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Abstract: In this chapter, EHW is applied to the lossless image compression, and it is
implemented in a chip. The current international standard for bi-level image
coding, JBIG2-AMD?2, is modified by the proposed method to achieve high
compression ratios, where compression parameters are optimized by the en-
hanced genetic algorithm (GA). The results of computer simulations show a
171% improvement in compression ratios with the proposed method compared
to JBIG2 without optimization. The experiment shows that when the method is
implemented by hardware with an evolvable hardware chip, the processing
speed is dramatically faster than execution with software. This chapter also de-
scribes activities concerning ISO standardization to adopt part of the technol-
ogy used in this method to the JBIG2 standard.
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1. INTRODUCTION

Since the emergence of Desk Top Publication (DTP) in the graphic (im-
aging, printing and publishing) industry, digital image data has been handled
in many ways, such as with digital printers, on-demand printing/publishing
(ODP), and so on. On the other hand, the large costs for storage and transfer
of an enormous amount of huge images have become a serious problem. For
example, the electrophotographic printer must have the large storage and the
broad data-bus to process many high-resolution images quickly. In the case
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of the on-demand publishing/printing, the large costs involved in transmis-
sion and storage pose serious problems to their practical use because the size
of the data becomes extremely large for commercial printed matter with high
resolutions.

To overcome these problems, image data must be compressed as much as
possible and must be restored to its original state very quickly. Unfortunately,
traditional data compression methods cannot satisfy these requirements, be-
cause the image data used in the printing/publishing industry have distinctive
characteristics.

In this chapter, Evolvable Hardware (EHW) is applied to a data compres-
sion system. The proposed method has the following 4 features; (1) adoption
of JBIG2 (ISO/IEC Int. Stand. 14492, 2001), the latest international standard,
as basis, (2) introduction of a simplified initialization procedure for effective
analysis in the genetic algorithm (GA) (Holland, 1975), (3) simplification of
the evaluation procedure, and (4) enhanced crossover operations. The results
of computer simulations show that the proposed method has a compression
ratio that is 171% better than that of JBIG2 without optimization.

We have developed an EHW chip for the proposed method. The result of
an experiment using the chip has demonstrated that the compression ratio is
higher than for conventional data compression chips, and, moreover, that the
speed is dramatically faster than with software execution.

2. LOSSLESS COMPRESSION OF HIGH-
RESOLUTION GRAPHIC ART IMAGES

2.1 Image Data for Graphic Arts

In general graphic arts technology, color images are basically trans-
formed into four high-resolution bi-level images before going to press, be-
cause press machines can only represent two levels (inked or not-inked).
These bi-level images correspond to four colors (cyan (C), magenta (M),
yellow (Y) and black (K)). Differences in brightness are represented by vary-
ing the density and size of the ink dots, known as halftone dots, which are
composed from bi-level pixels located on a fixed rectangular grid.

Thus, the graphic arts images have the following features:

Sets of bi-level images,

Very high resolution, and

Large frequency with which the pixel values switch is high in both the

horizontal and vertical directions of a raster scan.

Traditionally, because the image data must be compressed in lossless
fashion (reversibly) to avoid distortion or degradation in press quality, MH
(Modified Haffman), MR (Modified Read) (CCITT Recommendation T.4,
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1998) and MMR (Modified Modified Read) (CCITT Recommendation
T.6, 1998) methods, which are well-known international standards for fac-
simile, have been used for encoding. These methods are based on run-length
coding. MH uses a one-dimensional model, while a two-dimensional model
is adopted in MR and MMR (the principle in MMR is the same as that in
MR, but some etror correction mechanisms are eliminated to achieve higher
compression efficiency). These methods provide fairly good compression for
line-art or text images. However, these methods are unsuitable for data
where the switching frequency for pixel values is high, like halftone images,
because they code the positions where pixel values are switched for each line.

In contrast, JBIG, a template-based arithmetic coding method (Sayood,
2000), was a general-purpose compression method for bi-level images, and
JBIG2 (ISO/IEC Int. Stand. 14492, 2001) was standardized as its successor
in 2000. JBIG2 was designed to upgrade the lossless JBIG encoding method
and to add a lossy compression mode based on pattern matching. As lossy
encoding is not relevant to the compression of graphic art images, this chap-
ter focuses only on the lossless encoding mode in JBIG2.

