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Abstract Let a be a positive integer and Q,(x; k ,  I )  be the set of primes p 5 
x such that the residual order of a (mod p)  in Z l p Z  is congruent to 
I modulo k .  In this paper, under the assumption of the Generalized 
Riemann Hypothesis, we prove that for any residue class 1 (mod k) the 
set Q,(x; k ,  1 )  has the natural density & ( k ,  I )  and the values of & ( k ,  1 )  
are effectively computable. We also consider some number theoretical 
properties of A , ( k , l )  as a number theoretical function of k and I .  
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1. Introduction 

Let a be a positive integer which we assume is not a perfect b-th power 
with b > 2 and p a prime number not dividing a. We define D,(p) = 
#(a (mod p)) - the multiplicative order of a (mod p) in (ZIpZ)', and 
for an arbitrary residue class 1 (mod k) with k 1 2, we consider the set 

and denote its natural density by &(k, I ) ,  to be precise, 

where ~ ( x )  = Cp5, 1. 
I I 
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In [I] and [7], we studied the case k = 4. There assuming the Gener- 
alized Riemann Hypothesis (GRH), we proved that any Qa(x;4,1) has 
the natural density Aa(4, l) ,  and determined its explicit value. In [2], we 
extended our previous result to the case k = qr, a prime power. On the 
basis of these results, we succeeded in revealing the relation between the 
natural density of Q,(x; qr-l, I)  and that of Q,(x; qr, 1).  I t  is clear that ,  
for any r 2 1, 

a- 1 

and we were able to verify that ,  when r is not "very small", we have 

1 
Aa(qT, j + tqr-l) = -A,(qr-l, j ) ,  

4 

for any t ,  - "equi-distribution property" - for details, see [2]. 
In this paper we study the most general case - k being composite. 
Our main result is : 

Theorem 1.1. We assume GRH, and assume a is not a perfect b-th 
power with b 2 2. Then, for any residue class 1 (mod k) ,  the set 
Q,(x; k, 1) has the natural density A,(k, I), and the values of A,(k, 1) 
are eflectiuely computable. 

From this result, we find some interesting relationships between A,(k, 1) 
and A, (lc', 1') with k'l k and 1' = 1 (mod kt). 

In order to prove Theorem 1.1, we make use of two combined methods. 
Let I,(p) be the residual index of a (mod p),  i.e. I,(p) = I(Z/pZ)X : 

(a  (mod p))  1 .  The first method is the one we already used in [I] and 171, 
and consists of the following: in order to calculate the density Aa(4,1),  
first we decompose the set Q,(x; 4 ,1) ,  which reads in terms of cardinar- 
ity: 

= fl{p < x : Ia(p) = 2f + 1 .  2f+2,p  z 1 + 2f (mod 2f+2)} 
f > l  120 

+ H{P -< x : Ia(p) = 3 .  2f + 1 2f+2,p  1 + 3 .  2f (mod 2 f + 2 ) }  
f21120 

(cf. [l] formula (3.4)). We calculate all cardinal numbers on the right 
hand side. In the process the calculations of the extension degree [ ~ ~ , ~ , d  : 

Q] and the coefficient's cr(k, n, d) ( r  = 1,3)  play crucial roles (for details, 
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see [I]). The technique used here is a generalization of that  of Hooley 
[5], in which under GRH he obtained a quantitative result on Artin's 
conjecture for primitive roots. This method is feasible again in this 
paper (Section 2). 

Let 
k = p y  .. .p; '  

be the prime power decomposition of k, where pi's are distinct primes 
and ei 1 1. If 1 satisfies the condition pfZ j 1 for any i ,  1 5 i < r ,  we can 
apply the above method to such Qa(x; k, 1)'s. Then we can prove the 
existence of its natural density and can calculate it directly (Theorem 
2.2). 

Our second method is more elementary. For &,(xi k, 1) such that pF"1 
for some i, we can prove in Theorem 3.1 that  the natural density of such 
Q,(x; k, 1) is written as a linear combination of the densities of 

Q ( x )  withp;"li for a n y i , l  < i  < r ,  

and those of 
Qa(x; kt, 1") with k'lk. 

Then, by Theorem 2.2, we can prove inductively the existence of the 
natural density of Q,(x; k, 1) and determine simultaneously its explicit 
value. 

Here we remark that ,  if p 3 1  for all i, then 1 = 0 and we already have 
a similar result in Hasse [3], [4] and Odoni 181. 

