
Chapter 2

The Functional Approach

This chapter is devoted to studying optimal designs for a wide class of
nonlinear regression models on the basis of a functional approach. This
class includes exponential and rational models as well as many particular
models of the Chebyshev type used in microbiology and other fields of
experimental research.

We consider designs that are locally D-optimal or maximin efficient D-
optimal among designs with the number of points equal to the number of
parameters. In many cases, such designs prove to be optimal or maximin
efficient among all approximate designs.

Support points of such designs are considered here as implicit functions
on the initial value of the nonlinear parameters or on characteristics of sets
containing, by the assumption, the true parameter value. A corresponding
equation system is derived and is called the basic equation system or the
basic (vector) equation. Studying this system allows one to prove that the
functions are real analytic and therefore can be represented by a Taylor se-
ries under natural conditions. Recurrent formulas for computer-calculating
the Taylor coefficients are introduced.

2.1 Introduction

Most results in the modern regression design theory were obtained for linear
models with a fixed design region (see Fedorov, 1972; Silvey, 1980; Kiefer,
1985; Pukelsheim, 1993). However, many models of practical importance
are nonlinear models (see, e.g., Seber and Wild, 1989). The commonly
used approach for experimental design in such models consists of their lin-
earization in a vicinity of some initial values of the nonlinear parameters
and application of locally optimal designs, briefly discussed in the previ-
ous chapter. In spite of such designs are usually depending on the initial
values, they can be used if a reliable knowledge about the parameters is
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24 CHAPTER 2. THE FUNCTIONAL APPROACH

available. These designs are also used in studying more complicated ap-
proaches: maximin and Bayesian ones (see Section 1.7).

Even if linear models are implemented, the design region often cannot
be considered as fixed. For example, in many microbiological studies (see
Pirt, 1984; Dette, Melas, and Strigul, 2005), the design region is a time
interval and can be chosen by an experimentator in different ways. The
introduction of design intervals with variable bounds can be considered
also as an artificial method for investigations of the structure of optimal
designs.

In the present chapter, we will consider nonlinear models given at a de-
sign interval. Our basic method here is the functional approach introduced
in Melas (1978) for studying exponential nonlinear models and our aim is
to apply it to a wider class of models.

The main idea of this approach consists of studying optimal design
points and weights as implicitly given functions of the bound of the design
interval and/or nonlinear parameters of the model. These functions can be
investigated on the basis of the Implicit Functional Theorem formulated in
Section 1.8 (see also Gunning and Rossi (1965)). In particular, in many
cases these functions prove to be real analytic which enables one to present
them by segments of the Taylor series. We will introduce here general
recurrent formulas for constructing such series and discuss their applications
for studying properties of optimal designs.

The functional approach seems to be useful when an explicit analytical
form of optimal designs is not available. It can be considered as an alterna-
tive or useful addition to merely numerical methods. It is worth mentioning
that similar approaches are well known in many fields of mathematics and
its application. For example, representing indefinite integrals by a power
series is the recognized technique of their calculation, and coefficients of
such series are tabulated and given in textbooks. However, in the field of
experimental design the functional approach is relatively new. References
to existing literature will be given throughout the book.

In Section 2.2∗, we will introduce the basic ideas of the functional ap-
proach using exponential models (nonlinear by parameters) as an example.
Section 2.3 contains a list of assumptions justifying the implementation of
the functional approach and formulates without proofs the main theoretical
results. Section 2.4 is devoted to studying the basic equation. It is also in-
troduces general recurrent formulas for calculating the Taylor coefficients.
The application of the theory to the three-parameter logistic model is given
in Section 2.5. All lengthy proofs are deferred to Section 2.6.

∗Note that in Section 2.2 and in Sections 2.3–2.6 a part of materials are taken from
Melas, V.B. (2005). On the functional approach to optimal designs for nonlinear models.
J. Statist. Plan. and Inference, 132, 93–116. c©2004 Elsevier B.V. with permission of
Elsevier Publisher.
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2.2 Basic Ideas of the Functional Approach

In this section we will introduce some basic ideas of the approach. We
will consider regression models given by linear combinations of unknown
exponentials as a typical example of nonlinear models.

In order to make the explanation more apparent, all technically difficult
mathematical results will be only formulated and their proofs will be given
in further sections.

Let us restrict our attention by the D-criterion and study locally D-
optimal designs and maximin efficient D-optimal designs.

As it was discussed in Section 1.7, the first of the problems has some
independent interest. It is also a necessary step for investigating the second
problem.

2.2.1 Exponential regression models

Let us consider the models given by relations

Yj =
k∑

i=1

aie
−λixj + εj , j = 1, . . . , N, (2.1)

where Y1, . . . , YN are experimental results, a1, . . . , ak and λ1, . . . , λk are the
parameters to be estimated; and

ai �= 0, λi > 0, i = 1, . . . , k, λi �= λj (i �= j), (2.2)

ε1, . . . , εN are independent and identically distributed random values (ex-
perimental errors) with zero mean (Eεi = 0) and the variance Eε2i = σ2 >
0, and x1, . . . , xN ∈ [0,∞) are observation points.

Let us assume that k is known and the problem consists of an optimal
choice of observation points in order to estimate the parameters as accu-
rately as possible for a given number of possible observations at the interval
[0,∞).

The model (2.1) is of a great theoretical and practical interest. It is
often used in chemical and biological investigations (see, e.g., Becka and
Urfer (1996) and Han and Chaloner (2003)).

A discrete probability measure

ξ =
(
x1 . . . xn

ω1 . . . ωn

)
, (2.3)

where 0 < x1 < · · · < xn are support points and ωi > 0, i = 1, . . . , n,
and

∑
ωi = 1 are weight coefficients, will be called the (approximate)

experimental design.
Let we have an opportunity to realize N experiments. We will say that

the experiments are performed in accordance with the design (2.3) if ri
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observations are performed in points xi (i = 1, . . . , n), where

ri = �ωiN
 or �ωiN
 + 1,

and �a
 denotes the integer part of a, in such a way that
∑
ri = N .

Set θ = (a1, λ1, . . . , ak, λk)T . Denote by θ̂(N) the least squares estima-
tor for θ obtained from the results of N experiments in accordance with a
design of the form (2.3); that is,

θ̂ = θ̂(N) = arg min
θ∈R2k

n∑
i=1

ri∑
j=1

[Yij − η(xi, θ)]
2
,

where

η(x, θ) =
k∑

i=1

aie
−λix

and Yij is the result of the j-th experiment in the point xi.
Let θ∗ denote the true value of θ in the model (2.1). It can be shown

by verification of regularity conditions of the Jennrich theorem (Jenrich,
1969) that with n ≥ 3 and N → ∞, the covariance matrix of the vector
(θ̂(N) − θ∗)/

√
N tends to the matrix

σ2
[∫

f(x, θ)fT (x, θ)ξ(dx)
]−1

, (2.4)

where

f(x, θ) =
∂

∂θ
η(x, θ),∫

g(x)ξ(dx) =
n∑

i=1

g(xi)ωi,

θ = θ∗.

The matrix (
n∑

s=1

∂η(xs, θ)
∂θi

∂η(xs, θ)
∂θj

ωs

)2k

i,j=1

is usually called the Fisher information matrix.
By immediate application of Binet–Cauchy’s formula to the determinant

of this matrix, we obtain

det
(∫
f(x, θ)fT (x, θ)ξ(dx)

)
= a2

1 . . . a
2
k

∑
1≤i<···<i2k≤n

(∏2k
s=1 ωis

)
det2

(
ψl(xij

)
)2k

l,j=1 ,
(2.5)



2.2. BASIC IDEAS OF THE FUNCTIONAL APPROACH 27

where
ψ1(x) =

∂

∂a1
η(x, θ) = e−λ1x,

ψ2(x) =
∂

∂λ1
η(x, θ) = −xe−λ1x,

...

ψ2k−1(x) =
∂

∂ak
η(x, θ) = e−λkx,

ψ2k(x) =
∂

∂λk
η(x, θ) = −xe−λkx.

Let us restrict ourselves by the D-criterion of optimality (for other cri-
teria, we can proceed in a similar way). A design is called D-optimal if
it maximizes the determinant of the information matrix. The problem is
to find a design maximizing the determinant among all possible (approx-
imate) designs. Note that with ai �= 0, i = 1, . . . , k, values of a1, . . . , ak

do not influence the solution of this problem (since they involve only in
the multipliers a2

1, . . . , a
2
k). Therefore, we can assume in the following that

a2
1 = · · · = a2

k = 1.
However, the design maximizing the value (2.5) depends, generally

speaking, on the value Λ = (λ1, . . . , λk) = Λ∗ = (λ∗
1, . . . , λ

∗
k). Such a

dependence is the main feature of all nonlinear models.
There are several ways to overcome this difficulty. Let us begin with

the locally optimal approach (introduced by Chernoff (1953)). This ap-
proach consists of the replacement of the unknown value Λ∗ by a known
approximation for it (an initial guess).

A design will be called locallyD-optimal if it maximizes the determinant
(2.5) with a1 = · · · = ak = 1 and Λ = (λ1, . . . , λk) = Λ(0) = (λ(0)

1 , . . . , λ
(0)
k ).

Let us set
M(ξ,Λ) =

∫
f(x, θ)f(x, θ)T ξ(dx),

where θ = (1, λ1, . . . , 1, λk) and Λ = (λ1, . . . , λk)T .
Note that this matrix coincides with the information matrix for the

corresponding linear model

Y = β1e
−λ1x + β2xe

−λ1x + · · · + β2k−1e
−λkx + β2ke

−λkx + ε, (2.6)

where β1, . . . , β2k are parameters to be estimated and λ1, . . . , λk are as-
sumed to be known.

Now, we should make a very important remark. Note that we assumed
λi �= λj i �= j, when we formulated our model. In fact, if λi = λj for some
i �= j, then the model (2.1) contains no more than k − 1 terms of the form

aie
−λix.

However, we restrict ourselves by the models with k terms.
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It should be noted that if λi = λj for some i and j (i �= j), then for each
of the determinants in the right-hand side of (2.5) the two corresponding
columns coincide. Thus, in this case, detM(ξ,Λ) = 0 for any design ξ.

However, from a mathematical point of view, it is useful to admit that
the value

min
i �=j

∣∣λi − λj

∣∣
can be as small as we like. Moreover, it can be verified [see Melas (1978)]
that the function

V (ξ,Λ) = (detM(ξ,Λ))
/∏

i<j

(λi − λj)8 (2.7)

can be codefined with preserving continuity at the set of all positive values
λ1, . . . , λk.

Now, we are prepared to introduce a more convenient definition.

Definition 2.2.1 A design, maximizing the value (2.7) among all (approx-
imate) designs for an arbitrary fixed vector Λ with positive coordinates will
be called a locally D-optimal design.

For arbitrary Λ such that λi �= λj (i �= j), this definition corresponds
to the usual definition of locally D-optimal designs.

Note that designs that maximize the limit of (2.7) with Λ → Λγ =
γ(1, . . . , 1) that is locally D-optimal designs for points Λ = Λγ will play
an important role in the following consideration. Due to the continuity
arguments these designs will be nearly optimal for all vectors Λ whose
coordinates are close enough to each other.

We will construct and study locally D-optimal designs in the next sub-
section.

It should be noted that locally D-optimal (LD)designs depend on the
initial vector Λ = Λ(0) and could be not very efficient if this vector is far
from the vector of true parameter values Λ∗. However, the design could
be implemented in a sequential manner. One can take Λ = Λ(0), construct
an LD design for this vector, and realize N1 experiments in accordance
with this design. Then one can construct the LS (least squares) estimator
θ̂ = θ̂(N1) and take the parameter vector Λ̂(1) = Λ̂(N1) in order to construct
the new LD design. By repeating this procedure several times, we will
obtain a design close to the LD design with Λ = Λ∗.

The described procedure (see, e.g., Silvey (1980) for more accurate ex-
planation) cannot be appropriate if we need to have a design for all exper-
iments in advance. An alternative to such a sequential implementation of
LD design consists of using a minimax approach (see Section 1.7 for a more
detailed discussion).

