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Algebraic Extensions

1. Let K be a field and E an extension of K. One writes this assumption in short
as

Let E=K be a field extension;

and the word “field” is often omitted when it can be inferred from the context.
An element ˛ of E is called algebraic over K if there exists a polynomial

f .X /¤ 0 in KŒX � such that
f .˛/D 0:

If ˛ is not algebraic over K, we say that ˛ is transcendental over K.

Remarks. (a) If K D � and E D �, the elements of E algebraic over K are called
simply algebraic numbers, and the elements of E transcendental over K are
called transcendental numbers. Example: ˛ WD 3

p
2 is an algebraic number,

since ˛ is a root of the polynomial X 3 � 2 2 �ŒX �.

(b) The set of algebraic numbers is countable (since �ŒX � is countable and any
nonzero polynomial in �ŒX � has finitely many roots in �). Therefore the set
of transcendental numbers must be uncountable. To actually be able to exhibit
a transcendental number is a different (and much harder) matter.

Theorem 1. Let M be a subset of � containing 0 and 1. Any point z 2 M is
algebraic over K WD �.M [ M /.

The proof will be given later in this chapter. But first we quote a famous result:

Theorem 2 (Lindemann 1882). The number � is transcendental.

Corollary. The quadrature of the circle with ruler and compass is impossible.

Proof. If it were possible, we would have � 2 �; by Theorem 1 then � would be
algebraic, which by Lindemann’s Theorem is not the case. ˜

Lindemann’s Theorem can be proved using relatively elementary algebraic and
analytic arguments, but the proof is on the whole quite intricate. We will go into it
later on (Chapter 17).
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2. Now we start our study of field theory with the following statement:

F1. Let E=K be a field extension. If ˛ 2 E is algebraic over K, then

K.˛/ WK <1:

Proof. Suppose there exists a nonzero polynomial

(1) f .X /D X n C an�1X n�1 C � � � C a0 2 KŒX �

such that f .˛/D0; we have assumed without loss of generality that f is normalized
(has leading coefficient 1). There exists a unique homomorphism of K-algebras '
from the polynomial ring KŒX � into E such that '.X /D ˛ (see page 21); its image

R D im' � E

consists precisely of those elements of E that can be written as polynomial ex-
pressions g.˛/ in ˛ with coefficients in K. But in writing such an expression we
immediately see from the relation

(2) ˛n D �.an�1˛
n�1 C � � � C a1˛C a0/

that only terms of degree less than n are needed, so in fact

(3) R D fc0 C c1˛C � � � C cn�1˛
n�1 j ci 2 Kg:

Thus, as a vector space over K, the dimension of R is at most n. Since R, being
a subring of E, has no zero-divisors, a simple argument (given a bit further down)
shows that R is actually a field. It follows that K.˛/ � R (using the definition of
K.˛/), and therefore that R D K.˛/. From (3) we then get

(4) K.˛/D fc0 C c1˛C � � � C cn�1˛
n�1 j ci 2 Kg:

In particular,

(5) K.˛/ WK 	 n. ˜

F2. Let R be an integral domain (that is, a commutative ring with no zero divisors
and with 1 ¤ 0), and let K be a subfield of R. If R is finite-dimensional as a K-vector
space, R is a field.

Proof. For a given a ¤ 0 in R, consider the map h W R ! R given by multiplication
by a, namely, h.x/D ax for all x in R. Then h is an endomorphism (linear map)
of the K-vector space R. Since R has no zero-divisors, h is injective. Because R is
assumed finite-dimensional over K, it is also surjective. In particular, there exists
b 2 R such that ab D 1. ˜

Remark. It can be proved in an analogous way that an integral domain that has
finite cardinality is a field.
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3. Let E=K be a field extension, and let ˛ 2 E be algebraic over K. Consider
on the K-vector space K.˛/ the endomorphism h defined by multiplication by ˛.
The minimal polynomial of h is called the minimal polynomial of ˛ over K, and we
denote it by

MiPoK .˛/:

This is the lowest-degree normalized polynomial in KŒX � that has ˛ as a zero. (That
there can be only one such polynomial is clear: if f;g are both normalized and of
degree n, the degree of f � g is less than n.) The degree of f D MiPo˛.K/ is also
called the degree of ˛ over K, and is denoted by Œ˛ WK�.
Example. Consider E D �, K D � and ˛D e2� i=3. Then ˛ is a root of X 3 �1. But
X 3 �1 D .X �1/g.X /, with g.X /D X 2 CX C1; since ˛¤ 1, we have g.˛/D 0.
Let f D MiPoK .˛/; we claim that f D g. Otherwise necessarily degf < deg g, so
f could only be of the form f .X /D X �˛, which is impossible since ˛ … �.

