Chapter 2

Inequality Constraints

2.1 Optimality Conditions

Early in multivariate calculus we learn the significance of differentiability
in finding minimizers. In this section we begin our study of the interplay
between convexity and differentiability in optimality conditions.

For an initial example, consider the problem of minimizing a function
f:C —Ronaset Cin E. We say a point  in C' is a local minimizer
of f on C if f(x) > f(Z) for all points z in C close to Z. The directional
derivative of a function f at T in a direction d € E is

tmon e f(@+td) — f(T)
f(x’d)_ltlfg ; ;

when this limit exists. When the directional derivative f’'(Z;d) is actually
linear in d (that is, f/(Z;d) = (a,d) for some element a of E) then we say
f is (Gateauz) differentiable at T, with (Gateauz) derivative V f(z) = a. If
f is differentiable at every point in C' then we simply say f is differentiable
(on C). An example we use quite extensively is the function X € 87, —
logdet X. An exercise shows this function is differentiable on 8%, with
derivative X 1.

A convex cone which arises frequently in optimization is the mormal
cone to a convex set C' at a point Z € C, written N¢(z). This is the convex
cone of normal vectors, vectors d in E such that (d,z —Z) < 0 for all points
xin C.

Proposition 2.1.1 (First order necessary condition) Suppose that C
18 a convex set in E and that the point T is a local minimizer of the function
f: C — R. Then for any point x in C, the directional derivative, if it
exists, satisfies f'(Z;x — &) > 0. In particular, if [ is differentiable at T,
then the condition —V f(Z) € No(Z) holds.
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16 2. Inequality Constraints

Proof. If some point x in C satisfies f'(Z;2 — Z) < 0, then all small
real ¢ > 0 satisfy f(Z + t(x — Z)) < f(Z), but this contradicts the local
minimality of . ]

The case of this result where C' is an open set is the canonical intro-
duction to the use of calculus in optimization: local minimizers T must be
critical points (that is, Vf(Z) = 0). This book is largely devoted to the
study of first order necessary optimality conditions for a local minimizer of
a function subject to constraints. In that case local minimizers Z may not
lie in the interior of the set C' of interest, so the normal cone N¢(Z) is not
simply {0}.

The next result shows that when f is convex the first order condition
above is sufficient for T to be a global minimizer of f on C.

Proposition 2.1.2 (First order sufficient condition) Suppose that the
set C' C E is convexr and that the function f : C — R is convexr. Then
for any points T and x in C, the directional derivative f'(T;x — T) exists
in [—00,+00). If the condition f'(Z;x — &) > 0 holds for all x in C, or
in particular if the condition —V f(Z) € N¢(Z) holds, then T is a global
minimizer of f on C.

Proof. A straightforward exercise using the convexity of f shows the

function
| S ttte =)~ £(@)
t

is nondecreasing. The result then follows easily (Exercise 7). O

te (0,1

In particular, any critical point of a convex function is a global minimizer.

The following useful result illustrates what the first order conditions
become for a more concrete optimization problem. The proof is outlined
in Exercise 4.

Corollary 2.1.3 (First order conditions for linear constraints) For
a convez set C C E, a function f : C — R, a linear map A : E — Y (where
Y is a Fuclidean space) and a point b in Y, consider the optimization
problem

inf{f(z) |z € C, Az = b}. (2.1.4)

Suppose the point T € int C' satisfies AT = b.

(a) Ifz is a local minimizer for the problem (2.1.4) and f is differentiable
at T then Vf(z) € A*Y.

(b) Conversely, if Vf(z) € A*Y and [ is convex then T is a global min-
imizer for (2.1.4).
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The element y € Y satisfying Vf(Z) = A*y in the above result is called
a Lagrange multiplier. This kind of construction recurs in many different
forms in our development.

In the absence of convexity, we need second order information to tell us
more about minimizers. The following elementary result from multivariate
calculus is typical.

Theorem 2.1.5 (Second order conditions) Suppose the twice contin-
uwously differentiable function f : R™ — R has a critical point . If T is
a local minimizer then the Hessian V2 f(Z) is positive semidefinite. Con-
versely, if the Hessian is positive definite then T is a local minimizer.