Let us consider a reasonable version of the minimax approach.
Assume that for the vector Λ∗, a set Ω of its possible values is given. In

particular, such a set can be obtained from preliminary experiments or by
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theoretical consideration of the underlying real problem. From a practical
point of view, the following type of set seems to be of a great interest:

Ω = Ω(δ) = {Λ; (1 − δ)xi ≤ λi ≤ (1 + δ)ci, i = 1, . . . , k} , (2.8)

where ci is an approximation to λ∗
i , i = 1, . . . , k, and the value δ ∈ (0, 1)

can be interpreted as a relative error of this approximation.
Note that the intervals [(1 − δ)ci, (1 + δ)ci] can be overlapped and even

can coincide with each other.
From a methodical point of view, it is very convenient that the set (2.8)

under fixed c1, . . . , ck is determined by a single parameter δ.
Let us call a design a maximin efficient D-optimal design if it maximizes

the value

min
Λ∈Ω

[
V (ξ,Λ)

V (ξ(Λ),Λ)

]1/m

, m = 2k, (2.9)

where ξ(Λ) is a LD design, Ω = Ω(δ) is determined by (2.8).
Note that the minimum here is achieved at some values Λ̄ ∈ Ω since Ω

is a bounded and closed set.
The value (2.9) for a given design will be called the minimal efficiency.
Note that [

V ξ,Λ)
V (ξ(Λ),Λ)

]1/m

=
[

detM(ξ,Λ)
detM(ξ(Λ),Λ)

]1/m

if Λ satisfies the restriction λi �= λj (i �= j).
If we perform N experiments in accordance with a design ξ, then the

volume of a confidence ellipsoid for LS estimates will be proportional to(
1√
N

)m√
detM(ξ,Λ)

(see, e.g., Pukelsheim (1993)).
Thus, the minimal efficiency of a given design is equal to the ratio

N/N∗, where N is the number of experiments along the design ξ needed
for obtaining estimates with a given accuracy and N∗ is the similar number
for a LD design.

In the following subsections we will demonstrate opportunities of the
functional approach to constructing and studying LD and maximin efficient
D-optimal designs.

2.2.2 Locally D-optimal designs

It is easy to check that if the number of support points of a design ξ
is less than the number of parameters to be estimated (n < 2k), then
detM(ξ,Λ) = 0. By this reason, the designs with n = 2k is usually called
designs with minimal support. In the following we restrict our attention
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by such designs, and in Chapter 6, it will be shown that LD designs for
the exponential model (2.1) usually belong to this class of designs. Designs
that are LD in the class of designs with minimal support will be called, for
brevity, LDMS designs.

An immediate calculation shows that with n = 2k,

M(ξ,Λ) = FTWF,

where W = diag{ω1, . . . , ω2k}, F = (ψl(xj)2k
l,j=1, and ψl(x) are defined in

(2.8). Therefore,

detM(ξ,Λ) =
∏2k

i=1 ωi det2 F

≤
(∑

ωi

2k

)2k

det2 F =
( 1

2k

)2k) det2 F,

whereas the equality takes place if and only if ωi = 1
2k , i = 1, . . . , 2k. Thus

LDMS designs have the form

ξ =
(
x1 . . . xm
1
m . . . 1

m

)
, 0 ≤ x1 < · · · < xm, m = 2k,

that is, all weight coefficients in such designs are the same.
Let us prove that in each of LDMS designs x1 = 0. Set

ξΔ =
(
x1 + Δ . . . xm + Δ

1
m . . . 1

m

)
, FΔ = (ψl(xj + Δ))m

l,j=1.

Consider the determinant

detFΔ = det

⎛
⎜⎜⎜⎜⎜⎝

e−λ1(x1+Δ) · · · e−λ1(xm+Δ)

−(x1 + Δ)e−λ1(x1+Δ) · · · − (xm + Δ)e−λ1(xm+Δ)

e−λk(x1+Δ) · · · e−λk(xm+Δ)

−(x1 + Δ)e−λk(x1+Δ) · · · − (xm + Δ)e−λk(xm+Δ)

⎞
⎟⎟⎟⎟⎟⎠ .

Let us add the first line multiplied by Δ to the second line, . . . , and
the (2k− 1)-st line multiplied by Δ to the (2k)-th line. Then let us extract
from each of the lines the multiplies of the form e−λiΔ, i = 1, . . . , k. In this
way, we obtain

detFΔ = e−2(
∑k

i=1 λi)Δ detF,

and with Δ < 0,
det2FΔ > det2F.

Thus, with x1 > 0, a design ξ cannot be LDMS since with Δ = −x1,

detM(ξΔ,Λ) =
(

1
m

)m 2
detFΔ > detM(ξ,Λ).
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Therefore, for any LDMS design, we have x1 = 0.
Let us introduce the following notation:

τ = (τ1, . . . , τm−1) = (x2, . . . , xm),

ξτ =
(

0 x2 . . . xm
1
m

1
m . . . 1

m

)
,

ϕ(τ,Λ) = (V (ξτ ,Λ))1/m
,

Rs
+ = {u : u ∈ Rs, u = (u1, . . . , us); ui > 0, i = 1, . . . , s}.

Note that there exists a one-to-one correspondence between vectors τ ∈
Rm−1

+ and designs of the form

ξ = ξτ =
(

0 x2 . . . xm
1
m

1
m . . . 1

m

)
.

The problem of LDMS designs is now reduced to the maximization of the
function ϕ(τ,Λ) by τ ∈ Rm−1

+ under a fixed Λ, where Λ = (λ1, . . . , λk),
λi > 0, and i = 1, . . . , 1.

Since
ϕ(τ,Λ) = C(Λ)(detF )2/m,

F = (ψl(xj))2m
l,j=1, where C(Λ) does not depend on τ and each of elements of

F tends to zero with xm → ∞, then the maximum of ϕ(τ,Λ) by τ ∈ Rm−1
+

is achieved in an inner point of Rm−1
+ for which 0 < τ1 < · · · < τm. Due to

the known necessary conditions for extremum points in order for a design
ξ = ξτ∗ to be an LDMS design, it is necessary that with τ = τ∗, the
following equalities be satisfied,

∂

∂τi
ϕ(τ,Λ) = 0, i = 1, . . . ,m− 1. (2.10)

Consider the case k = 1. In this case,

detM(ξτ ,Λ) =
[
1
2

det
(

1 e−λ1x2

0 −x2e
−λ1x2

)]2

=
1
4
x2

2e
−2λ1x2 ,

ϕ(τ,Λ) = [detM(ξτ ,Λ)]1/2

=
1
2
x2e

−λ1x2 =
1
2
τ1e

−λ1τ1 .

Equalities (2.10) assume the form of the single equation

∂

∂τ1
(τ1e−λ1τ1) = e−λ1τ1(1 − λ1τ1) = 0.
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The unique solution of this equation under fixed λ1 is

τ1 = 1/λ1.

Thus, in the case k = 1, there exists the unique LDMS design

ξ∗ = ξτ∗ =
(

0 1/λ
1/2 1/2

)
.

It can be proved (see Chapter 6) that this design is a LD design among all
approximate designs.

In the case k > 1, it seems impossible to find such an explicit solution
of the problem for arbitrary vectors Λ. However, we can find an explicit
solution for points Λ of the form Λ = (γ, . . . , γ), where γ > 0 is an arbitrary
given number.

In fact, in this case,

V (ξτ ,Λγ) = lim
Λ→Λγ

detM(ξτ ,Λ)/
∏
i<j

(λi − λj)8.

In order to calculate this limit, use the expansion of the exponential into
the Taylor series and elementary properties of the determinant. In Melas
(1978) it was proved that this limit is equal to(

1
m

)m

e−γ
∑m

i=2 xi

∏
i<j

(xj − xi)2. (2.11)

It is easy to check that the value (2.11) coincides with the value of the
determinant of the information matrix for linear (by parameters) regression
model

E(Y |x) = e−γx
m∑

i=1

βix
i−1,

where γ > 0 is a given number and β1, . . . , βm are the parameters to be
estimated.

As it is known (see Karlin and Studden (1966, Chap. X)), (2.11) has
the unique extremal point

τ∗ = (x∗
2, . . . , x

∗
m) =

1
γ

(γ1, . . . , γm−1),

where γ1, . . . , γm−1 are the roots of the Laugerre’s polynomial of degree
m− 1 with the associated parameter 1. Thus, we know the unique solution
of the equation system (2.10) under Λ = Λγ . For the case of an arbitrary
Λ, it can be proved (see Melas (1978)) that the equation system (2.10) has
a unique solution. Denote this solution by τ∗ = τ∗(Λ). With arbitrary k,
the unique LDMS design is

ξ∗ = ξ ∗ (Λ) = ξτ∗(Λ).
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Considering the determinant of the matrix F , it is easy to check that for
any scalar h �= 0,

ϕ(τ, hΛ) = hϕ
( τ
h
,Λ
)
.

Therefore, τ∗(hΛ) = τ∗(Λ)/h and we can restrict our attention to vectors
Λ with

∑k
i=1 λi = k. It allows one to reduce the number of parameters.

Let us introduce the new parameters

z = (z1, . . . , zk−1)T , zi = 1 − λi, i = 1, . . . , k − 1.

Note that, for k = 2, the number of new parameters is equal to 1. Note also
that with

∑k
i=1 λi = k, there exists the one-to-one correspondence between

the set of new parameters and the set of vectors Λ:

λi = 1 − zi, i = 1, . . . , k − 1; λk = k −
k−1∑
i=1

λi = 1 +
k−1∑
i=1

zi.

Denote
ϕ̄(τ, z) = ϕ(τ,Λ(z)),

gi(τ, z) =
∂

∂τi
ϕ̄(τ, z), i = 1, . . . ,m− 1,

g(τ, z) = (g1(τ, z), . . . , gm−1(τ, z))
T
.

(2.12)

Now the equation system (2.10) can be written as the vector equation

g(τ, z) = 0. (2.13)

This equation determines the vector function

z → τ̄∗(z) = τ∗(Λ(z))

implicitly, which allows to apply the Implicit Function Theorem (see Section
1.8).

We will now present an extended formulation of this theorem for the
vector function g(τ,Λ) of a general form (not necessary connected with the
design problem considering here).

Let g(τ, z), τ ∈ Rm−1, z ∈ Rk−1, be an arbitrary vector function g =
(g1, . . . , gm−1)T with the following properties:

(i) g(τ, z) is a real analytic vector function in the point (τ(0), z(0)) (this
means that the component of this vector function can be expanded
into a convergent multivariate Taylor series in the point).

(ii) g(τ(0), z(0)) = 0.
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(iii) The Jacobi matrix

J(0) =
(
∂gi(τ, z)
∂τj

)m−1

i,j=1

∣∣∣∣
τ=τ(0),z=z(0)

is invertible.

In order to formulate the theorem, let us introduce the following nota-
tions. Let Q(u) be an arbitrary (scalar or vector) function of one variable
that is infinitely many times differentiable in a point u(0). Denote

Q(0) = Q(u(0)),

Q(3) =
1
s!
ds

dus
Q(u)

∣∣∣∣
u=u(0)

, s = 1, 2, . . .

If the function Q(u) is real analytic in a vicinity of the point u = u(0), then

Q(u) = Q(0) +
∞∑

s=1

Q(s)(u− u(0))s

in this vicinity.
In the multidimensional case u = (u1, . . . , uk−1), it is necessary to in-

terpret s as the multi-index s = (s1, . . . , sk−1) and denote

Q(s) =
1
s1!

. . .
1

sk−1!
∂s−1

∂us1
1
. . .

∂sk−1

∂usk

k−1
Q(u)

∣∣∣∣
u=u(0)

.

Theorem 2.2.1 Let a vector function g(τ, z), τ ∈ Rk−1, z ∈ Rk−1, possess
the properties (i)–(iii). Then in a vicinity (say U) of the point z(0), there
exists a vector function τ̃ = τ̃(z) such that the following hold:

(I) g(τ̃(z), z) = 0, z ∈ U .

(II) τ̃(z(0)) = τ(0) and τ̃(z) is a real analytic vector function in U .

(III) The coefficients τ̂(s) of the expansion τ̃((z) into the Taylor series

τ̃(z) =
∞∑

s1=0

. . .

∞∑
sk−1=0

τ̃(s)(z1 − z1(0))s1 . . . (zk−1 − zk−1(0))sk−1

can be calculated by recurrent formula that in the case k = 2 has the
form

τ̃(s+1) = −J−1
(0) g(s+1)(τ̃<s>(z), z), s = 0, 1, . . . ,

where

τ̃<s>(z) = τ̃(0) +
s∑

j=1

τ̃(j)(z − z(0))j .
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Note that assertions (I) and (II) are simply a reformulation of Theo-
rem 1.8.1. Assertion (III) was established in Dette, Melas and Pepelyshev
(2004b) and will be proved for the case of arbitrary k in Section 2.6.

Let us now apply this theorem to the function g(τ, z) given by relations
(2.12). As is well known, the exponentials are real analytic at R1 since

e−λt = 1 − λt+
(−λt)2

2!
+ . . .+

(−λt)n

n!
+ . . .

and the series is convergent for any λ and t.
Additionally, multiplications and sums of real analytic functions are real

analytic and, therefore,
det(ψl(xj))m

l,j=1

is a real analytic function in Λ = (λ1, . . . , λk)T and (x1, . . . , xm) in Rk+m.
Note that the function ϕ(τ,Λ) and the vector function g(τ, z) are real

analytic in a vicinity of the points (τ(0),Λ(0)), and (τ(0), z(0)), respec-
tively, where Λ(0) = (1, . . . , 1), τ(0) = τ∗(Λ(0)) = (γ1, . . . , γn−1), and
Z(0) = (0, . . . , 0),

In fact,

V (ξτ ,Λ) =
detM(ξτ ,Λ)∏
i<j(λi − λj)8

and it can be verified [see Melas (1978)] that this function, codefined with
preserving the continuity in points Λ such that λi = λj for some i �= j, is
real analytic for arbitrary τ ∈ Rm−1 and arbitrary Λ ∈ Rk.