2.2 Lossless Image Compression with JBIG2

The template-based arithmetic coding method is based on the hypothesis
that the probability of a given “pixel to be coded” having a specific value
depends on the values of a limited number of preceding pixels. In JBIG2, the
MQ-Coder is adopted as an arithmetic coder; we shall limit our discussion
here to this template-based coding method because a detailed explanation of
the MQ-Coder would be beyond the scope of this chapter (the principle of
arithmetic encoding and the procedure for the MQ-Coder are detailed in (Sa-
yood, 2000) and (ISO/IEC Int. Stand. 14492, 2001), respectively).

In JBIG2 and its enhanced version called JBIG2-AMD?2 (ISO/IEC Int.
Stand. 14492/Amd.2, 2003), 16 pixels preceding the pixel to be coded are
observed in calculating the probability that it takes a specific value {0, 1}.
This probability is used to predict the values of the pixels to be coded, and
the accuracy of prediction strongly influences the compression efficiency.
Here, these observed pixels are called “reference pixels,” and the configura-
tion of their positions is called a “template.” Figure 2-1 is a diagram of the
template consisting of 16 reference pixels used by JBIG2-AMD?2. The ques-
tion mark in the figure represents the pixel to be coded and is not part of the
template. While the positions for the 4 reference pixels are fixed, as marked
with a #, there are also 12 special reference pixels called the adaptive tem-
plate (AT) pixels, indicated in the figure as A; {i = 1, ..., 12}. AT pixels can
arbitrarily change positions within the range marked by the dotted line to
achieve higher prediction accuracy and, in turn, higher compression effi-
ciency.
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However, it is a very difficult problem to optimize AT pixels according to
the characteristics of images to be compressed. Therefore, the next section
proposes an extended GA to optimize the configuration of the template of
JBIG2-AMD?2 quickly and efficiently.
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Figure 2-1. Default configuration of JBIG2-AMD?2 template

3. EXTENDED GA FOR TEMPLATE
OPTIMIZATION

Since the basics and procedures of GA are already described in the previ-
ous chapter, this chapter shows some of the modifications and enhancements
for the problem of optimizing the JBIG2 templates.

3.1 Coding of Chromosomes and Initialization of a
Population

As each AT pixel exists within an area of 256 X 128, as shown in Fig-
ure 2-1, its location can be specified by 15 bits. If the number of AT pixels is
M, then the total length of a chromosome is 15M bits. The enhanced tem-
plate proposed in this chapter has 12 AT pixels, so the length of the chromo-
some is 180 (=15 x 12) bits, as shown in Figure 2-2. In the computational
simulation described later, the population consists of 30 chromosomes.

An initial population is usually generated at random, although some GAs
adopt a kind of biased initialization, based on certain information related to
the problem. For example, in our previous method, the initial population was
generated from a seed template by a mutation operation that was derived
from a multiple regression analysis (Sakanashi, 2001). However, the compu-
tational complexity of the multiple regression analysis was enormous. Ac-
cordingly, in this chapter, the seed template is determined by assigning refer-
ence pixels one by one based on their degree of correlation to the pixel to be
coded.
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In order to calculate the degree of correlation between the pixel to be
coded and each candidate AT pixel, it is necessary to scan the entire image to
check whether the pixels are of the same value. Defining image size as XY,
because the number of AT pixel candidates is approximately 256 X 128, the
number of observations and comparisons required will be XY X 256 x 128.
When the image size is small, the number of calculations would not pose a
major problem. However, because graphic art images have very high resolu-
tions, this number becomes extremely large. For example, as an A4 image
with a resolution of 2400 dpi consists of roughly 20000 x 28000 pixels, ap-
proximately 1.8 x 10" observations and comparisons would be needed to
calculate the correlations.

Thus, to reduce the number of comparisons between pixel values, the de-
gree of correlation is only checked for pixels to be coded, which are stochas-
tically selected at a probability P, and the respective candidate AT pixels.
Investigating this Py, probability in a second preliminary experiment, we
found that a template of sufficient quality to serve as the seed template in
initializing the population can be obtained with Py, = 5000/XY, which is the
Py value used in this chapter.