(In fact for Z to be a local minimizer it is sufficient for the Hessian to
be positive semidefinite locally; the function 2 € R ~ z* highlights the
distinction.)

To illustrate the effect of constraints on second order conditions, con-
sider the framework of Corollary 2.1.3 (First order conditions for linear
constraints) in the case E = R", and suppose Vf(Z) € A*Y and f is
twice continuously differentiable near Z. If Z is a local minimizer then
yT'V2f(2)y > 0 for all vectors y in N(A). Conversely, if y?V2f(z)y > 0
for all nonzero y in N(A) then Z is a local minimizer.

We are already beginning to see the broad interplay between analytic,
geometric and topological ideas in optimization theory. A good illustration
is the separation result of Section 1.1, which we now prove.

Theorem 2.1.6 (Basic separation) Suppose that the set C C E is closed
and convez, and that the point y does not lie in C'. Then there exist a real
b and a nonzero element a of E such that (a,y) > b > (a,x) for all points
zinC.

Proof. We may assume C' is nonempty, and define a function f : E — R by
f(z) = ||z —yl||*/2. Now by the Weierstrass proposition (1.1.3) there exists
a minimizer T for f on C, which by the First order necessary condition
(2.1.1) satisfies =V f(Z) =y — & € No(Z). Thus (y — Z,z — Z) < 0 holds
for all points = in C. Now setting a =y — Z and b = (y — Z, Z) gives the
result. O

We end this section with a rather less standard result, illustrating an-
other idea which is important later, the use of “variational principles” to
treat problems where minimizers may not exist, but which nonetheless have
“approximate” critical points. This result is a precursor of a principle due
to Ekeland, which we develop in Section 7.1.

Proposition 2.1.7 Ifthe function f : E — R is differentiable and bounded
below then there are points where f has small derivative.
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Proof. Fix any real € > 0. The function f + €| - || has bounded level sets,
so has a global minimizer x¢ by the Weierstrass proposition (1.1.3). If the
vector d = V f(z€) satisfies ||d|| > ¢ then, from the inequality

o F° — 1) — 1)

_ € — _ 2 o
i ; = —(Vf(z),d) = —|[d[|* < —€]|d]],

we would have for small ¢ > 0 the contradiction

—telld|| > f(z° —td) — f(9)
= (f(z° —td) +e]|z* —td]])
— (f(2%) + ellz])) + e(ll*]] = ll=° — tdl])
> —et||d]

by definition of 2¢ and the triangle inequality. Hence ||V f(z9)| < e. O

Notice that the proof relies on consideration of a nondifferentiable func-
tion, even though the result concerns derivatives.

Exercises and Commentary

The optimality conditions in this section are very standard (see for example
[132]). The simple variational principle (Proposition 2.1.7) was suggested
by [95].

1. Prove the normal cone is a closed convex cone.

2. (Examples of normal cones) For the following sets C C E, check
C' is convex and compute the normal cone N¢(Z) for points Z in C:

beR.
() C={zeR"|x; >0forall j € J} (for J C{1,2,...,n}).
3. (Self-dual cones) Prove each of the following cones K satisfy the
relationship Ng(0) = —K.
(o) Ry
(b) S
(c) {zeR" |21 >0, 23 >3+ 23+ +22}
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4. (Normals to affine sets) Given a linear map A : E — Y (where
Y is a Euclidean space) and a point b in Y, prove the normal cone
to the set {x € E| Az = b} at any point in it is A*Y. Hence deduce
Corollary 2.1.3 (First order conditions for linear constraints).

5. Prove that the differentiable function z? + 23(1 — z1)® has a unique
critical point in R?, which is a local minimizer, but has no global
minimizer. Can this happen on R?

6. (The Rayleigh quotient)

(a) Let the function f : R™\ {0} — R be continuous, satisfying
f(Az) = f(z) for all A > 0 in R and nonzero x in R™. Prove f
has a minimizer.

(b) Given a matrix A in S", define a function g(z) = z7 Az /||z|?
for nonzero x in R™. Prove g has a minimizer.

(c) Calculate Vg(z) for nonzero x.