Additionally, the function

ϕ(τ, λ) = (V (ξτ ,Λ))1/m

is real analytic as a rational degree of the real analytic function. It follows
from here by the standard arguments that the function ϕ̄(τ, z) and the
vector function g(τ, z) are also real analytic for arbitrary τ ∈ Rm−1 and
z ∈ Rk−1.

Let us now calculate the matrix

J(0) =
(
∂gi(τ, z)
∂τj

)m−1

i,j=1

∣∣∣∣
τ=τ(0),z=z(0)

=
(

∂2

∂τi∂τj
ϕ̄(τ, z)

)m−1

i,j=1

∣∣∣∣
τ=τ(0),z=z(0)

.

Due to (2.11) and the definition of ϕ̄(τ, z) given in (2.12), we have

m(ϕ(τ, z(0))m = e−2
∑m−1

i=1 τi

(
m−1∏
i=1

τ2
i

)
m−1∏
i<j

(τi − τj)2.
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A direct calculation shows that

∂ϕ̄(τ, Z(0))
∂τj

=

⎡
⎣−1 +

1
τj

+
∑
s �=j

1
τj − τs

⎤
⎦ ϕ̄(τ, z(0)), i = 1, . . . ,m− 1,

and the derivatives are equal to zero with τ = τ(0) by the definition of the
point τ(0).

Therefore,

(J(0))ij =
∂2ϕ̄(τ, z(0))
∂τi∂τj

∣∣∣∣
τ=τ(0)

=
ϕ̄(τ(0), z(0))
(γj − γi)2

(i �= j),

(J(0))ij =
∂2ϕ̄(τ, z(0))

∂2τj

∣∣∣∣
τ=τ(0)

= −
⎛
⎝ 1
γ2 +

∑
s �=j

1
(γj − γs)2

⎞
⎠ ϕ̄(τ(0), z(0)),

i, j = 1, . . . ,m− 1.
Thus, for the matrix J = J(0), we have

(J)ij > 0, i �= j, Jij < 0, i, j = 1, . . . ,m− 1,

m−1∑
j=1

(J)ij = − ϕ̄(τ(0), z(0))
γ2

j

< 0, i = 1, . . . ,m− 1.

Due to the Hadamard criterion (see, e.g., Gantmacher (1998)), for an (m−
1) × (m− 1) matrix A

detA �= 0 if (A)ii >
∑
i �=j

|Aij |, i = 1, 2, . . . ,m− 1.

The matrix (−J(0)) satisfies these conditions and, therefore, detJ(0) �= 0.
Thus, we proved that the function g(τ, z) determined by equalities (2.11)

satisfies the conditions of Theorem 2.2.1 with z(0) = (0, . . . , 0). τ(0) =
(γ1. . . . , γm−1).

Consider now the case k = 2. In this case, the regression function is

η(x, θ) = a1e
−λix + a2e

−λ2x, a1, a2 �= 0, λ1 �= λ2,

where λ1 > 0 and λ2 > 0. As will be shown in Chapter 6, LDMS designs
are in this case LD among all (approximate) designs. Support points of
these designs, as was already shown, do not depend on a1 and a2 and if λ1
and λ2 are multiplied by the same number h > 0, then the points should
be divided by this number. Therefore, it will do to consider Λ such that
λ1 + λ2 = 2 and to study the dependence of the support points of LDMS
design on the parameter

z = z1 = 1 − λ1 = (λ2 − λ1)/2.
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Let z(0) = 0 and τ(0) = (γ1, γ2, γ3) = (0.467, 1.652, 3.879).
Note that the function ϕ(τ, z) is even,

ϕ(τ, z) = ϕ(τ,−z).
By this reason τ∗(z) = τ∗(−z) and all odd coefficients τ∗

(2j+1), j = 0, 1, . . .
are equal to zero. Therefore

τ∗(z) = τ(0) +
∞∑

t=1

τ∗
(2k)z

2t. (2.14)

The coefficients can be calculated by recurrent formulas of Theorem 2.2.1.
These calculations can be easily realized with the help of the software pack-
age Maple. Some details of the implementation of the package are given in
the Appendix of the present book.

First even coefficients calculated in this way are presented in Table 2.1.

Table 2.1: Coefficients τ<2t>, t = 0, 1, . . . , 6

0 1 2 3 4 5 6
0.46791 0.02919 0.00305 0.00056 0.00022 0.00008 −0.00005
1.65270 0.36419 0.21113 0.15971 0.13371 0.11650 0.10252
3.87938 2.00661 1.86581 1.92887 2.04481 2.16523 2.26335

The method allows one to calculate as many coefficients as we like. Since
the coefficients are already obtained, one can construct the corresponding
designs simply by several first coefficients in the expansion (2.14).

However, we have a few problems here. The first problem concerns the
radius of convergency of the series (2.14). Note that 0 ≤ |z| ≤ 1 since

z = (λ1 − λ2)/2 and (λ1 + λ2)/2 = 1.

Numerical studies show that the series are convergent for any |z| < 1.
However, a strong theoretical proof of this fact is not obtained up to now.

The next problem consists of the determination of how many coefficients
should be used in order to calculate support points of LDMS designs with
an appropriate precision.

Denote τ(z, s) = τ(0) +
∑s

t=1 τ2tz
2t and

I(s) = I(s)(z) =
(

detM(ξτ(z,s), z)
detM(ξ∗(z), z)

)1/m

, s = 0, 1, . . . ,

where ξ∗(z) = ξτ∗(z) is a LDMS design.
The value I(s)(z) is the efficiency of the design ξτ(z,s) constructed by

s first even coefficients with respect to the LDMS for a given z. This
value can be evaluated with the help of Kiefer’s inequality (see Section 1.6)
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Figure 2.1: The dependence of support points of the LDMS designs on z
for the exponential model with k = 2

without calculating the LDMS design. Some numerical results are given in
Table 2.2. They represent an evaluation of I(s)(z), obtained with the help
of Kiefer’s inequality. Note that with 0 < z < 0.5, I(0) = 1.00 and there is
no reason to calculate more coefficients.

Table 2.2: The efficiency of designs ξτ<t>(z)

z\t 0 1 2 3 4 5 6 7 8 9
0.50 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.70 0.90 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.80 0.80 0.93 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00
0.85 0.72 0.88 0.94 0.97 0.98 0.99 1.00 1.00 1.00 1.00
0.90 0.61 0.79 0.87 0.92 0.95 0.97 0.98 0.99 0.99 1.00
0.95 0.45 0.61 0.71 0.78 0.83 0.87 0.90 0.93 0.94 0.96
0.97 0.35 0.49 0.58 0.65 0.71 0.76 0.80 0.84 0.86 0.89

From Table 2.2 we can conclude that with |z| ≤ 0.7, it will do to use
only one or two nonzero coefficients. However, for z = 0.9, we need 20
coefficients in order to obtain the efficiency greater than 0.995. Table 2.2
also shows that with |z| ≤ 0.9, the expansions allow one to construct locally
optimal designs with a very high precision. For |z| > 0.9, we can use a
similar expansion with z(0) = 0, 9 as the initial point. The dependence of
support points of the LD designs on z is presented in Figure 2.1. Note that
we used 10 nonzero Taylor coefficients in order to construct this figure.

The next important question is: How efficient are LD designs with re-
spect to equidistant designs usually implemented in practice?
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Table 2.3: The efficiency of LD designs in respect to the best equidistant
design

λ1 1.1 1.3 1.5 1.7 1.9 1.95
λ2 0.9 0.7 0.5 0.3 0.1 0.05
I 2.13 2.06 1.92 1.70 1.80 2.20

Denote by

ξN,T =
(

0 T/(N − 1) . . . T (N − 2)/(N − 1) T
1
N

1
N . . . 1

N
1
N

)

the design located in N equidistant points at the interval [0, T ]. For large
N , the quality of this design is not very sensitive to the value of N , but it
depends on T .

Consider the efficiency of LD designs constructed above with respect
to equidistant design with an optimal choice of T ; that is, we will take
the value of T in such a way that the minimal efficiency of the equidistant
designs for z ∈ [0.1, 0.9] is the maximal one.

Our numerical results are given in Table 2.3. In this table, T = 10,
N = 20;

I =
(

detM(ξτ∗(Λ),Λ)
detM(ξN,T ,Λ)

)1/m

, m = 4.

We see from Table 2.3 that in the most cases the efficiency of the LD
design with respect to the equidistant design is more than 2 or close to 2.
This means that the number of experiments in accordance with a LD design
needed in order to achieve a given accuracy is approximately twice less than
the same number for the best equidistant design if Λ(0) = Λ∗. However,
since Λ∗ is unknown, these results describe the efficiency of LD designs
only in an asymptotical sense. The influence of the choice of Λ(0) on the
quality of LD designs can be studied numerically. However, in the following
subsection we will show that the application of the functional approach can
be used for such a study and allows one to compare LD designs with the
maximin efficient ones.

2.2.3 Maximin efficient designs

Assume that it is known that Λ∗ ∈ Ω, where Ω is a given bounded and
closed set in Rk

+ = {Λ = (λ1, . . . λk); λi > 0, i = 1, . . . , k}. Then a natural
criterion of the efficiency of a given design is the value

min
Λ∈Ω

(
V (ξ,Λ)

V (ξ(Λ),Λ)

)1/m

, (2.15)
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where ξ(Λ) is a LD design, and for Λ such that λi �= λj (i �= j), the value
V (ξ,Λ)/V (ξ(Λ),Λ) is equal to detM(ξ,Λ)/detM(ξ(Λ),Λ) [see the end of
Section 2.2.1 for a discussion on this matter]. The value (2.15) will be
called the minimal efficiency and the designs that maximize this value will
be called maximin efficient D-optimal designs or, briefly, MME designs.

We will study the MME designs for the exponential model (2.1) and the
set Ω = Ω(δ),

Ω(δ) = Ω(δ, c) = {Λ = (λ1, . . . , λk) : (1−δ)xi ≤ λi ≤ (1+δ)ci, i = 1, . . . , k},
where δ ∈ (0, 1), c = (c1, . . . , ck), ci > 0, and i = 1, . . . , k.

Let us restrict our attention to designs with the minimal support. In
the following, it will be shown (see Theorems 2.2.2 and 2.2.3 and numerical
results) that MME designs have the minimal support for sufficiently small
δ and arbitrary c.

We have already proved that

detM(ξΔ,Λ) < detM(ξ,Λ),

where

ξΔ =
(

Δ x2 + Δ . . . xm + Δ
1
m

1
m . . . 1

m

)
, Δ > 0,

ξ =
(

0 x2 . . . xm
1
m

1
m . . . 1

m

)
.

Therefore, MME designs with a minimal support have the from

ξτ =
(

0 x2 . . . xm
1
m

1
m . . . 1

m

)
, τ = (τ1, . . . , τm−1) = (x2, . . . , xm). (2.16)

Let us introduce the function

ϕ̂(τ,Λ) =
(

V (ξτ ,Λ)
V (ξτ∗(Λ),Λ)

)1/m

,

where ξτ∗(Λ) is a LDMS design.
Theoretical studies (see Theorems 2.2.2 and 2.2.3) show that for suffi-

ciently small δ > 0,

minΛ∈Ω(δ,c) ϕ̂(τ,Λ) = min{ϕ̂(τ, (1 − δ)c), ϕ̂(τ, (1 + δ)c}

= min0≤α≤1 αϕ̂(τ, (1 − δ)c) + (1 − α)ϕ̂(τ, (1 + δ)c).

Based on this, let us introduce the following class of designs. Let us
say that a design is a maximin efficient design with a minimal structure or,
briefly, MMEMS design, if this design is of the form (2.16), where τ = τ̂
and τ̂ maximizes the value

min
0≤α≤1

αϕ̂(τ, (1 − δ)c) + (1 − α)ϕ̂(τ, (1 + δ)c)
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at the set of all vectors τ with positive coordinates.
In the case when intervals of possible values are the same for all para-

meters λi, i = 1, . . . , k (i.e., c1 = c2 = · · · = ck) the MMEMS designs can
be found explicitly.

In order to describe these designs, let us denote

u = (τ, α) = (τ1, . . . , τm−1, α),

Φ(u, δ) = αϕ̂(τ, (1 − δ)c) + (1 − α)ϕ̂(τ, (1 + δ)c),

ξ̂ = ξτ̂ - MMEMS design.

Let γ1, . . . , γm−1 be, as above, the roots of Laugerre’s polynomial of
degree m− 1 with the associated parameter 1,

h = h(δ) = 2δ/ ln
(

1+δ
1−δ

)
,

I(δ) = [h(δ)e(1−h(δ))]m(m−1)/2,

H =
(
detM(ξτ∗(c), c)

)1/m
.

