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The Binomial Model for Stock Options

2.1 The Basic Model

We now discuss a simple one-step binomial model in which we can de-
termine the rational price today for a call option. In this model we have two
times, which we will call t = 0 and t = 1 for convenience. The time t = 0
denotes the present time and t = 1 denotes some future time. Viewed from
t = 0, there are two states of the world at t = 1. For convenience they will
be called the upstate (written ↑) and the downstate (written ↓). There is
no special meaning to be attached to these states. It does not necessarily
mean that a stock price has a low price in the downstate and a higher value
in the upstate, although this will sometimes be the case. The term binomial
is used because there are two states at t = 1.

In our model there are two tradeable assets; eventually there will be other
derived assets:

1. a risky asset (e.g. a stock);

2. a riskless asset.

By a tradeable asset we shall mean an asset that can be bought or sold on
demand at any time in any quantity. They are the typical assets used in the
construction of portfolios. In Chapter 14 on real options we shall note some
problems with this concept.

We assume for each asset that its buying and selling prices are equal.

The risky asset.

At t = 0, the risky asset S will have the known value S(0) (often non-negative).

At t = 1, the risky asset has two distinct possible values (hence its value is
uncertain or risky), which we will call S(1, ↑) and S(1, ↓). We simply require
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that S(1, ↑) �= S(1, ↓), but without loss of generality (wlog), we may assume
that S(1, ↑) > S(1, ↓).

The riskless asset

At t = 0, the riskless asset B will have value B(0) = 1.

At t = 1, the riskless asset has the same value (hence riskless) in both states
at t = 1, so we write B(1, ↑) = B(1, ↓) ≡ R = 1 + r. Usually R ≥ 1 and so
r ≥ 0, which we can call interest, is non-negative. It represents the amount
earned on $1.

It is easy to show that if S(1, ↑) = S(1, ↓) there is an arbitrage, unless
S(1, ↑) = S(1, ↓) = (1 + r)S(0).

We also assume that

S(1, ↓) < RS(0) < S(1, ↑). (2.1)

We shall see the importance of inequality (2.1) below.

Example 2.1. Here S(0) = 5, S(1, ↑) = 20
3 and S(1, ↓) = 40

9 . B(0) = 1 and
B(1, ↑) = B(1, ↓) = R = 10

9 . So r = 1
9 and (2.1) clearly holds.

Suppose X(1) is any claim that will be paid at time t = 1. In our model X(1)
can take one of two values: X(1, ↑) or X(1, ↓). We shall determine X(0), the
premium or price of X at time t = 0.

Often the values of X(1) are uncertain because X(1) = f(S(1)) (a function
of S) and S(1) is uncertain. As X is an asset whose value depends on S, it
is a derived asset written on S, or a derivative on S. X is also called a
derivative or a contingent claim.

Example 2.2. When we write X(1) = [S(1) −K]+ we mean

X(1, ↑) = [S(1, ↑) −K]+

X(1, ↓) = [S(1, ↓) −K]+.

Assuming we have a model for S, we can findX(0) in terms of this information.
This could be called relative pricing. It presents a different methodology
than, (though often equivalent to) what the economists call equilibrium
pricing, for example.

There are two steps to relative pricing.

Step 1

Find H0 and H1 so that
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X(1) = H0B(1) +H1S(1). (2.2)

Both sides here are random quantities and (2.2) means

X(1, ↑) = H0R+H1S(1, ↑) (2.3a)
X(1, ↓) = H0R+H1S(1, ↓). (2.3b)

The interpretation is as follows: H0 represents the number of dollars held at
t = 0, and H1 the number of stocks held at t = 0. At t = 1, the level of
holdings does not change, but the underlying assets do change in value to
give H0B(1) +H1S(1).

Solving (2.3a) and (2.3b) gives

H1 =
X(1, ↑) −X(1, ↓)
S(1, ↑) − S(1, ↓)

(2.4)

and

H0 =
X(1, ↑) −H1S(1, ↑)

R

=
X(1, ↑) − X(1,↑)−X(1,↓)

S(1,↑)−S(1,↓) S(1, ↑)

R

=
S(1, ↑)X(1, ↓) − S(1, ↓)X(1, ↑)

R [S(1, ↑) − S(1, ↓)]
. (2.5)

Note: It is rather crucial that S(1, ↑) �= S(1, ↓).

Example 2.3 (continuation of Example ( 2.1)). If X(1, ↑) = 7 and X(1, ↓) = 2,
then equations (2.3a) and (2.3b) become

7 = H0
10
9

+H1
20
3

2 = H0
10
9

+H1
40
9
,

giving H0 = −7.2 and H1 = 2.25.

Remark 2.4. We should now take a little time to interpret the situation where
H0 or H1 is negative.

In the previous example, H0 = −7.2 means we borrowed 7.2 and t = 0 and
we have a liability (a negative amount) of H0R = −8 at t = 1.
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Suppose instead that X(1, ↑) = 2 and X(1, ↓) = 7, then H0 = 15.3 and
H1 = −2.25 < 0. Now H1 = −2.25 means we shorted (borrowed) 2.25 stocks
at t = 0 and we have a liability at t = 1 as we must return the value of the
stock at t = 1. This value will depend on whether we are in ↑ or ↓. By the
way, we must also assume that we have a divisible market, which is one
in which any (real) number of stocks can be bought and sold. If we think of
stocks in lots of 1000 shares, then 2.25 is really 2250 shares. This is how we
could interpret these “fractional shares”.

Short sell means “borrow and sell what you do not own”.

There are basically two ways of raising cash: Borrow money at interest (from
a bank, say) or short sell an asset. In the former case, you must repay the
loan with interest at a future date and in the second case, you must buy back
the asset later and return it to its owner.

In an analogous way there are two ways of devolving yourself of cash. You can
put money in a bank to earn interest, or you can buy an asset. In the former
case you can remove the money later with any interest it has earned, and in
the latter case you can sell the asset (at a profit or loss) at a future date.