(d) Deduce that minimizers of g must be eigenvectors, and calculate
the minimum value.

(e) Find an alternative proof of part (d) by using a spectral decom-
position of A.

(Another approach to this problem is given in Section 7.2, Exercise
6.)

7. Suppose a convex function g : [0,1] — R satisfies g(0) = 0. Prove the
function ¢t € (0,1] — g¢(t)/t is nondecreasing. Hence prove that for a
convex function f : C — R and points T,z € C C E, the quotient
(f(z+t(x—7)) — f(Z))/t is nondecreasing as a function of ¢ in (0, 1],
and complete the proof of Proposition 2.1.2.

8. * (Nearest points)
(a) Prove that if a function f : C'— R is strictly convex then it has
at most one global minimizer on C.

(b) Prove the function f(z) = ||z —y||?/2 is strictly convex on E for
any point y in E.

(¢) Suppose C' is a nonempty, closed convex subset of E.
(i) If y is any point in E, prove there is a unique nearest point
(or best approzimation) Pc(y) to y in C, characterized by
(y — Po(y),x — Po(y)) <0 for all x € C.

(ii) For any point Z in C, deduce that d € N¢(Z) holds if and
only if Z is the nearest point in C to  + d.
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(iii) Deduce, furthermore, that any points y and z in E satisfy

1Pe(y) — Pe(2)Il < ly — =,

so in particular the projection Po : E — C'is continuous.

(d) Given a nonzero element a of E, calculate the nearest point in
the subspace {z € E | (a,x) = 0} to the point y € E.

(e) (Projection on R’} and S7) Prove the nearest point in R’}
to a vector y in R™ is y*, where y;” = max{y;, 0} for each i. For
a matrix U in O™ and a vector y in R", prove that the nearest
positive semidefinite matrix to U DiagyU is Ul Diagy ™ U.

9. * (Coercivity) Suppose that the function f : E — R is differentiable
and satisfies the growth condition lim,|—. f(2)/||z]| = 4+00. Prove
that the gradient map V f has range E. (Hint: Minimize the function
f() = (a,-) for elements a of E.)

10. (a) Prove the function f: S7, — R defined by f(X) = tr X! is
differentiable on S, . (Hint: Expand the expression (X +¢Y)~*
as a power series.)

(b) Define a function f : 8%, — R by f(X) = logdet X. Prove
Vf(I)=1I. Deduce Vf(X) = X"! for any X in S .

11. ** (Kirchhoff’s law [9, Chapter 1]) Consider a finite, undirected,
connected graph with vertex set V and edge set E. Suppose that
«a and [ in V are distinct vertices and that each edge ¢j in E has
an associated “resistance” 7;; > 0 in R. We consider the effect of
applying a unit “potential difference” between the vertices o and (.
Let Vo = V \ {a, 3}, and for “potentials” x in R0 we define the
“power” p: RY> — R by

_ N (@—a)?
ijeEE
where we set o, =0 and x5 = 1.

(a) Prove the power function p has compact level sets.

(b) Deduce the existence of a solution to the following equations
(describing “conservation of current”):

Z e R 0 for ¢ in Vy

’I“ij

j:ij€E
o = 0

Ig=1.
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13.
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(c) Prove the power function p is strictly convex.

(d) Use part (a) of Exercise 8 to show that the conservation of cur-
rent equations in part (b) have a unique solution.

** (Matrix completion [86]) For a set A C {(i,7)|1 < < j <n},
suppose the subspace L C S™ of matrices with (¢, j)th entry of zero

for all (4,7) in A satisfies L NS, # (. By considering the problem
(for C € S%,)

inf{(C,X) —logdet X | X € LNS" , },

use Section 1.2, Exercise 14 and Corollary 2.1.3 (First order con-
ditions for linear constraints) to prove there exists a matrix X in
LN 8%, with C — X~ having (i, )th entry of zero for all (,5) not
in A.

** (BFGS update, cf. [80]) Given a matrix C'in S" | and vectors
s and y in R satisfying s”y > 0, consider the problem
inf{(C,X) —logdet X | Xs =y, X € S} }.
(a) Prove that for the problem above, the point

(y —0s)(y — ds)"

*= sT(y — ds)

+41

is feasible for small § > 0.
(b) Prove the problem has an optimal solution using Section 1.2,
Exercise 14.