Remember that τ∗(γc) = τ∗(c)/γ for any γ > 0. Also, it follows from
here that

ϕ̂(τ, (1 − δ)c) = (detM(ξτ , (1 − δ)c))1/m /
(H(1 − δ)),

ϕ̂(τ, (1 + δ)c) = (detM(ξτ , (1 + δ)c))1/m /
(H(1 + δ)).

This simplifies theoretical and numerical studies of the MMEMS designs.
An explicit solution of the problem in the case c1 = c2 = · · · = ck is

given by the following theorem.

Theorem 2.2.2 Consider model (2.1) and the set Ω = Ω(δ, c) of the form
(2.4), where c1 = · · · = ck. In this case the following hold:

(I) There exists a unique MMEMS design for any fixed c1 > 0 and δ < 1.
This design is

ξ̂ = ξτ̂ , τ̂ = (τ̂1, . . . , τ̂m−1),

τ̂i = γi

/
(c1h(δ)), i = 1, . . . ,m− 1,

and
Φ(û, δ) = I(δ).

(II) This design is a locally D-optimal design for Λ = c/h(δ).

(III) For any sufficiently small positive δ, this design is MME among all
(approximate) designs and its minimal efficiency is equal to I(δ).
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Proof. Note that for Λ = (c1, . . . , ck), c1 = · · · = ck the value of V (ξ,Λ)
coincides with the value of determinant of the information matrix for the
linear (by parameters) regression function

e−c1x(β1 + β2 + · · · + βmx
m−1),

where β = (β1, . . . , βm) is the vector of estimating parameters and c1 is a
given number (as we already mentioned a detailed proof can be found in
Melas (1978)). For this reason assertions (I) and (II) follows immediately
from the results of Dette, Haines and Imhof (2003). Assertion (III) is a
special case of Theorem 2.2.3(II).

Note that the set of δ values for which assertion (III) holds can be found
numerically. In particular, we found in such a way that assertion (III) is
true for k = 1 with δ ≤ 0.54, for k = 2 it holds with δ ≤ 0.22, and for
k = 3 it holds with δ ≤ 0.18. Thus, under realistic values of δ in the
case c1 = · · · = ck, MMEMS designs described in Theorem 2.2.2 are in fact
MME designs among all (approximate) designs. It is also worth mentioning
that in all of the cases, mentioned above, the minimal efficiency proves to
be grater than 0.9, which can be easily checked by the explicit formula for
I(δ).

In the case of arbitrary values c1, . . . , ck, it seems does not possible to
find MMEMS designs explicitly. However, the dependence of such designs
on δ with a given c can be investigated with the help of constructing Taylor
series in a way very similar to that was already applied to LDMS designs.

As is well known, the function of minimum is continuous. Also, we
have already shown that the value V (ξτ ,Λ) tends to zero with τm−1 → ∞.
Therefore, the function

min
0≤α≤1

Φ(u, δ), u = (τ, α) (2.17)

is bounded with τ ∈ Rm−1
+ and there exists an MMEMS design (i.e., the

design that maximizes (2.17) by τ ∈ Rm−1
+ ).

Consider the equation system

∂

∂ui
Φ(u, δ) = 0, i = 1, . . . ,m. (2.18)

Let Ĵ(δ) be the Jacobi matrix of this system,

Ĵ(δ) =
(

∂2

∂ui∂uj
Φ(u, δ)

)m

i,j=1

∣∣∣∣
u=u(δ)

,

where u(δ) is a solution of (2.18); the existence of this solution is provided
by the following theorem.



2.2. BASIC IDEAS OF THE FUNCTIONAL APPROACH 43

Theorem 2.2.3 Consider the regression model (2.1) for the set Ω =
Ω(c, δ) defined in (2.4); the following assertions take place:

(I) There exists a unique MMEMS design. Moreover, there exists a
unique solution of the equation system (2.18), first m − 1 compo-
nents of this solution generate the vector τ̂ , and the matrix J(δ) is
invertible. The solution is a real analytic function of δ.

(II) If in a vicinity of Λ = c the unique LDSM design is locally D-optimal
among all (approximate) designs, then the MMEMS design is MME
among all (approximate) designs for sufficiently small positive δ.

A proof of this theorem will be given in Section 2.6.3.
Note that as in the case of Theorem 2.2.2(III), the set of δ values for

which assertion (II) is valid can be found numerically. For example, with
k = 2 and c = (1, 5), the MMEMS designs prove to be MME among all
designs for all δ ≤ 0.27.

Theorem 2.2.3 justifies studying MMEMS and MME designs along the
following steps:

1. Find numerically the MMEMS design for some value δ = δ0 (in our
calculations, we took δ0 = 0.5).

2. With the help of the recurrent formulas, construct the Taylor expan-
sions for functions α̂(δ) and τ̂1(δ), . . . , τ̂m−1(δ).

3. Check whether the designs constructed are MME designs among all
approximate designs for different values of δ by the equivalence the-
orem from Dette, Haines and Imhof (2003).

Let us illustrate the approach by examples.
With k = 1, the MMEMS designs are given by Theorem 2.2.2:

ξ̂ = ξτ̂ =
(

0 τ̂1
1/2 1/2

)
,

where τ̂1 = 1/(c1h(δ)). A numerical calculation shows that this design is
MME among all approximate designs if δ ≤ 0.54.

Let k = 2 and the set Ω be

Ω = Ω(z) = {(λ1, λ2); ci(1 − δ) ≤ λi ≤ ci(1 + δ), i = 1, 2}.

Without loss of generality, assume that 1 = c1 ≤ c2. Set c2 = 5 (for other
cases we obtain similar results).

Taylor coefficients for the functions x̂i(δ), i = 2, 3, 4 and α̂(δ) in a vicin-
ity of δ = δ0 = 0.5 are given in Table 2.4. Note that the series are convergent
for δ ∈ [0, 1), and with δ < 0.8, we need only three first coefficients to cal-
culate MMEMS with a good precision. The values of the functions received
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by usage of the first 11 coefficients are depicted at Figure2.2. Note that
the minimum efficiency is always achieved at the two points (1 − δ)c and
(1 + δ)c. The behavior of the function ϕ(τ̂ ,Λ) with τ̂ = τ̂(0.5), Λ ∈ Ω(0.5)
is shown in Figure 2.2. The dependence of the minimal efficiency on δ is
presented in Figure 2.2.

Table 2.4: Coefficients in the Taylor expansion for the functions x̂2(δ),
x̂3(δ), x̂4(δ), and α(δ) by degrees of (δ − 0.5).

j x̂2 x̂3 x̂4 α j x̂2 x̂3 x̂4 α
0 0.17 0.69 2.06 0.44 6 0.49 5.33 13.56 −0.54
1 0.05 0.34 1.16 −0.14 7 0.88 9.55 23.80 −0.94
2 0.09 0.67 2.13 −0.09 8 1.60 17.26 42.59 −1.66
3 0.11 0.99 2.87 −0.14 9 2.95 31.35 77.19 −2.97
4 0.17 1.73 4.76 −0.19 10 5.50 57.22 141.40 −5.37
5 0.28 2.99 7.85 −0.32 11 10.32 104.91 261.17 −9.74

The verification by the equivalence theorem mentioned above shows
that the MMEMS designs are MME among all approximate designs with
δ ≤ 0.28. Additionally, our calculations (not presented here) show that
MMEMS designs have the minimal efficiency at 40–50% more than the
best equidistant designs (such designs are often used in practice).

However, for δ > 0.28, it is possible to construct even more efficient
designs. For example, with δ = 0.5 we constructed numerically a design
that is MME among all approximate designs. This design has six support
points and is approximately equal to(

0 0.140 0.440 1.048 1.75 3.25
0.24 0.18 0.19 0.16 0.13 0.10

)
.

The minimal efficiency of this design is equal to 0.8431, whereas such effi-
ciency for the MMEMS design is 0.7045. Note that for the LD design at the
central point Λ = (1, 5), this value is 0.6150, and for the best equidistant
design, it is 0.5904.

For model (2.1) with three exponentials, we obtained similar results.
However, the critical value of δ, for which the MMEMS designs remains
MME among all designs, is smaller than that for the two exponential mod-
els.

2.3 Description of the Model

In this section we will introduce assumptions on the regression functions
providing the application of the functional approach. The corresponding
class of nonlinear regression models includes, in particular, the exponential
models, considered in Section 2.2, as well as rational models and the three
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Figure 2.2: Functions x̂2(δ), x̂3(δ), and x̂4(δ); z = δ(top) and the minimal of
efficiency of MMEMS design (bottom right) with δ ∈ (0, 1). The efficiency
of MMEMS design with δ = 0.5 over Ω(0.5) (bottom left).

parameters logistic model. One more example is the Monod model to be
studied in Chapter 8. For this class of models we introduce the basic
equation determining the support points of locally D-optimal designs as
implicit functions of values of the model parameters.

2.3.1 Assumptions and notation

Let us consider the general nonlinear regression model

yj = η(xj ,Θ) + εj , j = 1, . . . , N, (2.19)

where y1, . . . , yN ∈ R1 are experimental results, Θ = (θ1, . . . , θm)T is the
vector of unknown parameters, η(x,Θ) is a function of known form contin-
uously differentiable along the parameters, xj ∈ X, X is a given set, and
ε1, . . . , εN are independent and identically distributed random values with
zero expectation and a finite (unknown) variance σ2 > 0.

Let us introduce the following notation (it was already given in Sections
1.7 and 2.2 but will be represented here for the sake of convenience of the
reader):

fi(x,Θ) = ∂
∂θi
η(x,Θ), i = 1, . . . ,m,

f(x,Θ) = (f1(x,Θ), . . . , fm(x,Θ))T
,

M(ξ,Θ) =
∫
f(x,Θ)fT (x,Θ)ξ(dx),

the information matrix,

ξ =
(
x1 . . . xn

ω1 . . . ωn

)
, xi �= xj (i �= j), xi ∈ X, ωi > 0,

∑
ωi = 1,

approximate experimental design.
Denote by Θ∗ the proper vector of the parameters. Designs maximizing

the determinant of the information matrix for a fixed vector Θ will be
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called the LD designs. Usually, such designs depend only on a part of
parameters (see Section 2.2). Without loss of generality, assume that these
parameters are θk+1, . . . , θm and call them nonlinear parameters. Denote
Θ1 = (θ1, . . . , θk)T and Θ2 = (θk+1, . . . , θm)T . Let us fix Θ1 and consider
the matrix M(ξ,Θ2) = M(ξ,Θ).

2.3.2 The basic equation

In many practical problems, X = [a, b], and we will restrict our attention
by this case.

The triple (n1, n2, n3), where n1(n3) is the number of support points of
design at the left (right) bound, n1, n3 = 0 or 1, and n2 = n− n1 − n2 will
be called a type of design.

Let us consider designs LD among designs with the minimal support
(i.e., with n = m). We call them LDMS designs. They often prove to be
LD among all approximate designs. As was shown in Section 2.2, for such
designs ω1 = · · · ,= ωm = 1/m.

Let Θ2 ∈ Ω, where Ω is a given open set of possible values of Θ∗
2.

Assume that LDMS designs under Θ2 ∈ Ω have a fixed type (n1, n2, n3),
n1 +n2 +n3 = m. Consider the case n1 = 1 and n3 = 0 (for all other cases,
we can proceed in a very similar way). In this case, we will define the vector
τ and the design ξτ as follows

τ = (x2, . . . , xm) = (τ1, . . . , τm−1),

ξτ =
(

x1 x2 . . . xm

1/m 1/m . . . 1/m

)
, x1 = a.

Assume that the set Ω contains r linearly independent vectors and there
are no r + 1 linearly independent vectors belonging to Ω. For example, for

Ω = {(θk+1, . . . , θm)T : θi > 0,
m∑

i=k+1

θi = m− k}

r = m− k − 1.
Let Q be a given real analytic vector function on Ω such that

Θ2 → z = Q(Θ2) ∈ Rr

is a one-to-one correspondence and, therefore, the inverse function Q−1(z)
at the set Z = Q(Ω) is well defined. As an example, we can point out the
vector function

zi = 1 − θk+i, i = 1, . . . , r; r = m− k − 1, (2.20)

introduced in Section 2.2.
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Denote ΘT (z) =
(
ΘT

1 , (Q
−1(z))T

)
. Let N be the set of all vectors

z ∈ Z = Q(Ω) such that

detM(ξτ ,Θ(r)) = 0

for any τ ∈ [a, b]m−1. For the case of exponential models described in
Section 2.2, we have N = Q(Ω̄), where Ω̄ is the set of all vectors Θ2 ∈ Ω
such that two or more coordinates coincide with each other and Q is given
by (2.20).

Let us introduce the following definition.

