysis, 20(5):1071–1085, 1983.

2.9 References 51

[2.7] Germund G. Dahlquist. Error Analysis for a Class of Methods for
Stiff Nonlinear Initial Value Problems. In G. Alistair Watson, editor,
Proceedings 6th Biennial Dundee Conference on Numerical Analysis,
volume 506 of Lecture Notes in Mathematics, pages 60–72. Springer–
Verlag, Berlin, 1975.

[2.8] Germund G. Dahlquist. On Stability and Error Analysis for Stiff Non-
linear Problems. Technical Report TRITA–NA–7508, Dept. of Infor-
mation Processing, Royal Institute of Technology, Stockholm, Sweden,
1975.

[2.9] Kees Dekker and Jan G. Verwer. Stability of Runge–Kutta Methods
for Stiff Nonlinear Differential Equations. North–Holland, Amster-
dam, The Netherlands, 1984. 307p.

[2.10] David Gottlieb and Steven A. Orszag. Numerical Analysis of Spec-
tral Methods: Theory and Applications, volume 26. SIAM Publishing,
Philadelphia, Penn., 1977. 172p.

[2.11] Andreas Griewank. On Automatic Differentiation. In Masao Iri and
Kunio Tanabe, editors, Mathematical Programming: Recent Develop-
ments and Applications, pages 83–108. Kluwer Academic Press, 1989.

[2.12] Andreas Griewank. User’s Guide for ADOL–C, Version 1.0. Mathe-
matics and Computer Science Division, Argonne National Laboratory,
Argonne, Ill., 1990.

[2.13] Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential
Equations II: Stiff and Differential–Algebraic Problems, volume 14 of
Series in Computational Mathematics. Springer–Verlag, Berlin, Ger-
many, 2nd edition, 1996. 632p.

[2.14] Hans Jürgen Halin, Richard Bürer, Walter Hälg, Hans Benz, Bernard
Bron, Hans-Jörg Brundiers, Anders Isacson, and Milan Tadian. The
ETH Multiprocessor Project: Parallel Simulation of Continuous Sys-
tems. Simulation, 35(4):109–123, 1980.

[2.15] Hans Jürgen Halin. The Applicability of Taylor Series Methods in
Simulation. In Proceedings 1983 Summer Computer Simulation Con-
ference, volume 2, pages 1032–1076, Vancouver, Canada, July 11–13,
1983. SCS Publishing, San Diego, Calif.

[2.16] Johann Joss. Algorithmisches Differenzieren. PhD thesis, Diss ETH
5757, Swiss Federal Institute of Technology, Zürich, Switzerland, 1976.
69p.

[2.17] Gershon Kedem. Automatic Differentiation of Computer Programs.
ACM Trans. Mathematical Software, 6(2):150–165, 1980.

52 Chapter 2. Basic Principles of Numerical Integration

[2.18] Granino A. Korn and John V. Wait. Digital Continuous–System
Simulation. Prentice–Hall, Englewood Cliffs, N.J., 1978. 212p.

[2.19] Eberhard Kurz. Algebraic Differential Processor. Technical report,
Department of Electrical and Computer Engineering, University of
Arizona, Tucson, Ariz., 1986.

[2.20] Edward E. L. Mitchell and Joseph S. Gauthier. ACSL: Advanced
Continuous Simulation Language — User Guide and Reference Man-
ual. Mitchell & Gauthier Assoc., Concord, Mass., 1991.

[2.21] James W. Nilsson and Susan A. Riedel. Introduction to PSpice for
Electric Circuits. Prentice–Hall, Upper Saddle River, N.J., 6th edition,
2002. 132p.

[2.22] Louis B. Rall. Automatic Differentiation: Techniques and Applica-
tions, volume 120 of Lecture Notes in Computer Science. Springer–
Verlag, Berlin, 1981. 165p.

[2.23] Hillel Tal-Ezer. Spectral Methods in Time for Hyperbolic Equations.
SIAM J. Numerical Analysis, 23(1):11–26, 1986.

[2.24] Robert Vichnevetsky and John B. Bowles. Fourier Analysis of Nu-
merical Approximations of Hyperbolic Equations, volume 5 of SIAM
Studies in Applied Mathematics. SIAM Publishing, Philadelphia,
Penn., 1982. 140p.