2. Existence of the Density - 1 not divisible by 
any pFi 

Let k = n:=, p:. as above and put 1 = h n:=l pj' ( ( h ,  k) = 1). In this 
section, we assume 0 < fi 5 ei - 1 for all i .  For gi > fi, let 

r T 

ei+gt k' = k'(gl, . . . , gT)  = npF and k" = k"(gl, . . . , g,) = npi 
i=l i= 1 

Then under GRH, we can prove the existence of the density A,(k, 1) in 
a similar manner to that  of 12, Section 21. In fact, we can decompose 
the set Q,(x; k, 1) which reads, in terms of cardinality, 

Lemma 2.1. Under  the  above notations,  we have 

( X  k, 1) = x x f l~ , ( r ;  m; 1 + ak' (mod k")), 
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where 

N , ( x ; ~ ;  1 + uk' (mod k")) = {p 5 x : I,(p) = m, p - 1 + uk' (mod k")}, 

m = {XU (mod np:.-f2) + t np:z7f2} . np~-fi 
i=l i=l i=l 

and where z h  - 1 (mod fl:=l pf"fz) 

Proof. The proof goes on the same lines as in [2, Lemma 2.21 and is 
omitted. 0 

This decomposition turns out to yield the existence of the density A,(k, I ) .  
Before stating the main theorem of this section, we introduce some no- 
tations. For k E N, let & = e x p ( 2 ~ i l k ) .  We denote Euler's totient by 
p(k) .  We define the following two types of number fields: 

We take an automorphism a, E Gal(& ( & I )  /Q )  determined uniquely 
by the condition a, : Gx/ c ~ ~ k f ~ ~ ~  (0-< u < k, (v,k) = I),  and 
we consider the automorphism o,* E Gal(Gm,n,d/Gm,n,d) which satisfies 
o,*IQ(Ckk,) = a,. We can verify that such a a,* is unique if it exists (see 
[I,  Lemma 4.31). 

Theorem 2.2. Let k and 1 be as above. Then under GRH, we have 

x 
tjQa(x; k, I )  = &(k, 1) li x + 0 

log x log log x 
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as x -+ m, where 
00 

m P(d) P(n)cu(m, n,  d) 
&L(klO = C . . .  C C C--CdC 

g ~ > f l  g,>fr o<v<k t20 v(m) d ~ m  n=l [ ~ r n , n , d  : Ql ' 
(v,k)=l 

(2.3) 
The series on the right hand side always converges, the number m is 
defined by (2.2) and 

1, if a; exists, 
cv(m,n, d) = 0, otherwise. 

Remark 1. When (1 + vk', k) > 1, we define c,(m,n, d) = 0 (in this 
case a, does not exist). 

Proof. We can prove this theorem similarly to [I ,  Section 41, and so we 
state the outline only (see also [2, Section 21). From (2.1) we have 

flN, (x; m; 1 + vk' (mod kt')) 

B(x; K,; allm; N ;  s (mod t))  

a prime ideal in K,, Np = p1 5 x , p  z 1 (mod N),  
= {' : p = s (mod t) ,  allm is a primitive root modp 

and Np is the (absolute) norm of p.  Next we define 

P(x; Km; allm; md; s (mod t ) ;  n) 

a prime ideal in K, s.t. Np = p1 5 x,p  = 1 (mod md), 
p : p E s (mod t) ,  and the equation Xq - allm (mod p) 

is solvable in 0~~ for any qln. 

Then we have 

BB (x; K,; allm; md; 1 + vk' (mod k")) 

= C ' P ( n ) g p ( x ;  K,; a l lm;  md; 1 + vk' (mod k"); n) 
n 

x (log log 2) 

+o( log2x > !  



16 K.  Chinen and L. Murata 

where C', means the sum over such n 5 x which are either 1 or a square 
free positive integer composed entirely of prime factors not exceeding 
(118) log x,  and the constant implied by the 0-symbol depends only on 
a ,  k and 1 (see Propositions 4.1 and 4.2 of [I]). 

By the uniqueness of a*, we can prove similarly as in [I ,  Proposition 
4.41, 

#P(x; Km;  a l lm;  md; 1 + vk' (mod k"); n) 

where 

a prime ideal in K ,  unramified in L,  
~ ( x ;  L I K ,  C )  = # 

for a finite Galois extension L / K  and a conjugacy class C in Gal(L/K),  
(p,  L I K )  being the Frobenius symbol. The constant implied by the 0 -  
symbol depends only on a ,  k and 1. 