Definition 2.3.1 A vector function

τ∗(z) : Z → V,

where
V = {τ = (τ1, . . . , τm−1) : a < τ1 < · · · < τm−1 < b}

will be called the optimal design function if for any z ∈ Z \ N , the design
ξτ∗(z) is a LDMS design for ΘT = (ΘT

1 ,Θ
T
2 (z)), Θ2(z) = Q−1(z) and for

any sequence z(1), z(2), . . . such that z(i) ∈ Z \ N , zi → z̄ ∈ N , i → ∞,

lim
i→∞

τ∗(zi) = τ∗(ẑ).

This definition is given for the case n1 = 1 and n3 = 0. The modification
for other design types seems to be obvious.

Let us define the function

ϕ(τ, z) = [detM(ξτ ,Θ(z))]1/m; (2.21)

the degree 1/m is introduced in order to secure a local convexity in a vicinity
of the extreme points.

Due to the above assumption for any fixed z ∈ Z \ N , the maximal
value of the function ϕ(τ, z) by τ ∈ [a, b]m−1 is achieved in V . Therefore,
a necessary condition for ξτ to be an LDMS design consists of vanishing of
the derivatives

∂

∂τi
ϕ(τ, z) = 0, i = 1, . . . ,m− 1. (2.22)

Set
gi = gi(τ, z) =

∂

∂τi
ϕ(τ, z), i = 1, . . . ,m− 1,

g = (g1, . . . , gm−1)T .

The equation system (2.22) can be now written in the form

g(τ, z) = 0. (2.23)

This equation will be called the basic equation of the functional approach. It
allows one to reduce the LDMS designs problem to the analysis of implicit
functions. Such an analysis will be performed in Section 2.4. Now we will
describe a class of regression functions for which this equation has a unique
solution.
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2.3.3 The uniqueness and the analytical properties

Let Z, N , and Q be as described above. Let us introduce the following
assumptions:

A1. The functions
fi(x,Θ(z)), i = 1, . . . ,m,

are real analytic by the variables {x1, z1, . . . , zr} at (a, b) × Z.

A2. For Θ2 ∈ Ω all LDMS designs have the same type (n1, n2, n3). For
certainty, we will consider the case n1 = 1 and n3 = 0. Denote
H(τ) =

∏
1≤i≤j≤m(xi − xj)2, τ = (x2, . . . , xm), x1 = a.

A3. There exists an algebraic polynomial Ψ(z) such that

inf
z∈Z\N

inf
τ∈V

ϕm(τ, z)
Ψ(z)H(τ)

> 0,

sup
z∈Z\N

sup
τ∈V

ϕm(τ, z)
Ψ(z)H(τ)

< ∞.

Note that if the closure of Z does not intersect N , we can take Ψ(z) ≡ 1.
In this case, the assumption A3 means simply that the functions

f1(x,Θ), . . . , fm(x,Θ)

generate an extended Chebyshev system of order m on [a, b] (see Section
1.9 for the definition) for all Θz = (Θ1,Θ2), Θz ∈ Ω.

Note also that the exponential regression functions introduced in Section
2.2 possess this property and all other assumptions were justified in that
section.

Let us codefine the function

ϕ̄(τ, z) =
ϕ(τ, z)

(Ψ(z))1/m
=
[
detM(ξtau,Θ(z))

Ψ(z)

]1/m

by continuity with z ∈ N . This is possible due to assumption A3.

A4. There exists a vector z(0) ∈ Z such that the equation system

∂

∂τi
ϕ̄(τ, z(0)) = 0, i = 1, . . . ,m− 1,

has a unique solution with τ ∈ V .

In Section 2.2, we have shown that this assumption holds for the expo-
nential models with z(0) = (0, . . . , 0).

Now, the basic theorem of the functional approach can be formulated
in the following way.
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Theorem 2.3.1 Let assumptions A1–A4 be fulfilled. Then the following
hold:

(I) There exists a unique optimal design function τ∗(z) : Z → V . It is
a real analytic vector function in Z.

(II) Taylor coefficients of this vector function can be calculated by recur-
rent formulas given in Section 2.4.

A proof of this theorem will be given in Section 2.6.

2.4 The Study of the Basic Equation

In this section we will study (2.23) for a vector function g(τ, z) of a general
form not necessarily connected with studying optimal experimental designs.
We will obtain results stronger than that of Theorem 2.2.1(I, II), namely
we will prove that under certain conditions, the function τ(z) determined
implicitly by this equation is unique.

2.4.1 Properties of implicit functions

Assume that m and r are arbitrary natural numbers, andm ≥ r and m ≥ z.
Let

V̂ = {τ = (τ1, . . . , τm−1)T : a ≤ τ1 ≤ · · · ≤ τm−1 ≤ b},

V = {τ = (τ1, . . . , τm−1)T : a < τ1 < · · · < τm−1 < b},
and Z be an open one-connected set in Rr.

Let ϕ(τ, z), τ ∈ V̂ , z ∈ Z, be a function of a general form real analytic
in V × Z, and ϕ(τ, z) ≥ 0.

Consider the case when ϕ(τ, z) = 0 for some points z ∈ Z. Let N be
the set of all such points. Assume that there exists an algebraic polynomial
Ψ(z) such that Ψ(z) = 0 for z ∈ N and the function

ϕ̄(τ, z) = ϕ(τ, z)/Ψ(z)

can be codefined in points z ∈ N by continuity.
Let ϕ̄(τ, z) be the function codefined in the points z ∈ N in this way.

Assume that ϕ̄(τ, z) > 0, τ ∈ V , z ∈ Z, and

inf
τ∈V

(ϕ̄(τ, z))m

H(τ)
> 0,

sup
τ∈V

(ϕ̄(τ, z))m

H(τ)
< ∞,

for any z ∈ Z, where

H(τ) =
m−1∏
i=1

(τi − a)2
∏

1≤i≤j≤m−1

(τi − τj)2.
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Let us denote

g(τ, z) = (g1(τ, z), . . . , gm−1(τ, z)) ,

gi(τ, z) =
∂

∂τi
ϕ(τ, z),

G(τ, z) =
(

∂2

∂τi∂τj
ϕ(τ, z)

)m−1

i,j=1
,

ḡ(τ, z) = g(τ, z)/Ψ(z),

Ḡ(τ, z) = G(τ, z)/Ψ(z) =
(

∂2

∂τi∂τj
ϕ̄(τ, z)

)m−1

i,j=1
.

Consider the equations
g(τ, z) = 0,

ḡ(τ, z) = 0,
(2.24)

z ∈ Z, τ ∈ V . For z ∈ Z \ N , these equations are equivalent to each other.
Let us introduce the following assumptions:

(a) There exists a point z(0) ∈ Z such that (2.24) has a unique solution
belonging to V .

(b) For any point z and any solution z = τ(z) of (2.24),

det Ḡ(τ, z)
∣∣∣∣
τ=τ(z)

�= 0.

Theorem 2.4.1 Let the assumptions formulated above be satisfied. Then
there exists a unique vector function τ∗(z) : Z → V such that

ḡ(τ∗(z), z) = 0.

This vector function is real analytic for z ∈ Z and satisfies the equation

G(τ∗(z), z)τ ′
zi

(z) = (g(τ, z))′
zi

∣∣∣∣
τ=τ∗(z)

, i = 1, . . . ,m− 1.

Proof. Due to assumptions (a) and (b) and the Implicit Function Theorem
(Theorem 1.8.1), there exists a vicinity of the point z(0) such that there
exists a unique vector function, say τ̄(z), satisfying (2.24). This vector
function is real analytic. Let U be a union of all such vicinities. Then τ̄(z)
can be extended to U in a unique way and this extended function is real
analytic in U .



2.4. THE STUDY OF THE BASIC EQUATION 51

Suppose that U �= Z. Denote the closure of U by Ū . Since U �= Z, there
exists a point z̄ ∈ Ū \U , z̄ ∈ Z. Then there exists a sequence z(1), z(2), . . . ,
such that z(i) ∈ U and limi→∞ z(i) = z̄. Denote by τ̄ the limit

lim
i→∞

τ̄(z(i)).

Then we have
ḡ(τ̄ , z̄) = 0.

Suppose that τ̄ ∈ V . Then, due to assumption (b),

det Ḡ(τ̄ , z̄) �= 0

and there exists a vicinity of point z̄, say W , and vector function τ(1)(z)
such that τ(1)(z̄) = τ̄ and this vector function is real analytic in this vicinity.
Moreover, for sufficiently large i, z(i) belongs to this vicinity. It follows from
here that τ(1)(z) and τ̄(z) coincide in W ∩ Z �= ∅. Therefore, τ̄(1)(z) is a
real analytical extension of τ̄(z) to W and W ⊂̄U . This is impossible by our
supposition and we obtained a contradiction.

Now, let τ̄ ∈ V̂ \ V . Denote τ(i) = τ(z(i)), i = 1, 2, . . .. Then

lim
j→∞

∂

∂τi

[
(ϕ̄(τ, zj))

m

Q(τ)

] ∣∣∣∣
τ=τ(j)

= lim
j→∞

{{
∂

∂τi

(
ϕ̄(τ, z(1))

)m
} ∣∣∣∣

tau=τ(j)

/
Q(τ(j))

− (
ϕ̄(τ(j), z(i)

)m ∂Q(τ)/∂τi
Q2(τ)

∣∣∣∣
τ=τ(i)

}
= ∞.

However, due to our assumption, the function

ϕ̄(τ, z)
Q(τ)

is real analytic in V × Z, and the limit should be finite. The obtained
contradiction shows that U = Z. In a similar way, it can be proved that
for any z ∈ Z, (2.24) has a unique solution.

In order to apply Theorem 2.4.1 to the function ϕ(τ, z) defined in Section
2.3, we need only to verify property (b). To this end we will introduce a
representation for the Jacobi matrix of (2.24).

2.4.2 Jacobian of the basic equation

First, we analyze the Jacobian of the basic equation for functions ϕ(τ, z)
of a general kind that can be represented as the minimum of some convex
function.
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Let m, r, and t be arbitrary natural numbers, T ⊂ IRm−1, Z ⊂ IRr, and
A ⊂ IRt be arbitrary open sets, and A be convex.

Consider the function q(τ, a, z), τ ∈ T, a ∈ A, z ∈ Z, that satisfies the
following conditions: Function q(τ, a, z) is twice continuously differentiable
along τ and a; function q(τ, a, z) is strictly convex along a.

Moreover, let function ϕ(τ, z) have the form

ϕ(τ, z) = min
a∈A

q(τ, a, z), (2.25)

where the minimum is attained for any τ ∈ T and z ∈ Z. Since the function
q(τ, a, z) is strictly convex along a, this minimum is attained on the unique
vector a = ã = ã(τ, z). Therefore, function ϕ(τ, z) is twice continuously
differentiable along τ .

For any fixed z, let there exist a point τ̃ = τ̃(z) satisfying the equation
∂
∂τ ϕ(τ, z) = 0.

Consider the following matrices:

E =
(

∂2

∂τj∂τi
q(τ, a, z)

)m−1

i,j=1
,

B =
(

∂2

∂τj∂ai
q(τ, a, z)

)t,m−1

i,j=1
,

D =
(

∂2

∂aj∂ai
q(τ, a, z)

)t

i,j=1

(2.26)

at τ = τ̃ and a = ã(τ̃ , z). It follows from the above conditions that matrix
D is positive definite and hence the inverse matrix D−1 exists.

Theorem 2.4.2 Under the above conditions, the following formula is valid:

J(τ̃(z), z) = E −BTD−1B.

Let us apply this theorem to the function ϕ(τ, z), defined by (2.21).
Denote the set of all positive definite m × m matrices A = (aij), such

that amm = 1 by A. Assign a number ν = ν(i, j) in alphabetical order to
each pair of indices (i, j), i ≤ j, i, j = 1, . . . ,m, where (i, j) �= (m,m). For
any vector a ∈ IRt, t = m(m+ 1)/2 − 1, define a matrix A(a) that satisfies
the following relations:

aji = aij = aν(i,j), amm = 1, i, j = 1, . . . ,m, i ≤ j.

Define set A as
A = {a ∈ IRt : A(a) ∈ A}.

Evidently, A is open and convex in IRt. Introduce the function

q(τ, a, z) = (detA(a))−1/m tr (A(a)M(ξ, z)) /m. (2.27)
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Consider the function ϕ(τ, z) = (detM(ξ, z))1/m. It is known (Karlin and
Studden, 1966, Chap. 10.2) that (2.25) is valid for this function. It can
also be checked that the function (2.27) possesses the required properties.
Therefore, by Theorem 2.4.2,

J(τ̃(z), z) = E −BTD−1B, (2.28)

where τ̃(z) = τ∗(z). Set δ(a) = (detA(a))−1/m. It is easy to verify by
direct differentiation that the following formulas are valid for matrices B
and E:

E = diag{E11, . . . , Em−1m−1},

Eii = δ(a∗)
∂2

∂x2 (fT (x)A(a∗)f(x))
∣∣∣∣
x=x∗

i+1

, i = 1, . . . ,m− 1,

A(a∗) = const
(
M(ξτ∗(z), z)

)−1
,

B = (bνk)t,m−1
ν,k=1 ,

bνk = 2δ(a∗)
∂

∂x
(fi(x)fj(x))

∣∣∣∣
x=x∗

k

, ν = ν(i, j).

