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Abstract Let a be a positive integer and Q.{z;k,l) be the set of primes p <
z such that the residual order of a (mod p) in Z/pZ is congruent to
{ modulo k. In this paper, under the assumption of the Generalized
Riemann Hypothesis, we prove that for any residue class [ (mod k) the
set Qq(z; k,1) has the natural density A, (k,l) and the values of Ay (k, 1)
are effectively computable. We also consider some number theoretical
properties of Aq(k,[) as a number theoretical function of k and .
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1. Introduction

Let a be a positive integer which we assume is not a perfect b-th power
with b > 2 and p a prime number not dividing a. We define D,(p) =
#{a (mod p)) — the multiplicative order of a (mod p) in (Z/pZ)*, and
for an arbitrary residue class { (mod k) with k > 2, we consider the set

Qalz; k1) ={p <z : Dy(p) =1 (mod k)}
and denote its natural density by A4(k,[), to be precise,

gl 1) = lim Qal@ikD

o ()

where 7(z) =3 <, 1.
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In [1] and [7], we studied the case & = 4. There assuming the Gener-
alized Riemann Hypothesis (GRH), we proved that any Q,(x;4,() has
the natural density Aq(4,1), and determined its explicit value. In [2], we
extended our previous result to the case & = ¢", a prime power. On the
basis of these results, we succeeded in revealing the relation between the
natural density of Qq(z;¢" 1, 1) and that of Q,(z;¢",1). It is clear that,

for any r > 1,
-1

Aolgd™HD) =) Au(q 1+t
t

and we were able to verify that, when r is not “very small”, we have

=)

Il
o

) _ 1 1.
Ag(g",j+tg ) = E}'Aa(qr L),

for any ¢, — “equi-distribution property” — for details, see [2].
In this paper we study the most general case — k being composite.
Our main result is :

Theorem 1.1. We assume GRH, and assume a is not a perfect b-th
power with b > 2. Then, for any residue class | (mod k), the set
Qalx; k, 1) has the natural density Ag(k, 1), and the values of Ay(k, 1)
are effectively computable.

From this result, we find some interesting relationships between A, (k, 1)
and Ay (k',") with &'|k and I’ = (mod k').

In order to prove Theorem 1.1, we make use of two combined methods.

Let I,(p) be the residual index of a (mod p), i.e. I,(p) = |(Z/pZ)* :
(a (mod p))|. The first method is the one we already used in [1] and [7],
and consists of the following: in order to calculate the density A, (4, 1),
first we decompose the set Q,(x;4,1), which reads in terms of cardinar-

ity:
#Qa(z;4,1)

=3NS tp<a: Lp) =2 +1-272 p=1+27 (mod 2/+2)}
f>1120
+Y > #H{p<az: Lp) =3-2"+1-2/2 p=1+3.2/ (mod 2/+?)}
f>11>0
(1.1)

(cf. [1] formula (3.4)). We calculate all cardinal numbers on the right
hand side. In the process the calculations of the extension degree [Gy p 4 :
Q] and the coefficients ¢, (k,n, d) (r = 1, 3) play crucial roles (for details,
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see [1]). The technique used here is a generalization of that of Hooley
[5], in which under GRH he obtained a quantitative result on Artin’s
conjecture for primitive roots. This method is feasible again in this
paper (Section 2).

Let

k=pl'...p

be the prime power decomposition of k, where p;’s are distinct primes
and e; > 1. If [ satisfies the condition p{* 1 [ for any ¢, 1 < i < r, we can
apply the above method to such Q,(z;k,!)’s. Then we can prove the
existence of its natural density and can calculate it directly (Theorem
2.2).

Our second method is more elementary. For Qq(z; k,{) such that p{*|l
for some 7, we can prove in Theorem 3.1 that the natural density of such
Qa(z; k,[) is written as a linear combination of the densities of

Qa(z; k, 1"y with pf* {1’ for any 4,1 <1 <,
and those of
Qula; K, 1")  with K|k,

Then, by Theorem 2.2, we can prove inductively the existence of the
natural density of Q. (x;k, ) and determine simultaneously its explicit

value.
Here we remark that, if pf*|l for all 4, then I = 0 and we already have

a similar result in Hasse [3], [4] and Odoni [§].