We can estimate [ ~ ~ , ~ , d  : Km] and the discriminant dcm,n,d of C m , n , d  

as follows: 
d 

[Gm,n,d : Km] = 6 
mov((n,  mo)) 

. mncp(n) 

and 

log I d ~ m , n , d  I << (mnd)3 log(mnd): 

where S and the constant implied by << depends only on a ,  k and 1 (the 
proof is similar to [ I ,  Lemma 4.61). This estimate is based on Lagarias- 
Odlyzko 161. 

By Lemma 2.1, #Q,(x; k, I)  is the infinite sum of #N, (x;  m ;  1 + vk' 
(mod kl'))'s, and the above results show that  each #N,(x; m ;  1 + vk' 
(mod k")) is the sum of x(x;  Gm,n,d/Km, {cT*)) plus error terms. The 
sum of these main terms gives rise to  the main term Aa(k,  I )  x li(x). 
And, in a similar way as in [I], we can estimate the sum of the error 
terms by O(x logP1x log logP1x), completing the proof. 0 

3. Existence of the Density - I being divisible 
by some p,ei 

In this section, we shall prove the following result: 

Theorem 3.1. If 1 is divisible by some p f i ,  then Q,(x; k ,  1) has the 
natural density Aa(k,  1) and we can calculate it effectively. 

We prove this theorem by induction on r - the number of distinct 
prime factors of k. 
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For k = pyl, our assertion is true by [2]. 
For k = n:='=, pfi - the general case - we assume, without loss of 

generality, 

If s = 0 (i.e. 1 is not divisible by any p:", our assertion is true by 
Theorem 2.2, and so we assume s 1 1 and put lo = p;' . . . p:. . 

Write 
k k 

l = m O + n o - ,  O < m o < -  
10 10 

and consider the decomposition: 

For j 2 s + 1, since p? 1 %  and p? i 1, then for any n ,  p;' does not 

divide mo + n % .  So we have, for any n ,  

Moreover the condition 

is satisfied, if and only if, 

{j  : p? I mo + n;} = {I ,  2 , .  . . , s) and n = no. 

k In fact, {j : p;' lmo + noG) = {I ,  2, . . . , s )  is clear, and if / j { j  : 

p;'rno + n':) 10 = s for some n', then lo divides both mo + n'% and 
k mo + noz. thus n' = no. Therefore, except for Qa(x; k, 1 ) )  all other 

Qo(x; k, mo + ni) appearing in (3.1) satisfy 

and for those Q,(X; k, ma + n i )  we know the existence of its natural 
density, from the induction hypothesis. And, also from the induction 
hypothesis, t'he set on the left hand side of (3.1) has its density. Then 
we can conclude that Qa(x;  k ,  I )  has its natural density. 
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This proof provides an algorithm to  determine the density A,(x; k, I ) ,  
but it is difficult to  write down the pervading formula in general. In 
the next section, we will present a numerical example and clarify the 
contents of Theorem 3.1. 

4. Some numerical examples 

We take a = 5 and k = 12 = 22 . 3'. Unconditionally, we have 
A5(12, 0) = 114. 

For such an 1 with 22 1 and 3 1. I ,  we can apply Theorem 2.2, and get 
the densities : 

First we state the results for these densities. We can determine the value 
c,(m, n ,  d) in Theorem 2.2 similarly to [2, Section 31: 

Proposition 4.1. We assume GRH and let a = 5, k = 12. Then we 
have the following: 
(I) When 1 = 1, 5, 7, 11, the value c,(m, n ,  d) in (2.3) is given as follows: 
(i) If g1 1 1 and g2 > 1, 

1, if21.d a n d 3 { d ,  
cv(m, n ,  d) = 0, otherwise. 

(ii) If gl 1 1 and g2 = 0, then c,(m, n ,  d) = 1 if and only if 
(a) 2 { d, 3 f n ,  gl: odd, v - 5 (mod 6) or 
(b) 2 1 d ,  3172, gl: even, v E 1 (mod 6), 

and c,(m, n ,  d) = 0 in all other cases. 

(11) When 1 = 2, 10, the value c,(m, n ,  d) in (2.3) is given as follows: 
(i) If91 > 1 and92 > 1, 

cv (m, n, d) = 
1, ~ f i f f d d ,  
0, otherwise. 