F3. Let E=K be a field extension and let ˛ 2 E be algebraic over K, of degree
n WD Œ˛ WK�. The elements

(6) 1; ˛; ˛2; : : : ; ˛n�1

of E form a basis of K.˛/ over K. In particular,

(7) K.˛/ WK D Œ˛ WK�D deg MiPoK .˛/:

Proof. Let f .X /D X n C� � � Ca1X Ca0 the minimal polynomial of ˛ over K. We
know that

K.˛/ WK 	 nI
see (5) in the proof of F1. There remains to show that 1; ˛; ˛2; : : : ; ˛n�1 are linearly
independent over K. Suppose there is a relation

(8)
n�1X
iD0

ci˛
i D 0 with ci 2 K:

Set g.X / WD Pn�1
iD0 ciX

i . If some ci in (8) were nonzero, g.X / would be a nonzero
polynomial in KŒX � of degree less than n and vanishing at ˛. Contradiction! ˜

4. Let E=K be a field extension and assume ˛ 2 E is algebraic over K. Is it the
case that any ˇ 2 K.˛/ is also algebraic over K?

Definition. An extension E=K is called algebraic if every element of E is algebraic
over K. An extension E=K is called finite if E WK <1.

Remarks. �=� is a finite extension, since � W � D 2. The extension �=� is not
algebraic; see Remark (b) in Section 2.1.

An extension E=K is called transcendental if it is not algebraic.
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F4. If an extension E=K is finite, it is also algebraic; for each ˇ 2 E the degree
Œˇ WK� is a divisor of E WK.

Proof. Let E=K be finite of degree n. Given ˇ 2 E, the n C 1 elements 1; ˇ;

ˇ2; : : : ; ˇn of the n-dimensional K-vector space E are linearly dependent. Therefore
there exist a0; a1; : : : ; an 2 K, not all zero, such that

a01 C a1ˇC � � � C anˇ
n D 0:

Thus ˇ is algebraic over K. By F3, Œˇ WK� D K.ˇ/ WK, and K.ˇ/ WK is a divisor
of E WK by the degree formula (Chapter 1, F7). ˜

We now can easily answer in the affirmative the question asked at the beginning
of this section.

F5. Let E=K be a field extension. If ˛ 2 E is algebraic over K, the extension
K.˛/=K is algebraic.

Proof. If ˛ is algebraic over K, we know from F1 that K.˛/=K is finite. But every
finite field extension is algebraic, by F4. ˜

Together, F1 and F4 afford the following criterion:

F6. Let E=K be a field extension. An element ˛ of E is algebraic over K if and only
if K.˛/=K is finite.

Now it is a cinch to prove Theorem 1, which we can reformulate as follows:

Theorem 1. Let M be a subset of � containing 0 and 1. Let K D �.M [ M /. The
field extension M=K is algebraic.

Proof. Take z 2 M . From F9 of Chapter 1 we know that K.z/ WK <1. Then F6
says that z is algebraic over K. ˜

Remark. The converse of F4 is not true: Not every algebraic extension is finite.
This will soon become obvious. In fact a counterexample comes up naturally in our
context: If E D f0; 1g is the field of all numbers constructible from f0; 1g with
ruler and compass, the field extension E=� is algebraic but not finite. (With what
we know so far this is not very easy to prove, but it’s worth thinking about; see §2.5
in the Appendix.)

Among algebraic extensions, finite extensions can be characterized thus:

F7. Let E=K be a field extension. The following conditions are equivalent:

(i) There are elements ˛1; : : : ; ˛m of E, finite in number and algebraic over K,
such that E D K.˛1; : : : ; ˛m/.

(ii) E=K is finite.
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Proof. (ii) ) (i) is clear; all we need to do is choose a basis ˛1; : : : ; ˛m for E=K.
Then we actually have E D K˛1 C � � � C K˛m, and by F4 all the ˛i are algebraic
over K.