2. Existence of the Density — [ not divisible by
any p;°

Let k= []}_, p{* as above and put { = hJ];_ 1pl " ((h,k) = 1). In this
section, we assume 0 < f; < e; — 1 for all i. For g; > fi, let

r
K=k, .. .,9-) = sz'i and k" =k"(g1,...,¢ Hpeﬁgl
i=1

Then under GRH, we can prove the existence of the density A, (k,!) in
a similar manner to that of [2, Section 2]. In fact, we can decompose
the set Qq(xz; k, () which reads, in terms of cardinality,

Lemma 2.1. Under the above notations, we have

1Qalzi k)= D - > > > §Na(wsmi 1+ vk (mod k")),

g12.f1 gr>fr O<v<k t>0
(v,k)=1

(2.1)
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where

Ny(zym; 1+ vk’ (mod k")) = {p <z :I(p)=m, p=1+vk’ (mod /f”)},

T

T r
m = {EU (mod pri_fz’) +thfi—fi} ) Hpii_fi (2.2)
i i=1 i=1

=1
and where hh = 1 (mod T, pfi—fz‘)‘

Proof. The proof goes on the same lines as in [2, Lemma 2.2] and is
omitted. O

This decomposition turns out to yield the existence of the density A (k, ).
Before stating the main theorem of this section, we introduce some no-
tations. For k € N, let {, = exp(2ni/k). We denote Euler’s totient by
(k). We define the following two types of number fields:

Gm,n,d = Q(al/mn, Cmcb Cn)v

Gm,n,d - Gm,n,d (Ckk’)-

Grnd = Q(Cns Gmay /™)

/ Q(Crar)

Q

We take an automorphism o, € Gal(Q((xr)/Q) determined uniquely
by the condition oy, : (e — Ck}j”kl 0 < v <k (vk) = 1), and
we consider the automorphism ¢ € Gal(Gynn.q/Gmn.a) which satisfies
o51Q(e,) = Ov- We can verify that such a o} is unique if it exists (see

[1, Lemma 4.3]).

Theorem 2.2. Let k and | be as above. Then under GRH, we have

. X
1Qa(z; k1) = Dok, Dli 2 + O <loga:loglog$>
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as x — oo, where

DIEED MDD B B W

gzh gr2fr (O<]g)<k t>0 d\m n=1
=1

(2.3)
The series on the right hand side always converges, the number m s
defined by (2.2) and

B 1, if o} exists,
co(m, n, d) = { 0, otherwise.

Remark 1. When (1 + vk’ k) > 1, we define ¢,(m,n,d) = 0 (in this
case o, does not exist).

Proof. We can prove this theorem similarly to [1, Section 4], and so we
state the outline only (see also [2, Section 2]). From (2.1) we have

iN, <:C; m; 1+ vk’ (mod /c”))

=& 1. Q 20m0) > ’u(dd) ﬁB(m;Km;al/m;md;1+vk’ (mod k“)),
m: dlmo

where Km = Q(Cmoy al/m)’ mo = Hp|m, piprime D,

B(m;Km;al/m;N; s (mod t))
_ _ a prime ideal in Ky, Np=p! <z,p=1(mod N),
N " p=s (modt), a¥/™ is a primitive root mod p

and Np is the (absolute) norm of p. Next we define
P(a:;Km;al/m;md;s (mod ¢);n)
a prime ideal in K, s.t. Np = p* < z,p =1 (mod md),

=<{p: p=s (modt), and the equation X¢ = a!/™ (mod p)
is solvable in O, for any g|n.

Then we have
ﬁB(x- Ko 0™ md; 1 + vk’ (mod k”))

Z wun )ij(x Ky aV™: md; 1+ vk/ (mod k”);n)

( z(loglog z) >
log® ’
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where Z/n means the sum over such n < z which are either 1 or a square
free positive integer composed entirely of prime factors not exceeding
(1/8) log z, and the constant implied by the O-symbol depends only on
a, k and [ (see Propositions 4.1 and 4.2 of [1]).

By the uniqueness of o, we can prove similarly as in [1, Proposition
4.4],

ﬁP<w; Kom;a*™; md; 1 + vk’ (mod k”);n)
= 7(2; g/ Km, {07}) + O(m*V),

where

) _ ~a prime ideal in K, unramified in L,
L0 =5 (N e e

for a finite Galois extension L/K and a conjugacy class C in Gal(L/K),
(p, L/K) being the Frobenius symbol. The constant implied by the O-
symbol depends only on a, k£ and [. 3

We can estimate [G, .4 @ K] and the discriminant d@m,n . of Gynn,d

as follows:
~ d

(Grmnd: Km] = (5m ~mnp(n)

and
loglds | < (mnd)® log(mnd),

where § and the constant implied by <« depends only on a, & and [ (the
proof is similar to [1, Lemma 4.6]). This estimate is based on Lagarias-
Odlyzko [6].

By Lemma 2.1, §Qq(x;k,1) is the infinite sum of §N, (z;m;1 + vk’
(mod k"))’s, and the above results show that each §N,(z;m;1 + vk’
(mod &")) is the sum of 7(z; Gyna/Km, {o*}) plus error terms. The
sum of these main terms gives rise to the main term Ag(k, 1) x li(z).
And, in a similar way as in [1], we can estimate the sum of the error
terms by O(zlog™ 'z loglog™'z), completing the proof. [

3. Existence of the Density — [ being divisible
by some p;*
In this section, we shall prove the following result:

Theorem 3.1. If | is divisible by some pS*, then Qq(x;k,l) has the
natural density Ag(k,1) and we can calculate it effectively.

