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Algebraic Extensions

1. Let K be a field and E an extension of K. One writes this assumption in short
as
Let E/K be a field extension,

and the word “field” is often omitted when it can be inferred from the context.
An element « of E is called algebraic over K if there exists a polynomial
f(X) # 0in K[X] such that

f(x)=0.

If « is not algebraic over K, we say that « is transcendental over K.

Remarks. (a) If K =Q and E =C, the elements of E algebraic over K are called
simply algebraic numbers, and the elements of E transcendental over K are
called transcendental numbers. Example: o := /2 is an algebraic number,
since « is a root of the polynomial X3 —2 € Q[X].

(b) The set of algebraic numbers is countable (since Q[X] is countable and any
nonzero polynomial in @[X] has finitely many roots in C). Therefore the set
of transcendental numbers must be uncountable. To actually be able to exhibit
a transcendental number is a different (and much harder) matter.

Theorem 1. Let M be a subset of C containing 0 and 1. Any point z € AM is
algebraic over K := Q(M U M).

The proof will be given later in this chapter. But first we quote a famous result:
Theorem 2 (Lindemann 1882). The number m is transcendental.
Corollary. The quadrature of the circle with ruler and compass is impossible.

Proof. If it were possible, we would have = € AQ; by Theorem 1 then 7= would be
algebraic, which by Lindemann’s Theorem is not the case. (]

Lindemann’s Theorem can be proved using relatively elementary algebraic and
analytic arguments, but the proof is on the whole quite intricate. We will go into it
later on (Chapter 17).
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2. Now we start our study of field theory with the following statement:

F1. Let E/K be a field extension. If « € E is algebraic over K, then
K(o): K < o0.

Proof. Suppose there exists a nonzero polynomial

1) fX)=X"+ a1 X" ' +---+a € K[X]

such that f(«) =0; we have assumed without loss of generality that f is normalized
(has leading coefficient 1). There exists a unique homomorphism of K-algebras ¢
from the polynomial ring K[X] into E such that ¢(X) = « (see page 21); its image

R=imgp CE

consists precisely of those elements of E that can be written as polynomial ex-
pressions g(«) in o with coefficients in K. But in writing such an expression we
immediately see from the relation

2) o" = —(ap—10" "+ +aja +ag)
that only terms of degree less than n are needed, so in fact
3) R={co+cia+-+cp1a" ' |c;i € K}.

Thus, as a vector space over K, the dimension of R is at most n. Since R, being
a subring of E, has no zero-divisors, a simple argument (given a bit further down)
shows that R is actually a field. It follows that K(a) € R (using the definition of
K()), and therefore that R = K(«). From (3) we then get

4) K(a) ={co+cia+-+cp1a" ' |ci € K}.
In particular,
5) K(x):K <n.

F2. Let R be an integral domain (that is, a commutative ring with no zero divisors
and with 1 #0), and let K be a subfield of R. If R is finite-dimensional as a K-vector
space, R is a field.

Proof. For a given a # 0 in R, consider the map /2 : R — R given by multiplication
by a, namely, i(x) = ax for all x in R. Then /4 is an endomorphism (linear map)
of the K-vector space R. Since R has no zero-divisors, / is injective. Because R is
assumed finite-dimensional over K, it is also surjective. In particular, there exists
b € R such that ab = 1. d

Remark. It can be proved in an analogous way that an integral domain that has
finite cardinality is a field.
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3. Let E /K be a field extension, and let « € E be algebraic over K. Consider
on the K-vector space K(«) the endomorphism / defined by multiplication by «.
The minimal polynomial of / is called the minimal polynomial of & over K, and we
denote it by

MiPog (@).

This is the lowest-degree normalized polynomial in K[X] that has « as a zero. (That
there can be only one such polynomial is clear: if f, g are both normalized and of
degree n, the degree of f — g is less than n.) The degree of / = MiPogy(K) is also
called the degree of o over K, and is denoted by [o: K].