In the proposed method, one chromosome in the initial population is the
bit string representing this seed template, with the remaining chromosomes
being created by mutating this chromosome at twice the mutation rate to be
explained later.

......
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Figure 2-2. Coding of chromosomes

3.2 Random Partial Evaluation

As the objective function to calculate the fitness value of a chromosome,
the proposed method uses the inverse of the compressed data size achieved
by the template represented by the chromosome. Thus, a chromosome repre-
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senting a good template that compresses the image data well will have a

higher fitness value.

Incidentally, although it would be possible from an information theory
perspective to use entropy as the fitness value rather than the compressed
data size, there are two reasons, examined in preliminary experiments, for
not doing so: (1) there are no significant differences between the costs for
executing the MQ-Coder and for calculating entropy. (2) As the MQ-Coder
can dynamically learn the statistics of the given data sequence, the template
with the lowest entropy calculated in a static way does not always yield the
maximum compression ratio.

Employing the compressed data size for evaluation, however, means that
the image data must be repeatedly compressed to obtain the fitness value for
each chromosome. The number of times the image data must be compressed
will be N x G times, where N is the population size and G is the number of
generations until the termination. Although the easiest way to reduce the
evaluation costs is to only use a small part of the image rather than the entire
image, evaluation accuracy and the reliability of the fitness value would de-
teriorate, making it impossible to discover the best template yielding the
greatest compression efficiency.

Accordingly, this chapter proposes a procedure to solve this problem,
consisting of the following two steps:

e Evaluation of the chromosomes is carried out using a small area of the
entire image. The location of this area is changed at random, if a new best
chromosome fails to emerge in the population within a given generation
interval, Giyervar. (If the location of the area is changed at every generation,
the GA will fail because it cannot cope with such drastic fluctuations in
the evaluation criteria.)

¢ When a new best chromosome does emerge, a hillclimb search is exe-
cuted with this chromosome as the starting point. To avoid over-fit to the
small area of the image, in the hillclimb search the pixels for evaluation
are chosen from the entire image at a probability Ps.mpicpixel-

In this chapter, this procedure is referred to as “random partial evalua-
tion,” and the computational simulation described later uses the following
parameters: Ginterval = 20, Psampiepixet = 0.005, and an area size of 1024x1024
pixels.

33 Genetic Operations with Template Crossover

This section proposes a new crossover operator suitable for template op-
timization. For other genetic operators, this chapter adopts existing methods
such as tournament selection (Goldberg, 1991) and bit-wise point mutation.
In the computational simulation in the next section, 80% of the chromo-
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somes are chosen by tournament selection with a tournament size of 2, and

the mutation ratio is 1/180.

In the template representation, there is no notion of order for the refer-
ence pixels. That is, if the AT pixels Al and A2 in Figure 2-2 were ex-
changed, we would obtain the same compressed data. However, the pixels
must be arranged in a certain order within the chromosome representation
and this causes a serious problem.

If a simple 1-point crossover method is used, chromosomes with com-
mon reference pixels are frequently generated. For example, Figure 2-3 illus-
trates a case where the chromosomes C1 and C2 are generated by the 1-point
crossovers of P1 = A|B|C|D and P2 = C|D|E|F. These chromosomes represent
the templates PT1 and PT2, consisting of the set of reference pixels
{A, B, C, D} and {C, D, E, F}, respectively. With the crossover point be-
tween the second and third pixels, one child, C2 = C|D|C|D, would unfortu-
nately contain only two unique reference pixels, as shown as CT2 in the fig-
ure. Because the compression ratio generally tends to be higher when the
number of pixels is larger, a chromosome representing a template with over-
lapping reference pixels will have a poorer evaluation.

Thus, in this chapter, we propose a special crossover procedure called
template crossover, as follows:

1. A pair of chromosomes, P1 and P2, is compared to identify any common
reference pixels, Pcommon-

2. If present, common reference pixels are removed from P1 and P2, respec-
tively, to produce P1’ and P2'.

3. Ifthe lengths of P1' and P2’ are 0, P2 is mutated and the process is termi-
nated.

4. Otherwise, reference pixels in P1’ and P2’ are exchanged in a fashion
similar to bit-wise uniform crossover, with the results being defined as
P1” and P2".