We prove this theorem by induction on » — the number of distinct
prime factors of k.
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For k& = p{*, our assertion is true by [2].

For k = []_, p{" — the general case — we assume, without loss of
generality,
pri =pft .. p%.
pitll

If s =0 (i.e. [is not divisible by any p:*), our assertion is true by
Theorem 2.2, and so we assume s > 1 and put lp = p§' ... p%.
Write

k k
[=mog+ng—, 0<mg< —

lo lo
and consider the decomposition:

lo—1

Qu (w3 2m0) = | Qu(wikymo + n). (31)
n=0

For j > s + 1, since pjj}% and pjj {1, then for any n, pj-j does not

divide mg + nllz— So we have, for any n,

. k
j:t{j : p? mo+n—}§s.
J lo
Moreover the condition
. ; k
ﬁ{] . py mo+n—}=s
lo

is satisfied, if and only if,

{j ;P

In‘fact, { - pjj|mo + no%} = {1,2,...,s} is clear, and if #{j
p?lmo -+ n’%} = s for some n/, then [y divides both mg + n’z% and
mo + nO%, thus n’ = ng. Therefore, except for Qu(z;k, 1), all other
Qalz; k,mo + n%) appearing in (3.1) satisfy

ﬁ{j :py

and for those Qq(z;k, mo + n%) we know the existence of its natural
density, from the induction hypothesis. And, also from the induction
hypothesis, the set on the left hand side of (3.1) has its density. Then
we can conclude that Qq(x;k, ) has its natural density.

k
mo -+ n—

}:{1,2,...,5} and n = ng.
lo

k
mo +n—} < s,
lo
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This proof provides an algorithm to determine the density Ag(x; k, (),
but it is difficult to write down the pervading formula in general. In
the next section, we will present a numerical example and clarify the
contents of Theorem 3.1.

4. Some numerical examples

We take ¢ = 5 and & = 12 = 22. 3!, Unconditionally, we have
As(12,0) = 1/4.

For such an [ with 22 { [ and 3 1 [, we can apply Theorem 2.2, and get
the densities :

A5(127 1)7 A5(127 2), A5(127 5)7 A5(12a 7)7 A5(127 10)7 A5(127 11)

First we state the results for these densities. We can determine the value
cy(m,n,d) in Theorem 2.2 similarly to [2, Section 3]:

Proposition 4.1. We assume GRH and let a = 5, k = 12. Then we
have the following:

(I) Whenl =1, 5,7, 11, the value c,(m,n,d) in (2.3) is given as follows:
() If g1 > 1 and g2 > 1,

[ 1, if2{d and 314,
Cv(m:n’ d) - { 0, otherwise.

(i) If g1 > 1 and g2 = 0, then cy(m,n,d) =1 if and only if
(a) 21d,31n, g1: odd, v="5 (mod 6) or
(b) 2td, 3tn, g1 even, v =1 (mod 6),
and cy(m,n,d) = 0 in all other cases.
D)

(II) When | = 2, 10, the value cy(m,n,d) in (2.3) is given as follows:
(1) ffglzlcmdgzzl

_ [ L if3td,
cy(myn, d) = { 0, otherwise.

(ii) If g1 > 1 and g2 = 0, then cy(m,n,d) = 1 if and only if
(a) 3tn, g1 odd, v=">5 (mod 6) or

(b) 31n, g1 even, v =1 (mod 6),

and cy(m,n,d) = 0 in all other cases.

We can also calculate the extension degree [ mmn.d : Q] (see [2, Lemma
3.3]). In the following lemma, (mj, -+, m,) means the least common
multiple of mq, -+, my.
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Lemma 4.2.

mngp({md, n, 201 7239274)),

smne((md, n, 201239211,

[ém,n,d : Q] = {

19

where the latter case happens if and only if mn is even and 5|{md,n).

Now we can transform the series (2.3) for a = 5, k = 12 and [ =
1,2,5,7,10,11 into an expression involving some Euler products. The

proof is similar to [7, Section 5] (see also [2, Section 4]):

Theorem 4.3. Let x be a nontrivial character of (Z/6Z)%.
the constant C by

-~ __ p(l=x(p)
=11 <1 <p—1><p2—x<p>>>

p:prime
p#2,3

—2p N
= JI (1 - m) ~ 0.86989.

p.prime
p=5 (mod 6)

Then under GRH, we have the following:
(I) Forl=1,5,7,11,

1 1 126
As(1 = — 4+ — (55— x(l)— .
512, = 55 * 130 <5 X7z CX)
(IT) Forl =2, 10,
5 109
As(12,6 £4) = —+ —C,.
s(12,6 £4) = 75+ 755 K
Theoretical approximate values are
As(12,1) = As(12,7) = = — 2L o~ 0.03265
5 ’ = &5 ’ - 96 940 ~ Y. )
) 21
As(12 = A5(12,11) = — + —C ~ 0.07151
5(12,5) 5(12,11) 96+94OC 0.07151,
5 109
A5(12,2) = — - ——C =~ 0.
5(12,2) 18 1880C 0.053732,
As(12,10) = — + 29 o« 0.154602.