Example. Consider E =C, K =Q and a = ¢*"/3_ Then « is a root of X3 —1. But
X3—1=(X—-1)g(X), with g(X) = X2+ X + 1; since o # 1, we have g(a) = 0.
Let f = MiPog («); we claim that f = g. Otherwise necessarily deg f* < deg g, so
f could only be of the form f(X) = X —«, which is impossible since « ¢ R.

F3. Let E/K be a field extension and let « € E be algebraic over K, of degree
n:=[a: K]. The elements

6) La,o?,... o !
of E form a basis of K(«) over K. In particular,
@) K(a): K = [a: K] = degMiPog («).

Proof. Let f(X)=X"4---+a; X + ao the minimal polynomial of @ over K. We
know that
K(x):K <n;

see (5) in the proof of F1. There remains to show that 1, o, ... A"

independent over K. Suppose there is a relation

~1 are linearly

n—1
) > ciet =0 with¢ € K.

i=0
Set g(X) := ;’;3 ¢; X', If some ¢; in (8) were nonzero, g(X) would be a nonzero
polynomial in K[X] of degree less than n and vanishing at «. Contradiction! [

4. Let E/K be a field extension and assume o € E is algebraic over K. Is it the
case that any € K() is also algebraic over K?

Definition. An extension E/K is called algebraic if every element of E is algebraic
over K. An extension E/K is called finite if E: K < co.

Remarks. C/R is a finite extension, since C:R = 2. The extension R/Q is not
algebraic; see Remark (b) in Section 2.1.

An extension E/K is called transcendental if it is not algebraic.
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F4. If an extension E/K is finite, it is also algebraic; for each € E the degree
[B:K]is adivisor of E: K.

Proof. Let E/K be finite of degree n. Given 8 € E, the n + 1 elements 1, 8,
B2, ..., B" of the n-dimensional K-vector space E are linearly dependent. Therefore
there exist ag, a1, ...,a, € K, not all zero, such that

apl +a1B+---+a,B"=0.

Thus B is algebraic over K. By F3, [8:K] = K(B): K, and K(B): K is a divisor
of E: K by the degree formula (Chapter 1, F7). O

We now can easily answer in the affirmative the question asked at the beginning
of this section.

F5. Let E/K be a field extension. If o € E is algebraic over K, the extension
K(a)/K is algebraic.

Proof. If « is algebraic over K, we know from F1 that K(«)/K is finite. But every
finite field extension is algebraic, by F4. (]

Together, F1 and F4 afford the following criterion:

F6. Let E/K be a field extension. An element a of E is algebraic over K if and only
if K(a)/ K is finite.

Now it is a cinch to prove Theorem 1, which we can reformulate as follows:

Theorem 1. Let M be a subset of C containing 0 and 1. Let K = Q(M U M). The
field extension AM /K is algebraic.

Proof. Take z € AM . From F9 of Chapter 1 we know that K(z): K < co. Then F6
says that z is algebraic over K. U

Remark. The converse of F4 is not true: Not every algebraic extension is finite.
This will soon become obvious. In fact a counterexample comes up naturally in our
context: If £ = A{0, 1} is the field of all numbers constructible from {0, 1} with
ruler and compass, the field extension E/Q is algebraic but not finite. (With what
we know so far this is not very easy to prove, but it’s worth thinking about; see §2.5
in the Appendix.)

Among algebraic extensions, finite extensions can be characterized thus:

F7. Let E/K be a field extension. The following conditions are equivalent:

(1) There are elements oy, ...,Qn of E, finite in number and algebraic over K,
such that E = K(ay,...,0n).

(ii) E/K is finite.
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Proof. (ii) = (i) is clear; all we need to do is choose a basis «y, ..., a, for E/K.
Then we actually have £ = Koy + -+ + Koy, and by F4 all the «; are algebraic
over K.

To show (i) = (ii) we use induction over m. For m = 0 there is nothing to
prove. Assume that (i) holds for some m > 1 and set

K’ = K(O[l, . ,Otm_l).