Step 2

Using the one price theorem, which is a consequence of the no arbitrage
axiom, we must have

X(0) = H0 +H1S(0). (2.6)

Remark 2.5. This equation is true because the claim X and the portfolio
H0B+H1S have the same value in both possible states of the world at t = 1.
In this situation, X(0) represents outflow of cash at t = 0. If X(0) > 0, then
X(0) represents the amount to be paid at t = 0 for the asset with payoff X(1)
at t = 1. If X(0) < 0, then −X(0) represents an amount received at t = 0 for
the asset with payoff X(1) at t = 1.

We shall review for this call option why X(0) must equal H0 + H1S0. First
assume (if possible) that

X(0) < H0 +H1S(0). (2.7)

In fact let us use the numbers from the previous example. Thus (2.7) is

2.25S(0) − 7.2 −X(0) > 0 (2.8)

We now perform the following trades at t=0.

Short sell 2.25 shares of stock, put 7.2 in the bank, buy one asset.



2.1 The Basic Model 17

Equation (2.8) gives the strategy to adopt. If a quantity is a positive value
of assets such as 2.25S(0), this suggests one should short sell the assets; if
a quantity is a negative value of assets (that is, −X(0)), this suggests one
should purchase the assets. A positive number alone indicates a borrowing
and a negative number, −7.2, an investment of cash in a bank.

In fact
2.25S(0) − (7.2 +X(0)) > 0

where 2.25S(0) is income, 7.2+X(0) payouts. Note that because this difference
is positive you have a profit from this trading at t = 0. Put this profit in your
pocket—and do not touch it (at least for the time being).

Note the following: You did not need any of your own money to carry out
this trade. The short sale of the borrowed stock was enough to finance the
investment of 7.2 and the purchase of X for X(0), and there was money left
over.

The consequence at t=1.

There are two cases:

In ↑
Sell X for X(1, ↑) = 7, remove the money from the bank with interest
7.2R = 8. This results in 15 (dollars), which can be used to fund the re-
purchase (and return) of the 2.25S(1, ↑) = 15. There are no further liabilities.
Thus, there are no unfunded liabilities at t=1.

In ↓
Sell X for X(1, ↓) = 2, remove the money from the bank with interest
7.2R = 8. This results in 10 (dollars), which can be used to fund the re-
purchase (and return) of the 2.25S(1, ↓) = 10. There are again no further
liabilities. Thus again there are no unfunded liabilities at t = 1.

In summary, we have made a profit at t = 0 and have no unfunded liabilities at
t = 1. This is making money by taking no risks—by not using your own money.
This is an example of an arbitrage opportunity which our fundamental axiom
rules out. In efficient markets one assumes that arbitrage opportunities do not
exist, and so we have a contradiction to (2.8). In practice, arbitrage opportu-
nities may exist for brief moments, but, due to the presence of arbitrageurs,
the markets quickly adjust prices to eliminate these arbitrage opportunities.
At least that is the theory.

After this discussion we see that (2.7) cannot hold (at least not in the example,
but also more generally). Therefore,

X(0) ≥ H0 +H1S(0).

Assume now, if possible, that
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X(0) > H0 +H1S(0). (2.9)

In the example, this would mean

X(0) + 7.2 − 2.25S(0) > 0. (2.10)

We now perform the following trades at t=0.

Short sell the asset, borrow 7.2 and buy 2.25 stock.

This yields a positive profit at t = 0 which is placed deep in your pocket until
after t = 1. In other words raising funds from the short sale and borrowings
is more than enough to cover the cost of 2.25 shares.

The consequence at t=1.

There are two cases:

In ↑
Sell the shares for 2.25S(1, ↑) = 15.00, repay the loan with interest 7.2R = 8,
purchase the asset for 7 and return to the (rightful) owner. Everything bal-
ances out. Thus, there are no unfunded liabilities at t=1.

In ↓
Sell the shares for 2.25S(1, ↓) = 10.00, repay the loan with interest 7.2R = 8,
purchase the asset for 2 and return to the (rightful) owner. Everything bal-
ances out. Thus, there are no unfunded liabilities at t=1.

In summary, we have again made a profit at t = 0 and have no unfunded
liabilities at t = 1. This is again an arbitrage opportunity. Therefore, (2.9) is
false as well. We then conclude the result claimed in (2.6) must hold.

Let us now substitute (2.4) and (2.5) into (2.6). Then

X(0) = H0 +H1S(0)

=
[
S(1, ↑)X(1, ↓) − S(1, ↓)X(1, ↑)

R (S(1, ↑) − S(1, ↓))

]
+
[
X(1, ↑) −X(1, ↓)
S(1, ↑) − S(1, ↓)

]
S(0)

=
X(1, ↑) [RS(0) − S(1, ↓)] +X(1, ↓) [S(1, ↑) −RS(0)]

R [S(1, ↑) − S(1, ↓)]

=
1
R

[πX(1, ↑) + (1 − π)X(1, ↓)]

where

π =
RS(0) − S(1, ↓)
S(1, ↑) − S(1, ↓)

> 0 (2.11)
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1 − π =
S(1, ↑) −RS(0)
S(1, ↑) − S(1, ↓)

> 0.

Here 0 < π < 1 follows from the assumption of the model (2.1).

Therefore,

X(0) =
πX(1, ↑) + (1 − π)X(1, ↓)

R
. (2.12)

This is the general pricing formula for a contingent claim option in a
one-step binomial model.

It was derived by using two ideas:

1. replicating portfolios (step 1);

2. there are no arbitrage opportunities (vital for the step 2 argument).

This method is called relative pricing because relative to the given inputs
S(0), S(1, ↑), S(1, ↓), B(0), B(1, ↑) and B(1, ↓) we can price other assets. We
simply calculate π as in (2.11) and then use (2.12). Let us note that even
though S was thought of as being a stock, it could have stood for any risky
asset at all.