5. Finally, Peommon is concatenated at the ends of both P1” and P2”, with the
results overwriting the original P1 and P2, respectively.

The check in step 3 for the lengths of P1" and P2’ ensures that identical
templates never appear in the population. Moreover, this elimination of re-
dundancy efficiently reduces the search space and so contributes to improve
GA search efficiency. Because a template with m reference pixels can be rep-
resented in (,,P,, = m!) different ways as chromosomes, the number of redun-
dant evaluations is greatly reduced by removing identical chromosomes.

The parameters of the proposed method mentioned above are summa-
rized in Table 2-1.
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Figure 2-3. Example of a template with overlapping AT pixels being generated by a one-point
crossover operation

Table 2-1. Parameter settings

Population size 30

Length of chromosome 180

Max generation 10000

Selection method Tournament selection
Crossover method Template crossover
Crossover ratio 0.8

Mutation method Bit-wise point mutation
Mutation rate 1/180

Pyon 5000/[Image size]
Sample area size for evaluation 1024 x 1024

Ginterval 20

PSamnlePixel 0.005

4. COMPUTATIONAL SIMULATIONS

This section presents the results of the computational simulations exe-
cuted to examine the performance of the proposed method. This experiment
used a set of test images containing the cyan and magenta images of N5, N6
and N8 in SCID (ISO/IEC Int. Stand. 12640, 1997), which were processed
by raster image processor (RIP) to decompose the color image into the four
bi-level images and to increase the resolution to 2400 dpi. They were chosen
as a test image because they have the medium, smallest and greatest entropy
levels of the eight images in SCID. Similarly, the cyan and magenta image
has a larger level of entropy than the yellow and black images.
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Firstly, to verify the effect of extending the GA for template optimization,
an experiment was carried out with the 4 conditions shown in Table 2-2, us-
ing only the cyan N8 image.

Figure 2-4 shows a graph plotting the mean best fitness values achieved
in 3 runs for each condition. As the evaluation areas changed at random pe-
riods, the fitness values fluctuated sharply, making it difficult to differentiate
the performances across the 4 conditions.

The graph in Figure 2-5 plots the compression ratios rather than the fit-
ness values, and Figure 2-6 is a close-up of Figure 2-5. These show that
compression ratios improved as the GA search progressed, which is almost
saturated within 1000 evaluations in every condition, and one of our future
tasks would be to develop the appropriate termination criteria.

Looking at the contrast between the pairs of conditions [i]+[iii] and
[ii]+[iv], which differ in terms of whether initialization was based on corre-
lation analysis, the fact that the results for [iii] and [iv] are respectively bet-
ter than [i] and [ii] indicates that the proposed population-initialization
method effectively boosts the search performance of the GA.

Moreover, we can observe that the results for [ii] and [iv] are better than
[i] and [iii] even though the initial populations were the same for the pairs of
conditions ([i]+[ii] and [iii]+[iv]). This fact demonstrates the efficiency of
the template crossover operator, which was adopted in the conditions [ii] and
[iv] but not in conditions [i] and [iii].

Table 2-3 provides the results of the simulations executed to compare the
performances of (1) IBIG2-AMD?2 with the default template, (2) our method
only with the initialization, and (3) the complete proposed method with the
enhanced GA (condition [iv]). This table shows that the proposed method
can achieve much better compression ratios than the default state of JBIG2-
AMD?2.

Additionally, the compression ratio achieved by the initialization-only
method is about 16.6% ~ 99.7% better than JBIG2-AMD?2 with the default
template, although there is little difference between them in terms of compu-
tational costs. We can say that, from the viewpoint of practical use, it is a
very reasonable performance in terms of compression efficiency and proc-
essing speed.