(¢) Use Corollary 2.1.3 (First order conditions for linear constraints)
to find the solution. (The solution is called the BFGS update of
C~! under the secant condition Xs = y.)

(See also [61, p. 205].)

** Suppose intervals Iy, Io, ..., I, C R are nonempty and closed and
the function f: I x Is x ... x I, — R is differentiable and bounded
below. Use the idea of the proof of Proposition 2.1.7 to prove that
for any € > 0 there exists a point € € I} x Iy X ... x I, satisfying

(7vf(x6))j € ij(x;) + [763 6] (] = 1727' o ,Tl).

* (Nearest polynomial with a given root) Consider the Eu-
clidean space of complex polynomials of degree no more than n, with
inner product

n n

n
<ijzj , Zyjzj> = Zx_jy]
J j=0

=0 i—=0



22

2. Inequality Constraints

Given a polynomial p in this space, calculate the nearest polynomial
with a given complex root o, and prove the distance to this polyno-

mial is (Z?:o laf?7) =12 p(a).
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2.2 Theorems of the Alternative

One well-trodden route to the study of first order conditions uses a class of
results called “theorems of the alternative”, and, in particular, the Farkas
lemma (which we derive at the end of this section). Our first approach,
however, relies on a different theorem of the alternative.

Theorem 2.2.1 (Gordan) For any elements a®,a,...,a™ of E, exactly
one of the following systems has a solution:

dxa =0, Y Ai=1, 0<X,\,.... An €R (2.2.2)
=0 i=0
(a',2) < 0 fori=0,1,...,m, z€E. (2.2.3)

Geometrically, Gordan’s theorem says that the origin does not lie in the
convex hull of the set {a®,a',...,a™} if and only if there is an open
halfspace {y | (y,z) < 0} containing {a®,al,...;a™} (and hence its con-
vex hull). This is another illustration of the idea of separation (in this case
we separate the origin and the convex hull).

Theorems of the alternative like Gordan’s theorem may be proved in
a variety of ways, including separation and algorithmic approaches. We
employ a less standard technique using our earlier analytic ideas and lead-
ing to a rather unified treatment. It relies on the relationship between the
optimization problem

inf{f(z) |z € E}, (2.2.4)
where the function f is defined by

f(x) =10g (D expla’,a)), (2.2.5)
i=0
and the two systems (2.2.2) and (2.2.3). We return to the surprising func-

tion (2.2.5) when we discuss conjugacy in Section 3.3.
Theorem 2.2.6 The following statements are equivalent:
(i) The function defined by (2.2.5) is bounded below.

(#) System (2.2.2) is solvable.
(4ii) System (2.2.3) is unsolvable.

Proof. The implications (ii) = (iii) = (i) are easy exercises, so it remains
to show (i) = (ii). To see this we apply Proposition 2.1.7. We deduce that
for each k = 1,2, ..., there is a point z* in E satisfying

<1
]C’

IV = | 3 Ak
=0
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where the scalars )
o esplaa®)
L S yexplar, zF)
satisfy > - A% = 1. Now the limit A of any convergent subsequence of the
bounded sequence (A\*) solves system (2.2.2). m|

>0

The equivalence of (ii) and (iii) gives Gordan’s theorem.

‘We now proceed by using Gordan’s theorem to derive the Farkas lemma,
one of the cornerstones of many approaches to optimality conditions. The
proof uses the idea of the projection onto a linear subspace Y of E. Notice
first that Y becomes a Euclidean space by equipping it with the same inner
product. The projection of a point  in E onto Y, written Pyx, is simply
the nearest point to 2 in Y. This is well-defined (see Exercise 8 in Section
2.1), and is characterized by the fact that  — Py is orthogonal to Y. A
standard exercise shows Py is a linear map.