The numbers π and 1−π are called the risk neutral probabilities of states
↑ and ↓, respectively. We shall see why this name is used.

We can write (2.12) as

X(0) = Eπ

[
X(1)
B(1)

]
, (2.13)

which is the risk neutral expectation of X(1)
B(1) . It stands for

π
X(1, ↑)
B(1, ↑)

+ (1 − π)
X(1, ↓)
B(1, ↓)

.

This is the same as the right hand side of (2.12).

Remark 2.6. It can be shown that there is no arbitrage possible in our binomial
model if and only if (iff) a formula of the type (2.13) holds with 0 < π < 1.

Remark 2.7. The author that is credited with the first use of binomial option
pricing is Sharpe in 1978 [70, pages 366–373]. He argues as follows: First select
h so that

hS(1, ↑) −X(1, ↑) = hS(1, ↓) −X(1, ↓) .

Set this common value equal to
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R(hS(0) −X(0)).

This again leads to equation (2.12).

In 1979 Rendleman and Bartter [63] gave a similar argument. First select α
so that

S(1, ↑) + αX(1, ↑) = S(1, ↓) + αX(1, ↓)
and set this common value to

R(S(0) + αX(0)).

This (normally) again leads to equation (2.12). We say this because a choice
of α may not always exist. For the Sharpe approach, a choice of h can always
be made.

Exercise 2.8. Verify the claims made in this remark.

Not all models that one could write down are arbitrage free.

Example 2.9 (Continuation of Example 2.1).

Simply make the change S(1, ↓) = 17
3 . Starting with nothing, choose H0 = −5

(borrow 5 stocks), H1 = 1 (buy one stock). Then H0 +H1S(0) = 0. At t = 1,
our position will be X(1) ≡ −5R+S(1) (meaning sell the stock and repay the
loan). This is 10

9 in the upstate and 1
9 in the down state. So with no start-up

capital we have generated a profit (in both states) by simply trading. This is
an arbitrage opportunity. Note that condition (2.1) is violated here.

Example 2.10 (On why 0 < π < 1 should hold). As in equation (2.11)

π =
RS(0) − S(1, ↓)
S(1, ↑) − S(1, ↓)

.

We assumed in inequality (2.1) that 0 < S(1, ↓) < RS(0) < S(1, ↑). So, for
example,

0 < RS(0) − S(1, ↓) < S(1, ↑) − S(1, ↓)

and the result that (2.1) implies that 0 < π < 1 follows. If we choose X
with X(1, ↑) = 1 and X(1, ↓) = 0, then X(0) > 0 to exclude arbitrage. Then
(2.12) implies that π > 0. A similar argument using X with X(1, ↑) = 0 and
X(1, ↓) = 1 leads to 1−π > 0. So the absence of arbitrage opportunities leads
to 0 < π < 1.

Notation

It is often useful to use the following notation when x = (x1, x2, . . . , xn) ∈ Rn:

1. x ≥ 0 if xi ≥ 0 for each i = 1, 2, . . . , n.

2. x > 0 if x ≥ 0 and xi > 0 for at least one i.

3. x 
 0 if xi > 0 for each i = 1, 2, . . . , n.
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2.2 Why Is π Called a Risk Neutral Probability?

This discussion will take place within the one-step binomial asset pricing
model.

Some of the steps here will be left to the reader as exercises.

For any 0 ≤ p ≤ 1, let Ep [X(1)] be defined by

Ep [X(1)] = pX(1, ↑) + (1 − p)X(1, ↓). (2.14)

Here p could represent a (subjective) probability (viewed from t = 0) that the
upstate (↑) will occur at t = 1. Let X be a (tradeable) asset whose value at
t = 0 is X(0) and whose values at t = 1 are X(1, ↑) and X(1, ↓), depending
on whether the upstate or downstate occurs at t = 1. From (2.12),

X(0) =
1
R

[πX(1, ↑) + (1 − π)X(1, ↓)] ≡ 1
R

Eπ [X(1)] . (2.15)

For the asset X we can define the return rX by

rX =
X(1) −X(0)

X(0)
, (2.16)

which is shorthand for

rX(↑) =
X(1, ↑) −X(0)

X(0)

rX(↓) =
X(1, ↓) −X(0)

X(0)
.

Lemma 2.11. For any 0 ≤ p, q ≤ 1 suppose there are associated probabilities.
Then

Ep [rX ] − Eq [rX ] = (p− q)
[
X(1, ↑) −X(1, ↓)

X(0)

]
. (2.17)

Proof. Exercise. �

Remark 2.12.
Eπ [rX ] = r ≡ R− 1 (2.18)

Proof. Exercise. �
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Corollary 2.13.

Ep [rX ] − r = (p− π)
[
X(1, ↑) −X(1, ↓)

X(0)

]
(2.19)

Ep [rX ] − rX(↑) = (p− 1)
[
X(1, ↑) −X(1, ↓)

X(0)

]
(2.20)

Ep [rX ] − rX(↓) = p

[
X(1, ↑) −X(1, ↓)

X(0)

]
(2.21)

Proof. For (2.19), use (2.18) and q = π in (2.17). For (2.20), use q = 1 in
(2.17). For (2.21), use q = 0 in (2.17). �

Definition 2.14. Given probability p, let X and Y be two (tradeable) assets.
Their values at t = 0 are X(0), Y (0). At t = 1 in the ↑ state (resp., ↓ state)
their values are X(1, ↑), Y (1, ↑) (resp., X(1, ↓), Y (1, ↓)). Then define V p

X,Y by

V p
X,Y = Covp (rX , rY )

≡ Ep [(Ep [rX ] − rX) (Ep [rY ] − rY )] (2.22)
= Ep [rXrY ] − Ep [rX ]Ep [rY ] (2.23)

Lemma 2.15.