Table 2-2. Simulation conditions as a function of the proposed genetic operators
Template crossover
OFF ON
Initialization with . OFF [i] [1i]
correlation analysis : ON [ii] [iv]
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Table 2-3. Comparison of compression ratios
JBIG2-AMD2 Proposed method
(Default template) (Initialization-only) (Condition [iv])

N5 C 6.58 9.47 (+44.0%) 10.82 (+64.5%)

M 6.42 8.88 (+38.4%) 9.90 (+54.3%)
N6 C 6.10 12.18 (+99.7%) 16.58 (+171.9%)

M 5.56 10.30 (+85.3%) 13.34 (+140%)
N8 C 4.99 5.90 (+18.3%) 6.51 (+30.5%)

M 5.15 6.00 (+16.6%) 6.49 (+26.1%)
Process time 33 sec. 45 sec. 1.2 hours

1.1

1.0 -

0.9 -

0.8 —

Fitness (x10)

0.7+ 5

0.6 —

----- condition |
-~ nition 11

—— gondition 1l
— gondition IV

T T
6 8

Evaluation (x1 o® ¥

Figure 2-4. Learning curve

Compression Ratio

I
10

- condition |
— condition I
- econdition [l
= condifion IV

o 2 4

T T 1
6 8 10

Evaluation (x10%)

Figure 2-5. Improvements in compression ratios



2. EHW Applied to Image Data Compression 29

12.2
12.0 -
o
B 11.8-
fid
g 11.6 —
E .
% 11.4 —
8 ““Zcondition |
11.2 — — condition 1l
e o R B conditionlll
1.0~ — condition IV
T T T 1
0 2 4 10

]
Evaluation {x10%)

Figure 2-6. Improvements in compression ratios (close-up)

S. IMPLEMENTATION OF THE EVOLVABLE
HARDWARE

As described in the previous section, our proposed method provides very
high compression efficiency. However, from the practical perspective of use
in the graphic industry, it is also necessary to implement high-speed com-
pression/decompression because the data for the graphic art images handled
by this method is huge. In this section, we explain the implementation of
evolvable hardware (EHW) to speed up this method.

5.1 Architecture

The data compression EHW chip consists of a template optimizer, a data
compressor, and an evaluator, as shown in Figure 2-7. In this implementation,
both template optimization and evaluation are executed on the host PC. We
adopted this kind of implementation because the systems that would employ
our proposed compression method, e.g. electrographic printers, are equipped
with the latest CPUs that can execute these procedures sufficiently and
quickly for practical use. Moreover, processing with high flexibility becomes
possible by executing optimization and evaluation on a PC. In addition,
when our compression technique is in practical use on electrographic print-
ers, only fast compression and decompression are required. In most cases,
optimization and evaluation are executed in advance before the equipment is
manufactured, and then the results are embedded in the equipment. For these
reasons, this chip is optimized for practical use.
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In the trial chip, which we discuss in this section, the area of the template
is limited to 32 x 8 pixels with 10 reference pixels (Figure 2-8). In this case,
8 bits are required to specify the location of each reference pixel, so a tem-
plate can be represented by 80 bits.

A block diagram of the chip is shown in Figure 2-9. The chip mainly
consists of an MQ-Coder (ISO/IEC Int. Stand. 14492, 2001), which is
the encoder/decoder, an image data memory that stores the input data, a ref-
erence buffer, and a context generator (shown as the hatched areas in Fig-
ure 2-9).

In order to execute the encoding/decoding procedures in parallel, and
thus speed up processing, a feature of this architecture is the incorporation of
two MQ-Coders.

The specifications of the sample chip are shown in Table 2-4, and a lay-
out image of the chip is shown in Figure 2-10.

Compression Ratio

Template Optimizer [ d—

Evaluator
Template

Compressed
Image___g,.| pata Compressor 4’ 3

Data Data

Figure 2-7. Configuration of the data compression system for our method
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Figure 2-8. The area of the template in the chip

5.2 Elements of the Chip
5.21 Image Data Memory
The image data memory stores each line of the image data so that the ref-

erence buffers can extract reference areas efficiently from the image data.
The size of this memory is 320 words X 32 bits X 9 lines. Each line in the
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memory holds one line of image data. If a line of image data is longer than a
line of memory, then the image data line is divided into memory-line length
units at preprocessing. The PC accesses the memory in 32-bits groups. The
lines are updated whenever a process is completed. Accordingly, this mem-
ory always holds the areas for extraction by the reference buffers. The mem-
ory is divided into two groups at the middle of each line, which are used by
reference buffer 1 and 2, respectively.