To show (i) ) (ii) we use induction over m. For m D 0 there is nothing to
prove. Assume that (i) holds for some m � 1 and set

K0 D K.˛1; : : : ; ˛m�1/:

Then E D K0.˛m/. Since ˛m is algebraic over K, it is a fortiori algebraic over the
larger field K0. By F1 this implies E WK0 < 1. But by the induction hypothesis,
K0=K is finite. The degree formula (Chapter 1, F7) then implies that E=K is finite.

˜

5. Let E=K be a field extension. A subfield L of E containing K is called an
intermediate field of the extension E=K.

F8. Let E=K be a field extension. The subset

F D f˛ 2 E j ˛ is algebraic over Kg
is an intermediate field of E=K. It is called the algebraic closure of K in E. In
particular, the set of all algebraic numbers is a subfield of �.

Proof. Take ˛; ˇ 2 F . Consider the subfield K.˛; ˇ/ of E. By F7 the extension
K.˛; ˇ/=K is finite (prove this again for practice). Now apply F4; all elements of
K.˛; ˇ/ are algebraic over K, so

K.˛; ˇ/� F:

The elements ˛Cˇ, ˛�ˇ, ˛ˇ and 1=˛ (if ˛ ¤ 0) lie in K.˛; ˇ/, and thus also in
F . So F really is a subfield of E. Clearly K � F , since any ˛ 2 K is a zero of
a polynomial X � ˛ 2 KŒX � and therefore algebraic over K. This completes the
proof. ˜

This proof qualifies as easy, but it’s only easy because we have the right notions
at our disposal. Otherwise, would you be able to write down, at the drop of a hat, a
nontrivial rational polynomial that vanishes at the sum of two numbers, given only
rational polynomials vanishing at one and the other number respectively?

F9 (Transitivity of algebraicness). Let L be an intermediate field of the extension
E=K. If E=L and L=K are algebraic, so is E=K (and vice versa).

Proof. Take ˇ 2 E. By assumption ˇ is algebraic over L. Let ˛0; ˛1; : : : ; ˛n�1

be the coefficients of MiPoL.ˇ/; then ˇ is also algebraic over the subfield F WD
K.˛0; ˛1; : : : ; ˛n�1/. By assumption all the ˛i are algebraic over K. Therefore we
can apply F7 to conclude that F W K is finite. But F.ˇ/ WF is also finite, by F6;
therefore the degree formula gives

F.ˇ/ WK <1:

Using F4 we see in particular that ˇ is algebraic over K. ˜
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F10. Let E=K be a field extension and A a subset of E. If all elements of A are
algebraic over K, the extension K.A/=K is algebraic.

Proof. Clearly K.A/ is the union of all subfields of the form K.M /, where M

ranges over finite subsets of A. By F7, each K.M /=K is finite and therefore also
algebraic. Thus K.A/ contains only elements algebraic over K. (Of course F10
also follows directly from F8.) ˜

F11. Let E=K be a field extension, and L1;L2 intermediate fields of E=K. The field

(9) L1L2 WD L1.L2/D L2.L1/

is called the composite of L1 and L2 in E.

(a) If L1=K is algebraic, so is L1L2=L2.

(b) If L1=K is finite, so is L1L2=L2; moreover L1L2 WL2 	 L1 WK.

(c) If L1=K and L2=K are algebraic, so is L1L2=K.

(d) If L1=K and L2=K are finite, so is L1L2=K; if , moreover, the extension
degrees n1 D L1 WK and n2 D L2 WK are relatively prime, we have L1L2 WK D
n1n2.

Proof. Part (a) follows from F10, taking (9) into account. Part (c) therefore also
follows, thanks to F9. Let L1=K and L2=K be finite. Assuming (b) already proved,
we see from the degree formula that

(10) L1L2 WK D .L1L2 WL2/.L2 WK/	 .L1 WK/.L2 WK/;
which is the first part of (d). Again from the degree formula we obtain that L1L2 WK
is divisible by n1 and by n2. If n1; n2 are relatively prime, L1L2 WK is divisible by
n1n2, which together with (10) gives the second part of (d).

There remains to prove (b). Consider the set R of all finite sums of products ab

with a 2 L1; b 2 L2. Clearly R is a subring of E containing L1 and L2. It is also
clear that any basis of L1=K generates R as an L2-vector space R, so in particular
R WL2 	 L1 WK. If L1 WK < 1, this implies that R is a field (see F2). It follows
that R D L1L2, which concludes the proof. ˜
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