V p
X,Y = p(1 − p)

[
X(1, ↑) −X(1, ↓)

X(0)

] [
Y (1, ↑) − Y (1, ↓)

Y (0)

]
(2.24)

Proof. Use (2.22), (2.14) together with (2.20) and (2.21). We leave the details
as an exercise. �

Corollary 2.16. The variance of X is then

σ2
X ≡ V p

X,X = p(1 − p)
[
X(1, ↑) −X(1, ↓)

X(0)

]2

. (2.25)

Let us now assume (wlog) that Ep [rX ] ≥ r. With this assumption we have
the following lemma.

Lemma 2.17. Suppose that 0 < p < 1. Then

Ep [rX ] − r =
|p− π|√
p(1 − p)

σX (2.26)

Proof. This follows from (2.19) and (2.25) and the assumption.
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Remark 2.18. Equation (2.26) says something about the expected return from
asset X in terms of its volatility (variance). We say that an asset is riskier
when it has a higher volatility (and hence a higher value of σX). By (2.26), if
the volatility is zero, then the expected return is just r (the risk free interest),
but when the volatility is non-zero we have a higher expected return. This
result fits well with reality—if you want a higher expected return you must
take on more risk. However, there is one situation where this does not hold.
This is when p = π. In this case your expected return is always r no matter
what risk. If your (subjective) probabilities about events at t = 1 coincide
with π, then you are insensitive to risk, or what is the same thing, you are
risk-neutral. So π is the upstate probability of a risk neutral person.

Remark 2.19. Equation (2.15) is the usual pricing equation for an asset X,
expressing X(0) in terms of the future values of X via the risk neutral prob-
ability π. We can also express X(0) via the subjective probability p. In fact
suppose the assumption before Lemma 2.17 holds, and

Λ(p) =
|p− π|√
p(1 − p)

.

Then by a simple rearrangement

X(0) =
Ep [X(1)]

R+ Λ(p) σX
, (2.27)

so the discounting must be risk adjusted if you use subjective probabilities.
Note that Λ(π) = 0.

Another rearrangement starts with

Ep [rX ] − r = βX,Y [Ep [rY ] − r] . (2.28)

Here

βX,Y =
V p

X,Y

V p
Y,Y

,

which is a regression coefficient for the returns of X onto those of Y . This
quantity is called a beta in financial circles, and betas are often published
information. It is often the case that betas do not change too quickly from
time to time. The identity (2.28) follows from (2.19) applied to both X and
Y together with (2.24) and (2.25). It is necessary to consider p �= π and
p = π separately to avoid dividing 0 by 0, which is even invalid in finance!
Equation (2.28) looks very much like the CAPM formula (CAPM = Capital
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Asset Pricing Model), widely used in finance despite its restricted validity. It
is valid in our simple model! Equation (2.28) can be arranged to give

X(0) =
Ep [X(1)]

R+ βX,Y [Ep [rY ] − r]
, (2.29)

which is a relative pricing formula using subjective probabilities. Given in-
formation about Y you can price X provided you also know the correlations
between the returns on X and Y (which one sometimes assumes are relatively
constant). It is because of the arrangement (2.29) that (2.28) is termed CAPM
(read as CAP M ). In practice Y is often related to some index.

2.3 More on Arbitrage

There are two forms of arbitrage opportunities. We suppose neither type
exists in efficient markets. If they did exist they would exist only temporarily.
An arbitrageur is someone who looks out for such opportunities and exploits
them when they do exist.

The type one arbitrage opportunity arose in the proof of equation (2.6) in
the last section. Indeed, if equation (2.6) did not hold we were able to make
a profit at t = 0 without any unfunded liabilities at t = 1. Here one ends up
with a profit at t = 1 in all states of the world.

The type two arbitrage opportunity arose in Examples 2.9 and 2.10. This is
the situation where you start with nothing at t = 0, you have no liabilities at
t = 1, but in one or more states of the world you can make a positive profit.

We now give some more examples:

Example 2.20 (Refer to Example 2.1). Here we exhibit a type two arbitrage.

We choose S as in Example 2.1, but suppose

B(0) = 1 and B(1, ↑) = B(1, ↓) = R =
4
3
.

Note that condition (2.1) is violated.

Choose H0 = 5 and H1 = −1, then H0 +H1S(0) = 0.

At t = 0 we short sell one stock and invest the proceeds in a bank.

At t = 1 in ↑ our position is H0R + H1S(1, ↑) = 0; in other words our
investment gives rise to 5 × 4

3 = 20
3 , which is enough to cover the repurchase

of stock at 20
3 , which is then returned to its owner.

At t = 1 in ↓ our position is H0R + H1S(1, ↑) = 20
9 ; in other words our

investment gives rise to 5 × 4
3 = 20

3 , which is enough to cover the repurchase
of stock at 40

9 , which is then returned to its owner, and with 20
9 to spare.
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Remark 2.21. Type two non-arbitrage was also used in Example 2.10.

Exercise 2.22 (A Variant of the One Price Theorem). Let X and Y
be two assets (or portfolios of assets). Prove

1. if X(1) > Y (1), then X(0) > Y (0);

2. if X(1) = Y (1), then X(0) = Y (0).

Remark 2.23. X(1) > Y (1) has the meaning of the notation on page 20. That
is: X(1) ≥ Y (1) in all states of the world at t = 1, and strict inequality
holds in at least one state of the world. [It is possible we are thinking beyond
binomial models here.]

In fact, if 1. does not hold, we can obtain a type two arbitrage by short selling
X and buying Y ; if 2. does not hold, we obtain a type one arbitrage. The
principle is this: (short) sell high, buy low.

2.4 The Model of Cox-Ross-Rubinstein

We shall now describe the Cox-Ross-Rubinstein model and we shall write
CRR for Cox-Ross-Rubinstein. See [18].

The following notation will be used:

S(0) = S > 0
S(1, ↑) = uS

S(1, ↓) = dS,

where, as in equation (2.1),

0 < d < R < u.