Image Data, Template

32
—-—>| 110 Cohtroller 1‘-—————
Shift =} image Data Memory Write Controller}: Shift
Register Register
i
_Registers Read Controller Registers
I

RAM 2

—

[ BROM?2

[ RAMT ]
v
[ ROM1 |

Compressed Data
I/0 Controller 1

Compressed Data
1/O Controller 2

8
Compressed Data 1

8
Compressed Data 2

Figure 2-9. Block diagram of the chip
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Figure 2-10. Layout image of the chip

Table 2-4. Sample chip specifications

Technology 0.18um CMOS

Package 160 pin QFP plastic

Die Size 5.14 mm X 5.19 mm

Gate Count about 56,000

Clock Frequency 133 MHz (maximum)
Supply Voltage 1.8 V (internal), 3.3 V (I/0)
Acceptable Image Size 10,240 X 65,536 (maximum)

5.2.2 Reference Buffer

The reference buffers are buffers for the reference areas of the templates.
This chip has two buffers corresponding to the two MQ-Coders. Each refer-
ence buffer has two buffers of 64 bits X 8 lines, as shown in Figure 2-11. The
data stored in the buffer represents the reference area of a template and is
extracted from the image data memory (Figure 2-12). In the extraction pro-
cedure, the data is extracted by shifting the reference area in one-word
(32 bits) increments, with each data set being stored into buffers A and B in
turn. At the edge of an image, the data is clipped so that one-word of data
protrudes from the edge, as shown in Figure 2-12. Data outside the image
border is set with a pixel value of 0. The data assigning each column, as
shown at the top of Figure 2-11, is used to match the data into the columns in
Figure 2-12. The data is clipped in this way in order to efficiently process the
data across each word. For example, a reference area crossing the border of
the image would be processed with the data in the buffer A in Figure 2-11,
and an area covering word0 and wordl would be processed with the data in
the buffer B. The buffers are updated after the processes using the buffers are
complete.
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Figure 2-11. A reference buffer
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Figure 2-12. Extraction of reference data from the image data memory

5.2.3 Context Generator

The context generator generates a context (10 bits) from a template
stored in the register and the data for a reference area in the reference buffer.
A context, which is used by MQ-Coder, is the values of the 10 reference pix-
els for a template. The circuit mainly consists of 10 multiplexers of
240-inputs and 1-output. The multiplexer extracts the pixels specified by the
template from the 240 pixels in the reference area of the template (Fig-
ure 2-8).

In this method, because the circuit in the context optimizer is optimized
for each image, a template is selected in the learning mode as being optimal
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for that image. Thus, in this system the context optimizer has the same role
as the reconfigurable device in EHW.

524 Encoder/Decoder (MQ-Coder)

The encoder/decoder used here is the same as that in the international
standard for bi-level image encoding, JBIG2. It executes arithmetic encoding
using pairs of context (10 bits) and a pixel value (1 bit). The circuit is
based on the specification of JBIG2 (ISO/IEC Int. Stand. 14492, 2001) and
JBIG2-AMD?2 (ISO/IEC Int. Stand. 14492/Amd.2, 2003). The chip has two
MQ-Coders executed in parallel. The RAM and the ROM placed in front of
each MQ-Coder are also defined in the JBIG2 specifications.

5.25 Other Components

There is an I/O controller for the data I/O control between the chip and
the PC. A shift register is used in decompression to send the decompressed
data immediately into the image data memory and the reference buffers.

5.3 Execution Procedure
5.3.1 Compression

The procedure for compressing one image is as follows:
(1) Set a template in the control register.
(2) Setimage data in the image data memory.
(3) Compress the data for one line. (The subprocedure is shown in (a) — (¢).)

(@ Clip data of 64 bits X 8 lines from the beginning of the image
data memory and store in the reference buffer. Assign a pixel
value of 0 for out of image areas (Figure 2-12).

(b) Extract 10 pixels as directed by the template from the reference
data in the reference buffer using the context optimizer.

(c) The context (10 bits) and the image data (1 bit) are sent to the
MQ-Coder (encoder part) via the RAM and the ROM. The en-
coded data are sent to the I/O controller.

(d) Iterate (b) — (c) for the data in one buffer of the reference buffer.
In this procedure, the reference area is shifted by 1 bit from the
beginning to the end of the buffer, as shown in Figure 2-13.

(e) Iterate (a) — (d) for the data of one line.

(4) Tterate (2) — (3) and send the compressed data into the I/O controller.