Lemma 2.2.7 (Farkas) For any points a*,a?,...,a™ and c in E, eractly
one of the following systems has a solution:

Zmai =c¢ 0< py,p2,. . pm €ER (2.2.8)
i—1

(a,x) <0 for i=1,2,....m, {(c,x)>0, zc€E. (2.2.9)

Proof. Again, it is immediate that if system (2.2.8) has a solution then
system (2.2.9) has no solution. Conversely, we assume (2.2.9) has no so-
lution and deduce that (2.2.8) has a solution by using induction on the
number of elements m. The result is clear for m = 0.

Suppose then that the result holds in any Euclidean space and for any
set of m — 1 elements and any element c. Define a® = —c. Applying
Gordan’s theorem (2.2.1) to the unsolvability of (2.2.9) shows there are
scalars Ao, A1,..., Ay > 0 in R, not all zero, satisfying Agc = 7" \a’.
If Ay > 0 the proof is complete, so suppose \g = 0 and without loss of
generality A\, > 0.

Define a subspace of E by Y = {y | (a™,y) = 0}, so by assumption the
system

(a',y) <0 fori=1,2,....,m—1, {(c,y) >0, y€Y,
or equivalently
(Pya',y) <0 fori=1,2,....m—1, (Pyc,y) >0, y€Y,

has no solution.
By the induction hypothesis applied to the subspace Y, there are non-
negative reals i1, fig, . . ., ftm—1 satisfying 77! i Pya’ = Pyc, so the
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vector ¢ — Z;nfl pia® is orthogonal to the subspace Y = (span(a™))*.

Thus some real u,, satisfies

m—1
pma™ = ¢ — Z wiat. (2.2.10)
1
If p,, is nonnegative we immediately obtain a solution of (2.2.8), and if
not then we can substitute a™ = —\ ! ZTA Aia® in equation (2.2.10) to
obtain a solution. m|

Just like Gordan’s theorem, the Farkas lemma has an important geomet-
ric interpretation which gives an alternative approach to its proof (Exercise
6): any point ¢ not lying in the finitely generated cone

C:{Zmai‘ogm,u%...,umeR} (2.2.11)
1

can be separated from C by a hyperplane. If z solves system (2.2.9) then C
is contained in the closed halfspace {a | {(a,z) < 0}, whereas ¢ is contained
in the complementary open halfspace. In particular, it follows that any
finitely generated cone is closed.

Exercises and Commentary

Gordan’s theorem appeared in [84], and the Farkas lemma appeared in [75].
The standard modern approach to theorems of the alternative (Exercises
7 and 8, for example) is via linear programming duality (see, for example,
[53]). The approach we take to Gordan’s theorem was suggested by Hiriart—
Urruty [95]. Schur-convexity (Exercise 9) is discussed extensively in [134].

1. Prove the implications (ii) = (iii) = (i) in Theorem 2.2.6.

2. (a) Prove the orthogonal projection Py : E — Y is a linear map.

(b) Give a direct proof of the Farkas lemma for the case m = 1.

3. Use the Basic separation theorem (2.1.6) to give another proof of
Gordan’s theorem.

4. * Deduce Gordan’s theorem from the Farkas lemma. (Hint: Consider
the elements (a, 1) of the space E x R..)

5. * (Carathéodory’s theorem [52]) Suppose {a’|i € I} is a finite
set of points in E. For any subset J of I, define the cone

C’J{;uial‘OSMGR, (iEJ)}.
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(a) Prove the cone C; is the union of those cones C; for which
the set {a’ | i € J} is linearly independent. Furthermore, prove
directly that any such cone C} is closed.

(b) Deduce that any finitely generated cone is closed.

(c) If the point x lies in conv{a’ | i € I}, prove that in fact there
is a subset J C I of size at most 1 + dimE such that z lies in
conv{a’|i € J}. (Hint: Apply part (a) to the vectors (a’,1) in
ExR.)

(d) Use part (¢) to prove that if a subset of E is compact then so is
its convex hull.

6. * Give another proof of the Farkas lemma by applying the Basic

separation theorem (2.1.6) to the set defined by (2.2.11) and using
the fact that any finitely generated cone is closed.