Then

π =
RS(0) − S(1, ↓)
S(1, ↑) − S(1, ↓)

=
R− d

u− d
(2.30)

1 − π =
S(1, ↑) −RS(0)
S(1, ↑) − S(1, ↓)

=
u−R

u− d
(2.31)

and

X(0) =
1
R

[
R− d

u− d
X(1, ↑) +

u−R

u− d
X(1, ↓)

]
. (2.32)
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Example 2.24 (European call option). Here X(1) = (S(1) −K)+.

Assume S(1, ↓) < K < S(1, ↑), then

X(1, ↑) = (S(1, ↑) −K)+ = uS −K

X(1, ↓) = (S(1, ↓) −K)+ = 0

and so

X(0) =
π (uS −K)

R

= S
[πu
R

]
−
[
K

R

]
π. (2.33)

Remark 2.25. For those familiar with the Black and Scholes formula for pricing
call options,

C(0) = S(0)N (d1) −Ke−rT N (d2), (2.34)

we note an obvious similarity. Here N has the definition

N (x) ≡ 1√
2π

∫ x

−∞
e− 1

2 y2
dy. (2.35)

We shall meet these ideas again later. The expressions for d1 and d2 are given
in Chapter 4.

Continuing, we note that

0 <
πu

R
< 1. (2.36)

In fact

0 <
πu

R
=
(
R− d

u− d

)
u

R
=

1 − d
R

1 − d
u

< 1

as R < u implies 1 − d
R < 1 − d

u .

If K ≤ S(1, ↓), then X(1) = S(1) −K and so
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X(0) =
π(S(1, ↑) −K) + (1 − π)(S(1, ↓) −K)

R

=
πS(1, ↑) − +(1 − π)S(1, ↓)

R
− K

R

= S(0) − K

R
.

If K ≥ S(1, ↑), then X(1) = 0 and so X(0) = 0.

Example 2.26. Consider the claim X(1) = (K − S(1))+. This is a European
put option in the binomial model. Assume S(1, ↓) < K < S(1, ↑); then

X(1, ↑) = (K − S(1, ↑))+ = 0
X(1, ↓) = (K − S(1, ↓))+ = K − dS

and so

X(0) =
(1 − π) (K − dS)

R

=
[
K

R

]
(1 − π) − S

[
(1 − π)d

R

]
. (2.37)

Remark 2.27. As mentioned before, π is called a risk-neutral probability
(of being in state ↑). It is characterized by

S(0) =
πS(1, ↑) + (1 − π)S(1, ↓)

R
.

This says that under π, the expected discounted value of S(1) is S(0).

2.5 Call-Put Parity Formula

This is also called put-call parity. It applies to European style call and
put options.

There are several model-independent formulae in finance. Clearly, such
formulae are very important. We shall meet a number of them. The most well
known one is the call-put parity formula, which states:

C(0) − P (0) = S(0) − K

R
, (2.38)

at least in the present framework. We shall discuss generalizations later.
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The calls and puts in this formula are assumed to have the same strike price
K and the same time to expiry (maturity).

CRR Model-Dependent Proof

Suppose that S(1, ↓) < K < S(1, ↑). Then with S = S(0) and (2.33) and
(2.37),

C(0) =
π

R
[uS −K]

P (0) =
1 − π

R
[K − dS]

C(0) − P (0) =
π

R
[uS −K] − 1 − π

R
[K − dS]

=
π(uS) + (1 − π)(dS)

R
− πK + (1 − π)K

R

= S(0) − K

R

By the way, K
R = PV (K) ≡ PV0(K), the present value at t = 0 of K at t = 1

(PV = Present Value).

Model-Independent Proof. Model-independent relations are very impor-
tant.

We again have two times: now (t = 0), and expiry date (t = T ). Assume (if
possible) that

C(0) − P (0) − S(0) + PV (K) > 0. (2.39)

We shall show there is type one arbitrage. At t = 0, we short sell a call
option, buy a put option, buy one stock, borrow PV (K). The short sale and
the borrowing is enough to cover the put options and stock price, and there
is cash left over (by (2.39)), which we pocket.

At expiry (t = T ), we cash settle the call, realize value of the put, sell the
stock, repay the loan. The net of all these transactions is

−(S(T ) −K)+ + (K − S(T ))+ + S(T ) −K = 0. (2.40)

The person who let you borrow the call only needs the cash value ((S(T ) −
K)+) of the call at expiry (called cash settling). The assets (put and stock),
are just enough to cover the liabilities of the call and loan repayment.

One can demonstrate (2.40) by looking at the two cases: S(T ) > K and
S(T ) ≤ K. In the first case:
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−(S(T )−K)+ +(K−S(T ))+ +S(T )−K = −(S(T )−K)+0+S(T )−K = 0

and in the latter

−(S(T )−K)+ +(K−S(T ))+ +S(T )−K = 0+(K−S(T ))+S(T )−K = 0.

The other case of (2.39),

C(0) − P (0) − S(0) + PV (K) < 0,

is treated in a similar way. First write this as

−C(0) + P (0) + S(0) − PV (K) > 0. (2.41)

At t = 0, buy a call option, short sell a put option, short sell a stock and
invest PV (K). The two short sales are enough to cover the call options and
the investment amount. Further, there is cash left over (by (2.41)), which we
pocket.

At expiry (t = T ), we realize value of the call, cash settle the put, buy a stock
and return, realize the investment K. The net cost of all these transactions is

(S(T ) −K)+ − (K − S(T ))+ − S(T ) +K = 0 (2.42)

as before.

In both cases, we can pocket a profit at t = 0 and have no unfunded liabilities
at expiry. These are type one arbitrages. These financial contradictions show
the call-put parity equality must hold. [A reason to prefer the term call-put
parity is because it could also be read “call minus put” which is the left hand
side of the call-put parity formula. It reminds us which way they are around!].