Then E = K'(«;,). Since o, is algebraic over K, it is a fortiori algebraic over the
larger field K’. By F1 this implies E: K’ < co. But by the induction hypothesis,
K’/K is finite. The degree formula (Chapter 1, F7) then implies that E/K is finite.

(]

5. Let E/K be a field extension. A subfield L of E containing K is called an
intermediate field of the extension E/K.

F8. Let E/K be a field extension. The subset
F ={o € E|«ais algebraic over K}

is an intermediate field of E/K. It is called the algebraic closure of K in E. In
particular, the set of all algebraic numbers is a subfield of C.

Proof. Take «, f € F. Consider the subfield K(«, 8) of E. By F7 the extension
K(o, B)/K is finite (prove this again for practice). Now apply F4; all elements of
K(a, B) are algebraic over K, so

K(a,B) € F.

The elements o+, «— B, af and 1/« (if « # 0) lie in K(«, B), and thus also in
F. So F really is a subfield of E. Clearly K € F, since any o € K is a zero of
a polynomial X —« € K[X] and therefore algebraic over K. This completes the
proof. (]

This proof qualifies as easy, but it’s only easy because we have the right notions
at our disposal. Otherwise, would you be able to write down, at the drop of a hat, a
nontrivial rational polynomial that vanishes at the sum of two numbers, given only
rational polynomials vanishing at one and the other number respectively?

F9 (Transitivity of algebraicness). Let L be an intermediate field of the extension
E/K.IfE/L and L/K are algebraic, so is E/K (and vice versa).

Proof. Take B € E. By assumption f is algebraic over L. Let g, oq,...,0—1
be the coefficients of MiPor (8); then § is also algebraic over the subfield F :=
K(ag,aq,...,0,—1). By assumption all the «; are algebraic over K. Therefore we
can apply F7 to conclude that F': K is finite. But F(f8): F is also finite, by F6;
therefore the degree formula gives

F(B): K < o0.

Using F4 we see in particular that § is algebraic over K. U
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F10. Let E/K be a field extension and A a subset of E. If all elements of A are
algebraic over K, the extension K(A)/K is algebraic.

Proof. Clearly K(A) is the union of all subfields of the form K(M), where M
ranges over finite subsets of A. By F7, each K(M)/K is finite and therefore also
algebraic. Thus K(A) contains only elements algebraic over K. (Of course F10
also follows directly from F8.) U

F11. Let E/K be a field extension, and L1, L, intermediate fields of E/K. The field
©) LiLy:=Li(L2) = La(Ly)

is called the composite of L1 and L, in E.
(a) If L1/K is algebraic, sois L1 L,/ L.
(b) If L1/K is finite, so is L1Ly/Ly; moreover LiLy: L, < Ly:K.
(¢) If Li/K and L,/ K are algebraic, sois L1L,/K.
(d) If L1/K and L,/K are finite, so is L1L,/K; if, moreover, the extension
degreesny =L :K andny = L, : K are relatively prime, we have L1L,: K =
ninj.

Proof. Part (a) follows from F10, taking (9) into account. Part (c) therefore also
follows, thanks to F9. Let L;/K and L,/ K be finite. Assuming (b) already proved,
we see from the degree formula that

(10) LiLy:K = (LiLy:Ly)(L2:K) = (L1:K)(L2: K),

which is the first part of (d). Again from the degree formula we obtain that L L,: K
is divisible by n; and by n,. If ny, n, are relatively prime, L L> : K is divisible by
niny, which together with (10) gives the second part of (d).

There remains to prove (b). Consider the set R of all finite sums of products ab
witha € L1,b € L;. Clearly R is a subring of E containing L and L,. It is also
clear that any basis of L/K generates R as an Lj-vector space R, so in particular
R:L, <L;:K. If L;:K < o0, this implies that R is a field (see F2). It follows
that R = L L,, which concludes the proof. O
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