(2.29)

Remark 2.4.1 Note that the matrix J = J(τ∗(z), z) is negative definite
and hence nonsingular provided at least one of the following conditions is
satisfied:

(1) All diagonal elements of matrix E are negative;
(2) Matrix B is of full rank.
Indeed, matrix BTD−1B has the form SST ; hence, it is nonnegative

definite in the general case and positive definite if matrix B has full rank.
Since J = E − BTD−1B, J is negative definite if either of conditions (1)
and (2) is valid.

This remark will be applied in Section 2.6.2 in order to prove that the
matrix J is invertible under assumptions A1–A4.

2.4.3 On the representation of implicit functions

It is well known that derivatives of implicit functions can be calculated with
the help of indefinite coefficients techniques, as introduced by Euler. In this
subsection we offer recurrent formulas convenient for the implementation
in software packages such as Maple and Mathcad. These formulas are
a generalization for the multidimensional case of formulas introduced in
Dette, Melas and Pepelyshev (2004b).

Let us assume that s = (s1, . . . , sr), where si ≥ 0, i = 1, . . . , r, are
integers. For an arbitrary (scalar, vector, or matrix) function F , denote

(F(z))(s) =
1

s1! · · · sr!
∂s1

∂zs1
1
. . .

∂sr

∂zsr
r

F(z)|z=z(0) ,
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where z(0) is a given point.
Introduce also the notation

St =

{
s = (s1, . . . , sr); si ≥ 0,

r∑
i=1

si = t

}
,

t = 0, 1, . . ., and

(z − z(0))s = (z1 − z1(0))s1 . . . (zr − zr(0))sr .

Let the function ψ(z) be of the form

ψ(z) = (z − z(0))lψ̄(z),

where l = (l1, . . . , lr),li ≥ 0, i = 1, . . . , r, are integers, and ψ̄(z) is a homo-
geneous polynomial of degree p ≥ 0,

ψ̄(z) =
∑
s∈Sp

a(s)(z − z(0))s,

such that a(p,0,...,0) �= 0.
Let

It = U t
j=0Sj ,

τ<It>(z) =
∑

s∈It
τ(s)(z − z(0))s, τ(s) = (τ(z))(s),

J(l) =
(
J(τ(0), z)

)
(l) .

First, let p = 0. Note that under condition (a), the matrices J(s), si ≤ li,
i = 1, . . . , r, s �= l, are zero matrices and det J(l) �= 0.

Theorem 2.4.3 Under conditions (a) and (b) for the function τ(z), de-
fined in Theorem 2.4.1, the following formulas hold:

(τ(z))(s) = −J−1
(l) g(τ<I>(z), z)(s+l), (2.30)

where I = It−1, s ∈ St, t = 1, 2, . . . ,K − 1.
If condition (c) is also fulfilled, then these formulas hold for t = 1, 2, . . ..

Thus, if τ(0) is known, coefficients {τ(s)} can be calculated in the follow-
ing way. At the step t (t = 1, 2, . . .), calculate all coefficients with indices
from St by (2.30). This calculation can be easily performed by a computer
with the help of packages such as Maple or Mathcad.

Consider now the case p > 0. Define the set

Ŝt =

{
s = (s1, . . . , sr); si ≥ 0, i = 1, . . . , r, s1 + 2

r∑
i=2

si = t

}
.
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Let
Ît = U t

j=0Ŝj , u = (p, 0, . . . , 0),

J(l+u) =
(
J(τ(0), z)

)
(l+u) .

It can be verified that, under condition (a), detJ(l+u) �= 0.

Theorem 2.4.4 With p > 0, Theorem 2.4.3 remains true with (2.30) re-
placed by

(τ(z))(s) = −J−1
(l+u)g(τ<I>(z), z)(s+l+u),

where s ∈ Ŝt, I = Ît−1, and t = 1, 2, . . ..

Note that u can be replaced by any vector of the form (0, . . . , p, 0, . . . , 0).

2.4.4 The monotony property

Let us obtain another representation for the Jacobi matrix. It is based
on the known formula for the derivative of the matrix determinant. This
representation is to help us to derive the monotony of coordinates of the
optimal design function for some forms of regression.

At first, let x ∈ X and z ∈ Z, where Z is some bounded set in IRr and
fi(x, z), i = 1, . . . ,m, are arbitrary twice differentiable with respect to x
functions.

Let the function ϕ(τ, z) be defined by (2.21). Let assumptions A1–A4 be
satisfied. We will use the formula of differentiating the matrix determinant
(see, e.g., Fedorov (1972)).

∂

∂α
detM(α) = detM(α)

(
trM−1(α)

∂

∂α
M(α)

)
,

as well as the formula

∂

∂α
M−1(α) = −M−1(α)

∂M(α)
∂α

M−1(α)

and the explicit form of matrix M(ξ, z):

M(ξ, z) =
m∑

i=1

f(xi)fT (xi)/m,

where f(x) = f(x, z) and

ξ =

(
x1 . . . xm−1 xm

1
m . . . 1

m
1
m

)
.

Let us calculate the derivatives of the function

ϕ(τ, z) = (detM(ξτ , z))
1/m

,



56 CHAPTER 2. THE FUNCTIONAL APPROACH

ξτ =

(
τ1 . . . τm−1 b

1
m . . . 1

m
1
m

)
.

We obtain
∂ϕ(τ, z)
∂τi

=
1
m2ϕ(τ, z) trM−1(ξ, z)(f(τi)fT (τi))′

=
2
m2ϕ(τ, z)fT (τi)M−1(ξ, z)f ′(τi),

i = 1, . . . ,m− 1. Let z be fixed and τ be such that

g(τ, z) =
(
∂

∂τi
ϕ(τ, z)

)m−1

i=1
= 0. (2.31)

Moreover, let τ be a local maximum of the function ϕ(τ, z). Set F =
(fj(xi))m

i,j=1. Then the relation M = FFT /m is valid,

fT (τi)M−1(ξ, z)f(τj) = mfT (τi)(F−1)TF−1f(τj)

= meT
i+1e

T
j+1 =

{
0 i �= j
m i = j

.

Let us consider the matrix

G =
(

∂2

∂τi∂τj
ϕ(τ, z)

)m−1

i,j=1
, τ = τ(z),

where τ(z) is the unique solution of (2.31).
Using these relations and the formula of the inverse matrix differentia-

tion, derive

(G)ij =
∂2

∂τi∂τj
ϕ(τ, z)

= − 4
m3ϕ(τ, z)

(
fT (τi)M−1(ξ, z)f ′(τj)

) (
fT (τj)M−1(ξ, z)f ′(τi)

)
= − 4

m
ϕ(τ, z)

(
eT
i F

−1f ′(τj)
) (
eT
j F

−1f ′(τi)
)

for i �= j, i, j = 1, . . . ,m − 1. For calculating the diagonal elements of the
matrix, let us also use the following relation:

fT (τi)M−1(ξ, z)f ′(τi) =
m2

2ϕ(τ, z)
∂ϕ(τ, z)
∂τi

= 0, i = 1, . . . ,m− 1.

The direct differentiation gives the following result

(G)ii =
∂2

∂τi∂τi
ϕ(τ, z)

=
2
m2ϕ(τ, z)fT (τi)M−1(ξ, z)f ′′(τi)

=
2
m
ϕ(τ, z)eT

i F
−1f ′′(τi), i = 1, . . . ,m− 1.
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Now, assume the that functions fi(x) = fi(x, z), i = 1, . . . ,m, form an
ET-system (see Section 1.9 for the definition) of the first order under any
fixed z ∈ Z.

Since the matrix F−1 is formed by the cofactors of the elements of
matrix F , divided by its determinant, then, for j > i, i > 2, we have

eT
i F

−1f ′(τj)

=
det

(
f(x1)

...f(x2)
... . . .

...f(xi−1)
...f ′(xj)

...f(xi+1)
... . . .

...f(xm)
)

detF

(with the evident changes for i ≤ 2). Inserting a column f ′(xj) between a
line f(xj) and the following one, derive

eT
i F

−1f ′(τj) = (−1)j−i det F̃ /detF,

F̃ =
(
f(x1)

...f(x2)
... . . .

...f(xi−1)
...f(xi+1)

... . . .
...f(xj)

...f ′(xj)
... . . .

...f(xm)
)
.

By definition of the ET-system of the first order, det F̃ > 0. Thus,

sign
[
eT
i F

−1f ′(τj)
]

= (−1)j−i.

Similarly, for i < j, we have

sign
[
eT
j+1F

−1f ′(τi)
]

= (−1)i−j .

Therefore, for i �= j

sign (G)ij = (−1)(−1)j−i−1(−1)i−j = 1.

It will be proved in Section 2.6.2 that the matrix G is negative definite. Let
us use the following statement (see Szegö, 1959): If matrix A is positive
definite and each of its off-diagonal elements is negative, then all of the
elements of the matrix A−1 are positive. Since the matrix G is negative
definite and its off-diagonal elements are positive, then the matrix A = −G
possesses the required properties. Applying the above statement, we have
that all of the elements of the matrix G−1 are negative.

Thus, we have derived the following result.

Lemma 2.4.1 If functions fi(x, z), i = 1, . . . ,m, x ∈ X, z ∈ Z, are twice
continuously differentiable on X and form an ET-system of the first order
for any fixed z ∈ Z, the matrix G is invertible and all of the elements of
matrix G−1 are negative.

Let the conditions of Lemma 2.4.1 be satisfied. By Theorem 2.3.1, the
optimal design function τ(z) : Z → V is uniquely determined. Let Lj stand
for the vector

∂

∂zj
g(τ, z) =

(
∂2

∂τi∂zj
ϕ(τ, z)

)s−u

i=1
, j = 1, 2, . . . , r.
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By the Implicit Function Theorem, we have

τ
′
zj

= −G−1Lj . (2.32)

Thus, if all of the elements of vector Lj are positive, then

(τi(z))
′
zj
< 0, i = 1, . . . ,m− 1;

that is, all of the coordinates of function τ(z) monotonously decrease with
respect to zj .

Let us introduce a class of regression functions for which all the unfixed
points of a locally D-optimal design monotonously depend on each parame-
ter. We will show further that this class contains the exponential models
considered in Section 2.2, as well as some rational models.

Consider a real function K(x, y), defined for (x, y) ∈ X × X1, where X
and X1 are intervals. Let function K(x, y) be an extended strictly positive
kernel of the m-th order (ESP(m)) along both variables. The corresponding
definition can be found in Karlin and Studden (1966, Chap. I).

Consider the regression function

η(x,Θ) =
k∑

i=1

θiK(x, θi+k), θi �= 0, i = 1, . . . , k, m = 2k.

Let the functions fi(x,Θ) = ∂
∂θi
η(x,Θ), i = 1, . . . ,m, for Θ2 =

(θk+1, . . . , θm)T = (z1, . . . , zk)T ∈ Z ⊂ Xk
1 be real analytic.

By the definition of ESP(m) functions fi(x, z), i = 1, . . . ,m (for fixed
Θ1) at any fixed z ∈ Z form an ET-system. Therefore, the optimal design
function τ(z) is uniquely determined at z ∈ Z.

Assume that for some point z(0) for z = z(0), τ = τ(z(0)) the following
inequality is valid:

∂2ϕ(τ, z)
∂τi∂zj

> 0, i = 1, . . . , s− u, j = 1, . . . , k. (2.33)

Theorem 2.4.5 Under the above conditions, all of the components of the
vector function τ(z) decrease with respect to each of z1, . . . , zk in a strictly
monotonous way.

Proof. By Lemma 2.4.1 and formula (2.32), it is sufficient to prove that

∂2ϕ(τ, z)
∂τi∂zj

> 0, i = 1, . . . ,m− 1, j = 1, . . . , k.

for any z ∈ Z.
Let z1 < z2 < · · · < zk. Set v = zj and consider the function

∂ϕ(τ, z)/∂τν (ν = 1, . . . ,m−1) as a function of v under fixed zi, i = 1, . . . , k,
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i �= j, x1, . . . , xm−1. Denote this function by h(v). Note that the function
h(v) has second-order zeros at points zi, i �= j, i = 1, . . . , k, since the de-
terminants corresponding to h(v) and h′(v) have common lines. Moreover,
h(zj) = 0. Since ϕm(τ, z) equals

const det (K(xj , z1),K ′
z(xj , z1), . . . ,

K(xj , zk),K ′
z(xj , zk))m

j=1 ,
(2.34)

then the function h(v) has no more than 2k − 1 zeros (counting with their
multiplicities). Therefore, h′(zj) �= 0. The case that some zi coincide with
one another can be processed in a similar way (here determinant (2.34) is
to be modified as is stated in the definition of the ESP kernel). Thus, the
functions

∂2

∂τi∂zj
ϕ(τ, z)

do not vanish. Since, by assumption, condition (2.33) is valid for z = z(0),
it is valid for any z ∈ Z.