. ** (Ville’s theorem) With the function f defined by (2.2.5) (with
E = R"), consider the optimization problem

inf{f(z) |z >0} (2.2.12)

and its relationship with the two systems

m ) m
z:/\iaZ > O7 Z)\l = 1,
i=0 i=0
0<Ag,A1,--, A €ER (2.2.13)
and .
(a',x) <0 fori=0,1,...,m, z€R]. (2.2.14)
Imitate the proof of Gordan’s theorem (using Section 2.1, Exercise
14) to prove the following are equivalent:
(i) Problem (2.2.12) is bounded below.
(ii) System (2.2.13) is solvable.
(iii) System (2.2.14) is unsolvable.

Generalize by considering the problem inf{f(z) |z; >0 (j € J)}.

. ** (Stiemke’s theorem) Consider the optimization problem (2.2.4)
and its relationship with the two systems

m

D> Aidh =0, 0< Ao, A, A ER (2.2.15)
i=0
and
{(a*,2) <0 fori=0,1,...,m, notall0, z¢cE. (2.2.16)

Prove the following are equivalent:



(i)
(if)
(iif)
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Problem (2.2.4) has an optimal solution.
System (2.2.15) is solvable.
System (2.2.16) is unsolvable.

Hint: Complete the following steps.

(a)
(b)
()

Prove (i) implies (ii) by Proposition 2.1.1.

Prove (ii) implies (iii).

If problem (2.2.4) has no optimal solution, prove that neither
does the problem

m

inf { Z exp Y;

=0

y e K}, (2.2.17)

where K is the subspace {({a*,z))", |z € E} C R™*1. Hence,
by considering a minimizing sequence for (2.2.17), deduce system
(2.2.16) is solvable.

Generalize by considering the problem inf{f(z) |z; >0 (j € J)}.

9. ** (Schur-convexity) The dual cone of the cone RY, is defined by

(a)

(b)

()

(R;‘)Jr ={yeR"|(z,y) >0 for all z in Rg}

Prove a vector y lies in (RZ)™" if and only if

J
> yiz0 forj=1,2...,n—1, Y 3 =0
1 1
By writing Zjl [z]; = maxy (a®, z) for some suitable set of vectors

a*, prove that the function x ZJ1 [x]; is convex. (Hint: Use
Section 1.1, Exercise 7.)

Deduce that the function z +— [z] is (RZ)"-convez, that is:
Ml + (1 =Nyl = Pe+ (1 =Nyl e (RL)T for0<A< 1
Use Gordan’s theorem and Proposition 1.2.4 to deduce that
for any z and y in RZ, if y — x lies in (R2)" then z lies in
conv (P™y). N -

A function f: RY — R is Schur-convez if

ryeRL, y—ze (R = fl)<[fy).

Prove that if f is convex, then it is Schur-convex if and only
if it is the restriction to RZ of a symmetric convex function
g : R® — R (where by symmetric we mean g(x) = g(Ilz) for
any = in R™ and any permutation matrix IT).
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2.3 Max-functions

This section is an elementary exposition of the first order necessary con-
ditions for a local minimizer of a differentiable function subject to differ-
entiable inequality constraints. Throughout this section we use the term
“differentiable” in the Gateaux sense, defined in Section 2.1. Our approach,
which relies on considering the local minimizers of a maz-function

g(z) = max {gi(z)}, (2.3.1)

1=0,1,..., m

illustrates a pervasive analytic idea in optimization: nonsmoothness. Even

if the functions go, g1,...,9m are smooth, g may not be, and hence the
gradient may no longer be a useful notion.

Proposition 2.3.2 (Directional derivatives of max-functions) Let =
be a point in the interior of a set C C E. Suppose that continuous functions
9o, 91, - - -, gm = C — R are differentiable at T, that g is the mazx-function
(2.8.1), and define the index set K = {i| g;(x) = g(Z)}. Then for all

directions d in E, the directional derivative of g is given by
o' (3 ) = max{ (Vgi(2), ). (2.3.3)

Proof. By continuity we can assume, without loss of generality, K =
{0,1,...,m}; those g; not attaining the maximum in (2.3.1) will not affect
g'(Z;d). Now for each 4, we have the inequality

lim inf w > lim 9i(@ +td) — g:(7) = (Vg;(Z),d).
t10 t t10 t
Suppose
lim sup w > max{(Vg;(z),d)}.
t10 v

Then some real sequence t; | 0 and real € > 0 satisfy

9(Z + trd) — g(%)
ty

> max{(Vg;(z),d)} + € forallke N

(where N denotes the sequence of natural numbers). We can now choose a
subsequence R of N and a fixed index j so that all integers k in R satisfy
9(Z + tgd) = g;(T + txd). In the limit we obtain the contradiction

(Vg;(z),d) > m;ax{(Vgi(fc), d)} +e.