2.6 Non Arbitrage Inequalities

In the section above we saw the first of these: the call-put parity formula. This
was proved in the CRR one-step model and then we gave a model independent
proof. It is the fact that it has a model independent proof which makes it a
fundamental result. However, note that the call-put parity formula holds for
European options. It does not hold for the American style counterparts.

We now investigate other results for which there are model-independent
proofs. Consequently, we are no more in the simple two-state, one-period
model.
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Example 2.28 (Lower bounds for European calls).

Let 0 ≤ t < T . Let C(t) be the value at t of a European call option that
expires at time T , whose strike price is K. We also write PVt(K) for the value
at time t of K at time T . This amount could be found by some discounting
formula whose precise details do not matter here—as long as interest rates
are not random. Then

C(t) ≥ [S(t) − PVt(K)]+ (2.43)
= max [0, S(t) − PVt(K)] . (2.44)

Proof. Clearly C(t) ≥ 0 as C(T ) = (S(T )−K)+ ≥ 0. [See Exercise (2.22)] So
we only need to show

C(t) ≥ S(t) − PVt(K). (2.45)

Suppose to the contrary that

C(t) < S(t) − PVt(K),

which is the same as

S(t) − PVt(K) − C(t) > 0. (2.46)

If (2.46) were the case, we show how to create an arbitrage.

At time t we short sell one stock, invest PVt(K) in a bank, buy a call option,
(expiring at T with strike price K). The short sale is enough to cover the
purchases and (2.46) says there is a positive amount left over for the pocket.

At time T , the expiry date of the call option, we buy a stock and return it,
realize the value of the call, realize the value of the investment in the bank,
(take the K out of bank). The net proceeds are given by the left hand side of

−S(T ) + (S(T ) −K)+ +K ≥ 0. (2.47)

This implies that there are no unfunded liabilities at time T . To show (2.47)
we consider two cases: S(T ) > K and S(T ) ≤ K. For the former

−S(T ) + (S(T ) −K)+ +K = −S(T ) + (S(T ) −K) +K = 0

and in the latter case

−S(T ) + (S(T ) −K)+ +K = −S(T ) + 0 +K ≥ 0.

Therefore arbitrage has been established. This is a financial contradiction and
so (2.45) and hence (2.43) and (2.44) hold. �
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Example 2.29 (American call options). It is not optimal to exercise an Amer-
ican call option before expiry if the underlying stock does not pay dividends
during the life of the option. In fact, at any time t prior to expiry,

CA(t) > (S(t) −K)+. (2.48)

In other words, before expiry, an American call option is always worth
(strictly) more than its exercise value. For this we require positive interest
rates.

Proof. First note that

CA(t) ≥ CE(t). (2.49)

That is, an American call option is always worth at least the same as the Eu-
ropean counterpart. After all the American call option offers all the privileges
of the European call option and other benefits besides—the right to exercise
the call before expiry, for example. One can also argue more rigorously: As-
sume that (2.49) is not true for some time t prior to expiry and construct an
arbitrage opportunity. Suppose at time t it is true that CE(t) − CA(t) > 0.
At time t short sell the European call and purchase an American call (with
the same specifications of strike price and exercise price). Pocket the profit.
As you own the American call option you decide when to exercise it. Decide
not to exercise it early. At expiry the realized value of the American Call
Option is (S(T ) −K)+, which is just the same as the value of the European
call option. So this realized value can be used to cash settle the European call
option at time T .

This argument is included to show how non arbitrage arguments can be used
to derive financial conclusions.

Suppose now that S(t) > K. Then, as interest rates are positive,

S(t) − PVt(K) > S(t) −K > 0. (2.50)

So (using Example 2.28)

CA(t) ≥ CE(t)
≥ S(t) − PVt(K)
> S(t) −K = (S(t) −K)+.

Thus, (2.48) holds if S(t) > K.

Suppose now that S(t) ≤ K; then (S(t) −K)+ = 0. But CA(t) > 0 for t < T ,
so again (2.48) holds if S(t) ≤ K. �
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Remark 2.30. 1. One consequence of this example is the following: If a stock
does not pay a dividend during the life of an option, then the American
call options and the European call option have the same value. As divi-
dends are usually paid twice a year, there will be many short term call
options (90-day options) for which this condition applies. The financial
press usually advertises when dividends are paid, and sometimes predicts
when the next dividends will be paid based on what happened the year
before.

2. The corresponding result does not hold for American and European put
options. Always before expiry at t < T

PA(t) > PE(t), (2.51)

where we have assumed that the two puts are the same in every other
respect. The difference

e(t) ≡ PA(t) − PE(t) > 0 (2.52)

is called the early-exercise premium. This is the extra amount one
pays for an American put to have the right to exercise it early.

Example 2.31 (Estimate interest from option prices). For European calls and
puts, the call-put parity formula can be rearranged to yield

R =
K

S(0) + P (0) − C(0)
. (2.53)

For American puts and calls we have

CA(0) − PA(0) ≤ S(0) − PV (K) (2.54)

when dividends are not paid during the life of the options. This can be deduced
from the call-put parity formula for European options and using CA(0) =
CE(0) and PA(0) ≥ PE(0).

Proof. Exercise. �

Under these circumstances (regarding dividends) we have

R ≥ K

S(0) + PA(0) − CA(0)
. (2.55)

We should be able to check this holds from data in the financial press (other-
wise there are arbitrage opportunities)
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Example 2.32 (An AOL example). Time t = 0 is 22 July 2003 (the previous
trading day).

S(0) = $16.85, K = $16.00, C(0) = $1.20, P (0) = $0.45. Then the right hand
side of (2.55) is

16.00
16.85 + 0.45 − 1.20

= 0.9937. (2.56)

The interest rate at the time was around 1.00%, so there is no violation of
(2.55).