2.10 Bibliography

[B2.1] George F. Corliss, Christèle Faure, Andreas Griewank, Laurent
Hascoët, and Uwe Naumann, editors. Automatic Differentiation
of Algorithms: From Simulation to Optimization. Springer–Verlag,
Berlin, Germany, 2002. 459p.

[B2.2] C. William Gear. Numerical Initial Value Problems in Ordinary
Differential Equations. Series in Automatic Computation. Prentice–
Hall, Englewood Cliffs, N.J., 1971. 253p.

[B2.3] Curtis F. Gerald and Patrick O. Wheatley. Applied Numerical
Analysis. Addison–Wesley, Reading, Mass., 6th edition, 1999. 768p.

[B2.4] John D. Lambert. Numerical Methods for Ordinary Differential Sys-
tems: The Initial Value Problem. John Wiley, New York, 1991. 304p.

2.11 Homework Problems 53

2.11 Homework Problems

[H2.1] Marginal Stability

Given the following linear time–invariant continuous–time system:

ẋ =

⎛
⎜⎜⎜⎜⎝

1250 −25113 −60050 −42647 −23999
500 −10068 −24057 −17092 −9613
250 −5060 −12079 −8586 −4826
−750 15101 36086 25637 14420
250 −4963 −11896 −8438 −4756

⎞
⎟⎟⎟⎟⎠ · x +

⎛
⎜⎜⎜⎜⎝

5
2
1
−3
1

⎞
⎟⎟⎟⎟⎠ · u

y =
(−1 26 59 43 23

) · x (H2.1a)

with initial conditions:

x0 =
(
1 −2 3 −4 5

)T (H2.1b)

Determine the step size, hmarg, for which FE will give marginally stable
results.

Simulate the system across 10 seconds of simulated time with step input
using the FE algorithm with the following step sizes: (i) h = 0.1 ·hmarg, (ii)
h = 0.95 ·hmarg, (iii) h = hmarg, (iv) h = 1.05 ·hmarg, and (v) h = 2 ·hmarg.
Discuss the results.

[H2.2] Integration Accuracy

For the system of Hw.[H2.1], determine the largest step size that will give
you a global accuracy of 1%.

For this purpose, it is necessary to find the analytical solution of the given
system. The easiest way to achieve this is to use the spectral decomposition
method. The MATLAB statement:

[V,Λ] = eig(A) (H2.2a)

generates two matrices. Λ is the eigenvalue matrix, i.e., a diagonal matrix
with the eigenvalues of A placed along its diagonal, and V is the right
modal matrix, i.e., a matrix that consists of the right eigenvectors of A
horizontally concatenated to each other. The ith column of V contains
the eigenvector associated with the eigenvalue located at the ith diagonal
element of the Λ–matrix.

Apply a similarity transformation:

ξ(t) = T · x(t) (H2.2b)

with:

T = V−1 (H2.2c)

54 Chapter 2. Basic Principles of Numerical Integration

This will put the system into diagonal form, from which the analytical
solution can be read out easily.

If you don’t trust the accuracy of the numerical algorithm, you can com-
pute the transfer function of the system using:

Sys = ss(A,B,C,D) (H2.2d)
G = tf(Sys) (H2.2e)

The numerator and denominator polynomials of the transfer function can
then be extracted by means of:

[p,q] = tfdata(G, ′v′) (H2.2f)

Finally, the roots of the denominator polynomial can be found through:

λ = roots(q) (H2.2g)

You can then perform a partial fraction expansion on the transfer function,
and read the analytical solution out by taking the inverse Laplacian thereof.

Simulate the original system using the FE algorithm across 10 seconds
of simulated time. Repeat the simulation with different step sizes, until you
obtain agreement between the analytical and the numerical solution with
an accuracy of 1%:

εglobal =
‖xanal − xnum‖

‖xanal‖ ≤ 0.01 (H2.2h)

Repeat the same experiment with the BE algorithm. Since the system is
linear, you are allowed to compute the F–matrix using matrix inversion.

[H2.3] Method Blending

Given the following linear time–invariant continuous–time system:

ẋ =
(

0 1
−9.01 0.2

)
· x +

(
0
1

)
· u

y =
(
1 1

) · x + 2 · u (H2.3a)

with initial conditions:

x0 =
(
1 −2

)T (H2.3b)

Find the analytical solution using one of the techniques described in
Hw.[H2.2]. Simulate the system across 25 seconds of simulated time using
the FE algorithm. Determine the largest step size that will lead to a global
accuracy of 1%. Repeat the experiment with the BE algorithm. You may
compute the F–matrix using matrix inversion. What do you conclude?