Hence =+ td B
i sup 9 1)~ 9(2)

< max{(Vg;(z),d)},
tl0 t !
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and the result follows. O

For most of this book we consider optimization problems of the form

inf f(x)

subject to  gi(z) < 0 foriel
hj(x) = 0 forjeJ (2:3.4)
r € C,

where C' is a subset of E, I and J are finite index sets, and the objective
function f and inequality and equality constraint functions g; (i € I) and
h; (j € J), respectively, are continuous from C' to R. A point z in C' is
feasible if it satisfies the constraints, and the set of all feasible x is called the
feasible region. If the problem has no feasible points, we call it inconsistent.
We say a feasible point Z is a local minimizerif f(x) > f(z) for all feasible
z close to Z. We aim to derive first order necessary conditions for local
minimizers.

We begin in this section with the differentiable inequality constrained
problem

inf f(x)
subject to g;(z) < 0 fori=1,2,...,m (2.3.5)
z e C.

For a feasible point & we define the active set I(Z) = {i| g;(z) = 0}. For
this problem, assuming z € int C, we call a vector A € R a Lagrange
multiplier vector for Z if T is a critical point of the Lagrangian

L(z;\) = f(z) + Y Nigi(x)
i=1
(in other words, Vf(Z) + > A\;Vg;(Z) = 0), and complementary slackness
holds: A; = 0 for indices i not in I(Z).

Theorem 2.3.6 (Fritz John conditions) Suppose problem (2.8.5) has a
local minimizer T € int C. If the functions f,g; (i € I(Z)) are differentiable
at T then there exist Ao, \; € Ry (i € I(Z)), not all zero, satisfying

V@) + Y AiVgi(@) =0.
i€I(z)
Proof. Consider the function
g(w) = max{f(x) — f(2), gi(x)|i € I(2)}.

Since Z is a local minimizer for the problem (2.3.5), it is a local minimizer
of the function g, so all directions d € E satisfy the inequality

g (T;d) = max{{V f(Z),d),(Vg;(z),d) | i € I(Z)} >0,
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by the First order necessary condition (2.1.1) and Proposition 2.3.2 (Direc-
tional derivatives of max-functions). Thus the system

(VF(@),d) <0, (Vgi(z),d) <0 forie ()

has no solution, and the result follows by Gordan’s theorem (2.2.1). O

One obvious disadvantage remains with the Fritz John first order condi-
tions above: if Ay = 0 then the conditions are independent of the objective
function f. To rule out this possibility we need to impose a regularity con-
dition or “constraint qualification”, an approach which is another recurring
theme. The easiest such condition in this context is simply the linear in-
dependence of the gradients of the active constraints {Vg;(Z) |i € I(Z)}.
The culminating result of this section uses the following weaker condition.

Assumption 2.3.7 (The Mangasarian—Fromovitz constraint qual-
ification) There is a direction d in E satisfying (Vg;(Z),d) < 0 for all
indices i in the active set 1(T).

Theorem 2.3.8 (Karush—Kuhn—Tucker conditions) Suppose problem
(2.8.5) has a local minimizer T in int C. If the functions f,g; (for i €
1(z)) are differentiable at T, and if the Mangasarian—Fromovitz constraint
qualification (2.3.7) holds, then there is a Lagrange multiplier vector for T.

Proof. By the trivial implication in Gordan’s theorem (2.2.1), the con-
straint qualification ensures A\g # 0 in the Fritz John conditions (2.3.6).
O

Exercises and Commentary

The approach to first order conditions of this section is due to [95]. The
Fritz John conditions appeared in [107]. The Karush-Kuhn-Tucker condi-
tions were first published (under a different regularity condition) in [117],
although the conditions appear earlier in an unpublished master’s thesis
[111]. The Mangasarian—Fromovitz constraint qualification appeared in
[133]. A nice collection of optimization problems involving the determi-
nant, similar to Exercise 8 (Minimum volume ellipsoid), appears in [47]
(see also [183]). The classic reference for inequalities is [91].