Remark 2.33. We have seen that an American call and a European call have
the same value when there are no dividends paid on the underlying stock. Un-
der these circumstances we saw that it is not optimal to exercise an American
call option early, as it is more profitable to sell the option than to exercise
it. So the early exercise feature under these circumstances provides no extra
value. We shall discuss later what happens when there are dividend payments.

Example 2.34 (Call options are decreasing functions of their time to expira-
tion). Suppose there are two calls which are identical except they have different
expiration times T1 and T2, with T1 > T2. “Now” is time t. Their times to
expiration are τ1 and τ2 with τi = Ti − t, i = 1, 2, so τ1 > τ2. The values of
these calls at time t are Cτi(t), for i = 1, 2. We claim

Cτ1(t) ≥ Cτ2(t) (2.57)

for 0 ≤ t ≤ T2. (After T2 the call with shorter time to expiry ceases to exist
so (2.57) is either obvious or does not mean much, depending how you view
things.) To prove (2.57) assume (if possible) that

Cτ2(t) − Cτ1(t) > 0

for some 0 ≤ t ≤ T2. This leads to an arbitrage opportunity as follows. At t,
short the τ2 call and purchase the τ1 call. Pocket the profit. At time T2, the
value V (T2) of the position is

V (T2) = −(S(T2) −K)+ + Cτ1(T2)

≥ −(S(T2) −K)+ + (S(T2) −K)+

= 0,

where we have used Example 2.28. So at time T2 we have no unfunded liabili-
ties if we sell the longer-dated call and cash settle the shorter-dated one at this
time. So we now have a type one arbitrage opportunity. This is a (financial)
contradiction, and so our claim holds.

Many more relations can be deduced in this model-independent way.
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2.7 Exercises

Exercise 2.35. This exercise refers to Example 2.24. What are the reasons
that market players will buy and sell put options. Are buyers and sellers
matched?

Exercise 2.36. In Example 2.2 show that 0 ≤ H1 ≤ 1.

Exercise 2.37. Prove the identities (2.17), (2.18), (2.26), (2.27) and (2.28)
in Section 2.2.

Exercise 2.38. This exercise refers to Example 3.1. How can you decide
whether a futures trader is a speculator or a hedger? Explain the market
for futures/forwards.

Exercise 2.39. Let S = {S(t) | t ≥ 0} be the price process of some stock
(e.g., AOL shares). Let C(t) denote the value at time t of a (European) call
option written on S with maturity date T and exercise price K. Then C(T ) =
max[0, S(T )−K]. Draw a graph, plotting C(T ) versus S(T ). This is called the
payoff graph for the this call option. The profit graph is the plot of C(T )−C(0)
versus S(T ). Draw the profit graph. For what values of S(T ) will the profit
be positive ? (This profit ignores the time value of money.)

Exercise 2.40. Repeat Exercise 2.39 but for the (European) put option. The
difference between a put and a call is that with the put you have the right to
sell rather than the right to buy. If P (t) is the value of this put with strike
price K and expiry date T , explain why P (T ) = max[0,K−S(T )]. Plot P (T )
versus S(T ), and P (T ) − P (0) versus S(T ). If you want to take a numerical
example, choose the AOL/AUG03/16.00/PUT with P (0) = 0.45USD. For
what values of S(T ) will the profit be positive? Explain why the holding of a
put option on S is like holding an insurance policy over S.

Exercise 2.41. The current price of a certain stock is $94 and 3-month call
options with a strike price of $95 currently sell for $4.70. An investor who feels
that the stock price will increase is trying to decide between buying 100 shares
and buying 2000 call options (20 contracts). Both strategies would involve an
investment of $9,400. What advice would you give the investor? How high
does the stock price have to rise for the option strategy to be more profitable?

Exercise 2.42. Suppose two banks XYZ and ABC are equally rated (as re-
gards risk). Suppose that XYZ offers and charges customers 4% interest on
deposits or loans, while ABC offers and charges 6% interest. Seeing this sit-
uation, how could you make a riskless profit without using any of your own
money? You should provide an explicit strategy for achieving this, and explain
any problems you might have carrying it out in practice. If the two banks were
not equally rated, what possible reason could you give for the difference in
interest rates?
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Exercise 2.43. Suppose IBM pays a dividend D on their shares S at time τ .
Show that S(τ+) = S(τ−) −D. Actually, to be precise, τ should be what is
called the ex-dividend date. You should again argue your solution from the
assumption of no arbitrage. S(τ+) means the value of S just after τ , and
S(τ−) the value just before.

Exercise 2.44. Let Ci for i = 1, 2, 3 be European call options all expiring at
T with strike prices Ki, for i = 1, 2, 3 all written on the same stock S. The
butterfly spread is the combination C1 − 2C2 +C3 with K2 = 1

2 (K1 +K3).
Graph C(T ) against S(T ). Show that C2(0) < 1

2 (C1(0) + C3(0)). Discuss
which assumptions you make.

Exercise 2.45. We established call-put parity formula holds for European
call and put options:

C(0) − P (0) = S(0) − PV (K),

where PV (K) = K/R. With the choices S(0) = $10.50, K = $10.00, C(0) =
$3.00, P (0) = $1.00 and R = 1.0043, show that the call-put parity formula is
violated. Show how to create an arbitrage opportunity of at least $1000. You
must not use any of your own money to fund this arbitrage opportunity.

Exercise 2.46. Read Linear Regression in the Appendix to Exercise 2.47,
which can be studied together with this exercise.

Consider the data in Table 2.1 for XYZ/AUG03/CALLs. Suppose the spot
price of the XYZ shares is S = $16.96. (Not all strike prices are used here.)