2.11 Homework Problems 55

Let us now design another algorithm. This time, we shall repeat each
single integration step once with FE and once with BE, and we shall use
the arithmetic mean of the two answers as the initial condition for the next
step. Such an algorithm is called a blended algorithm. Determine again the
maximum step size that will provide a 1% accuracy. Compare your results
with those obtained by FE or BE alone.

[H2.4] Cyclic Method

Repeat Hw.[H2.3]. However, this time, we shall design another algorithm.
Instead of using the mean value of FE and BE to continue, we shall simply
toggle between one step of FE followed by one step of BE, followed by
another step of FE, etc. Such an algorithm is called a cyclic algorithm.

Determine again the maximum step size that will provide a 1% accuracy.
Compare your results with those obtained by FE or BE alone.

[H2.5] Stability Domain

For the predictor–corrector method of Eq.(2.27), find the stability domains
if: (i) no corrector is used, (ii) one corrector is used, (iii) two correctors are
used, (iv) three correctors are used, and (v) four correctors are used. Plot
the five stability domains on top of each other, and discuss the results.

[H2.6] Stability Domain: Blended and Cyclic Methods

Find the stability domain for the blended method of Hw.[H2.3]. What do
you conclude when comparing the stability domain of that method with
those of FE and BE? How does the stability domain of the blended method
explain the result of Hw.[H2.3]?

Find the stability domain for the cyclic method of Hw.[H2.4]. Instead
of interpreting this method as switching to another algorithm after each
step, we can think of this technique as one that is described by a single
macro–step consisting of two semi–steps. Thus:

x(k + 0.5) = x(k) + 0.5 · h · ẋ(k) (H2.6a)
x(k + 1) = x(k + 0.5) + 0.5 · h · ẋ(k + 1) (H2.6b)

Don’t despair, this one is tricky. What do you conclude when comparing
the stability domain of that method with those of FE and BE? How does
the stability domain of the cyclic method explain the result of Hw.[H2.4]?

[H2.7] Stability Domain Shaping: Blended Method

We wish to construct yet another method. It is derived from the previously
discussed blended algorithm. Instead of using the mean value of the FE
and BE steps, we use a weighted average of the two:

x(k + 1) = ϑ · xFE(k + 1) + (1 − ϑ) · xBE(k + 1) (H2.7a)

56 Chapter 2. Basic Principles of Numerical Integration

Such a method is called a ϑ–method. Plot the stability domains of these
methods for:

ϑ = {0, 0.1, 0.2, 0.24, 0.249, 0.25, 0.251, 0.26, 0.3, 0.5, 0.8, 1} (H2.7b)

Interpret the results. For this problem, it may be easier to use MATLAB’s
contour plot, than your own stability domain tracking routine.

[H2.8] Stability Domain Shaping: Cyclic Method

We shall now design another ϑ–method. This time, we start out with the
cyclic method. The parameter that we shall vary is the step length of the
two semi–steps. This is done in the following way:

x(k + ϑ) = x(k) + ϑ · h · ẋ(k) (H2.8a)
x(k + 1) = x(k + ϑ) + (1 − ϑ) · h · ẋ(k + 1) (H2.8b)

Determine the ϑ parameter of the method such that the overall method
exhibits a stability domain similar to BE, but where the border of stability
on the positive real axis of the (λ · h)–plane is located at +10 instead of
+2. Plot the stability domain of that method.

2.12 Projects

[P2.1] ϑ–Methods

For the two ϑ–methods described in Hw.[H2.7] and Hw.[H2.8], determine
optimal values of the ϑ parameter as a function of the location of the
eigenvalues of the A–matrix (for linear time–invariant systems). To this
end, vary the ϑ parameter until you get a maximum value of h that guar-
antees 1% accuracy. Repeat for different locations of the eigenvalues of A,
and come up with a recipe of how to choose ϑ for any given linear system.

[P2.2] Cyclic Methods

Do a library search on cyclic methods, and come up with a decision tree
that characterizes the various cyclic methods that have been proposed.

2.13 Research

[R2.1] Simulation Verification

Study the problem of simulation verification. What techniques could a ro-
bust simulation run–time library offer to support the user in asserting the
correctness of his or her simulation results?

http://www.springer.com/978-0-387-26102-7