1. Prove by induction that if the functions gg,g1,...,9m : E — R are
all continuous at the point Z then so is the max-function g(z) =

max;{g;(z)}.

2. (Failure of Karush—-Kuhn—Tucker) Consider the following prob-
lem:
inf (1 +1)% + 23
subject to —x? + m% <
T €

0
R2.
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(a) Sketch the feasible region and hence solve the problem.

(b) Find multipliers \p and A satisfying the Fritz John conditions
(2.3.6).

(c) Prove there exists no Lagrange multiplier vector for the optimal
solution. Explain why not.

3. (Linear independence implies Mangasarian—Fromovitz) If the
set of vectors {a',a?,...,a™} in E is linearly independent, prove
directly there exists a direction d in E satisfying (a*,d) < 0 for ¢ =
1,2,...,m.

4. For each of the following problems, explain why there must exist
an optimal solution, and find it by using the Karush—Kuhn—Tucker
conditions.

(a) inf 23 + 23
subject to —2x7 —xz9+10 < 0
—I1 < 0.
(b) inf 522 + 623
subject to 1 —4 <0
25 — 23 —23 < 0.

5. (Cauchy—Schwarz and steepest descent) For a nonzero vector y
in E, use the Karush-Kuhn—Tucker conditions to solve the problem

inf{(y, ) | ||z]* < 1}.
Deduce the Cauchy—Schwarz inequality.

6. * (Holder’s inequality) For real p > 1, define ¢ by p~! + ¢! =1,
and for x in R™ define

2 1/p
ol = (3 fail?)
1
For a nonzero vector y in R", consider the optimization problem

inf{(y, ) [ [lz]lj <1} (2.3.9)

d
du

(a) |ul? /p = u|uP~2 for all real u.

(b) Prove reals u and v satisfy v = u|u|[P~2 if and only if u = v|v|772.
)
)

a) Prove

(¢) Prove problem (2.3.9) has a nonzero optimal solution.

(d) Use the Karush-Kuhn-Tucker conditions to find the unique op-
timal solution.



32 2. Inequality Constraints

(e) Deduce that any vectors  and y in R™ satisfy (y, ) < ||lyllq/z]lp-

(We develop another approach to this theory in Section 4.1, Exercise
11.)

7. * Consider a matrix A in 8" | and a real b > 0.
(a) Assuming the problem
inf{—logdet X [tr AX <b, X €8S"}

has a solution, find it.

(b) Repeat using the objective function tr X —1.

(c) Prove the problems in parts (a) and (b) have optimal solutions.
(Hint: Section 1.2, Exercise 14.)

8. ** (Minimum volume ellipsoid)

(a) For a point y in R™ and the function g : S® — R defined by
g(X) = || Xy|?, prove Vg(X) = Xyy? + yy? X for all matrices
X in S™.
(b) Consider a set {y',y%,...,y™} C R™. Prove this set spans R"
if and only if the matrix >, y*(y*)7 is positive definite.
Now suppose the vectors y!,%2,...,y™ span R".

(¢) Prove the problem

inf —logdet X
subject to | X% -1 < 0 fori=1,2,...,m
X € 8%,

has an optimal solution. (Hint: Use part (b) and Section 1.2,
Exercise 14.)

Now suppose X is an optimal solution for the problem in part (c). (In
this case the set {y € R™ ||| Xy| < 1} is a minimum volume ellipsoid
(centered at the origin) containing the vectors y!,y2,... y™.)

(d) Show the Mangasarian-Fromovitz constraint qualification holds
at X by considering the direction d = —X.

(e) Write down the Karush-Kuhn-Tucker conditions that X must
satisfy.

(f) When {y*,y?,...,y™} is the standard basis of R, the optimal
solution of the problem in part (c¢) is X = I. Find the corre-
sponding Lagrange multiplier vector.
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