Consider two examples.

Example 2.4.1 Algebraic sum of simplest fractions.

Let
K(x, y) =

1
x+ y

, X ⊂ [0,∞), X1 ⊂ [0,∞).

It is known that such a function is an ESP kernel of any order (Karlin and
Studden 1966, Chap. I). The corresponding regression function takes the
form

η(x,Θ) =
k∑

i=1

θi

x+ θi+k
, x ∈ [0,∞),

θi+k > 0, θi �= 0, i = 1, . . . , k. For corresponding basis functions
fi(x,Θ), i = 1, . . . , k, condition (2.33) can be verified directly. It can be
demonstrated also that condition A4 is satisfied. These models will be
thoroughly investigated in Chapter 5.

Example 2.4.2 Algebraic sum of exponential functions.

Let
K(x, y) = exy, X ⊂ (−∞,∞), X1 ⊂ (−∞,∞).

This function is an ESP kernel of any order [Karlin and Studden (1966,
Chap. I)]. The corresponding regression function takes the form

η(x,Θ) =
k∑

i=1

θie
−θi+kx,

θi �= 0, i = 1, . . . , k. ,k
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2.5 Three-Parameter Logistic Distribution

Consider the function

η(t, α, β, γ) =
αeγt+β

1 + eγt+β
.

It is called a three-parameter logistic distribution. By the substitution
x = et, θ1 = α and θ2 = γ, θ3 = e−β this function is reduced to

η(x,Θ) =
θ1x

θ2

θ3 + xθ2
, (2.35)

which is called the Hill equation in microbiological studies (see Bezeau and
Endrenyi (1986)).

We will construct locally D-optimal designs for model (2.35) using the
functional approach described above.

Assume that x ∈ [a, b], a ≥ 0, θ1 �= 0, θ3 > 0. By a direct calculation,
we obtain

detM(ξ,Θ) = θ41θ
2
3 det M̄(ζξ, θ3),

where

ξ =

(
x1 x2 x3

1/3 1/3 1/3

)
, ζξ =

(
t1 t2 t3

1/3 1/3 1/3

)
,

ti = xθ2
i , i = 1, 2, 3,

M̄(ζξ, θ3) =
3∑

i=1

f(ti, θ3)fT (ti, θ3)/3,

f(t, θ) =
(

t

θ + t
,

t

(θ + t)2
,
t ln t

(θ + t)2

)T

.

Set
z = 1/θ3, r = 1, Ω = [0,∞), ψ(z) = z6, N = {0}. (2.36)

Assumption A1 follows here from the properties of elementary functions,
A2 and A3 follows from the results of Dette, Melas, and Wong (2004b). It
was also proved there that a locally D-optimal design has the type (0, 2, 1)
and is unique. It can be also proved that A4 holds for the considered model.

Thus, due to Theorem 2.3.1, it follows that support points of locally
D-optimal designs are real analytic functions of z with z ∈ [0, 1).

Let us consider the case [a, b] = [0, 1], θ2 = 1. For arbitrary 0 ≤ a < b, θ2
optimal designs can be calculated by a scale transformation. With θ3 → ∞
and z = 1

θ3
→ 0, we obtain

det2(fi(xj , θ3))
z6 → det2

⎛
⎝ x2

1 x2
2 1

x1 x2 1
x1 lnx1 x2 lnx2 0

⎞
⎠ := Q(x1, x2)
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and
(x∗

1(z), x
∗
2(z)) → arg max

0<x1<x2<1
Q(x1, x2).

Thus, it is easy to calculate numerically that x∗
1(0) = 0.15370 and x∗

2(0) =
0.61680.

By the recurrent formulas (2.30) given in Section 2.4, we calculated the
Taylor coefficients with z(0) = 0. The first coefficients are represented in
Table 2.5.

Table 2.5: Coefficients of the Taylor expansions for x1 and x2 in a vicinity
of point z = 0

0 1 2 3 4 5 6
x1 0.15370 −0.09435 0.06747 −0.05117 0.04089 −0.03371 0.02845
x2 0.61680 −0.20012 0.08251 −0.03885 0.02085 −0.01212 0.00754

Let ξ<n>(z) be the design constructed by using n first coefficients and
let z̄n be the maximal z such that

maxx∈[0,1] |d(x, ξ<n>(z)) − 3| ≤ 10−5,

d(x, ξ) = fT (x)M−1(ξ, z)f(x),
(2.37)

where

f(x) =
∂η(x,Θ)
∂θi

, M(ξ, z) := M(ξ,Θ(z)), Θ(z) = (1, 1, 1/z)T .

Note that due to the Kiefer–Wolfowitz equivalence theorem (see Section
1.5), a design satisfying condition (2.37) will be very close to a locally D-
optimal design. Numerical calculations show that z̄10 ≈ 0.705 and z̄20 ≈
0.865.

In a similar way we constructed expansions of the vector function
τ∗(z) = (x∗

1(z), x
∗
2(z))

T in a vicinity of point z(0) = 1 by degrees of (z − 1)
and (1/z−1). The corresponding coefficients are presented in Tables 2.6 and
2.7, respectively. It proves that for the first expansion with 20 coefficients,
the inequality (2.37) holds with 0 < z ≤ 2.7. For the second expansion
with the same number of the coefficients, it holds for 0.6 ≤ z ≤ 13.8.

The behavior of the design points for 0 ≤ z ≤ 10 is presented in Figure
2.3. We used the first expansion for z ≤ 1 and the second for 1 ≤ z ≤ 10
to construct Figure 2.3.

Note also that the efficiency of the limiting design (at the point z(0) = 0)
measured by the quantity

I(ξ, z) =
(

detM(ξ, z)
detM(ξτ(z), z)

)1/3

, ξ = ξτ(0) := ξ(0),

proves to be very high with z ≤ 1 (θ3 ≥ 1). This efficiency is presented in
Table 2.8.
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Table 2.6: Coefficients of the Taylor expansions for x1 and x2 in a vicinity
of point z = 1 by degrees of (z − 1)

0 1 2 3 4 5 6
x1 0.09723 −0.03401 0.01308 −0.00530 0.00222 -0.00095 0.00041
x2 0.47233 −0.10533 0.02743 −0.00791 0.00245 −0.00080 0.00027

Table 2.7: Coefficients of the Taylor expansions for x1 and x2 in a vicinity
of point z = 1 by degrees of (1/z − 1)

0 1 2 3 4 5 6
x1 0.09723 0.03401 −0.02093 0.01314 −0.00844 0.00555 −0.00375
x2 0.47233 0.10533 −0.07790 0.05838 −0.04431 0.03404 −0.02647

Figure 2.3: The dependence of the support points x1 and x2 on z

Table 2.8: Efficiency of designs ξ(0) and ξ(1) and the points of locally
D-optimal designs

z 0.2 0.4 0.6 0.8 1.0
x1 0.13690 0.12387 0.11333 0.10460 0.09723
x2 0.57956 0.54751 0.51943 0.49456 0.47233(

det M(ξ(0),z)
det M(ξz,z)

)1/3
0.99343 0.97771 0.95681 0.93310 0.90801(

det M(ξ(1),z)
det M(ξz,z)

)1/3
0.94919 0.97468 0.98995 0.99774 1

At the same time, the minimal efficiency of the design ξ(1) = ξτ∗(1)
with 0 < z ≤ 1 is even more than that of ξ(0) = ξτ∗(0) = ξτ(0) ; see Table
2.8. Moreover, numerical calculations show that the design ξ(z∗) = ξτ∗(z∗)
with z∗ = 0.5 has a maximum of the minimal efficiency at the interval (0, 1]
among locally D-optimal designs at points z = 0.1, . . . , 0.9, 1. Its minimal
efficiency is equal to 0.981.
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Note that a maximin efficient D-optimal design that is the design max-
imizing the minimum by z ∈ [0.1, 1] of the efficiency among all (approx-
imate) designs, was constructed numerically in Dette, Melas, and Wong
(2004b). This design is very close to ξ(0.5) and has the minimal efficiency
0.982.

A similar calculation was performed for the interval [1, 10] for z. It
showed that the design ξ(4), the best design among ξ(1), ξ(2),. . .,ξ(10), has
minimal efficiency 0.8407. The maximin efficient design calculated in Dette,
Melas and Wong (2004b) has four support points with unequal weights and
its minimal efficiency equals 0.885. However, for example, design ξ(1), the
locally optimal design for z=1, has the minimal efficiency 0.5430 on [1, 10].
This design is rather bad! It requires almost twice as many observations as
ξ(4) to achieve the same accuracy of the estimates of the parameters if the
true value of z equals 10.

Thus, we see that the approach allows very efficient calculation of locally
D-optimal designs and gives an opportunity to study their efficiency.

We conclude also that locally D-optimal designs could be very efficient
if the initial values are chosen in an optimal way inside given intervals of
possible values.

2.6 Appendix: Proofs

We begin with the proofs for the theorems of Section 2.4.

2.6.1 Proof of Theorems 2.4.2, 2.4.3, and 2.4.4

Proof of Theorem 2.4.2. Due to the necessary condition for an extremum
point, we have

∂

∂a
q(τ, a, z) = 0

with an arbitrary fixed z ∈ Z and with τ = τ̃ = τ̃(z) and a = ã = ã(z, τ̃(z)).
Consider this vector equality at fixed z and arbitrary a and τ as an

equation system that implicitly defines a function a(τ). The Jacobian of
this system at the points (τ̃ , ã) equals detD �= 0. Therefore, by the Im-
plicit Function Theorem, in a vicinity of τ̃ there exists a unique continuous
vector function a(τ) such that a(τ̃) = ã. This function is continuously
differentiable and

∂a(τ)
∂τ

∣∣∣∣
τ=τ̃

= −D−1B.

An immediate calculation now gives

(
∂2

∂τj∂τi
q(τ, a(τ), z)

∣∣∣∣
τ=τ̃

)m−1

i,j=1

= E −BTD−1B.
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For any fixed z ∈ Z, we have

ϕ(τ, z) = min
a∈A

q(τ, a, z) = q(τ, a(τ), z),

with τ from a vicinity of τ̃ = τ̃(z).
Differentiating this equality twice by τ , we obtain

J(τ̃(z), z) = J(τ̃ , z) = E −BTD−1B.

Proof of Theorem 2.4.3. Let τ(z) be an arbitrary K − 1 times continu-
ously differentiable vector function in a vicinity of a point z(0), z(0) ∈ IRr,
τ(z) = (τ1(z), . . . , τm−1(z)). Consider the following auxiliary result.

Lemma 2.6.1 Under condition (b) and with p = 0 and l = 0 the following
equalities are valid:

∂t

∂zs1
1 · · · ∂zsk

k

[g (τ<I>(z), z) − g (τ(z), z)] |z=z(0) = 0,

for k ≥ 1, s ∈ St, where I = It, t = 1, 2, . . . ,K − 1.

Proof of Lemma 2.6.1. At first, consider k = 1. Since

∂

∂z
g (τ(z), z) =

∂

∂τ
g(τ, z)|τ=τ(z) × τ

′
(z) +

∂

∂z
g(τ, z)|τ=τ(z),

we obtain for t = 1, . . . ,K − 1:

∂t

∂zt
g(τ(z), z)|z=z(0)

= t!J(0)τ(t) +
∂t

∂zt
g(τ(0), z(0)) + · · ·

+
m∑

i1,...,it=1

∂t

∂τi1 . . . ∂τit

g(τ(0), z(0))τi1(1) · · · τit(1)i1! · · · it!,

(2.38)

where the right-hand side depends only on τ(0), . . . , τ(t) and does not depend
on τ(t+1), . . .. Therefore,

∂t

∂zt
g (τ(z), z) |z=z(0) =

∂t

∂zt
g
(
τ(t)(z), z

) |z=z(0) .

In the case k > 1, the proof is similar.

Return to the proof of Theorem 2.4.3. Let k = 1 and l = 0. Note that
on the right-hand side of (2.38), only the first term depends on τ(t), as the
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other ones depend only on τ(s), s ≤ t−1. Since g(τ∗(z), z) ≡ 0 in a vicinity
of z(0),

− ∂t

∂zt
g
(
τ∗
<t−1>(z), z

) |z=z0 = t!J(0)τ
∗
(t).

For k > 1, l �= 0, the proof is similar.
Proof of Theorem 2.4.4. At first, consider l = 0. Note that

(g(τ<I>(z), z))(s+u) =
∑

w+v=s+u

a(w)g̃(τ<I>(z), z)(v) (2.39)

for any collection of indexes I,

τ<I>(z) =
∑
s∈I

τ(s)(z − z(0))s.