(ii) If gl 2 1 and 92 = 0, then c,(m, n ,  d) = 1 if and only if 
(a) 3 '1 n, gl: odd, v = 5 (mod 6) or 
(b) 3 1 n,  91: even, v - 1 (mod 6), 

and c,(m, n ,  d) = 0 in all other cases. 

We can also calculate the extension degree [G,,,,~ : Q ]  (see [2, Lemma 
3.31). In the following lemma, (ml ,  . . . , m,) means the least common 
multiple of m l ,  . . . , m, . 
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Lemma 4.2. 

where the  latter case happens if and only if mn i s  even and 51(md, n). 

Now we can transform the series (2.3) for a = 5, k = 12 and 1 = 

1,2 ,  5 ,7 ,10,11 into an expression involving some Euler products. The 
proof is similar to [7, Section 51 (see also [2, Section 41): 

Theorem 4.3. Let x be a nontrivial  character of (Z/6Z)'. W e  define 
the  constant Cx b y  

. . 
p=5 (mod 6) 

T h e n  under  GRH, we have the  following: 
( I )  For 1 = 1, 5, 7, 11, 

(11) For 1 = 2, 10, 

Theoretical approximate values are 
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For the remaining values of 1, i.e. for 1 = 3, 4, 6, 8 and 9, we have by 
Theorem 3.1, 

and 

Consequently, we can determine all densities. 
Numerical data seem to be well-matched with these theoretical den- 

sities. In the table below, &(x; 12,l)  = #Q5(z; 12,l) /n(x) at x = 
179424673 ( lo7  th  prime). 

Table 1. Experimental densities A5(x; 12,L). 

Remark 2. When considering Aa(12, 1) ,  one may expect that one 
would encounter the multiplicative characters mod 12, but in the above 
example, only the character mod 6 appeared. This is caused by the fact 
that c , ( m ,  n ,  d) is determined by the condition of v (mod 6) .  We have 
already come across similar phenomena in our previous papers. For 
example, in 171, we needed the nontrivial character mod 4 in general, 
which give rise to the absolute constant C (see [7, Theorem 1.2]), but in 
some cases, we obtained the densities Aa(4,1)  = A,(4,3) = 116 (under 
GRH) and C did not appear. We can explain this "vanishing" of the 
absolute constant from the same viewpoint. Thus, if we take a = 10 for 
example, then c,(m, n ,  d) is not determined by the condition of v (mod 
6). Indeed, when 1 = 1,5 ,7 ,11,  c,(m, n ,  d) = 1 happens in the following 
cases: 

j 
theoretical 

experimental 

11 
0.071517 
0.071532 

4 
0.155099 
0.154655 

j 
theoretical 

experimental 

5 
0.071517 
0.071531 

o 
0.125000 
0.124955 

7 
0.032650 
0.032665 

6 
0.125000 
0.125067 

1 
0.032650 
0.032617 

8 
0.053234 
0.053736 

2 
0.053732 
0.053689 

9 
0.062500 
0.062595 

3 
0.062500 
0.062416 

10 
0.154601 
0.154542 
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(ii) gl = 2; 2 , 3  f d; 5 'i (md, n ) ,  

(iii-a) gl = 1; 2 , 3  )i d; 5 + (md, n ) ,  

g2 : odd, r = l , 5 ,  
(iii-b) gl = 1; 2 , 3  f d; 51(md, n ) ,  

g2:evenl r = 7 , 1 1 .  

gl : odd, r = 5 (mod 6): 
( 4  gl > 3, 2 f d, 3 'i n,  gl : even, r = 1 (mod 6), 

(ii) gl = 2, 2 4 d, 3 f n ,  5 + (md, n ) ,  r = 1 (mod 6))  

(iii-a) gl = 1, 2 1 d, 3 f n,  5 { (md, n),  r = 5 (mod 6))  

(iii-b) gl = 1, 2 i d ,  3 f n ,  51(md,n), r = 11. 

In such cases, it happens that  Aa(12,L)'s are indeed determined mod 12. 
We can observe it from the following experimental results: 

Remark 3. We not'ice that the distribution property of A5(12, j) are 
complicated. 

When 
j (mod 12) = jl (mod 4) x j2 (mod 3) 

Table 2. Experimental densities Alo(x;  12,L). 

in 21122 E 2 / 4 2  x 2 / 3 2 ?  we nai'vely expect 

1 

- local multiplicity -, but the following examples show that  the dis- 
tribution is not so simple. 

0 3 1 4 2 5 
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