Table 2.1. XYZ/AUG03/CALL for Exercise 2.46

1 2 3 4 5 Sum
ni 171 316 475 802 594 n =

ωi = ni
n 1

xi 17.50 18.00 18.50 19.00 19.50
yi 0.36 0.19 0.12 0.06 0.06

We had N = 5, the x values represent strike prices, and the y values represent
(ask) call prices. The n values are for open interest, which gives the number
of contracts presently held with a particular strike price. We plot call prices
against strike prices and seek the least squares fit line. Find its slope m and
intercept c. Using the equations

c =
πuS

R
m = − π

R
d =

R− πu

1 − π
,

estimate π, u and d.
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Use these values to compute the value of the XYZ/AUG02/17.00/PUT and
compare your answer with the market value 0.55 CAD (ask).

These XYZ options are really American options, but as they are rarely exer-
cised (why?) they price like European options. The value of R is to be taken
as 1.0042.

Exercise 2.47. Consider the one-step binomial model with stock prices hav-
ing d = 1/u. We can price ATM calls by

c =
π

R
(uS −K) =

π

R
(u− 1)S.

This leads to

u =
1 +Rx

R(1 − x)
,

where x = c/S. So u can be calculated for a range of ATM calls by this
formula. The CRR paper uses u = exp(σ

√
Δt) where σ is the volatility and

Δt is the time interval between t = 0 and t = 1, which we will take as
31/365 = 0.08493 and so

√
Δt ≈ 0.291431. It may therefore be of interest to

plot lnu versus σ, get the line of best fit, and see if the estimated slope is
about 0.29143. This is what you are now asked to do. Here are some “data”
for various AUG03 calls. Use R = 1.0042 as before.

Table 2.2. ATM Call Prices for Exercise 2.47

Company S ATM Call Price σ

ABC 16.96 0.6800 0.2685
DEF 9.18 0.3567 0.3614
HIJ 29.10 0.9780 0.2345

KLM 31.00 1.0400 0.2841
NOP 8.46 0.6800 0.6765

In making your line of least squares fit, use wi = 1/5 = 0.2 for i = 1, 2, 3, 4, 5.
Also observe that you should use the zero intercept form of linear regression
here.

Appendix to Exercises 2.46 and 2.47

Linear Regression

We are given data points {(xi, yi) | i = 1, 2, . . . , N} and we want to place a
line of best fit through them. The model will be

yi = mxi + c+ εi (2.58)
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for each i = 1, 2, . . . , N . Here εi denotes an error for each i.

The least squares fit line is that line (or choice of m, c) so that

N∑
i=1

ε2i (2.59)

is minimal.

In finance we may have ni measurements all at (xi, yi) and ni may not be
the same for each i. For example we could plot call prices versus strike prices
from NYSE data. For the ni we could use the open interest or the volume of
trade.

In either case let us put

M = n1 + n2 + . . .+ nN

and set

wi ≡ ni

M
,

which gives the proportion of measurements at (xi, yi). We could then mini-
mize

N∑
i=1

wiε
2
i . (2.60)

Setting derivatives of this expression with respect to m and c, both to zero
yields the estimates for m and c which are

m =
xy − x y

x2 − x2
(2.61)

and

c = y −mx. (2.62)

Here we are using

y =
N∑

i=1

wiyi
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x =
N∑

i=1

wixi

xy =
N∑

i=1

wixiyi

x2 =
N∑

i=1

wix
2
i .

If N > 1, then x2 �= x2, so we never divide by zero! In fact

x2 − x2 =
N∑

i=1

wi(xi − x)2

xy − x y =
N∑

i=1

wi(xi − x)(yi − y),

so we can solve for m and hence for c.

Example 2.48 (linear regression). Consider some XYZ call option prices. Sup-
pose N = 5; x1 = 10.50, x2 = 11.00, x3 = 11.50, x4 = 12.00, x5 = 12.50 and
y1 = 1.36, y2 = 0.95, y3 = 0.62, y4 = 0.38, y5 = 0.20 (we are using the selling
prices). We could weight by open interest (open interest is the number of
contracts in a particular class of options), and suppose n1 = 56, n2 = 662,
n3 = 941, n4 = 969, n5 = 268. Then M = 2896 and so w1 = 56

2896 , w2 = 662
2896 ,

w3 = 941
2896 , w4 = 969

2896 , w5 = 268
2896 . Then

x =
56 × 10.50 + 662 × 11.00 + 941 × 11.50 + 969 × 12.00 + 268 × 12.50

2896
= 11.62620856

y =
56 × 1.36 + 662 × 0.95 + 941 × 0.62 + 969 × 0.38 + 268 × 0.20

2896
= 0.590573204

x2 =
56 × 10.502 + 662 × 11.002 + . . .+ 969 × 12.002 + 268 × 12.502

2896
= 135.4054731

xy =
56 × 1.36 × 10.50 + 662 × 0.95 × 11.00 + . . .+ 268 × 0.20 × 12.50

2896
= 6.73879489
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m =
xy − xy

x2 − x2

=
6.73879489 − 11.62620856 × 0.590573204

135.4054731 − 11.626208562

=
−0.127772349
0.23674762

= −0.539698557

c = y −mx = 0.590573204 + 0.539698557 × 11.62620856
= 6.865221193.

We shall see later some interpretation of these estimates of m and c. If you
know some statistics about the errors, then you can discuss the confidence
intervals of the estimators of m and c given in formulae (2.61) and (2.62).

Many of these calculations can be easily carried out in MS-EXCEL.

Zero-Intercept Linear Regression

The model will now be

yi = mxi + εi (2.63)

for each i = 1, 2, . . . , N . Here εi denotes an error for each i.

The (weighted) least squares fit line is that line (or choice of m) making

N∑
i=1

wiε
2
i (2.64)

minimal. Setting the derivative of this expression with respect to m to zero
gives:

m =
xy

x2
(2.65)

with the same notation as above.

Exercise 2.49. Show that the value of a call can never be less than the value
of an otherwise identical call with a higher strike price; that is,

C(K1) ≥ C(K2) if K2 > K1,

and furthermore

K2 −K1 ≥ C(K1) − C(K2) if K2 > K1.
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