48 1880

We define
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For the remaining values of [, i.e. for [ = 3, 4, 6, 8 and 9, we have by
Theorem 3.1,

As(12,3) = As(4,3) — As(12,7) — Ag(12, 11) = 1—16

As(12,6) = As(4,2) — As(12,2) — Ag(12,10) = %

As(12,9) = As(d,1) — As(12,1) — As(12,5) = %
and
As(12,4) = As(3,1) — As(12,1) — A5(12,7) — As(12,10) = % - %C,
As(12,8) = As(3,2) — As(12,2) — A5(12,5) — As(12,11) = i + 3—%0.

Consequently, we can determine all densities.
Numerical data seem to be well-matched with these theoretical den-

sities. In the table below, As(z;12,0) = 1Qs(z;12,1)/7(z) at = =
179424673 (107 th prime).

Table 1. Experimental densities Ag(z;12,1).

j 0 1 2 3 i 5

theoretical 0.125000 | 0.032650 | 0.053732 | 0.062500 | 0.155099 | 0.071517

experimental || 0.124955 | 0.032617 | 0.053689 | 0.062416 | 0.154655 | 0.071531

J 6 7 8 9 10 11

theoretical 0.125000 | 0.032650 | 0.063234 | 0.062500 | 0.154601 | 0.071517

experimental || 0.125067 | 0.032665 | 0.053736 | 0.062595 | 0.154542 | 0.071532

Remark 2. When considering Aq(12,(), one may expect that one
would encounter the multiplicative characters mod 12, but in the above
example, only the character mod 6 appeared. This is caused by the fact
that ¢,(m,n,d) is determined by the condition of v (mod 6). We have
already come across similar phenomena in our previous papers. For
example, in [7], we needed the nontrivial character mod 4 in general,
which give rise to the absolute constant C' (see [7, Theorem 1.2]), but in
some cases, we obtained the densities Ag(4,1) = Ay(4,3) = 1/6 (under
GRH) and C did not appear. We can explain this “vanishing” of the
absolute constant from the same viewpoint. Thus, if we take ¢ = 10 for
example, then ¢,(m,n,d) is not determined by the condition of v (mod
6). Indeed, when [ = 1,5,7,11, ¢,(m,n,d) = 1 happens in the following
cases:

(I) If g2 > 1,
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(ii) g1 =2;2,31d; 51 (md, n),
(lll_a) g1=1;2,3 )( d; 5)f <md7 TL>7
g2 : odd,

(ili-b) g1 = 15 2,31 d; 5|(md, n), { g : even,

(I1) If go = O,
(mod 6),
)

=5
1)9123,2Td,3*n’{ =1 (mod 6
(

)

(i

(ii) g1 =2, 24d, 31n, 51 (md,n), r =1 (mod 6),
(ii-a) g1 = 1, 21d, 31 n, 5t (md,n), r =5 (mod 6),
(iii-b) g1 = 1, 2t d, 3t n, 5|(md,n), r = 11.

gr:odd, r
,

g1 : even, ,

21

In such cases, it happens that A,(12,1)’s are indeed determined mod 12.

We can observe it from the following experimental results:

Table 2. Experimental densities Ajg(xz;12,1().

[ 0 1 2 3 4 5
Arp(z; 12,1) || 0.124991 | 0.028384 | 0.062410 | 0.062506 | 0.148836 | 0.075796 |
{ 6 7 8 9 10 11

Aro(z;12,1) || 0.125061 | 0.034013 | 0.059552 | 0.062442 | 0.145885 | 0.070125

Remark 3. We notice that the distribution property of As(12,j) are

complicated.
When
J (mod 12) = 71 (mod 4) x 75 (mod 3)

in Z/12Z = Z/4Z x Z/3Z, we naively expect

As5(12,7) = As(4, j1)A5(3, J2)

— local multiplicity —, but the following examples show that the dis-

tribution is not so simple.

3

AS(?’?O) = g

3

1 As(3,1) = 5
1

As(3,2) = 1
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A5(12,9) = —
5 ) - 16
1 5 21
As(4,1) = = A5(12,1) = — — —
s 1) =3 5121 = 55 ~ 519
5 21
A5(12,5) = — + —C
5(12,5) = 55 * 530
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