For w = u, vector s is the only vector v such that w + v = s + u. Let
s ∈ Ŝn, I = În. Note that for w �= u, any vector v such that w + v = s+ u
belongs to set Ŝt, t ≤ n− 1, from which it follows that the right-hand side
of (2.39) has the form

a(u)g̃
(
τ∗
<Ĩn>

(z), z
)

(s)
.

It can be verified by direct calculation that J(u) = a(u)J̃(0). Therefore,
Theorem 2.4.4 is valid at l = 0. For arbitrary l, its validity can be verified
by direct calculation.

2.6.2 Proof of Theorem 2.3.1

Consider a vector function τ̃(z) = (τ̃1(z), . . . , τ̃m−1(z))T , τ̃(z) : Z → Rm−1

such that ξτ̃ with τ̃ = τ̃(z) is a saturated locally D-optimal design at
the point Θ0T

=
(
Θ0T

1 , (q−1(z))T
)
. This function should satisfy equation

(2.10) and due to the Implicit Function Theorem (Gunning and Rossi, 1965)
we need only to prove that the Jacobi matrix, J , is invertible. For this, it
will do to prove that matrix B is of full rank. Suppose, oppositely, that
it is not the case. Then there exists a vector d ∈ Rm−1, d �= 0, such that
dTB = 0 and therefore

m∑
s=2

[
fi(x∗

s)f
′
j(x

∗
s) + f

′
i (x

∗
s)fj(x∗

s)
]
ds = 0, (2.40)

i, j = 1, . . . ,m, (i, j) �= (m,m), x∗
s = τ̃s−1(z), fi(x) := fi(x, z), i = 1, . . . .m,

s = 1, . . . ,m− 1.
Note that (2.40) holds also for (i, j) = (m,m). In fact, since

ξτ̄ =
(

x∗
1 . . . x∗

m−1 b
1/m . . . 1/m 1/m

)
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is a saturated locally D-optimal design, we have

∂

∂xs
detM(ξτ̄ , z) =

m∑
i,j=1

(fi(x∗
s)fj(x∗

s))
′
dij = 0, (2.41)

where dij = (M−1(ξτ̄ , z))i,j , s = 1, . . . ,m− 1.
Multiplying (2.40) by ds and summing the results, we obtain

m∑
i,j=1

(
m∑

s=2

(fi(x∗
s)fj(x∗

s))
′
ds

)
dij = 0.

Substituting (2.40) in the above equation, we obtain(
m∑

s=2

(
f2

m(x∗
s)
)′
ds

)
dmm = 0.

Since (M(ξτ̄ , z))
−1 is a positive definite matrix,

dmm = eT
m (M(ξτ̄ , z))

−1
em �= 0, e, = (0, . . . , 0, 1)T ,

and, thus, (2.40) holds for (i, j) = (m,m).
Define a vector ν by the equality

νT f(x) = det

⎛
⎜⎜⎝

f1(x∗
1) . . . fm(x∗

1)
. . . . . . . . .
f1(x∗

m−1) . . . fm(x∗
m−1)

f1(x) . . . fm(x)

⎞
⎟⎟⎠ .

Certainly, νT f(x∗
i ) = 0, i = 1, . . . ,m− 1, and we obtain from (2.40) that

m∑
s=2

νT f
′
(x∗

s)fj(x∗
s)ds = 0, j = 1, . . . ,m.

Due to assumption A1, we have qT f
′
(x∗

s) �= 0, s = 1, . . . ,m− 1. There-
fore,

L(t)α = 0, t = 1, . . . ,m, (2.42)

where α =
(
dsν

T f
′
(x∗

s)
)m−1

s=1
; L(t) is obtained from the matrix(

fi(x∗
j )
)m,m−1
i,j=1

by rejecting the t-th line. It follows from (2.45) that

detL(t) = 0, t = 1, . . . ,m, and it implies det
(
fi(x∗

j )
)m

i,j=1
= 0. However,

the last equality is impossible.
Note that if f1(x), . . . , fm−1(x) generate a Chebyshev system on [a,b],

then we need not use (2.41) and the points x∗i, i = 2, . . . ,m need not to be
support points of a locally D-optimal design in order for the matrix B be of
full rank. This remark will be needed in the following for the consideration
of MMEMS designs.
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2.6.3 Proof of Theorem 2.2.3

Let us begin with the proof of part (I). A direct calculation shows that the
matrix J = J(δ) is of the form

J =
(

A l
lT 0

)
,

where

A =
(

∂2

∂τi∂τj
Φ(u, δ)

)m−1

i,j=1

∣∣∣∣
u=û(δ)

,

l = (l1, . . . , lm−1)T ,

li =
R1(τ̂i)
1 − δ

− R2(τ̂i)
1 + δ

, i = 1, . . . ,m− 1,

Rs(τ̂i) =
∂

∂τi

(
detM(ξτ̂ ,Λ(s))

)1/m

=
(
detM(ξτ̂ ,Λ(s))

)1/m

fT (τ̂ ,Λ(s))M−1(ξτ̂ ,Λ(s))f(τ̂ ,Λ(s),

s = 1, 2, Λ(1) = (1 − δ)c, Λ(2) = (1 + δ)c.

Let us prove that l �= (0, . . . , 0)T . Suppose, oppositely, that l = (0, . . . , 0)T .
With u = û, from the definition of û, we have

∂

∂α
Φ(u, δ) = 0,

∂

∂τi
Φ(u, δ) = 0, i = 1, . . . ,m− 1

for u = û. From the first equality we obtain

detM(ξτ̂ ,Λ(1))
1 − δ

=
detM(ξτ̂ ,Λ(2))

1 + δ
.

Due to other m− 1 equalities, we have

1
1 + δ

R2(τ̂i) + α

{
R1(τ̂i)
1 − δ

− R2(τ̂i)
1 + δ

}
= 0, i = 1, . . . ,m− 1.

Now, it follows from the supposition l = (0, . . . , 0)T that

∂

∂τi
ϕ(τ,Λ(s)) = 0, i = 1, . . . ,m, s = 1, 2

with τ = τ̂ .
A direct calculation shows that

ϕ(τ,Λ(2)) = ϕ

(
τ

1 + δ
(1 − δ),Λ(1)

)
1 + δ

1 + δ
.
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Therefore,

∂

∂τi
ϕ(τ̂ ,Λ(1)) = 0, i = 1, . . . ,m− 1,

∂

∂τi
ϕ(hτ̂ ,Λ(1)) = 0, h =

1 + δ

1 − δ
, i = 1, . . . ,m− 1.

(2.43)

However, in Melas (1978) it was proved that the equation system (2.43)
has a unique solution in the set V . The contradiction obtained proves that
l �= (0, . . . , 0)T .

Let us now study the matrix A. Similar to the proof of Theorem 2.4.2,
it can be proved that the matrix A has the form

A = E − αBT
(1)D−1

(1)B(1) − (1 − α)BT
(2)D−1

(2)B(2),

where E is a diagonal matrix, D(1) and D(2) are positive definite, and α = α̂.
Repeating the arguments from the proof of Theorem 2.3.1, obtain that

the matrices B(1) and B(2)) have full rank and (E)ii ≤ 0, i = 1, . . . ,m− 1.
Therefore the matrix A is negative definite and invertible.

Now, we have
det J = −lTAl �= 0.

Now, assertion (I) of Theorem 2.2.3 follows from Theorem 2.4.1.
Let us prove part (II). From the general equivalence theorem for max-

imin efficient designs (see Dette, Haines and Imhof (2003) or Müller and
Pazman (1998)) it follows that the MMEMS design ξτ̂ is MME design
among all approximate designs if and only if the two following conditions
are satisfied:

α̂fT (x,Λ(1))M−1(ξτ̂ ,Λ(1))f(x,Λ(1))

+(1 − α̂)FT (x,Λ(2))M−1(ξτ̂ ,Λ(2))f(x,Λ(2)) ≤ m
(2.44)

with x ≥ 0, where Λ(1) = (1 − δ)c, Λ(2) = (1 + δ)c, and τ̂ = τ̂(δ), and

min
Λ∈Ω(δ)

(τ,Λ) = min
0≤α≤1

αQ(τ,Λ(1)) + (1 − α)Q(τ,Λ(2)), (2.45)

where
Q(τ,Λ) = ϕ(τ,Λ)/ϕ(τ∗(Λ),Λ).

In a vicinity of Λ = c let LDMS designs be locally D-optimal among all
approximate designs. Then, due to the standard continuity arguments,
inequality (2.44) holds for sufficiently small δ.

In order to prove (2.45), we will need the following auxiliary result.

Lemma 2.6.2 Consider a general function ϕ : V ×Ω → R, where V ⊂ Rs

and Ω ⊂ Rk are open sets.
Suppose that the following assumptions are satisfied:



2.6. APPENDIX: PROOFS 69

(a1) The function ϕ is positive and twice continuously differentiable.

(a2) For any Λ ∈ Ω, the equation

g(τ,Λ) = 0,

where g(τ,Λ) =
(

∂
∂τ1

ϕ(τ,Λ), . . . , ∂
∂τ3

ϕ(τ,Λ)
)T

possess a unique solu-
tion τ∗ = τ∗(Λ).

(a3) For all Λ ∈ Ω, the matrix

K = BTJ(Λ)B,

where

J(Λ) =
(

∂2

∂τi∂τj
ϕ(τ,Λ)

)s

i,j=1

∣∣∣∣
tau=τ∗(Λ)

,

B =
(

∂τi(Λ)
∂λj

)sk

i,j=1
, λj = (Λ)j ,

consists of negative elements.
Let Ω = Ω(δ), where

Ω(δ) =
{
Λ
∣∣Λ = (λ1, . . . , λk), (1 − δ)ci ≤ λi ≤ (1 + δ)ci, i = 1, . . . , k

}
,

0 < δ < 1, and
Q(τ,Λ) = ϕ(τ,Λ)

/
ϕ(τ∗(Λ),Λ).

Then for τ sufficiently close to τ∗(Λ)

min
Λ∈Ω(δ)

Q(τ,Λ) = min
0≤α≤1

α(Q(τ,Λ(1)) + (1 − α)Q(τ,Λ(2)),

where Λ(1) = (1 − δ)c, Λ(2) = (1 + δ)c.

Proof of the lemma. The proof is similar to that of Proposition A1 in
Dette, Melas and Pepelyshev (2003). A direct calculation shows that

∂

∂λi
ϕ(τ∗(Λ),Λ) =

∂

∂λi
ϕ(τ,Λ)

∣∣∣∣
τ=τ∗(Λ)

+
s∑

j=1

∂

∂τj
ϕ(τ,Λ)

∣∣∣∣
τ=τ∗(Λ)

∂

∂λi
(τ∗

j (Λ))
, (2.46)

i = 1, 2, . . . , k.
Due to assumption (a2), we obtain that

∂2

∂λi∂λj
ϕ(τ∗(Λ),Λ) =

∂2

∂λi∂λj
ϕ(τ, λ)

∣∣∣∣
tau=τ∗(Λ)

+
s∑

u,v=1

∂2

∂τu∂τv
ϕ(τ,Λ)

∣∣∣∣
rau=tau∗(Λ

∂

∂λi
τ∗
u(Λ)

∂

∂λj
τ∗
v (Λ),

(2.47)
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i, j = 1, . . . , k.
Now, it is easy to calculate

∂2

∂λi∂λj
Q(τ,Λ) = Q1ij(τ,Λ) +Q2ij(τ,Λ),

where Q1ij(τ,Λ) is such that Q1ij(τ∗(Λ),Λ) = 0,

Q2ij(τ,Λ) =
[(

∂2

∂λi∂λj
ϕ(τ,Λ)

)
H(Λ) − ϕ(τ,Λ)

∂2

∂λi∂λj
H(Λ)

]/
H2(Λ),

H(λ) = ϕ(τ∗(Λ),Λ),

i, j = 1, 2, . . . , k.
From (2.47) and the above formulas it follows that the matrix

(
∂2

∂λ1∂λj
Q(τ,Λ)

)k

i,j=1

∣∣∣∣
τ=τ∗(Λ)

is equal to K.
Since all elements of this matrix are negative by assumption (a3), the

minimum of Q(τ,Λ) by Λ ∈ Ω(δ) is achieved at the set {Λ(1),Λ(2)} for
sufficiently small δ and with τ sufficiently close to τ∗(Λ). This is equivalent
to the assertion of the lemma.

Now, let

ϕ(τ,Λ) =

(
detM(ξτ ,Λ)∏
i<j(λi − λj)8

)1/m

. (2.48)

We can assume that the function in the points Λ with λi = λj for some
i �= j is codetermined with preserving the continuity (it can be done due
to the discussion in Section 2.2).

Condition (a1) is evidently satisfied for this function and conditions (a2)
and (a3) are proved in Melas (1978).

Thus, due to Lemma 2.6.2 for the function ϕ(τ,Λ) determined by (2.48)
condition (2.45) takes place for sufficiently small δ. This completes the
proof of part (II) of Theorem 2.2.3.
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