The data is picked up from the external PC.
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Figure 2-13. Shift of reference area in a reference buffer

Decompression

The procedure for decompressing one image is as follows:

(1) Set a template in the control register. Set all data in the image data
memory to 0.

Set the compressed data in the compressed data I/O controller.
Decompress the data for one line. (The subprocedure is shown in (a)—(e).)

)
G)

4

(@)

(b)
©

d)

(e)

Clip data of 64 bits x 8 lines from the beginning of the image
data memory and store in the reference buffer. A pixel value of 0
represents either an out of image area or a pixel that is not de-
compressed yet.

Extract 10 pixels directed by the template from the reference data
in the reference buffer using the context optimizer.

The context (10 bits) and the compressed data (8 bit) are sent to
the MQ-Coder (decoder part) via the RAM and the ROM. The
decoded data is sent to the reference buffer and the image data
memory via the shift register.

Iterate (b) — (c) for the data in a buffer in the reference buffer. In
this procedure, the reference area is shifted by 1 bit from the be-
ginning to the end of the buffer, as shown in Figure 2-13.

Iterate (a) — (d) for the data of one line.

Iterate (2) — (3) and send the decompressed data into the image data
memory. The data are picked up from the external PC.
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54 Performance Evaluation
54.1 Evaluation System

We have conducted an experiment to evaluate compression and decom-
pression performance. The architecture of the evaluation system is shown in
Figure 2-14. The system consists of a PC, an interface board, and the chip.

The PC has a hard disk and software. The hard disk stores the input and
output data. The original data before compression is stored in TIFF format.
The software mainly consists of I/O preprocessing and postprocessing, the
interface between the board and the PC, the template optimizer, and
the evaluator. The I/O preprocessing includes data reading and format
conversion. The postprocessing executes header-making and combining
compressed data in compression, as well as combining expanded data and
conversion into TIFF format in decompression, and writing data into a file.
The interface board executes the interface processing between the chip and
the PC.

5.4.2 Speed

We evaluated the performance of the chip in terms of the speed of com-
pression and decompression. The clock frequency was 133 MHz. First, we
evaluated the processing speed of the chip when using only one MQ-Coder.
The compression speed was 3 — 5 clocks/bit, 26.6 — 44.3 Mbit/s. The decom-
pression speed was 5 — 7 clocks/bit, 19.0 — 26.6 Mbit/s. The speeds of this
chip are the same as those of an MQ-Coder, indicating that the MQ-Coder
represents a bottleneck to the processing speed of the chip. The changes in
speed were due to the type of data processed.

Taking these results as a baseline, we next evaluated processing speeds
when the two MQ-Coders are used in parallel. If the two MQ-Coders have
the same processing speeds, then the total processing speed should be dou-
bled when these are executed in parallel. The maximum speed for compres-
sion was 88.6 and the speed for decompression was 53.2 Mbit/s. Although
the processing is executed in parallel, because the MQ-Coders process ex-
clusively different data, the actual total speed is determined by the slower
MQ-Coder. Thus, the total speed of the chip with parallel processing is twice
the speed of the slower MQ-Coder.
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Figure 2-14. Block diagram of the evaluation system for the chip

Next, we evaluated the processing speed of the evaluation system includ-
ing the PC (Figure 2-14). The speed was 5.1 Mbit/s for compression and de-
compression. The reason for the slower speeds is that there are too many
processing threads executed in the PC. This results in slower PC processing,
which is a bottleneck for the total system. Methods of improving this speed
are discussed in the next section.

We compared the processing speed of the chip with the software. The
compression and decompression speeds of the software using a PC (Pen-
tium 4, 2 GHz) were 0.73 Mbit/s. This shows that the speed executed on the
evaluation system is about 7 times faster than when executed on an external
PC, and that the speed of the chip is two orders of magnitude faster than the
speed of the software.

For reference, we present the processing speed of the JBIG chip
(ISO/IEC Int. Stand. 11544, 1993), which is a standard compression method.
Although JBIG is a prior version of JBIG2, we have selected this because no
chip for JBIG2 currently exists. The JBIG chip is commercialized with the
specifications of 1 clock/bit and 115 MHz clock speed. The speeds of the
evaluation system and our chip are slower than the JBIG chip. However, it
should be noted that the compression ratio obtained by our chip is about 50%
better than that of JBIG (Sakanashi, 2001). The JBIG chip is faster because it
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compresses and decompresses data in 1 clock/bit. The possibility of 1
clock/bit processing for our chip is discussed in the next section.

As another reference, we briefly show the estimated processing speed of
a JBIG2 chip, which has only been designed and evaluated for performance
in simulations (Denecker, et al.,, 2002). The compression speed was 340
Mbit/s, and the decompression speed was 170 Mbit/s. Though the speed is
faster than our chip, as we discuss in the next section, if our chip can com-
press data in 1 clock/bit with 200 MHz clock, then it would also execute
compression and decompression at similar speeds to the simulated JBIG2
chip. However, the JBIG2 chip involves a larger template than our chip be-
cause its context has 12 pixels, and the reference area is 63 X 33 pixels. Be-
cause our chip is a prototype, we limited the size of the template due to re-
strictions over die size. We are currently designing new compression circuits
using a technique to reduce the circuit size while still implementing a suffi-
cient context size and reference area for practical use.

5.5 Discussion

In this section, we discuss how to improve the processing speed of the
evaluation system and the chip.

To exploit the full potential of the chip, we need PC software that con-
trols the chip without making the chip wait. However, the software is at pre-
sent a bottleneck to the speed of the chip. The main reason for this is that
there are too many processing threads (see Section 5.5.1) in the PC with the
two MQ-Coders working in parallel, leading to slower PC processing speeds.
Consequently, the speed of data transfer to and from the PC cannot match
the processing speed of the chip, and much time is required for pre-
processing and postprocessing, such as format conversion or file access, cre-
ating a bottleneck in the system.

Possible methods for accelerating these processes include using DMA for
data transfer and using micro controllers for preprocessing and post-
processing, either on the chip or on the board. The processes will also be
accelerated when the speeds of CPUs, PCI buses, and disc access on a PC
become faster in the future. Moreover, a speed up in data transfer is expected
by fabricating the circuits for the interface board in the chip. A PC with mul-
tiple CPUs executing many threads faster would also be effective.

Next, we discuss how to increase the processing speed of the chip. The
chip has a write-back procedure into the RAM from the MQ-Coder (Fig-
ure 2-9). The MQ-Coder experiences some waiting time because of this
procedure. By embedding timing adjustment circuits into the chip, we esti-
mate that a compression speed of 1 clock/bit, 133 MHz per 1 MQ-Coder will
be possible. However, the decompression process will still take more than
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1 clock/bit, because the process has the write-back procedure into the refer-
ence buffer to generate a context. The problem of the additional time re-
quired for the decompression process will be a focus for our future research.

6. CONCLUSION

In order to achieve good compression efficiency for very high-resolution
images, this chapter has proposed a new lossless compression method with a
mechanism to optimize its own parameters using a genetic algorithm (GA).
The proposed method has been developed on the basis of JBIG2, the current
international standard for bi-level image encoding, and has an improved cod-
ing mechanism with an enhanced template of 12 reference pixels (AT pixels).
An extended GA is also used in this method, which has the following fea-
tures: (a) fast and effective mechanisms for initializing the population based
on correlation analysis and random sampling of pixels, (b) a random partial
evaluation procedure, and (c) template crossover.

The following results of computational simulations prove its advanta-
geous performance: (1) a compression efficiency that was about 23% better
than JBIG2, albeit after a long learning period (Section 2.3), (2) a compres-
sion efficiency approximately twice that of JBIG2 with default parameter
settings with only a slight increase in computational cost, and (3) the new
proposed method was able to complete learning about 96 times faster than
our previous method using GA.

We have outlined the architecture of an EHW chip and reported the re-
sults of experiments to evaluate performance. The comparison of processing
speeds with software execution showed that the evaluation system is about
7 times faster, and that the chip is two orders of magnitude faster.

Because of its advantageous performance in image compression, the
ISO/IEC JTC 1/SC 29/WG 1 committee determined to adopt part of the
technology used in this proposed method as an amendment to the JBIG2
standard. As the next step, we will propose to the ISO TC 130/WG 2 com-
mittee that TIFF/IT, the international standard of the file format for the pre-
press data exchange, adopts our proposed method as a compression method.
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